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ABSTRACT

The widespread adoption of large pretrained models has made fine-tuning an
essential step for tailoring models to specific tasks. As these models continue
to scale larger and as the demand for task-specific and personalized adaptation
grows, parameter-efficient fine-tuning (PEFT) has emerged as a practical alterna-
tive to full fine-tuning. PEFT enables effective adaptation while updating only a
small fraction of the total parameters. While various PEFT techniques have shown
strong performance, many still suffer from increased inference latency and inef-
ficiencies in multi-adapter scenarios. Motivated by these limitations, we propose
a novel PEFT approach that leverages auxiliary representations to enable fast and
flexible inference. In our method, Latent Task Embedding fine-tuning, a small
task-specific latent embedding is concatenated to the original embedding. The
corresponding weight matrices are extended, and only the additional parameters
introduced by this expansion are trained. This design allows for efficient inference
using a single matrix multiplication per weight, minimizing latency overhead, and
supports task-specific masking to handle multiple adapters within a single model.
We evaluate our method on large language models and latent diffusion models,
demonstrating competitive accuracy with existing PEFT baselines while provid-
ing faster inference and enabling efficient intra-batch multi-task processing.

1 INTRODUCTION

The remarkable success of large pretrained models is largely attributed to scale and generality —
large-scale training on diverse data results in highly capable models that can be fine-tuned for a wide
range of downstream applications (Achiam et al., [2023} |Grattafiori et al., |2024; |Abdin et al., [2024;
Yang et al.| [2024; Team et al, 2025). However, as model sizes continue to grow, full fine-tuning
(FFT), where all parameters are updated for each task, has become increasingly impractical due to its
high computational and storage demands. To address this, parameter-efficient fine-tuning (PEFT)
methods have emerged as a compelling alternative. PEFT techniques adapt pretrained models by
introducing and updating only a small number of parameters while keeping the base model frozen.
Various PEFT approaches have shown that strong downstream performance can be achieved with
significantly fewer trainable parameters, enabling rapid adaptation and deployment (Houlsby et al.,
2019; Lester et al., 20215 [Hu et al ., 2022).

While existing PEFT methods have proven effective, the rapidly expanding landscape of down-
stream applications — ranging from hyper-personalization (Chen et al.,[2024) to privacy-preserving
edge deployment (Xu et al.l [2024) — poses critical challenges for inference efficiency. In these
resource-constrained environments, where dedicated cloud-tier GPUs are often absent, the demand
extends beyond simple adaptation to the simultaneous serving of multiple task-specific adapters.
This requirement exposes a fundamental limitation in current approaches: a stark trade-off between
latency and memory. Merging adapters (e.g., via LoRA) achieves fast single-task inference but
forces memory usage to scale linearly with the number of tasks, rendering it impractical for multi-
tenant scenarios. Conversely, maintaining unmerged adapters conserves memory but introduces se-
quential computational overhead that significantly degrades latency. Consequently, modern deploy-
ment faces an unresolved trilemma among accuracy, latency, and multi-task flexibility that existing
methods struggle to resolve.
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Figure 1: (a-c) The comparison of the forward pass through a single weight for the base, LoRA, and
LatTE model. While the A and B matrices in LoRA are expressed conventionally as trapezoids to
emphasize their low ranks, they are identical in the matrix dimensions with the A and B in LatTE.
(d) The forward pass a MLP model with LatTE. We have omitted the non-linearity between the
layers for simplicity. The shaded region can be conceptually regarded as a single LoRA unit.

PEFT techniques can be broadly categorized into three types. The first modifies the model architec-
ture, such as in serial or parallel adapters (Houlsby et al., 2019; |Pfeiffer et al.,2021; He et al.,|2022),
by introducing adapter modules into each transformer block which alters the flow of intermediate
representations. The second category centers on finding efficient ways to tune the weight matri-
ces that resemble FFT. This category includes LoRA (Hu et al., 2022)) and its variants. The third
category focuses on representations, and either introduce additional learnable embeddings such as
prompt-based methods (Lester et al.l 2021} |Li & Liang| [2021}; [Liu et al.,|2022b), or modify the hid-
den states to steer the model’s behavior (Liu et al.l |2022a; Wu et al., 2024b). While each strategy
has its merits, existing PEFT approaches do not focus on inference efficiency.

In this work, we propose a new direction: leveraging auxiliary latent representations as a com-
pact and efficient carrier of task-specific information. This design choice offers several distinct
advantages: (1) it preserves fast inference by reducing the adaptation to the same single matrix mul-
tiplication as in the base model (but with increased dimension), (2) its simple architecture introduces
few hyperparameters and has low memory requirement, and (3) it enables flexible composition and
switching of multiple tasks. Motivated by these properties, we introduce Latent Task Embedding
(LatTE) fine-tuning, a novel PEFT method that injects task-specific latent embeddings directly into
the model’s input layer. LatTE enables fast, simple, and composable fine-tuning with minimal la-
tency overhead and strong empirical performance across diverse tasks and model families.

LatTE concatenates the learnable auxiliary embedding to the original latent embedding, which
serves as a compact, task-specific representation. The projection weights are expanded accordingly,
and only the newly-introduced parameters are updated during fine-tuning. The gist of the method,
acting on a single weight, is compared with the base model and LoRA in Figure (1| (a-c). This re-
sults in a lightweight and latency-free tuning mechanism, where inference remains as efficient as
the base model. Our approach enables multiple adapters to coexist within the enlarged embedding
space with task-specific mask controlling the adapter to be used — an important capability for effi-
cient multi-task and multi-domain deployment. We evaluate our method across various LLMs and a
diffusion model on a variety of tasks. Both experimental results and theoretical analysis demonstrate
that LatTE consistently matches the performance of leading PEFT baselines while achieving faster
inference speed. By bridging the gap between efficient fine-tuning and real-world deployment con-
straints, our method paves the way for scalable and high-performance model adaptation in practical
applications.

We summarize our main contributions as follows:
* We propose LatTE, a novel PEFT method that utilizes auxiliary latent embeddings, enabling
low-latency adaptation with a minimal number of trainable parameters.

* We conduct extensive experiments across LLMs and diffusion models, demonstrating strong
performance compared to robust PEFT baselines.



Under review as a conference paper at ICLR 2026

* We demonstrate the unique flexibility of LatTE for efficient intra-batch multi-task inference
via task-specific masking, maintaining near-constant latency when serving heterogeneous tasks
simultaneously.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT). PEFT is a series of methods that update only a small
fraction of the model’s parameters during fine-tuning, while keeping the rest frozen. This enables
adaptation to new tasks with minimal computational overhead while preserving the capabilities of
the base model. We broadly categorize existing PEFT methods into the following three classes.

* Module-based methods introduce additional trainable modules (adapters) to the model architec-
ture. The adapters mostly consist of a down- and up-projection with a nonlinearity in between.
There are serial adapter (Houlsby et al., [2019; [Pfeiffer et al.| 2021)) and parallel adapter (He
et al., [2022) based on how the adapter is attached to the base module. CIAT (Zhu et al., 2021)
and CoDA (Lei et al.,2023) are also variants of the parallel adapter.

¢ Weight-based methods aim to efficiently update the weights of the model, and can be con-
sidered as a direct approximation of FFT. The update of the weights can be either additive or
multiplicative. LoRA (Hu et al., [2022) and its variants (Zhang et al., |2023b; [Liu et al.| [2024a;
Kopiczko et al.} 2024; |Li et al.l 2024), the most widely used PEFT, are additive weight-based
methods. Multiplicative-update method includes OFT (Qiu et al., 2023), BOFT (Liu et al
2024b), and HRA (Yuan et al.,[2024).

* Representation-based methods use representations as a tool for fine-tuning. Soft-prompt meth-
ods are in this category, where learnable embeddings are prefixed to the prompt. Prefix-tuning (L1
& Liang,[2021)), prompt-tuning (Lester et al.,|2021)), and p-tuning (Liu et al.,|2022b) are examples
of such methods. Another group in this category modifies or edits the intermediate representa-
tions to fit the model to downstream tasks. This includes methods such as (IA)® (Liu et all
2022a)), SSF (Lian et al.,[2022), and ReFT (Wu et al.,[2024b)).

¢ Sparsity-Based methods leverages sparsity and selectively update subsets of model parameters
identified as most critical for the target task, often by masking (Guo et al., [2021}; |Sung et al.,
2021; |Ansell et al., 2022). More recent work on sparsity methods, SpIEL (Ansell et al.| [2024))
and SMT (He et al.| 2025)), scales these ideas to LLMs up to 13B parameters.

Notably, despite the extensive research over the past years, no PEFT approach explores the use
of representations auxiliary to the embeddings as a mechanism for adaptation, to the best of our
knowledge.

Inference-Efficient PEFT. Recent works have recognized the need for reducing inference-time
overhead in PEFT. SPLoRA (Hedegaard et al. 2024) and CA-LoRA (Zhao et al., [2024) combine
LoRA with pruning or quantization for faster inference. Our method differs from these approaches
as we preserve the precision and expressivity of the base model. |Liao et al.|(2023) introduces
zero latency PEFT methods, PaFi and HiWi, which are a task-agnostic sparse fine-tuning and a
multiplicative version of LoRA, respectively. These methods do not introduce additional latency as
they (partially) update the original model as in FFT. Inference of LatTE, on the other hand, is as
fast as the base model while keeping the original weights intact, which is beneficial for fast task-
switching.

We emphasize a critical distinction often overlooked in the literature: many weight-based methods
such as LoRA and OFT claim inference speed identical to the base model. However, this only holds
when weight updates are pre-merged before inference — i.e., low-rank weights are pre-added for
LoRA or orthogonal matrices are pre-multiplied for OFT. Pre-merging destroys multi-task capabil-
ity: serving NV tasks requires IV separate merged models or constant loading/unloading overhead. In
contrast, LatTE maintains near-base model inference speed while supporting multiple tasks through
a single expanded model with task-specific masking, making it uniquely suited for multi-adapter
deployment scenarios.

Multi-Adapter and Multi-Task Adaptation. Scenarios involving multiple downstream tasks or
domains often demand flexible and composable fine-tuning strategies. MAD-X (Pfeiffer et al.,[2020)
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and AdapterFusion (Pfeiffer et al.| |2021) allow for combining multiple adapters, yet require addi-
tional merging logic and may incur runtime costs. Mixture of Expert (MoE) (Jacobs et al., [1991)
style combination of multiple task LoRAs (Wu et al.| 2024a; Xu et al., 20255 [Liao et al., [2025) may
be effective, but adds complexity during inference. Our approach supports multiple tasks through
task-specific masking applied to the embedding, introducing minimal latency compared to single-
task inference. Moreover, this flexibility is an intrinsic feature of vanilla LatTE, and has much room
for improvements in future variants specialized for such purposes.

3 OUR METHOD

We propose LatTE, a fine-tuning method in which a task-specific auxiliary embedding is concate-
nated to the original token embeddings. This increases the embedding dimensionality, which cor-
respondingly expands the associated weight matrices. The fine-tuned knowledge is thus stored in
the additional weight parameters introduced by this expansion, and the interaction with the original
forward pass is mediated by the auxiliary embedding. Architecturally, LatTE resembles LoRA and
other weight-based PEFT methods, as it modifies individual weights without altering the model’s
overall structure (see Figure [[). However, a unique feature of LatTE is that the forward pass
through one weight is calculated by a single matrix multiplication while keeping the original weight
frozen. This enables inference-time performance comparable to that of the original model, making
LatTE both efficient and scalable.

The comparison between the base model, LoRA, and LatTE is illustrated in Figure [1| (a-c), which
shows the forward pass through a single weight matrix W € R?**_ Given an input embedding x €
R, the base model computes the output y € R? as y = Wx. In LoRA, task-specific information
is introduced via a low-rank adapter, yielding: y = Wz + BAz, where A € R™** and B €
R*" and r is the low-rank dimension. In LatTE, the input embedding is concatenated with an
auxiliary embedding Z € R” to form [z; Z] € R**". The forward pass is computed in the expanded
embedding space:

y| _|W Bl |z

=15 el 2
where A, B, and C € R"*" are trainable matrices. For convenience, we denote the expanded vectors
and matrix as X = [ﬂ ,y = B] ,and W = [IX g} , so that Eq. simplifies to the familiar

linear form y = Wx. In Figure |l (c), the block matrix W is highlighted with a yellow dashed
outline. We deliberately set the auxiliary embedding dimension r to match the low-rank dimension
used in LoRA, allowing for a fair parameter comparison. LoRA introduces (d + k)r additional
parameters per weight matrix, while LatTE adds (d + & + r)r, which remains comparable under the
common assumption r < min(d, k). Proper initialization is crucial to PEFT model’s performance
and we initialize A as Kaiming uniform and B, C' to zero. This follows LoRA’s default strategy
in the Huggingface PEFT library (Mangrulkar et al.l|2022), and ensures that LatTE’s forward pass
exactly replicates the base model at the start of the training.

To compute in the expanded space, we define expansion and compression functions fi, and foy,
which are applied once per forward pass:

fin(-r) =X, fout(Y) =Y.

In practice, we initialize the auxiliary embedding a learnable constant vector ¢: fi,(z) = [z; ¢], and
extract the final output as a linear combination: fou([y; 3]) = y+ By. Note that the matrix B used in
this post-processing step is a separate trainable parameter and not reused from the block matrix W,
although it shares the same shape R%*". Alternative design choices for fi, and f., are discussed
in Section[5} We emphasize that fi, and fo are applied only once per forward pass through the
entire network, not once per layer. The auxiliary embedding is expanded once at the input (fi,),
propagates through all layers in the expanded space, and is compressed once at the output (fou),
ensuring minimal overhead.

3.1 APPLICATION TO THE MULTI-LAYER PERCEPTRON

With the LatTE building block in place, we now apply it to a multilayer perceptron (MLP) network.
Consider an L-layer MLP with weight matrices W, for 1 < ¢ < L and an activation function o.
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Given an input embedding x, the MLP computes the output as:
y=Wr-o(Wp_1-0(---o(Wix))).

To incorporate LatTE, we replace each W, with its expanded counterpart W; and insert the ex-
pansion and compression functions fi, and foy at the input and output, respectively. The input
embedding is first expanded from a d-dimensional vector to a (d + r)-dimensional one by fi,, then
propagated through the network using the sequence of W; matrices. The final embedding is com-
pressed back to a d-dimensional output by fo,. The resulting output becomes:

Y= fou(Wr-0o(Wr_1-0(-0(Wifin(2))))). 2
The feed-forward network (FFN) block in a Transformer architecture (Vaswani et al.||2017) is typi-
cally a two-layer MLP of the form:

FFNU(:c, Wl, Wg) = W2 . U(Wll‘).

Modern LLMs, including those used in our experiments (Grattafiori et al.,|2024; Yang et al., |2024),
often use the SwiGLU activation function (Shazeer, 2020), a variant of the Gated Linear Unit
(GLU) (Dauphin et al., 2017)) based on Swish (Ramachandran et al., 2017). A single FFN using
SwiGLU can be expressed as:

FFNSwiGLU(-T7 W, V, Wz) = W2 . (SWiSh1 (WZE) X Vx),

where Swishg(z) = z - sigmoid(/5z) and ® denotes the element-wise (Hadamard) product. Apply-
ing LatTE to this FEN block involves replacing each weight matrix with its expanded form. The
resulting forward pass becomes:

FFNSwiGLU (X7 W, V, Wg) = W2 . (SWiSh1(WX) ® VX) (3)

3.2 APPLICATION TO THE ATTENTION MODULE

Unlike MLP layers — where applying LatTE is straightforward more heads

and leaves little room for design choices beyond fi, and fo, — the
attention module presents several implementation options. The
core strategy remains the same: expand the embedding dimension
and replace the weight matrices with their extended counterparts.
However, the key challenge lies in how to allocate the auxiliary wider heads
embedding dimensions across the attention heads.

[
[
|
h=1h=2h=3 h=H+1

Assume a standard multi-head attention (MHA) mechanism with
H heads, where the per-head dimension is dy = d/H. The usual h=1 h=2 h=H
output of an MHA layer can be written as: I

H
S W)WY - sofmax (W) Wz
h=1

where W), denotes the h-th row-wise split submatrix of a full

weight matrix W, i.e., Wj, = W[(h — 1)dg : hdg,:]. When the
embedding dimension increases from d to d + r, we must adjust
the MHA configuration so that dgy = (d + r)/H holds. Two
simple approaches can achieve this:

1. More heads: Increase the number of attention heads H such
that the added auxiliary dimension r fits into additional heads.

Figure 2: The two strategies on
allocating the additional dimen-
sion of Wz (yellow) to atten-
tion heads. Here, the vertical di-
mension represents the context
length.

Specifically, [r/dy | additional heads are introduced.

2. Wider heads: Increase the per-head dimension dy while keeping the number of heads fixed.
This distributes the auxiliary dimension across all heads by enlarging d g by 2[r/(2H)]. The factor
of 2 ensures an even extension, which is necessary to preserve compatibility with rotary positional
embeddings (Su et al.,[2024), where embedding vectors are decomposed into pairs for 2d-rotations.

If r is not divisible by dy (the more-heads case) or by H (the wider-heads case), the unmatched
dimensions are zero-padded. Figure[2]provides a schematic of these two integration strategies.
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Model Fintuning  Params (%) Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.
Prompt 0.0021 77.04 8046 80.60 73.54 69.95 62.63 93.82 8298 77.63
Serial 0.7546 86.70  86.86 8581 7920 9199 79.99 93.39 83.53 8593
Parallel 0.7546 8590 87.08 8577 79.77 9226 8275 94.03 83.32  86.36
Qwen2.5-3B OFT 0.7025 87.50 87.58 85.69 7897 9236 8244 9398 8349  86.50
: BOFT 0.7025 87.90 87.74 86.29 79.86 92.01 82.06 93.81 83.21  86.61
LoRA 0.7546 87.15 8750 8628 79.38 9246 83.11 93.61 83.29 86.60

LatTE-m 0.7573 86.04 87.60 8558 79.02 9198 8435 93.60 83.12 86.41
LatTE-w 0.7573 86.80 87.97 8573 78.67 9220 83.94 9414 83.55 86.63

Prompt 0.0015 86.50 8585 86.04 76.67 8159 6801 9620 89.57 83.81

Serial 0.5273 92.84 8945 89.40 81.88 94.03 8583 96.19  89.18 89.85

Parallel 0.5273 92.04 8930 89.15 8126 94.01 87.83 96.50 89.76  89.98

Qwen2.5-7B OFT 0.4943 91.84  89.04 90.08 80.99 93.84 85.65 96.68 89.80 89.74
BOFT 0.4943 9235 89.46 89.67 7994 94.14 86.15 9639  89.69 89.72

LoRA 0.5303 9255 89.59 9022 8194 93.84 86.76 96.57 9029 90.22

LatTE-m 0.5317 91.84 89.81 90.08 8128 9452 8749 96.74 90.76 90.32

LatTE-w 0.5317 92.60 8949 90.59 80.73 94.67 87.86 97.00 90.25 90.40

Prompt 0.0031 71.64 7930 7720 67.41 62.12 60.10 8547 7254 7197

Serial 0.7550 82.10 86.73 8422 77.19 89.61 80.84 8890 77.52 83.39

Parallel 0.7550 82.10 87.50 8342 7779 90.66 8257 89.27  78.65 83.99

Llama-3.2-3B OFT 0.7666 84.84 8844 8501 79.17 9091 8289 91.25 79.82 85.29
BOFT 0.7666 86.30 8876 8555 7851 91.32 81.77 90.88  78.82 85.24

LoRA 0.7568 8444 8856 85.61 7794 9141 8378 89.82 78.07 84.95

LatTE-m 0.7599 8570 8835 8536 7839 9142 8489 8998 79.24 8542

LatTE-w 0.7599 86.40 88.74 8523 7921 91.15 8447 9049 7976  85.68

Prompt 0.0016 8235  86.12 8448 7738 8329 7226 9256  80.87 82.41

Serial 0.4570 89.70 8873 87.81 80.45 93.61 8435 9400 83.92 87.82

Parallel 0.4570 89.75 8887 88.15 8135 9410 86.03 93.80 8491 88.37

Llama-3.1-SB OFT 0.4492 89.00 8930 8845 81.54 9379 84.02 9443 84.68  88.15
BOFT 0.4492 88.90 89.72 8875 80.81 9358 84.85 9432 83.94 88.11

LoRA 0.4570 88.90 89.09 88.85 8092 9431 8723 93.81 84.85 88.50

LatTE-m 0.4585 90.15 89.63 88.80 80.80 9439 8838 94.14 8445 88.84
LatTE-w 0.4585 90.60 89.33 88.87 8028 9425 86.68 9473  84.47 88.65

Table 1: Accuracy results on the commonsense QA benchmark, which includes eight diverse rea-
soning tasks. Adapters are applied to all layers.

With the application of LatTE to both FFN and attention layers explained, we are now ready to
implement it in Transformer-based LLMs. In diffusion models, PEFT is typically applied to the
text encoder and the cross-attention modules within the U-Net architecture (Ruiz et al.|, 2023} Zhang
et al., 2023a; [Mou et al.l [2024)). This means that the same recipe used for LLMs can be applied to
diffusion models as well.

3.3 COMPARISON WITH LORA

We provide theoretical context for LatTE by drawing comparisons with LoRA. The intuition behind
LoRA stems from the observation that the intrinsic dimension of many NLP tasks is significantly
lower than the dimension of large pretrained models (Aghajanyan et al., 2021). Building on this,
LoRA hypothesizes that the required weight updates for task adaptation also lie in a low-rank sub-
space (Hu et al.,[2022)). However, the argument in |/Aghajanyan et al.|(2021) supports a low intrinsic
dimension as a necessary, but not sufficient, condition for low-rank adaptation to be effective.

Interestingly, LatTE can also be interpreted as a composition of low-rank updates. As illustrated in
Figure[l](d), when examining the green-shaded information flow over two layers (omitting activation
for simplicity), the input embedding x is transformed by a low-rank operation B A and reintegrated
with the base embedding. Thus, while LoRA applies a single low-rank update per layer, LatTE effec-
tively performs two low-rank transformations across two layers. This structural similarity suggests
that the same theoretical motivation underlying LoRA — namely, that task-specific transformations
can be captured in low-rank subspaces — also supports the design of LatTE.

Beyond the qualitative arguments presented above, we provide two formal results establishing cases
where the expressive power of LatTE is equivalent to that of LoRA.

Theorem 1 For linear models, the minimum low-rank dimension required for adapter models to
exactly recover the FFT target is identical for both LoRA and LatTE.
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Model Fintuning  Params (%) Accuracy
AOuA GPQA MATH GSM8K SVAMP ave.
Prompt 0.0016 37.80 24.24 37.80 54.80 72.33 45.39
Serial 0.2982 4213 2525 42.40 65.00 71.67 49.29
Parallel 0.2982 50.79  29.29 45.00 63.00 70.67 51.75
Qwen2.5-1.5B OFT 0.2847 40.09  30.81 39.40 52.40 64.00 46.14
T BOFT 0.2847 4134 28.79 39.60 54.00 68.00  46.35
LoRA 0.2991 49.61  31.82 42.40 61.80 74.00 51.92

LatTE-m 0.3003 50.79 3131  40.80 62.60 73.67  51.83
LatTE-w 0.3003 49.61 3030 43.20 63.80 73.00 51.98

Prompt 0.0011 46.85 2576  49.20 67.00 70.67  51.89

Serial 0.1877 49.61 2626  52.80 76.40 78.67  56.75

Parallel 0.1877 4843 2879  49.60 73.00 83.33  56.63

Qwen2.5-3B OFT 0.1821 4331 2273 49.00 65.40 72.67  50.62
BOFT 0.1821 45.67 2879  48.20 65.60 71.00  51.85

LoRA 0.1886 4528 2828  51.40 73.60 81.33  55.98

LatTE-m 0.1894 49.61 3030  53.20 71.00 80.33  56.89

LatTE-w 0.1894 48.03 2626 5240 73.80 78.33  55.77

Prompt 0.0027 2146  25.25 - 36.10 53.50  34.08

Serial 0.3991 18.11  25.00 - 37.10 5533 33.89

Parallel 0.3991 31.50  36.77 - 36.70 50.67 36.41

Llama-3.2-1B OFT 0.3979 2520 2449 - 34.10 52.67 34.11
BOFT 0.3979 2598  20.96 - 34.40 52.17  33.38

LoRA 0.3991 2224 24.24 - 37.70 56.00  35.05

LatTE-m 0.4009 2480 2222 - 38.10 57.17 3557

LatTE-w 0.4009 2441 2222 - 38.50 56.00  35.28

Prompt 0.0015 5492 2374  40.60 71.20 78.83  53.86

Serial 0.1874 51.57 3056  37.10 69.10 78.83  53.43

Parallel 0.1874 51.38 27.78  39.10 67.70 81.33  53.46

Llama-3.2-3B OFT 0.1977 48.62 2854  39.60 69.90 81.33  53.60
BOFT 0.1977 50.59 28,54  37.20 68.00 78.67  52.60

LoRA 0.1892 50.59 2778 3930 68.10 78.17 5219

LatTE-m 0.1902 45.67 2626  39.10 67.70 79.67  51.68
LatTE-w 0.1902 4547  30.56  39.70 69.30 81.50  53.31

Table 2: Accuracy on multiple-choice and arithmetic reasoning benchmarks using various PEFT
methods. MATH results for Llama-1B is omitted as it replied in forms which cannot be parsed in all
methods.

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that 7 is a linear transform of x.

While rigorously establishing equivalence between highly non-linear models remains challenging,
these results provide theoretical evidence supporting LatTE’s expressive capacity. Complete proofs
and a comprehensive theoretical analysis of LatTE’s expressive power (Zeng & Lee, |2024) are pro-
vided in Appendix [A]

4 EXPERIMENTS

We evaluate our LatTE method on both natural language processing (NLP) and text-to-image (T2I)
generation tasks. For NLP, we conduct experiments using the Llama 3 (Grattafiori et al., [2024)
and Qwen2.5 (Yang et al., 2024) language models, covering a range of model sizes from 1B to 8B
parameters. For T2I generation, we fine-tune Stable Diffusion v1.5 (Rombach et al.,|2022)) as the
base model. All fine-tuning is performed on 4 NVIDIA H100 GPUs, and inference is conducted
using a single H100.

We compare both variants of LatTE — more heads (LatTE-m) and wider heads (LatTE-w) — against
several strong PEFT baselines. The baseline methods include prompt tuning (Lester et al.| [2021)), se-
rial (Houlsby et al., 2019) and parallel (He et al., 2022)) adapters, OFT (Qiu et al., 2023), BOFT (Liu
et al., 2024b), and LoRA (Hu et al., 2022)). We follow the training setups from the respective ref-
erences and use official implementations from the Huggingface PEFT library (Mangrulkar et al.,
2022) for prompt tuning, LoRA, OFT, and BOFT.

Unless otherwise stated, we set the rank » = 16 for both LatTE and LoRA. For a fair comparison,
the adapter hidden size and the block sizes for OFT and BOFT are chosen such that the number of
trainable parameters closely match that of LatTE and LoRA; we use 2 blocks for BOFT by default.
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Accuracy (Qwen2.5-7B)

Design

OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.
Baseline (LatTE-w) 92.60 89.49 90.59 80.73 94.67 87.86 97.00 90.25  90.40
LatTE-m 91.84 89.81 90.08 81.28 9452 8749 96.74 90.76  90.32
fin(z) = [2;0,] 90.53  96.56 89.50 92.00 89.61 80.73 94.40 86.50  89.98
Foully,9]) =y 90.19 9677 89.86 91.56 89.89 81.12 93.83 85.78  89.88

Fal@) = [2,0,]: fou([y. 7)) =y 9044 9672 8977 9240 89.69 80.30 9427 8644 90.00

Table 3: Accuracy results on the commonsense QA benchmark compared across different design
choices, including fi,, fou, and the more/wider heads.

All models are trained for up to 20 epochs for commonsense QA and 4 epochs for reasoning, and
we report results using the best checkpoint selected via measuring with 4 different seeds.

4.1 COMMONSENSE QA

We begin with commonsense QA, a multiple-choice question answering task. Models are fine-
tuned on the Commonsense 170K dataset (Hu et all, 2023), which comprises eight distinct QA
benchmarks: OBQA (Mihaylov et al [2018)), BoolQ (Clark et al [2019), PIQA (Bisk et al.| [2020),
SIQA [2019), HellaSwag (Zellers et al 2019), WinoGrande (Sakaguchi et al., [2021),
ARC-easy, and ARC-challenge (Clark et al.,2018). These datasets focus on direct-answer selection
without requiring chain-of-thought (CoT) reasoning 2022).

Table[T]presents the performance of Llama-3.2-3B, Llama-3.1-8B and Qwen2.5-3B/7B models fine-
tuned with LatTE and baseline methods. Across all model sizes and configurations, LatTE con-
sistently matches or exceeds the performance of established PEFT baselines. Notably, LatTE-w
achieves the highest average performance on three of the four models and ranks second on the
remaining model. This performance gain exceeds our theoretical expectation, which suggested
LatTE would perform comparably to LoRA. While further investigation is needed, we hypothesize
that the C' matrix contributes significantly to this improvement. We also observe that LatTE demon-
strates superior training efficiency relative to baseline methods, achieving better performance within
a single epoch.

4.2 MULTIPLE-CHOICE AND ARITHMETIC REASONING

We next evaluate our method on reasoning tasks. These tasks additionally require chain-of-thought
(CoT) reasoning before arriving at a final answer. We construct the training set by filtering ex-
amples from the Llama-Nemotron-Post-Training-Dataset (Bercovich et al [2025)), selecting those
whose answers contain numeric characters and do not involve blank spaces. This filtering yields
approximately 0.3M examples per epoch for training.

We evaluate on five benchmarks: AQuA (Ling et al 2017), GPQA 2024), MATH-
500 (Cightman et al.} 2023)), GSM8K (Cobbe et al.,[2021), and SVAMP (Patel et al.}[2021). Follow-

ing standard practice, evaluation is based on the accuracy of the final answer, independent of the CoT

A [V]dog on top of
A [V]teapot in the snow Input Image a purple rug in a forest

Input Image

Lo/ e 2

fﬁ |

A [V]dog wearing a red hat

AR

LatTE LoRA LatTE LoRA

Figure 3: Subject-driven generation of LoRA and LatTE. All examples share the same seed for the
two methods.
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Inference type  Split Base (=merged LoORA) Unmerged LoRA LatTE-m LatTE-w
All 0.236 0.294 0.243 0.264
Sinele example  Attention 0.126 0.168 0.133 0.154
& PI®  FEN 0.051 0.066 0.053 0.053
Embedding 0.059 0.060 0.057 0.057
All 0.229 0.285 0.238 0.254
Attention 0.138 0.174 0.145 0.160
8 batch (1 task) - ppy 0.047 0.062 0.047 0.047
Embedding 0.044 0.049 0.046 0.047
All - - 0.247 0.251
: S
Embedding . - 0.045 0.046

Table 4: Time per output token (in milliseconds) for Base, LoRA, and LatTE for Qwen2.5-7B
(adapters on half of layers) with H100 GPU, context length 10k, averaged over 10 runs. The time is
splited into attention, FFN, and embedding.

content. Table |2| presents results for Llama-3.2-1B/3B and Qwen2.5-1.5B/3B. Again, LatTE pre-
sented overall good results compared to the baselines, demonstrating its applicability to reasoning.

4.3 TEXT-TO-IMAGE GENERATION

We now turn to latent diffusion models and demonstrate that LatTE can also be applied to image
generation models. Specifically, we use DreamBooth (Ruiz et al.,|2023)) dataset on Stable Diffusion
v1.5 and test LoRA and LatTE’s adaptation to subject-driven generation. We follow the default
settings of the Huggingface Diffusers library for LORA finetuning and applied LatTE to the identical
positions, which are the attention blocks of the U-net (Ronneberger et al., 2015)).

The qualitative results are shown in Figure |3} One observes that LoRA and LatTE both show ef-
fectiveness in subject-driven generation. However, LatTE’s enlarged embedding cannot pass the
base-model convolution layer without engaging with f,,. Therefore, multiple expansion and com-
pression should be done for the forward pass, actually introducing overhead to inference. One can
skip-connect the extra dimension after the convolutional layer to overcome this, however, the effec-
tiveness of this strategy is yet to be explored.

5 DISCUSSION

Effect of f;, and f,. While LatTE does not introduce numer- . )
ical hyperparameters beyond the rank r, it does involve several 0.90 1 s o

architectural design choices. As discussed in Section3] these in- 0891 o

clude: (1) the implementation of multi-head attention, (2) the 085 J . °

initial expansion function fi,(z), and (3) the final compression g

function fou([y, 7])- g 0.871

In addition to our default settings for fi, and fou, we con- EO'BS : :;::n':pt
sider several plausible alternatives. For the expansion function 0857 o Serial
fin, we experiment with fi,(z) = [x;0,], where the auxiliary 0841 o Parallel
embedding is an r-dimensional zero vector 0,.. For the com- 083l ® Latte_w
pression function f,,, we test discarding the auxiliary output, ° ‘ * Latteff“
fout([y,7]) = y. fin(x) = [x; pool(x)], where the auxiliary em- 0.24 0.27 0.30

TPOT (ms)

bedding is derived via pooling, and fou([y, J]) = y + repeat(y)
was also considered but showed subobtimal performance. Ta-
ble 3] reports the impact of these alternatives on commonsense Figure 4: QA task score and in-
QA performance. ference speed on Qwen2.5-7B.

Inference Efficiency. We also evaluate the inference-time ef-
ficiency of LatTE by measuring the time-per-output-token (TPOT). Figure ] plots TPOT with the
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QA score with 7, 14, and 28 layers of adapters applied to Qwen2.5-7B model. We measured the
inference time of 100 token generation with 10k context length, and averaged over 10 trials. OFT
and BOFT results are not included as they were an order of magnitude slower than the others. One
observes that the LatTE methods achieve suitable balance between performance and speed.

We present the TPOT results in Table {4} for Qwen2.5-
7B, adapters on half layers. The context length is
10k and the results are averaged over 10 runs. This
demonstrates LatTE’s key advantage: constant-time
inference regardless of the number of adapters and en-
abling multi-task batch inference, making it valuable
for personalized and multi-domain deployment sce-
narios where merged LoRA’s linear scaling becomes
prohibitive and cannot be deployed in multi-task batch
scenarios without constant load-unloading.

The inference efficiency also includes flexibility in
intra-batch multi-adapter. While it is generally chal-
lenging to use multi-adapter within a batch, LatTE nat-
urally supports such inference with the help of mask-
ing. When applying m LatTEs, the inference batch
will have mr auxiliary embeddings. The task-
dependent mask can be generated and applied through-
out the forward pass to ensure the correct results. For  Fjgure 5: Masking (black squares) in intra-
example, the mask shown in Figure [5] is for a batch parch multi-adapter scenario. The mask
with tasks [2, 1, 1, 2, 1, 0]. This is applied in four posi-  symbol indicates where masking should be
tions per Transformer block as indicated with the mask  3pplied for Transformers.

symbol. Another mask is required in (W,Xz)T W2z

but can be merged with the rotary embeddings (Su et al., [2024). With masking, LatTE enables effi-
cient intra-batch multi-task inference within a shared model backbone — highlighting its scalability
for real-world multi-task applications.

6 CONCLUSION

We presented LatTE, a novel PEFT method that leverages auxiliary latent embeddings to achieve
fast, scalable, and composable adaptation of large pretrained models. LatTE operates through a
simple expansion of the embedding space, enabling task-specific adaptation via a single matrix
multiplication per weight while keeping the base model frozen. Through extensive experiments
we demonstrated that LatTE matches or exceeds the performance of strong PEFT baselines while
offering significant improvements in inference efficiency. Beyond its empirical benefits, LatTE in-
troduces a flexible design space for auxiliary embedding interactions. We anticipate that future work
will build upon the core ideas of LatTE, and hope it serves as a foundation for further innovation.
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Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Prompt 85.60 8555 76.18 76.01 78.65 67.68 95.64 88.44  81.72
Serial 89.95 8843 88.07 79.18 91.89 80.82 95.62 89.40 8792
Parallel 90.44  88.70 88.66 7836 9227 82.04 9535 88.72  88.07
OFT 90.30  88.65 87.46 7821 9040 80.51 9640 90.38 87.79

Model  Fintuning

r=8 BOFT 90.00 8843 87.60 7825 91.13 80.62 96.35 90.02 87.80
LoRA 90.90  89.27 8897 7845 9242 8287 9581 88.91 88.45

LatTE-m 92.10 89.21 8852 78.80 92.67 8220 95.56 89.80  88.61
LatTE-w 9120 8944 88.74 79.72 9256 82.46  95.95 89.44  88.69

Prompt 8795 8524 86.60 76.67 76.44 66.75 96.39 89.23  83.16

Serial 89.64 8798 8791 7930 91.66 81.14 9579 89.57 87.87

Parallel 90.90  88.32 87.85 79.11 9194 80.27 95.63 89.29 8792

—16 OFT 90.35 8849 8840 7949 91.89 8220 96.32 89.78  88.36
"= BOFT 90.00 88.43 87.60 7825 91.13 80.62 96.35 90.02  87.80
LoRA 91.10  89.05 88.29 78.68 9267 83.09 95.57 89.38  88.48

LatTE-m 91.70  89.34 88.79 7945 9220 83.80 9591 89.69  88.86
LatTE-w 9120 89.26 8855 78.90 9194 83.19 9576  90.17 88.62

Prompt 85.80 8375 86.28 7626 7095 6249 96.03 88.82  81.30

Serial 89.50 8829 87.99 7935 91.64 80.80 9580 89.68 87.88

Parallel 90.70  88.52 88.15 79.55 92.00 80.60 95.75 89.31  88.07

r—39 OFT 90.55 89.20 88.48 7926 9220 83.28 96.26 89.93  88.65

BOFT 91.50 8932 8823 79.08 9237 83.11 96.37 89.68  88.71
LoRA 91.64 89.14 89.01 7843 9264 8352 9540 88778 88.57

LatTE-m 92.04 8933 88.69 80.12 9221 8232 9630 90.27 88.91
LatTE-w 9244  89.07 88.69 79.93 9229 8264 96.02 90.34 88.93

Table 5: Rank sensitivity analysis on Qwen2.5-7B commonsense QA with adapters in half layers.
Both LatTE and LoRA show consistent improvement with increased rank, with LatTE maintaining
competitive performance across all settings.

A PROOF OF THEOREM

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that 7 is a linear transform of x.

Proof.
1) Attention matrix of LoRA:

z ((Wk + AWk)T(WQ + AWQ)) x
=x" (Wi +blal)T (Wg +agbg)) = (4)

ii) Attention matrix of LatTE:

xT

st o] (B9 &)l
By CK AQ OQ

=z (WgWq + BEBg)x + ' (WEAg + BrCQ)Z
+2 (AWo + ChBo)r + 2 (AfAg + CrCo)x (5)

We claim that any LoRA attention can be expressed by LatTE attention. Let Ag = ag, Ax = ax,
Bg = a}WQ, Cq = a}aQ, Bk, Ck satisfies Bg + Cxbg = bx — bg, and T = bgx. Note that
the solution for By + Cxbg = bix — bg always exists since Bx = bg and Cxg = —1, (identity
matrix) satisfies the condition.
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Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.
Qwen2.5-14B LoRA 9420 9030 91.07 8141 9385 87.04 97.61 93.28 91.09

(BF16) LatTE-m 94.10 9031 91.01 80.90 94.07 87.12 97.63 93.58  91.09
LatTE-w 9410 9047 9157 81.12 9409 8725 9754 9375 91.24

Qwen2.5-14B LoRA 9376 9022 9092 80.67 93.51 86.86 97.50 9326 90.84 0.27%

(INTS) LatTE-m 9424 9041 91.02 81.01 9393 8654 9747 9347 91.01 0.09%
LatTE-w  94.04 9024 9151 80.67 93.86 8739 9748 9336 91.07 0.19%

Model Fintuning Degradation

Table 6: Accuracy results on the commonsense QA benchmark for Qwen2.5-14B model, with BF16
and INTS precision. Adapters are applied to half of the layers. LatTE shows robust performance
retention under quantization, demonstrating compatibility with standard inference acceleration tech-
niques.

Then the LatTE attention becomes:
a2 (WxWq + BiBg + Wxagbg + BixCobg
+ bhaWo + byCr Bg + bhagkagbg + bhHCr Cobg)x
=2 (Wi +bgaj)(Wo + agbg)z
+2"((bg — bx) "agWgq + (bg — br) Tajagbo
+ (B + Cgbg) " Bg + (Bi + Crbg) " Cobg)z
(6)

The second term identically vanishes with C = aj-aq, Bg = a;Wg and B +Cxbg = b —bg.
This proves any LoRA attention matrix can be expressev as LatTE attention matrix assuming Z is a
linear transform of x.

B ADDITIONAL RESULTS
Here we provide additional experimental results.

B.1 ABLATION ON EMBEDDING SIZE

We show the ablation study on embedding size (1) on Qwen2.5-7B for commonsense QA benchmark
in Table E} The scaling behavior of LatTE for r is similar to that of LoRA, as expected. The
consistent relative performance across ranks indicates LatTE and LoRA have similar expressivity —
increasing rank benefits both methods equally, showing no fundamental expressivity gap.

B.2 LARGER MODELS AND EFFECT OF QUANTIZATION

To address the issue of scalability, we present results for larger model size. Table [6]shows results for
Qwen2.5-14B for commonsense QA benchmark, with adapters in half of the layers. LatTE models
showed competitive accuracy compared to LoRA, consistent with the smaller models, with LatTE-w
achieving the highest average accuracy. While this is not as large a model as tens or hundreds of
billions of parameters, we experimented on a range of parameters (1-14B) which showed consistent
effectiveness. Together with the theoretical analysis, we believe that the effectiveness of LatTE will
hold for substantially larger models.

We also consider the effect of quantization, and quantize the weights to INTS8 for the same model.
The results showed that LatTE was equally effective even for quantized models, and the accuracy
degradation from quantization is of similar level to LoRA.

B.3 EPOCH-WISE PERFORMANCE

For the Commonsense QA task, we show the performance of each epoch in Figure[6]
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Figure 6: Epoch-wise performance for QA task.

B.4 MORE RESULTS ON TEXT-TO-IMAGE GENERATION

More qualitative results for the subject-driven generation is shown in Figure[7}
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Figure 7: Additional results for subject-driven generation of LoRA and LatTE.
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