
Under review as a conference paper at ICLR 2021

TRANSFORMED CNNS: RECASTING PRE-TRAINED
CONVOLUTIONAL LAYERS WITH SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformers (ViT) have recently emerged as a powerful alternative to
convolutional networks (CNNs). Although hybrid models attempt to bridge the
gap between these two architectures, the self-attention layers they rely on induce
a strong computational bottleneck, especially at large spatial resolutions. In this
work, we explore the idea of reducing the time spent training these layers by ini-
tializing them from pre-trained convolutional layers. This enables us to transition
smoothly from any pre-trained CNN to its functionally identical hybrid model,
called Transformed CNN (T-CNN). With only 50 epochs of fine-tuning, the result-
ing T-CNNs demonstrate significant performance gains over the CNN as well as
substantially improved robustness. We analyze the representations learnt by the
T-CNN, providing deeper insights into the fruitful interplay between convolutions
and self-attention.

INTRODUCTION

Since the success of AlexNet in 2012 (Krizhevsky et al., 2017), the field of Computer Vision has
been dominated by Convolutional Neural Networks (CNNs) (LeCun et al., 1998; 1989). Their
local receptive fields give them a strong inductive bias to exploit the spatial structure of natural
images (Scherer et al., 2010; Schmidhuber, 2015; Goodfellow et al., 2016), while allowing them to
scale to large resolutions seamlessly. Yet, this inductive bias limits their ability to capture long-range
interactions.

In this regard, self-attention (SA) layers, originally introduced in language models (Bahdanau
et al., 2014; Vaswani et al., 2017; Devlin et al., 2018), have gained interest as a building block for
vision Ramachandran et al. (2019); Zhao et al. (2020). Recently, they gave rise to a plethora of Vision
Transformer (ViT) models, able to compete with state-of-the-art CNNs in various tasks Dosovitskiy
et al. (2020); Touvron et al. (2020); Wu et al. (2020); Touvron et al. (2021); Liu et al. (2021); Heo
et al. (2021) while demonstrating better robustness (Bhojanapalli et al., 2021; Mao et al., 2021).
However, capturing long-range dependencies necessarily comes at the cost of quadratic complexity
in input size, a computational burden which many recent directions have tried to alleviate (Bello,
2021; Wang et al., 2020; Choromanski et al., 2020; Katharopoulos et al., 2020). Additionally, ViTs
are generally harder to train (Zhang et al., 2019; Liu et al., 2020), and require vast amounts of
pre-training (Dosovitskiy et al., 2020) or distillation from a convolutional teacher (Hinton et al., 2015;
Jiang et al., 2021; Graham et al., 2021) to match the performance of CNNs.

Faced with the dilemma between efficient CNNs and powerful ViTs, several approaches have aimed
to bridge the gap between these architectures. On one side, hybrid models append SA layers onto
convolutional backbones (Chen et al., 2018; Bello et al., 2019; Graham et al., 2021; Chen et al., 2021;
Srinivas et al., 2021), and have already fueled successful results in a variety of tasks (Carion et al.,
2020; Hu et al., 2018; Chen et al., 2020; Locatello et al., 2020; Sun et al., 2019). Conversely, a line
of research has studied the benefit of introducing convolutional biases in Transformer architectures
to ease learning (d’Ascoli et al., 2021; Wu et al., 2021; Yuan et al., 2021). Despite these interesting
compromises, modelling long-range dependencies at low computational cost remains a challenge for
practitioners.

Contributions At a time when pre-training on vast datasets has become common practice, we ask
the following question: does one need to train the SA layers during the whole learning process? Could

1

Under review as a conference paper at ICLR 2021

102

Model size (M)

78

80

82

84

Im
ag

eN
et

 a
cc

ur
ac

y

102

Model size (M)

40

50

60

70

Im
ag

eN
et

-C
 a

cc
ur

ac
y

102

Model size (M)

10

20

30

40

Im
ag

eN
et

-A
 a

cc
ur

ac
y

102

Model size (M)

20

30

40

50

Im
ag

eN
et

-R
 a

cc
ur

ac
y

102

Model size (M)

20

30

40

50

60

FG
SM

 a
cc

ur
ac

y

ViT
DeiT
ConViT
ViT-21k
ResNet
ResNet-RS
T-ResNet-RS

101

Flops (G)

78

80

82

84

Im
ag

eN
et

 a
cc

ur
ac

y

101

Flops (G)

40

50

60

70
Im

ag
eN

et
-C

 a
cc

ur
ac

y

101

Flops (G)

10

20

30

40

Im
ag

eN
et

-A
 a

cc
ur

ac
y

101

Flops (G)

20

30

40

50

Im
ag

eN
et

-R
 a

cc
ur

ac
y

101

Flops (G)

20

30

40

50

60

FG
SM

 a
cc

ur
ac

y

ViT
DeiT
ConViT
ViT-21k
ResNet
ResNet-RS
T-ResNet-RS

Figure 1: Transformed ResNets strike a strong accuracy-robustness balance. Our models (red)
significantly outperform the original ResNet-RS models (dark blue) they were initialized from when
evaluated on ImageNet-1k. They also exhibit solid performances on various robustness benchmarks
(ImageNet-C, A and R, and FGSM adversarial attacks from left to right).

one instead learn cheap components such as convolutions first, leaving the SA layers to be learnt at
the end? In this paper, we take a step in this direction by presenting a method to fully reparameterize
any pre-trained convolutional layer as a Gated Positional Self-Attention (GPSA) layer (d’Ascoli
et al., 2021). The latter is initialized to reproduce the mapping of the convolutional layer, but is
then encouraged to learn more general mappings which are not accessible to the CNN by adjusting
positional gating parameters.

We leverage this method to reparametrize pre-trained CNNs as functionally equivalent hybrid models.
After only 50 epochs of fine-tuning, the resulting Transformed CNNs (T-CNNs) boast significant
performance and robustness improvements as shown in Fig. 1, demonstrating the practical relevance
of our method. We analyze the inner workings of the T-CNNs, and show that they learn more robust
representations by combining convolutional heads and attentional heads in a complementary way.

Related work Our work mainly builds on two pillars. First, the idea that SA layers can express any
convolution, introduced by Cordonnier et al. (2019). This idea was recently leveraged by d’Ascoli
et al. (2021), which initialize the SA layers of end-to-end Transformers as random convolutions to
imbue them with a local inductive bias and improve their sample efficiency. Our approach leverages
the opposite idea: giving an end-to-end CNN the freedom to escape locality by learning self-attention
at late times.

Second, we exploit the following learning paradigm: train a simple and fast model, then reparame-
terize it as a more complex model for the final stages of learning. This approach was studied from
a scientific point of view in d’Ascoli et al. (2019), which shows that reparameterizing a CNN as a
fully-connected network (FCN) halfway through training can lead the FCN to outperform the CNN.
Yet, the practical relevance of this method is limited by the vast increase in number of parameters
required by the FCN to functionally represent the CNN. In contrast, our reparameterization hardly in-
creases the parameter count of the CNN, making it easily applicable to any state-of-the-art CNN. Note
that these reparameterization methods can be viewed an informed version of dynamic architecture
growing algorithms such as AutoGrow (Wen et al., 2020).

In the context of hybrid models, various works have studied the performance gains obtained by
introducing MHSA layers in ResNets with minimal architectural changes (Srinivas et al., 2021;
Graham et al., 2021; Chen et al., 2021). However, the MHSA layers used in these works are
initialized randomly and need to be trained from scratch. Our approach is different, as it makes use
of GPSA layers, which can be initialized to represent the same function as the convolutional layer

2

Under review as a conference paper at ICLR 2021

it replaces. We emphasize that the novelty in our work is not in the architectures used, but in the
unusual way they are blended together.

1 BACKGROUND

Multi-head self-attention The SA mechanism is based on a trainable associative memory with
(key, query) vector pairs. To extract the semantic interpendencies between the L elements of a
sequence X ∈ RL×Din , a sequence of “query” embeddings Q = WqryX ∈ RL×Dh is matched
against another sequence of “key” embeddingsK = WkeyX ∈ RL×Dh using inner products. The
result is an attention matrix whose entry (ij) quantifies how semantically relevantQi is toKj :

A = softmax

(
QK>√
Dh

)
∈ RL×L. (1)

Multi-head SA layers use several SA heads in parallel to allow the learning of different kinds of
dependencies:

MSA(X) :=

Nh∑
h=1

[SAh(X)]W h
out, SAh(X) := AhXW h

val, (2)

whereW h
val ∈ RDin×Dv andW h

out ∈ RDv×Dout are two learnable projections.

To incorporate positional information, ViTs usually add absolute position information to the input at
embedding time, before propagating it through the SA layers. Another possibility is to replace the
vanilla SA with positional SA (PSA), by including a position-dependent term in the softmax (Ra-
machandran et al., 2019; Shaw et al., 2018). Although there are several ways to parametrize the
positional attention, we use encodings rij of the relative position of pixels i and j as in (Cordonnier
et al., 2019):

Ah
ij := softmax

(
Qh

iK
h>
j + vh>posrij

)
. (3)

Each attention head learns an embedding vhpos ∈ RDpos , and the relative positional encodings
rij ∈ RDpos only depend on the distance between pixels i and j, denoted denoted as a two-
dimensional vector δij .

Self-attention as a generalized convolution Cordonnier et al. (2019) shows that a multi-head PSA
layer (Eq. 3) with Nh heads and dimension Dpos ≥ 3 can express any convolutional layer of filter
size
√
Nh, with Din input channels and min(Dv, Dout) output channels, by setting the following:

vhpos := −αh
(
1,−2∆h

1 ,−2∆h
2 , 0, . . . 0

)
rδ :=

(
‖δ‖2, δ1, δ2, 0, . . . 0

)
Wqry = Wkey := 0

(4)

In the above, the center of attention ∆h ∈ R2 is the position to which head h pays most attention to,
relative to the query pixel, whereas the locality strength αh > 0 determines how focused the attention
is around its center ∆h. When αh is large, the attention is focused only on the pixel located at ∆h;
when αh is small, the attention is spread out into a larger area. Thus, the PSA layer can achieve a
convolutional attention map by setting the centers of attention ∆h to each of the possible positional
offsets of a

√
Nh ×

√
Nh convolutional kernel, and sending the locality strengths αh to some large

value.

2 APPROACH

In this section, we introduce our method for mapping a convolutional layer to a functionally equivalent
PSA layer with minimal increase in parameter count. To do this, we leverage the GPSA layers
introduced in d’Ascoli et al. (2021).

3

Under review as a conference paper at ICLR 2021

Loading the filters We want each head h of the PSA layer to functionally mimic the pixel h of a
convolutional filterWfilter ∈ RNh×Din×Dout , where we typically have Dout ≥ Din. Rewriting the
action of the MHSA operator in a more explicit form, we have

MHSA(X) =

Nh∑
h=1

AhX W h
valW

h
out︸ ︷︷ ︸

W h∈RDin×Dout

(5)

In the convolutional configuration of Eq. 4, AhX selects pixel h of X . Hence, we need to set
W h = W h

filter. However, as a product of matrices, the rank ofWh is bottlenecked by Dv. To avoid
this being a limitation, we need Dv ≥ Din (since Dout ≥ Din). To achieve this with a minimal
number of parameters, we choose Dv = Din, and simply set the following initialization:

W h
val = I, W h

out = W h
filter. (6)

Note that this differs from the usual choice made in SA layers, where Dv = bDin/Nhc. However, to
keep the parameter count the same, we share the sameW h

val across different heads h, since it plays a
symmetric role at initialization.

Note that this reparameterization introduces three additional matrices compared to the convolu-
tional filter: Wqry,Wkey,Wval, each containing Din × Din parameters. However, since the
convolutional filter contains Nh ×Din ×Dout parameters, where we typically have Nh = 9 and
Dout ∈ {Din, 2Din}, these additional matrices are much smaller than the filters and hardly increase
the parameter count. This can be seen from the model sizes in Tab. 3.

Gated Positional self-attention Recent work (d’Ascoli et al., 2021) has highlighted an issue with
standard PSA: the fact that the content and positional terms in Eq. 3 are potentially of very different
magnitudes, in which case the softmax ignores the smallest of the two. This can typically lead the
PSA to adopt a greedy attitude: choosing the form of attention (content or positional) which is easiest
at a given time then sticking to it.

To avoid this, the authors suggest to sum the content and positional terms after the softmax, with
their relative importances governed by a learnable gating parameter λh (one for each attention head).
The resulting Gated Positional Self-Attention (GPSA) layers are parametrized as follows:

Ah
ij := (1− σ(λh)) softmax

(
Qh

iK
h>
j

)
+ σ(λh) softmax

(
vh>posrij

)
, (7)

where σ : x 7→ 1/(1+e−x) is the sigmoid function. In the positional part, the encodings rij are fixed
rather than learnt (see Eq. 4), which makes changing input resolution straightforward (see SM. C)
and leaves only 3 learnable parameters per head: ∆1,∆2 and α1.

How convolutional should the initialization be? The convolutional initialization of GPSA layers
involves two parameters, determining how strictly convolutional the behavior is: the initial value
of the locality strength α, which determines how focused each attention head is on its dedicated
pixel, and the initial value of the gating parameters λ, which determines the importance of the
positional information versus content. If λh � 0 and α� 1, the T-CNN will perfectly reproduce the
input-output function of the CNN, but may want to greedily stay in the convolutional configuration.
Conversely, if λh � 0 and α � 1, the T-CNN will forget about the input-output function of the
CNN. Hence, we choose α = 1 and λ = 1 to lie in between these two extremes, encouraging the
T-CNNs to escape locality throughout training.

Architectural details To make our setup as canonical as possible, we focus on ResNet architec-
tures (He et al., 2016), which contain 5 stages, with spatial resolution halfed and number of channels
doubled at each stage. Our method involves reparameterizing 3×3 convolutions as GPSA layers with
9 attention heads. However, global SA is too costly in the first layers, where the spatial resolution is
large. We therefore only reparameterize the last stage of the architecture, while replacing the first
stride-2 convolution by a stride-1 convolution, exactly as in (Srinivas et al., 2021). We also add
explicit padding layers to account for the padding of the original convolutions.

1Since α represents the temperature of the softmax, its value must stay positive at all times. To ensure this,
we instead learn a rectified parameter α̃ using the softplus function: α = 1

β
log(1 + e−βα̃), with β = 5.

4

Under review as a conference paper at ICLR 2021

100 101

Total training time

80

82

84

Im
ag

eN
et

 a
cc

ur
ac

y

ResNet-RS
T-ResNet-RS

100 101

Total training time

40

45

50

55

60

Im
ag

eN
et

-C
 a

cc
ur

ac
y

100 101

Total training time

10

20

30

40

Im
ag

eN
et

-A
 a

cc
ur

ac
y

100 101

Total training time

40

45

50

Im
ag

eN
et

-R
 a

cc
ur

ac
y

100 101

Total training time

30

40

50

60

FG
SM

 a
cc

ur
ac

y

Figure 2: T-CNNs reach much higher performance and robustness at equal training time. Total
training time (original training + finetuning) is normalized by the total training time of the ResNet50-
RS.

3 PERFORMANCE OF THE TRANSFORMED CNNS

In this section, we apply our reparametrization to state-of-the-art CNNs, then fine-tune the resulting
T-CNNs to learn better representations. This method allows to fully disentangle the training of the SA
layers from that of the convolutional backbone, which is of practical interest for two reasons. First, it
minimizes the time spent training the SA layers, which typically have a slower throughput. Second,
it separates the algorithmic choices of the CNN backbone from those of the SA layers, which are
typically different; for example, CNNs are typically trained with SGD whereas SA layers perform
much better with adaptive optimizers such as Adam (Zhang et al., 2019), an incompatibility which
may limit the performance of usual hybrid models.

Note that our reparametrization can also be applied halfway through training: this scenario is
investigated in Sec. 5. Results suggest that reparametrizing at intermediate times is optimal in terms
of speed-performance trade-offs. However, for easier reproducibility, we focus on reparametrizing
the fully pre-trained CNNs available in the timm package (Wightman, 2019): this avoids having to
retrain the various models from scratch.

Training details We applied our method to pre-trained ResNet-RS (Bello et al., 2021) models,
using the weights provided by the timm package (Wightman, 2019). These models are derived from
the original ResNet (He et al., 2016), but use improved architectural features and training strategies,
enabling them to reach better speed-accuracy trade-offs than EfficientNets.

To minimize computational cost, we restrict our fine-tuning to 50 epochs2. Following (Zhang et al.,
2019), we use the AdamW optimizer, with a batch size of 10243. The learning rate is warmed up to
10−4 then annealed using a cosine schedule. To encourage the T-CNN to escape the convolutional
configuration and learn content-based attention, we use a larger learning rate of 0.1 for the gating
parameters of Eq. 7 (one could equivalently decrease the temperature of the sigmoid function).

We use the same data augmentation scheme as the DeiT (Touvron et al., 2020), as well as rather
large stochastic depth coefficients dr reported in Tab. 1. Hoping that our method could be used as an
alternative to the commonly used practice of fine-tuning models at higher resolution, we also increase
the resolution during fine-tuning (Touvron et al., 2019). In this setting, a ResNet50 requires only
6 hours of fine-tuning on 16 V100 GPUs, compared to 33 hours for the original training. For our
largest model (ResNet350-RS), the fine-tuning lasts 50 hours.

Performance improvements Results are presented in Tab. 1, where we also report the baseline
improvement of fine-tuning in the same setting but without SA. In all cases, our fine-tuning improves
top-1 accuracy, with a significant gap over the baseline. To demonstrate the wide applicability of our
method, we report similar improvements for ResNet-D architectures in SM. E.

Despite the extra fine-tuning epochs and their slower throughput, the resulting T-CNNs also out-
performing the original CNNs on the ImageNet validation set at equal training budget, as shown

2We study how performance depends on the number of fine-tuning epochs in SM. D.
3Confirming the results of (Zhang et al., 2019), we obtained worse results with SGD.

5

Under review as a conference paper at ICLR 2021

Backbone
Training Fine-tuning

Without SA With SA
Res. dr TTT Top-1 Res. dr TTT Top-1 TTT Top-1

ResNet50-RS 160 0.0 1 (ref.) 78.8 224 0.1 1.16 80.4 1.30 81.0
ResNet101-RS 192 0.0 1.39 80.3 224 0.1 1.65 81.9 1.79 82.4
ResNet152-RS 256 0.0 3.08 81.2 320 0.2 3.75 83.4 4.13 83.7
ResNet200-RS 256 0.1 4.15 82.8 320 0.2 5.04 83.7 5.42 84.0
ResNet270-RS 256 0.1 6.19 83.8 320 0.2 7.49 83.9 7.98 84.3
ResNet350-RS 288 0.1 10.49 84.0 320 0.2 12.17 84.1 12.69 84.5

Table 1: Statistics of the models considered, trained from scratch on ImageNet. Top-1 accuracy
is measured on ImageNet-1k validation set. “TTT” stands for total training time (including fine-
tuning), normalized by the total training time of the ResNet50-RS. dr is the stochastic depth coefficient
used for the various models.

1 2 3 4 5
Corruption severity

0

10

20

30

40

50

R
el

. i
m

pr
ov

em
en

t

brig
htness

ela
sti

c t
ran

sfo
rm

pixe
lat

e

jpeg
 co

mpres
sio

n

glas
s b

lur

moti
on

 blur

zoo
m blur

defo
cu

s b
lur fog

sh
ot

nois
e

gau
ssi

an
 nois

e
fro

st
sn

ow

im
pulse

 nois
e

co
ntra

st
0

10

20

30

40

50

R
el

. i
m

pr
ov

em
en

t

noise
blur
digital
weather

Figure 3: Robustness is most improved for strong and blurry corruption categories. We report
the relative improvement between the top-1 accuracy of the T-ResNet50-RS and that of the ResNet50-
RS on ImageNet-C, averaging over the different corruption categories (left) and corruption severities
(right).

in the leftmost panel of Fig. 24. However, the major benefit of the reparametrization is in terms of
robustness, as shown in Fig. 2(b) and explained below.

Robustness improvements Recent work has shown that Transformer-based architectures offer
better robustness and out-of-domain generalization than convolutional architectures (Bhojanapalli
et al., 2021; Mao et al., 2021; Mahmood et al., 2021; Shao et al., 2021). To investigate whether our
fine-tuning procedure is enough to imbue CNNs with these advantages, we evaluate our T-CNNs on
various benchmarks:

• Common corruptions: we use ImageNet-C (Hendrycks & Dietterich, 2019), a dataset containing
15 sets of randomly generated corruptions, grouped into 4 categories: ‘noise’, ‘blur’, ‘weather’,
and ‘digital’. Each corruption type has five levels of severity, resulting in 75 distinct corruptions.
Note that to avoid distorting the corruptions, which are often pixel-based, we keep a resolution of
224 at inference, which disadvantages the large models trained at higher resolutions.

• Adversarial robustness: following (Mao et al., 2021), we evaluate the accuracy of our models
under two white-bow attacks5: (i) single-step FGSM (Goodfellow et al., 2014) and (ii) multi-step
L∞-PGD (Madry et al., 2017) with t = 5 steps of size α = 0.5. Both attackers perturb the input

4We estimated the training times of the original ResNet-RS models based on their throughput, for the same
hardware as used for the T-ResNet-RS.

5We use the toolkit provided by https://github.com/bethgelab/foolbox.

6

https://github.com/bethgelab/foolbox

Under review as a conference paper at ICLR 2021

image with max magnitude ε = 1. We also evaluate our models on ImageNet-A (Hendrycks et al.,
2021), a dataset containing naturally “adversarial” examples from ImageNet. Note however that
since this dataset is built from the flaws of a ResNet, it is potential unfair to CNNs.

• Distribution shifts: we use ImageNet-R (Hendrycks et al., 2020), a dataset with various stylized
“renditions” of ImageNet images ranging from paintings to embroidery, which strongly modify the
local image statistics.

The full table of results is presented in Tab. 3 of SM. A, and illustrated in Figs. 1 and 2. The
T-ResNet-RS substantially outperforms the ResNet-RS on all robustness benchmarks. For example,
our T-ResNet101-RS, which is 50% faster than ResNet200-RS, reaches similar or better results
all robustness tasks, despite its lower top-1 accuracy on ImageNet-1k. This demonstrates that SA
improves robustness more than it improves classification accuracy. The most striking improvement
is in terms of adversarial robustness, where the smallest T-ResNet-RS is on par with the largest
ResNet-RS despite requiring 5 times less compute.

To better understand where the benefits come from, we decompose the improvement of the T-
ResNet50-RS over the various corruption severeties and categories of ImageNet-C in Fig. 3. We
observe that improvement increases almost linearly with corruption severity. Although performance
is higher in all corruption categories, there is a strong variability: the T-CNN shines particularly in
tasks where the objects in the image are less sharp due to lack of contrast, bad weather or blurriness.
We attribute this to the ability of SA to distinguish shapes in the image, as investigated in Sec 4.

4 DISSECTING THE TRANSFORMED CNNS

In this section, we analyze various observables to understand how the representations of a T-
ResNet270-RS evolve from those of the ResNet270-RS throughout training.

0 20 40
Epochs

65

70

75

80

85

To
p-

1
ac

cu
ra

cy

A

Test
Train

0 20 40
Epochs

1

2

3

At
te

nt
io

n
sp

an

B

Layer 0
Layer 1
Layer 2
Layer 3

0 20 40
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Po
si

tio
na

l i
m

po
rt

an
ce

C

Figure 4: The later layers effectively escape the convolutional configuration. A: top-1 accuracy
throughout the 50 epochs of fine-tuning of a T-ResNet270-RS. B: size of the receptive field of the
various heads h (thin lines), calculated as α−1h (see Eq. 3). Thick lines represent the average over the
heads. C: depicts how much attention the various heads h (thin lines) pay to positional information,
through the value of σ(λh) (see Eq. 7). Thick lines represent the average over the heads.

Unlearn to better relearn In Fig. 4A, we display the train and test accuracy throughout training6.
The dynamics decompose into two distinct phases: accuracy dips down during the learning rate
warmup phase (first 5 epochs of training), then increases back up as the learning rate is decayed.

As shown in SM. B, the depth of the dip depends on the learning rate. For too small learning
rates, the dip is small, but the test accuracy increases too slowly after the dip; for too large learning
rates, the test accuracy increases rapidly after the dip, but the dip is too deep to be compensated for.
This suggests that the T-CNN needs to “unlearn” to some extent, a phenomenon reminiscent of the
“catapult” mechanism of Lewkowycz et al. (2020) which propels models out of sharp minima to land
in wider minima.

6The train accuracy is lower than the test accuracy due to the heavy data augmentation used during fine-tuning.

7

Under review as a conference paper at ICLR 2021

(a) Input image

La
ye

r
1

() = 1.00
Head 1

() = 1.00
Head 2

() = 1.00
Head 3

() = 0.00
Head 4

() = 1.00
Head 5

() = 0.00
Head 6

() = 1.00
Head 7

() = 1.00
Head 8

() = 1.00
Head 9

La
ye

r
2

() = 1.00 () = 0.00 () = 0.27 () = 0.00 () = 1.00 () = 0.00 () = 0.02 () = 0.00 () = 1.00

La
ye

r
3

() = 1.00 () = 0.00 () = 1.00 () = 0.00 () = 1.00 () = 0.00 () = 0.00 () = 1.00 () = 0.00

(b) Attention maps

Figure 5: GPSA layers combine local and global attention in a complementary way. We depicted
the attention maps of the four GPSA layers of the T-ResNet270-RS, obtained by feeding the image
on the left through the convolutional backbone, then selecting a query pixel in the center of the image
(red box). For each head h, we indicate the value of the gating parameter σ(λh) in red (see Eq. 7). In
each layer, at least one of the heads learns to perform content-based attention (σ(λh) = 0).

Escaping the convolutional representation In Fig. 4B, we show the evolution of the “attention
span” 1/αh (see Eq. 4), which reflects the size of the receptive field of attention head h. On average
(thick lines), this quantity increases in the first three layers, showing that the attention span widens,
but variability exists among different attention heads (thin lines): some broaden their receptive field,
whereas others contract it.

In Fig. 4C, we show the evolution of the gating parameters λh of Eq. 7, which reflect how much atten-
tion head h pays to position versus content. Interestingly, the first layer stays strongly convolutional
on average, as Ehσ(λh) rapidly becomes close to one (thick blue line). The other layers strongly
escape locality, with most attention heads focusing on content information at the end of fine-tuning.

In Fig. 5, we display the attention maps after fine-tuning. A clear divide appears between the
“convolutional” attention heads, which remain close to their initialization, and the “content-based”
attention heads, which learn more complex dependencies. Notice that the attention head initially
focusing on the query pixel (head 5) stays convolutional in all layers. Throughout the layers, the
edges of the central object is more and more clearly visible, as observed in (Caron et al., 2021). This
supports the hypothesis that robustness gains obtained for blurry corruptions (see Fig. 3) are partly
due to the ability of the SA layers to isolate objects from the background.

5 WHEN SHOULD ONE START LEARNING THE SELF-ATTENTION LAYERS?

We have demonstrated the benefits of initializing T-CNNs from pre-trained CNNs, a very compelling
procedure given the wide availability of pretrained models. But one may ask: how does this compare
to training a hybrid model from scratch? More generally, given a computational budget, how long
should the SA layers be trained compared to the convolutional backbone?

Transformed CNN versus hybrid models To answer the first question, we consider a ResNet-50
trained on ImageNet for 400 epochs. We use SGD with momentum 0.9 and a batch size of 1024,
warming up the learning rate for 5 epochs before a cosine decay. To achieve a strong baseline, we
use the same augmentation scheme as in Touvron et al. (2020) for the DeiT. Results are reported in
Tab. 2. In this modern training setting, the vanilla ResNet50 reaches a solid performance of 79.04%
on ImageNet, well above the 77% usually reported in litterature.

The T-CNN obtained by fine-tuning the ResNet for 50 epochs at same resolution obtains a top-1
accuracy of 79.88%, with a 15% increase in training time, and 80.84 as resolution 320, with a 35%
increase in training time. In comparison, the hybrid model trained for 400 epochs in the same setting
only reaches 79.95%, in spite of a 40% increase in training time. Hence, fine-tuning yields better
results than training the hybrid model from scratch.

What is the best time to reparametrize? We now study a scenario between the two extreme
cases: what happens if we reparametrize halfway through training? To investigate this question in

8

Under review as a conference paper at ICLR 2021

Name t1 t2 Train time Top-1

Vanilla CNN 400 0 2.0k mn 79.04
Vanilla CNN↑320 450 0 2.4k mn 79.78

T-CNN 400 50 2.3k mn 79.88
T-CNN↑320 400 50 2.7k mn 80.84

Vanilla hybrid 0 400 2.8k mn 79.95
T-CNN? 100 300 2.6k mn 80.44
T-CNN? 200 200 2.4k mn 80.28
T-CNN? 300 100 2.2k mn 79.28

Table 2: The benefit of late reparametrization. We report the top-1 accuracy of a ResNet-50
on ImageNet reparameterized at various times t1 during training. ↑320 stands for fine-tuning at
resolution 320. The models with a ? keep the same optimizer after reparametrization, in contrast with
the usual T-CNNs.

a systematic way, we train the ResNet50 for t1 epochs, then reparametrize and resume training for
another t2 epochs, ensuring that t1 + t2 = 400 in all cases. Hence, t1 = 400, amounts to the vanilla
ResNet50, whereas t1 = 0 corresponds to the hybrid model trained from scratch. To study how final
performance depends on t1 in a fair setting, we keep the same optimizer and learning rate after the
reparametrization, in contrast with the fine-tuning procedure which uses fresh optimizer.

Results are presented in Tab. 2. Interestingly, the final performance evolves non-monotonically,
reaching a maximum of 80.44 for t1 = 100, then decreasing back down as the SA layers have less
and less time to learn. This non-monotonicity is remarkably similar to that observed in d’Ascoli et al.
(2019), where reparameterizing a CNN as a FCN in the early stages of training enables the FCN to
outperform the CNN. Crucially, this result suggests that reparametrizing during training not only
saves time, but also helps the T-CNN find better solutions.

DISCUSSION

In this work, we showed that complex building blocks such as self-attention layers need not be trained
from start. Instead, one can save in compute time while gaining in performance and robustness
by initializing them from pre-trained convolutional layers. At a time where energy savings and
robustness are key stakes, we believe this finding is important.

On the practical side, our fine-tuning method offers an interesting new direction for practitioners. One
limitation of our method is the prohibitive cost of reparametrizing the early stages of CNNs. This
cost could however be alleviated by using linear attention methods (Wang et al., 2020), an important
direction for future work. Note also that while our T-CNNs significantly improve the robustness of
CNNs, they do not always reach the performance of end-to-end Transformers such as the DeiT (for
example on ImageNet-C, see Fig. 1). Bridging this gap is an important next step for hybrid models.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint
arXiv:2102.08602, 2021.

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 3286–3295, 2019.

Irwan Bello, William Fedus, Xianzhi Du, Ekin D Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon
Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies. arXiv
preprint arXiv:2103.07579, 2021.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
Andreas Veit. Understanding robustness of transformers for image classification. arXiv preprint
arXiv:2103.14586, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872,
2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294, 2021.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In European Conference on
Computer Vision, pp. 104–120. Springer, 2020.

Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, and Jiashi Feng. A2-nets: Double
attention networks. arXiv preprint arXiv:1810.11579, 2018.

Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer: The
vision-friendly transformer, 2021.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle in the haystack
with convolutions: on the benefits of architectural bias. In Advances in Neural Information
Processing Systems, pp. 9334–9345, 2019.

Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. arXiv preprint
arXiv:2103.10697, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

10

Under review as a conference paper at ICLR 2021

Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and
Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. arXiv
preprint arXiv:2104.01136, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 558–567, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. arXiv
preprint arXiv:2006.16241, 2020.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. CVPR, 2021.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers. arXiv preprint arXiv:2103.16302, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3588–3597, 2018.

Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie Jin, Anran Wang, and Jiashi Feng. Token
labeling: Training a 85.4% top-1 accuracy vision transformer with 56m parameters on imagenet,
2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty
of training transformers. arXiv preprint arXiv:2004.08249, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

11

Under review as a conference paper at ICLR 2021

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
arXiv preprint arXiv:2006.15055, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness of vision transformers
to adversarial examples. arXiv preprint arXiv:2104.02610, 2021.

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Shaokai Ye, Yuan He, and Hui Xue. Rethinking
the design principles of robust vision transformer. arXiv preprint arXiv:2105.07926, 2021.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of Pooling Operations in Con-
volutional Architectures for Object Recognition. In Konstantinos Diamantaras, Wlodek Duch,
and Lazaros S. Iliadis (eds.), Artificial Neural Networks – ICANN 2010, Lecture Notes in Com-
puter Science, pp. 92–101, Berlin, Heidelberg, 2010. Springer. ISBN 978-3-642-15825-4. doi:
10.1007/978-3-642-15825-4_10.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:
85–117, January 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. URL http:
//www.sciencedirect.com/science/article/pii/S0893608014002135.

Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial robustness
of visual transformers. arXiv preprint arXiv:2103.15670, 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck Transformers for Visual Recognition. arXiv e-prints, art. arXiv:2101.11605, January
2021.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A joint
model for video and language representation learning. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 7464–7473, 2019.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution
discrepancy. arXiv preprint arXiv:1906.06423, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and H Linformer Ma. Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in deep con-
volutional networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 833–841, 2020.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

12

http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2021

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Masayoshi Tomizuka, Kurt
Keutzer, and Peter Vajda. Visual Transformers: Token-based Image Representation and Processing
for Computer Vision. arXiv:2006.03677 [cs, eess], July 2020. URL http://arxiv.org/
abs/2006.03677. arXiv: 2006.03677.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers. arXiv preprint arXiv:2103.11816, 2021.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? arXiv preprint
arXiv:1912.03194, 2019.

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10076–10085, 2020.

13

http://arxiv.org/abs/2006.03677
http://arxiv.org/abs/2006.03677

Under review as a conference paper at ICLR 2021

Model Res. Params Speed Flops IN-1k IN-C IN-A IN-R FGSM PGD

Transformers

ViT-B/16‡ 224 86 M 182 16.9 77.9 52.2 7.0 21.9 30.6 14.3
ViT-L/16‡ 224 307 M 55 59.7 76.5 49.3 6.1 17.9 27.8 13.0

ViT-B/16 21k‡ 224 86 M 182 16.9 84.0 65.8 26.7 38.0 31.3 10.3
ViT-L/16 21k‡ 224 307 M 55 59.7 85.1 70.0 28.1 40.6 40.5 16.2

DeiT-S† 224 22 M 544 4.6 79.9 55.4 18.9 31.0 40.7 16.7
DeiT-B† 224 87 M 182 17.6 82.0 60.7 27.4 34.6 46.4 21.3

ConViT-S† 224 28 M 296 5.4 81.5 59.5 24.5 34.0 41.0 17.2
ConViT-B† 224 87 M 139 17.7 82.4 61.9 29.0 36.9 51.8 20.8

RVT-S† 224 23.3 M - 4.7 81.9 - 25.7 47.7 51.8 28.2
RVT-B† 224 91.8 M - 17.7 82.6 - 28.5 48.7 53.0 29.9

CNNs

ResNet50‡ 224 25 M 736 4.1 76.8 46.1 4.2 21.5 - -
ResNet101‡ 224 45 M 435 7.85 78.0 50.2 6.3 23.0 14.7 2.0

ResNet101x3‡ 224 207 M 62 69.6 80.3 53.4 9.1 24.5 23.6 7.3
ResNet152x4‡ 224 965 M 18 183.1 80.4 54.5 11.6 25.8 33.3 10.5

ResNet50-RS 160 36 M 938 4.6 78.8 36.8 5.7 39.1 28.7 18.4
ResNet101-RS 192 64 M 674 12.1 80.3 44.1 11.8 44.8 32.9 18.8
ResNet152-RS 256 87 M 304 31.2 81.2 49.9 23.4 45.9 41.6 28.5
ResNet200-RS 256 93 M 225 40.4 82.8 49.3 25.4 48.1 40.4 24.6
ResNet270-RS 256 130 M 152 54.2 83.8 53.6 26.6 48.7 44.7 30.3
ResNet350-RS 288 164 M 89 87.5 84.0 53.9 34.9 49.7 48.3 34.6

Our Transformed CNNs

T-ResNet50-RS 224 38 M 447 17.6 81.0 48.0 18.7 42.9 47.2 33.9
T-ResNet101-RS 224 66 M 334 25.1 82.4 52.9 27.7 47.8 50.3 34.2
T-ResNet152-RS 320 89 M 128 65.8 83.7 54.5 39.8 50.6 57.3 36.8
T-ResNet200-RS 320 96 M 105 80.2 84.0 57.0 41.2 51.1 58.3 36.4
T-ResNet270-RS 320 133 M 75 107.2 84.3 58.6 43.7 51.4 59.0 36.6
T-ResNet350-RS 320 167 M 61 130.5 84.5 59.2 44.8 53.8 53.4 36.4

Table 3: Accuracy of our models on various benchmarks. Throughput is the number of images
processed per second on a V100 GPU at batch size 32. For ImageNet-C, we keep a resolution of 224
at test time to avoid distorting the corruptions; this disadvantages our large models, which are trained
at higher resolutions. †: reported from (Mao et al., 2021) (we recalculated ImageNet-C accuracies, as
the original paper reports MCE). ‡: reported from (Bhojanapalli et al., 2021) (in their setup, PGD
uses 8 steps with a stepsize of 1/8).

A PERFORMANCE TABLE

In Tab. 3, we display the characteristics and the performance of our T-ResNet-RS models and
compare them to the original ResNet-RS models as well as several other strong baselines reported
in Bhojanapalli et al. (2021); Mao et al. (2021).

B CHANGING THE LEARNING RATE

We have shown that the learning dynamics decompose into two phases: the learning rate warmup
phase, where the test loss drops, then the learning rate decay phase, where the test loss increases
again. This could lead one to think that the maximal learning rate is too high, and the dip could be
avoided by choosing a lower learning rate. Yet this is not the case, as shown in Fig. 6. Reducing the
maximal learning rate indeed reduces the dip, but it also slows down the increase in the second phase
of learning. This confirms that the model needs to “unlearn” the right amount to find better solutions.

14

Under review as a conference paper at ICLR 2021

0 10 20 30 40 50
Epochs

67.5

70.0

72.5

75.0

77.5

80.0

To
p-

1
ac

cu
ra

cy

lr = 0.0001
lr = 0.0002
lr = 0.0005

Figure 6: The larger the learning rate, the lower the test accuracy dips, but the faster it climbs
back up. We show the dynamics of the ResNet50, fine-tuned for 50 epochs at resolution 224, for
three different values of the maximal learning rate.

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

Test resolution

76

78

80

82

84

To
p-

1
ac

cu
ra

cy

ResNetRS-50
ResNetRS-101
ResNetRS-152
ResNetRS-200
ResNetRS-270
ResNetRS-350
T-ResNetRS-50
T-ResNetRS-101
T-ResNetRS-152
T-ResNetRS-200
T-ResNetRS-270
T-ResNetRS-350

Figure 7: Performance at different test-time resolutions, for the finetuned models with and
without SA. The ResNet50-RS and ResNet101-RS models are finetuned at resolution 224, and all
other models are finetuned at resolution 320.

C CHANGING THE TEST RESOLUTION

One advantage of the GPSA layers introduced by d’Ascoli et al. (2021) is how easily they adapt to
different image resolutions. Indeed, the positional embeddings they use are fixed rather than learnt.
They simply consist in 3 values for each pair of pixels: their euclidean distance ‖δ‖, as well as their
coordinate distance δ1, δ2 (see Eq. 4). Our implementation automatically adjusts these embeddings
to the input image, allowing us to change the test resolution seamlessly.

In Fig. 7, we show how the top-1 accuracies of our T-ResNet-RS models compares to those of
the ResNet-RS models finetuned at same resolution but without SA. At test resolution 416, our T-
ResNetRS-350 reaches an impressive top-1 accuracy of 84.9%, beyond those of the best EfficientNets
and BotNets Srinivas et al. (2021).

D CHANGING THE NUMBER OF EPOCHS

In Tab. 4, we show how the top-1 accuracy of the T-ResNet-RS model changes with the number of
fine-tuning epochs. As expected, performance increases significantly as we fine-tune for longer, yet
we chose to set a maximum of 50 fine-tuning epochs to keep the computational cost of fine-tuning
well below that of the original training.

15

Under review as a conference paper at ICLR 2021

Model Epochs Top-1 acc

ResNet50-RS 0 79.91
T-ResNet50-RS 10 80.11
T-ResNet50-RS 20 80.51
T-ResNet50-RS 50 81.02
ResNet101-RS 0 81.70

T-ResNet101-RS 10 81.54
T-ResNet101-RS 20 81.90
T-ResNet101-RS 50 82.39

Table 4: Longer fine-tuning increases final performance. We report the top-1 accuracies of our
models on ImageNet-1k at resolution 224.

E CHANGING THE ARCHITECTURE

Our framework, which builds on the timm package, makes changing the original CNN architecture
very easy. We applied our fine-tuning procedure to the ResNet-D models He et al. (2019) with the
exact same hyperparameters, and observed substantial performance gains, similar to the ones obtained
for ResNet-RS, see Tab. 5. This suggests the wide applicability of our method.

Model Original res. Original acc. Fine-tune res. Fine-tune acc. Gain

T-ResNet50-D 224 80.6 320 81.6 +1.0
T-ResNet101-D 320 82.3 384 83.1 +0.8
T-ResNet152-D 320 83.1 384 83.8 +0.7
T-ResNet200-D 320 83.2 384 83.9 +0.7

T-ResNet50-RS 160 78.8 224 81.0 +2.8
T-ResNet101-RS 192 81.2 224 82.4 +1.2
T-ResNet152-RS 256 83.0 320 83.7 +0.7
T-ResNet200-RS 256 83.4 320 84.0 +0.6

Table 5: Comparing the performance gains of the ResNet-RS and ResNet-D architectures. Top-
1 accuracy is measured on ImageNet-1k validation set. The pre-trained models are all taken from the
timm library Wightman (2019).

16

	Background
	Approach
	Performance of the Transformed CNNs
	Dissecting the Transformed CNNs
	When should one start learning the self-attention layers?
	Performance table
	Changing the learning rate
	Changing the test resolution
	Changing the number of epochs
	Changing the architecture

