

EFFICIENT FINE-TUNING VIA AUXILIARY REPRESENTATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The widespread adoption of large pretrained models has made fine-tuning an essential step for tailoring models to specific tasks. As these models continue to scale larger and as the demand for task-specific and personalized adaptation grows, parameter-efficient fine-tuning (PEFT) has emerged as a practical alternative to full fine-tuning. PEFT enables effective adaptation while updating only a small fraction of the total parameters. While various PEFT techniques have shown strong performance, many still suffer from increased inference latency and inefficiencies in multi-adapter scenarios. Motivated by these limitations, we propose a novel PEFT approach that leverages auxiliary representations to enable fast and flexible inference. In our method, **Latent Task Embedding** fine-tuning, a small task-specific latent embedding is concatenated to the original embedding. The corresponding weight matrices are extended, and only the additional parameters introduced by this expansion are trained. This design allows for efficient inference using a single matrix multiplication per weight, minimizing latency overhead, and supports task-specific masking to handle multiple adapters within a single model. We evaluate our method on large language models and latent diffusion models, demonstrating competitive accuracy with existing PEFT baselines while providing faster inference and enabling efficient intra-batch multi-task processing.

1 INTRODUCTION

The remarkable success of large pretrained models is largely attributed to scale and generality – large-scale training on diverse data results in highly capable models that can be fine-tuned for a wide range of downstream applications (Achiam et al., 2023; Grattafiori et al., 2024; Abdin et al., 2024; Yang et al., 2024; Team et al., 2025). However, as model sizes continue to grow, full fine-tuning (FFT), where all parameters are updated for each task, has become increasingly impractical due to its high computational and storage demands. To address this, parameter-efficient fine-tuning (PEFT) methods have emerged as a compelling alternative. PEFT techniques adapt pretrained models by introducing and updating only a small number of parameters while keeping the base model frozen. Various PEFT approaches have shown that strong downstream performance can be achieved with significantly fewer trainable parameters, enabling rapid adaptation and deployment (Houlsby et al., 2019; Lester et al., 2021; Hu et al., 2022).

While existing PEFT methods have proven effective, the rapidly expanding landscape of downstream applications – ranging from hyper-personalization (Chen et al., 2024) to privacy-preserving edge deployment (Xu et al., 2024) – poses critical challenges for inference efficiency. In these resource-constrained environments, where dedicated cloud-tier GPUs are often absent, the demand extends beyond simple adaptation to the simultaneous serving of multiple task-specific adapters. This requirement exposes a fundamental limitation in current approaches: a stark trade-off between latency and memory. Merging adapters (e.g., via LoRA) achieves fast single-task inference but forces memory usage to scale linearly with the number of tasks, rendering it impractical for multi-tenant scenarios. Conversely, maintaining unmerged adapters conserves memory but introduces sequential computational overhead that significantly degrades latency. Consequently, modern deployment faces an unresolved trilemma among accuracy, latency, and multi-task flexibility that existing methods struggle to resolve.

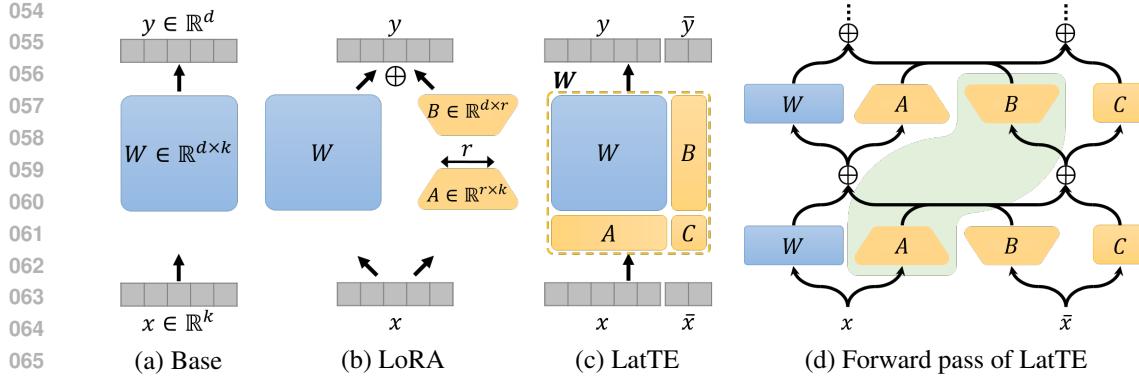


Figure 1: (a-c) The comparison of the forward pass through a single weight for the base, LoRA, and LatTE model. While the A and B matrices in LoRA are expressed conventionally as trapezoids to emphasize their low ranks, they are identical in the matrix dimensions with the A and B in LatTE. (d) The forward pass a MLP model with LatTE. We have omitted the non-linearity between the layers for simplicity. The shaded region can be conceptually regarded as a single LoRA unit.

PEFT techniques can be broadly categorized into three types. The first modifies the model architecture, such as in serial or parallel adapters (Houlsby et al., 2019; Pfeiffer et al., 2021; He et al., 2022), by introducing adapter modules into each transformer block which alters the flow of intermediate representations. The second category centers on finding efficient ways to tune the weight matrices that resemble FFT. This category includes LoRA (Hu et al., 2022) and its variants. The third category focuses on representations, and either introduce additional learnable embeddings such as prompt-based methods (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022b), or modify the hidden states to steer the model’s behavior (Liu et al., 2022a; Wu et al., 2024b). While each strategy has its merits, existing PEFT approaches do not focus on inference efficiency.

In this work, we propose a new direction: leveraging *auxiliary latent representations* as a compact and efficient carrier of task-specific information. This design choice offers several distinct advantages: (1) it preserves fast inference by reducing the adaptation to the same single matrix multiplication as in the base model (but with increased dimension), (2) its simple architecture introduces few hyperparameters and has low memory requirement, and (3) it enables flexible composition and switching of multiple tasks. Motivated by these properties, we introduce **Latent Task Embedding (LatTE)** fine-tuning, a novel PEFT method that injects task-specific latent embeddings directly into the model’s input layer. LatTE enables fast, simple, and composable fine-tuning with minimal latency overhead and strong empirical performance across diverse tasks and model families.

LatTE concatenates the learnable auxiliary embedding to the original latent embedding, which serves as a compact, task-specific representation. The projection weights are expanded accordingly, and only the newly-introduced parameters are updated during fine-tuning. The gist of the method, acting on a single weight, is compared with the base model and LoRA in Figure 1 (a-c). This results in a lightweight and latency-free tuning mechanism, where inference remains as efficient as the base model. Our approach enables multiple adapters to coexist within the enlarged embedding space with task-specific mask controlling the adapter to be used – an important capability for efficient multi-task and multi-domain deployment. We evaluate our method across various LLMs and a diffusion model on a variety of tasks. Both experimental results and theoretical analysis demonstrate that LatTE consistently matches the performance of leading PEFT baselines while achieving faster inference speed. By bridging the gap between efficient fine-tuning and real-world deployment constraints, our method paves the way for scalable and high-performance model adaptation in practical applications.

We summarize our main contributions as follows:

- We propose LatTE, a novel PEFT method that utilizes auxiliary latent embeddings, enabling low-latency adaptation with a minimal number of trainable parameters.
- We conduct extensive experiments across LLMs and diffusion models, demonstrating strong performance compared to robust PEFT baselines.

108 • We demonstrate the unique flexibility of LatTE for efficient intra-batch multi-task inference
 109 via task-specific masking, maintaining near-constant latency when serving heterogeneous tasks
 110 simultaneously.

112 **2 RELATED WORKS**

114 **Parameter-Efficient Fine-Tuning (PEFT).** PEFT is a series of methods that update only a small
 115 fraction of the model’s parameters during fine-tuning, while keeping the rest frozen. This enables
 116 adaptation to new tasks with minimal computational overhead while preserving the capabilities of
 117 the base model. We broadly categorize existing PEFT methods into the following three classes.

119 • **Module-based methods** introduce additional trainable modules (adapters) to the model architec-
 120 ture. The adapters mostly consist of a down- and up-projection with a nonlinearity in between.
 121 There are serial adapter (Houlsby et al., 2019; Pfeiffer et al., 2021) and parallel adapter (He
 122 et al., 2022) based on how the adapter is attached to the base module. CIAT (Zhu et al., 2021)
 123 and CoDA (Lei et al., 2023) are also variants of the parallel adapter.

124 • **Weight-based methods** aim to efficiently update the weights of the model, and can be con-
 125 sidered as a direct approximation of FFT. The update of the weights can be either additive or
 126 multiplicative. LoRA (Hu et al., 2022) and its variants (Zhang et al., 2023b; Liu et al., 2024a;
 127 Kopiczko et al., 2024; Li et al., 2024), the most widely used PEFT, are additive weight-based
 128 methods. Multiplicative-update method includes OFT (Qiu et al., 2023), BOFT (Liu et al.,
 129 2024b), and HRA (Yuan et al., 2024).

130 • **Representation-based methods** use representations as a tool for fine-tuning. Soft-prompt meth-
 131 ods are in this category, where learnable embeddings are prefixed to the prompt. Prefix-tuning (Li
 132 & Liang, 2021), prompt-tuning (Lester et al., 2021), and p-tuning (Liu et al., 2022b) are examples
 133 of such methods. Another group in this category modifies or edits the intermediate representa-
 134 tions to fit the model to downstream tasks. This includes methods such as (IA)³ (Liu et al.,
 135 2022a), SSF (Lian et al., 2022), and ReFT (Wu et al., 2024b).

136 • **Sparsity-Based methods** leverages sparsity and selectively update subsets of model parameters
 137 identified as most critical for the target task, often by masking (Guo et al., 2021; Sung et al.,
 138 2021; Ansell et al., 2022). More recent work on sparsity methods, SpiEL (Anselli et al., 2024)
 139 and SMT (He et al., 2025), scales these ideas to LLMs up to 13B parameters.

140 Notably, despite the extensive research over the past years, no PEFT approach explores the use
 141 of representations auxiliary to the embeddings as a mechanism for adaptation, to the best of our
 142 knowledge.

144 **Inference-Efficient PEFT.** Recent works have recognized the need for reducing inference-time
 145 overhead in PEFT. SPLoRA (Hedegaard et al., 2024) and CA-LoRA (Zhao et al., 2024) combine
 146 LoRA with pruning or quantization for faster inference. Our method differs from these approaches
 147 as we preserve the precision and expressivity of the base model. Liao et al. (2023) introduces
 148 zero latency PEFT methods, PaFi and HiWi, which are a task-agnostic sparse fine-tuning and a
 149 multiplicative version of LoRA, respectively. These methods do not introduce additional latency as
 150 they (partially) update the original model as in FFT. Inference of LatTE, on the other hand, is as
 151 fast as the base model while keeping the original weights intact, which is beneficial for fast task-
 152 switching.

152 We emphasize a critical distinction often overlooked in the literature: many weight-based methods
 153 such as LoRA and OFT claim inference speed identical to the base model. However, this only holds
 154 when weight updates are pre-merged before inference – i.e., low-rank weights are pre-added for
 155 LoRA or orthogonal matrices are pre-multiplied for OFT. Pre-merging destroys multi-task capabil-
 156 ity: serving N tasks requires N separate merged models or constant loading/unloading overhead. In
 157 contrast, LatTE maintains near-base model inference speed while supporting multiple tasks through
 158 a single expanded model with task-specific masking, making it uniquely suited for multi-adapter
 159 deployment scenarios.

160 **Multi-Adapter and Multi-Task Adaptation.** Scenarios involving multiple downstream tasks or
 161 domains often demand flexible and composable fine-tuning strategies. MAD-X (Pfeiffer et al., 2020)

162 and AdapterFusion (Pfeiffer et al., 2021) allow for combining multiple adapters, yet require additional
 163 merging logic and may incur runtime costs. Mixture of Expert (MoE) (Jacobs et al., 1991)
 164 style combination of multiple task LoRAs (Wu et al., 2024a; Xu et al., 2025; Liao et al., 2025) may
 165 be effective, but adds complexity during inference. Our approach supports multiple tasks through
 166 task-specific masking applied to the embedding, introducing minimal latency compared to single-
 167 task inference. Moreover, this flexibility is an intrinsic feature of vanilla LatTE, and has much room
 168 for improvements in future variants specialized for such purposes.
 169

170 3 OUR METHOD 171

172 We propose LatTE, a fine-tuning method in which a task-specific auxiliary embedding is concatenated
 173 to the original token embeddings. This increases the embedding dimensionality, which correspondingly
 174 expands the associated weight matrices. The fine-tuned knowledge is thus stored in the additional
 175 weight parameters introduced by this expansion, and the interaction with the original forward pass is
 176 mediated by the auxiliary embedding. Architecturally, LatTE resembles LoRA and other weight-based
 177 PEFT methods, as it modifies individual weights without altering the model’s overall structure (see Figure 1).
 178 However, a unique feature of LatTE is that the forward pass through one weight is calculated by a single
 179 matrix multiplication while keeping the original weight frozen. This enables inference-time performance
 180 comparable to that of the original model, making LatTE both efficient and scalable.
 181

182 The comparison between the base model, LoRA, and LatTE is illustrated in Figure 1 (a-c), which
 183 shows the forward pass through a single weight matrix $W \in \mathbb{R}^{d \times k}$. Given an input embedding $x \in \mathbb{R}^k$,
 184 the base model computes the output $y \in \mathbb{R}^d$ as $y = Wx$. In LoRA, task-specific information
 185 is introduced via a low-rank adapter, yielding: $y = Wx + BAx$, where $A \in \mathbb{R}^{r \times k}$ and $B \in \mathbb{R}^{d \times r}$, and r is the
 186 low-rank dimension. In LatTE, the input embedding is concatenated with an auxiliary embedding $\bar{x} \in \mathbb{R}^r$ to form $[x; \bar{x}] \in \mathbb{R}^{k+r}$. The forward pass is computed in the expanded
 187 embedding space:
 188

$$\begin{bmatrix} y \\ \bar{y} \end{bmatrix} = \begin{bmatrix} W & B \\ A & C \end{bmatrix} \begin{bmatrix} x \\ \bar{x} \end{bmatrix}, \quad (1)$$

189 where A, B , and $C \in \mathbb{R}^{r \times r}$ are trainable matrices. For convenience, we denote the expanded vectors
 190 and matrix as $\mathbf{x} = \begin{bmatrix} x \\ \bar{x} \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y \\ \bar{y} \end{bmatrix}$, and $\mathbf{W} = \begin{bmatrix} W & B \\ A & C \end{bmatrix}$, so that Eq. (1) simplifies to the familiar
 191 linear form $\mathbf{y} = \mathbf{Wx}$. In Figure 1 (c), the block matrix \mathbf{W} is highlighted with a yellow dashed
 192 outline. We deliberately set the auxiliary embedding dimension r to match the low-rank dimension
 193 used in LoRA, allowing for a fair parameter comparison. LoRA introduces $(d+k)r$ additional
 194 parameters per weight matrix, while LatTE adds $(d+k+r)r$, which remains comparable under the
 195 common assumption $r \ll \min(d, k)$. Proper initialization is crucial to PEFT model’s performance
 196 and we initialize A as Kaiming uniform and B, C to zero. This follows LoRA’s default strategy
 197 in the Huggingface PEFT library (Mangrulkar et al., 2022), and ensures that LatTE’s forward pass
 198 exactly replicates the base model at the start of the training.
 199

200 To compute in the expanded space, we define expansion and compression functions f_{in} and f_{out} ,
 201 which are applied once per forward pass:
 202

$$f_{\text{in}}(x) = \mathbf{x}, \quad f_{\text{out}}(\mathbf{y}) = y.$$

203 In practice, we initialize the auxiliary embedding a learnable constant vector c : $f_{\text{in}}(x) = [x; c]$, and
 204 extract the final output as a linear combination: $f_{\text{out}}([y; \bar{y}]) = y + B\bar{y}$. Note that the matrix B used in
 205 this post-processing step is a separate trainable parameter and not reused from the block matrix \mathbf{W} ,
 206 although it shares the same shape $\mathbb{R}^{d \times r}$. Alternative design choices for f_{in} and f_{out} are discussed
 207 in Section 5. We emphasize that f_{in} and f_{out} are applied only once per forward pass through the
 208 entire network, not once per layer. The auxiliary embedding is expanded once at the input (f_{in}),
 209 propagates through all layers in the expanded space, and is compressed once at the output (f_{out}),
 210 ensuring minimal overhead.
 211

212 3.1 APPLICATION TO THE MULTI-LAYER PERCEPTRON 213

214 With the LatTE building block in place, we now apply it to a multilayer perceptron (MLP) network.
 215 Consider an L -layer MLP with weight matrices W_i for $1 \leq i \leq L$ and an activation function σ .
 216

216 Given an input embedding x , the MLP computes the output as:
 217

$$218 \quad y = W_L \cdot \sigma(W_{L-1} \cdot \sigma(\dots \sigma(W_1 x))).$$

219 To incorporate LatTE, we replace each W_i with its expanded counterpart \mathbf{W}_i and insert the ex-
 220 pansion and compression functions f_{in} and f_{out} at the input and output, respectively. The input
 221 embedding is first expanded from a d -dimensional vector to a $(d+r)$ -dimensional one by f_{in} , then
 222 propagated through the network using the sequence of \mathbf{W}_i matrices. The final embedding is com-
 223 pressed back to a d -dimensional output by f_{out} . The resulting output becomes:
 224

$$225 \quad y = f_{\text{out}}(\mathbf{W}_L \cdot \sigma(\mathbf{W}_{L-1} \cdot \sigma(\dots \sigma(\mathbf{W}_1 f_{\text{in}}(x))))). \quad (2)$$

226 The feed-forward network (FFN) block in a Transformer architecture (Vaswani et al., 2017) is typi-
 227 cally a two-layer MLP of the form:
 228

$$229 \quad \text{FFN}_{\sigma}(x, W_1, W_2) = W_2 \cdot \sigma(W_1 x).$$

230 Modern LLMs, including those used in our experiments (Grattafiori et al., 2024; Yang et al., 2024),
 231 often use the SwiGLU activation function (Shazeer, 2020), a variant of the Gated Linear Unit
 232 (GLU) (Dauphin et al., 2017) based on Swish (Ramachandran et al., 2017). A single FFN using
 233 SwiGLU can be expressed as:
 234

$$235 \quad \text{FFN}_{\text{SwiGLU}}(x, W, V, W_2) = W_2 \cdot (\text{Swish}_1(Wx) \otimes Vx),$$

236 where $\text{Swish}_{\beta}(x) = x \cdot \text{sigmoid}(\beta x)$ and \otimes denotes the element-wise (Hadamard) product. Applying
 237 LatTE to this FFN block involves replacing each weight matrix with its expanded form. The
 238 resulting forward pass becomes:
 239

$$240 \quad \text{FFN}_{\text{SwiGLU}}(\mathbf{x}, \mathbf{W}, \mathbf{V}, \mathbf{W}_2) = \mathbf{W}_2 \cdot (\text{Swish}_1(\mathbf{Wx}) \otimes \mathbf{Vx}). \quad (3)$$

241 3.2 APPLICATION TO THE ATTENTION MODULE

242 Unlike MLP layers – where applying LatTE is straightforward and leaves little room for design choices beyond f_{in} and f_{out} – the
 243 attention module presents several implementation options. The core strategy remains the same: expand the embedding dimension
 244 and replace the weight matrices with their extended counterparts. However, the key challenge lies in how to allocate the auxiliary
 245 embedding dimensions across the attention heads.
 246

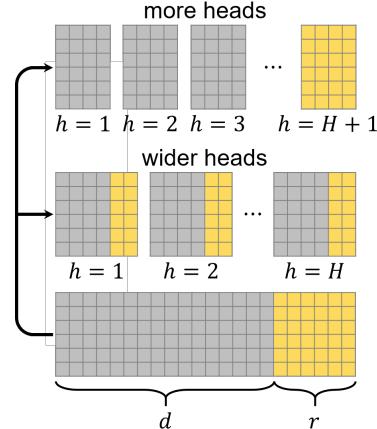
247 Assume a standard multi-head attention (MHA) mechanism with H heads, where the per-head dimension is $d_H = d/H$. The usual
 248 output of an MHA layer can be written as:
 249

$$250 \quad \sum_{h=1}^H (W_h^O)^\top W_h^V x \cdot \text{softmax} \left((W_h^K x)^\top W_h^Q x \right),$$

251 where W_h denotes the h -th row-wise split submatrix of a full
 252 weight matrix W , i.e., $W_h = W[(h-1)d_H : hd_H, :]$. When the
 253 embedding dimension increases from d to $d+r$, we must adjust
 254 the MHA configuration so that $d_H = (d+r)/H$ holds. Two
 255 simple approaches can achieve this:
 256

1. **More heads:** Increase the number of attention heads H such that the added auxiliary dimension r fits into additional heads. Specifically, $\lceil r/d_H \rceil$ additional heads are introduced.
2. **Wider heads:** Increase the per-head dimension d_H while keeping the number of heads fixed. This distributes the auxiliary dimension across all heads by enlarging d_H by $2\lceil r/(2H) \rceil$. The factor of 2 ensures an even extension, which is necessary to preserve compatibility with rotary positional embeddings (Su et al., 2024), where embedding vectors are decomposed into pairs for $2d$ -rotations.

If r is not divisible by d_H (the more-heads case) or by H (the wider-heads case), the unmatched dimensions are zero-padded. Figure 2 provides a schematic of these two integration strategies.



257 Figure 2: The two strategies on
 258 allocating the additional dimen-
 259 sion of Wx (yellow) to atten-
 260 tion heads. Here, the vertical di-
 261 mension represents the context
 262 length.

270 271	Model	Fintuning	Params (%)	Accuracy								
				OBQA	BoolQ	PIQA	SIQA	Hella.	Wino.	ARC-e	ARC-c	
272 273 274 275 276 277 278	Qwen2.5-3B	Prompt	0.0021	77.04	80.46	80.60	73.54	69.95	62.63	93.82	82.98	77.63
		Serial	0.7546	86.70	86.86	85.81	79.20	91.99	79.99	93.39	83.53	85.93
		Parallel	0.7546	85.90	87.08	85.77	79.77	92.26	82.75	94.03	83.32	86.36
		OFT	0.7025	87.50	87.58	85.69	78.97	92.36	82.44	93.98	83.49	86.50
		BOFT	0.7025	87.90	87.74	86.29	79.86	92.01	82.06	93.81	83.21	86.61
		LoRA	0.7546	87.15	87.50	86.28	79.38	92.46	83.11	93.61	83.29	86.60
		LatTE-m	0.7573	86.04	87.60	85.58	79.02	91.98	84.35	93.60	83.12	86.41
279 280 281 282 283 284 285	Qwen2.5-7B	LatTE-w	0.7573	86.80	87.97	85.73	78.67	92.20	83.94	94.14	83.55	86.63
		Prompt	0.0015	86.50	85.85	86.04	76.67	81.59	68.01	96.20	89.57	83.81
		Serial	0.5273	92.84	89.45	89.40	81.88	94.03	85.83	96.19	89.18	89.85
		Parallel	0.5273	92.04	89.30	89.15	81.26	94.01	87.83	96.50	89.76	89.98
		OFT	0.4943	91.84	89.04	90.08	80.99	93.84	85.65	96.68	89.80	89.74
		BOFT	0.4943	92.35	89.46	89.67	79.94	94.14	86.15	96.39	89.69	89.72
		LoRA	0.5303	92.55	89.59	90.22	81.94	93.84	86.76	96.57	90.29	90.22
286 287 288 289 290 291 292	Llama-3.2-3B	LatTE-m	0.5317	91.84	89.81	90.08	81.28	94.52	87.49	96.74	90.76	90.32
		LatTE-w	0.5317	92.60	89.49	90.59	80.73	94.67	87.86	97.00	90.25	90.40
		Prompt	0.0031	71.64	79.30	77.20	67.41	62.12	60.10	85.47	72.54	71.97
		Serial	0.7550	82.10	86.73	84.22	77.19	89.61	80.84	88.90	77.52	83.39
		Parallel	0.7550	82.10	87.50	83.42	77.79	90.66	82.57	89.27	78.65	83.99
		OFT	0.7666	84.84	88.44	85.01	79.17	90.91	82.89	91.25	79.82	85.29
		BOFT	0.7666	86.30	88.76	85.55	78.51	91.32	81.77	90.88	78.82	85.24
293 294 295 296	Llama-3.1-8B	LoRA	0.7568	84.44	88.56	85.61	77.94	91.41	83.78	89.82	78.07	84.95
		LatTE-m	0.7599	85.70	88.35	85.36	78.39	91.42	84.89	89.98	79.24	85.42
		LatTE-w	0.7599	86.40	88.74	85.23	79.21	91.15	84.47	90.49	79.76	85.68
		Prompt	0.0016	82.35	86.12	84.48	77.38	83.29	72.26	92.56	80.87	82.41
		Serial	0.4570	89.70	88.73	87.81	80.45	93.61	84.35	94.00	83.92	87.82
		Parallel	0.4570	89.75	88.87	88.15	81.35	94.10	86.03	93.80	84.91	88.37
		OFT	0.4492	89.00	89.30	88.45	81.54	93.79	84.02	94.43	84.68	88.15
300 301 302 303 304 305 306 307	Llama-3.1-8B	BOFT	0.4492	88.90	89.72	88.75	80.81	93.58	84.85	94.32	83.94	88.11
		LoRA	0.4570	88.90	89.09	88.85	80.92	94.31	87.23	93.81	84.85	88.50
		LatTE-m	0.4585	90.15	89.63	88.80	80.80	94.39	88.38	94.14	84.45	88.84
308 309 310 311 312 313	LatTE-w	0.4585	90.60	89.33	88.87	80.28	94.25	86.68	94.73	84.47	88.65	

Table 1: Accuracy results on the commonsense QA benchmark, which includes eight diverse reasoning tasks. Adapters are applied to all layers.

With the application of LatTE to both FFN and attention layers explained, we are now ready to implement it in Transformer-based LLMs. In diffusion models, PEFT is typically applied to the text encoder and the cross-attention modules within the U-Net architecture (Ruiz et al., 2023; Zhang et al., 2023a; Mou et al., 2024). This means that the same recipe used for LLMs can be applied to diffusion models as well.

3.3 COMPARISON WITH LORA

We provide theoretical context for LatTE by drawing comparisons with LoRA. The intuition behind LoRA stems from the observation that the intrinsic dimension of many NLP tasks is significantly lower than the dimension of large pretrained models (Aghajanyan et al., 2021). Building on this, LoRA hypothesizes that the required weight updates for task adaptation also lie in a low-rank subspace (Hu et al., 2022). However, the argument in Aghajanyan et al. (2021) supports a low intrinsic dimension as a *necessary*, but not *sufficient*, condition for low-rank adaptation to be effective.

Interestingly, LatTE can also be interpreted as a composition of low-rank updates. As illustrated in Figure 1 (d), when examining the green-shaded information flow over two layers (omitting activation for simplicity), the input embedding x is transformed by a low-rank operation BA and reintegrated with the base embedding. Thus, while LoRA applies a single low-rank update per layer, LatTE effectively performs two low-rank transformations across two layers. This structural similarity suggests that the same theoretical motivation underlying LoRA – namely, that task-specific transformations can be captured in low-rank subspaces – also supports the design of LatTE.

Beyond the qualitative arguments presented above, we provide two formal results establishing cases where the expressive power of LatTE is equivalent to that of LoRA.

Theorem 1 For linear models, the minimum low-rank dimension required for adapter models to exactly recover the FFT target is identical for both LoRA and LatTE.

324	325	Model	Fintuning	Params (%)	Accuracy					
					AOuA	GPQA	MATH	GSM8K	SVAMP	ave.
326	Qwen2.5-1.5B	Qwen2.5-1.5B	Prompt	0.0016	37.80	24.24	37.80	54.80	72.33	45.39
327			Serial	0.2982	42.13	25.25	42.40	65.00	71.67	49.29
328			Parallel	0.2982	50.79	29.29	45.00	63.00	70.67	51.75
329			OFT	0.2847	40.09	30.81	39.40	52.40	64.00	46.14
330			BOFT	0.2847	41.34	28.79	39.60	54.00	68.00	46.35
331		LatTE	LoRA	0.2991	49.61	31.82	42.40	61.80	74.00	51.92
332			LatTE-m	0.3003	50.79	31.31	40.80	62.60	73.67	51.83
333			LatTE-w	0.3003	49.61	30.30	43.20	63.80	73.00	51.98
334			Prompt	0.0011	46.85	25.76	49.20	67.00	70.67	51.89
335	Qwen2.5-3B	Qwen2.5-3B	Serial	0.1877	49.61	26.26	52.80	76.40	78.67	56.75
336			Parallel	0.1877	48.43	28.79	49.60	73.00	83.33	56.63
337			OFT	0.1821	43.31	22.73	49.00	65.40	72.67	50.62
338			BOFT	0.1821	45.67	28.79	48.20	65.60	71.00	51.85
339			LoRA	0.1886	45.28	28.28	51.40	73.60	81.33	55.98
340		LatTE	LatTE-m	0.1894	49.61	30.30	53.20	71.00	80.33	56.89
341			LatTE-w	0.1894	48.03	26.26	52.40	73.80	78.33	55.77
342	Llama-3.2-1B	Llama-3.2-1B	Prompt	0.0027	21.46	25.25	-	36.10	53.50	34.08
343			Serial	0.3991	18.11	25.00	-	37.10	55.33	33.89
344			Parallel	0.3991	31.50	36.77	-	36.70	50.67	36.41
345			OFT	0.3979	25.20	24.49	-	34.10	52.67	34.11
346			BOFT	0.3979	25.98	20.96	-	34.40	52.17	33.38
347		LatTE	LoRA	0.3991	22.24	24.24	-	37.70	56.00	35.05
348			LatTE-m	0.4009	24.80	22.22	-	38.10	57.17	35.57
349			LatTE-w	0.4009	24.41	22.22	-	38.50	56.00	35.28
350	Llama-3.2-3B	Llama-3.2-3B	Prompt	0.0015	54.92	23.74	40.60	71.20	78.83	53.86
351			Serial	0.1874	51.57	30.56	37.10	69.10	78.83	53.43
352			Parallel	0.1874	51.38	27.78	39.10	67.70	81.33	53.46
353			OFT	0.1977	48.62	28.54	39.60	69.90	81.33	53.60
354			BOFT	0.1977	50.59	28.54	37.20	68.00	78.67	52.60
355		LatTE	LoRA	0.1892	50.59	27.78	39.30	68.10	78.17	52.79
356			LatTE-m	0.1902	45.67	26.26	39.10	67.70	79.67	51.68
357			LatTE-w	0.1902	45.47	30.56	39.70	69.30	81.50	53.31

Table 2: Accuracy on multiple-choice and arithmetic reasoning benchmarks using various PEFT methods. MATH results for Llama-1B is omitted as it replied in forms which cannot be parsed in all methods.

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from LatTE, given that \bar{x} is a linear transform of x .

While rigorously establishing equivalence between highly non-linear models remains challenging, these results provide theoretical evidence supporting LatTE’s expressive capacity. Complete proofs and a comprehensive theoretical analysis of LatTE’s expressive power (Zeng & Lee, 2024) are provided in Appendix A.

4 EXPERIMENTS

We evaluate our LatTE method on both natural language processing (NLP) and text-to-image (T2I) generation tasks. For NLP, we conduct experiments using the Llama 3 (Grattafiori et al., 2024) and Qwen2.5 (Yang et al., 2024) language models, covering a range of model sizes from 1B to 8B parameters. For T2I generation, we fine-tune Stable Diffusion v1.5 (Rombach et al., 2022) as the base model. All fine-tuning is performed on 4 NVIDIA H100 GPUs, and inference is conducted using a single H100.

We compare both variants of LatTE – more heads (LatTE-m) and wider heads (LatTE-w) – against several strong PEFT baselines. The baseline methods include prompt tuning (Lester et al., 2021), serial (Houlsby et al., 2019) and parallel (He et al., 2022) adapters, OFT (Qiu et al., 2023), BOFT (Liu et al., 2024b), and LoRA (Hu et al., 2022). We follow the training setups from the respective references and use official implementations from the Huggingface PEFT library (Mangrulkar et al., 2022) for prompt tuning, LoRA, OFT, and BOFT.

Unless otherwise stated, we set the rank $r = 16$ for both LatTE and LoRA. For a fair comparison, the adapter hidden size and the block sizes for OFT and BOFT are chosen such that the number of trainable parameters closely match that of LatTE and LoRA; we use 2 blocks for BOFT by default.

Design	Accuracy (Qwen2.5-7B)								
	OBQA	BoolQ	PIQA	SIQA	Hella.	Wino.	ARC-e	ARC-c	ave.
Baseline (LatTE-w)	92.60	89.49	90.59	80.73	94.67	87.86	97.00	90.25	90.40
LatTE-m	91.84	89.81	90.08	81.28	94.52	87.49	96.74	90.76	90.32
$f_{\text{in}}(x) = [x; \mathbf{0}_r]$	90.53	96.56	89.50	92.00	89.61	80.73	94.40	86.50	89.98
$f_{\text{out}}([y, \bar{y}]) = y$	90.19	96.77	89.86	91.56	89.89	81.12	93.83	85.78	89.88
$f_{\text{in}}(x) = [x; \mathbf{0}_r]; f_{\text{out}}([y, \bar{y}]) = y$	90.44	96.72	89.77	92.40	89.69	80.30	94.27	86.44	90.00

Table 3: Accuracy results on the commonsense QA benchmark compared across different design choices, including f_{in} , f_{out} , and the more/wider heads.

All models are trained for up to 20 epochs for commonsense QA and 4 epochs for reasoning, and we report results using the best checkpoint selected via measuring with 4 different seeds.

4.1 COMMONSENSE QA

We begin with commonsense QA, a multiple-choice question answering task. Models are fine-tuned on the Commonsense 170K dataset (Hu et al., 2023), which comprises eight distinct QA benchmarks: OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy, and ARC-challenge (Clark et al., 2018). These datasets focus on direct-answer selection without requiring chain-of-thought (CoT) reasoning (Wei et al., 2022).

Table 1 presents the performance of Llama-3.2-3B, Llama-3.1-8B and Qwen2.5-3B/7B models fine-tuned with LatTE and baseline methods. Across all model sizes and configurations, LatTE consistently matches or exceeds the performance of established PEFT baselines. Notably, LatTE-w achieves the highest average performance on three of the four models and ranks second on the remaining model. This performance gain exceeds our theoretical expectation, which suggested LatTE would perform comparably to LoRA. While further investigation is needed, we hypothesize that the C matrix contributes significantly to this improvement. We also observe that LatTE demonstrates superior training efficiency relative to baseline methods, achieving better performance within a single epoch.

4.2 MULTIPLE-CHOICE AND ARITHMETIC REASONING

We next evaluate our method on reasoning tasks. These tasks additionally require chain-of-thought (CoT) reasoning before arriving at a final answer. We construct the training set by filtering examples from the Llama-Nemotron-Post-Training-Dataset (Bercovich et al., 2025), selecting those whose answers contain numeric characters and do not involve blank spaces. This filtering yields approximately 0.3M examples per epoch for training.

We evaluate on five benchmarks: AQuA (Ling et al., 2017), GPQA (Rein et al., 2024), MATH-500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021). Following standard practice, evaluation is based on the accuracy of the final answer, independent of the CoT

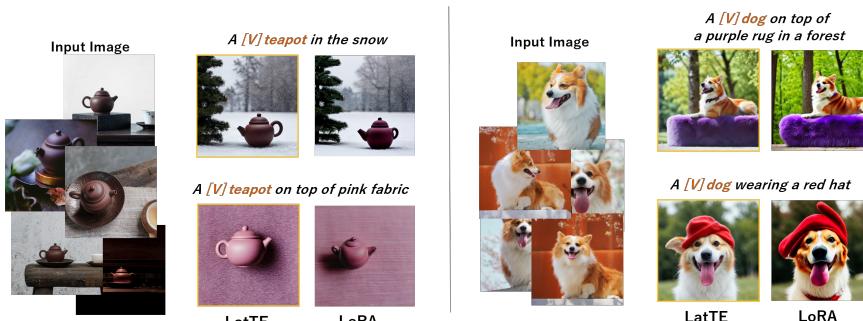


Figure 3: Subject-driven generation of LoRA and LatTE. All examples share the same seed for the two methods.

Inference type	Split	Base (=merged LoRA)	Unmerged LoRA	LatTE-m	LatTE-w
Single example	All	0.236	0.294	0.243	0.264
	Attention	0.126	0.168	0.133	0.154
	FFN	0.051	0.066	0.053	0.053
	Embedding	0.059	0.060	0.057	0.057
8 batch (1 task)	All	0.229	0.285	0.238	0.254
	Attention	0.138	0.174	0.145	0.160
	FFN	0.047	0.062	0.047	0.047
	Embedding	0.044	0.049	0.046	0.047
8 batch (4 task)	All	-	-	0.247	0.251
	Attention	-	-	0.153	0.155
	FFN	-	-	0.049	0.050
	Embedding	-	-	0.045	0.046

Table 4: Time per output token (in milliseconds) for Base, LoRA, and LatTE for Qwen2.5-7B (adapters on half of layers) with H100 GPU, context length 10k, averaged over 10 runs. The time is split into attention, FFN, and embedding.

content. Table 2 presents results for Llama-3.2-1B/3B and Qwen2.5-1.5B/3B. Again, LatTE presented overall good results compared to the baselines, demonstrating its applicability to reasoning.

4.3 TEXT-TO-IMAGE GENERATION

We now turn to latent diffusion models and demonstrate that LatTE can also be applied to image generation models. Specifically, we use DreamBooth (Ruiz et al., 2023) dataset on Stable Diffusion v1.5 and test LoRA and LatTE’s adaptation to subject-driven generation. We follow the default settings of the Huggingface Diffusers library for LoRA finetuning and applied LatTE to the identical positions, which are the attention blocks of the U-net (Ronneberger et al., 2015).

The qualitative results are shown in Figure 3. One observes that LoRA and LatTE both show effectiveness in subject-driven generation. However, LatTE’s enlarged embedding cannot pass the base-model convolution layer without engaging with f_{out} . Therefore, multiple expansion and compression should be done for the forward pass, actually introducing overhead to inference. One can skip-connect the extra dimension after the convolutional layer to overcome this, however, the effectiveness of this strategy is yet to be explored.

5 DISCUSSION

Effect of f_{in} and f_{out} . While LatTE does not introduce numerical hyperparameters beyond the rank r , it does involve several architectural design choices. As discussed in Section 3, these include: (1) the implementation of multi-head attention, (2) the initial expansion function $f_{\text{in}}(x)$, and (3) the final compression function $f_{\text{out}}([y, \bar{y}])$.

In addition to our default settings for f_{in} and f_{out} , we consider several plausible alternatives. For the expansion function f_{in} , we experiment with $f_{\text{in}}(x) = [x; \mathbf{0}_r]$, where the auxiliary embedding is an r -dimensional zero vector $\mathbf{0}_r$. For the compression function f_{out} , we test discarding the auxiliary output, $f_{\text{out}}([y, \bar{y}]) = y$. $f_{\text{in}}(x) = [x; \text{pool}(x)]$, where the auxiliary embedding is derived via pooling, and $f_{\text{out}}([y, \bar{y}]) = y + \text{repeat}(\bar{y})$ was also considered but showed suboptimal performance. Table 3 reports the impact of these alternatives on commonsense QA performance.

Inference Efficiency. We also evaluate the inference-time efficiency of LatTE by measuring the time-per-output-token (TPOT). Figure 4 plots TPOT with the

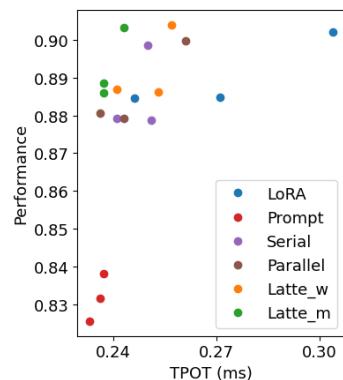


Figure 4: QA task score and inference speed on Qwen2.5-7B.

486 QA score with 7, 14, and 28 layers of adapters applied to Qwen2.5-7B model. We measured the
 487 inference time of 100 token generation with 10k context length, and averaged over 10 trials. OFT
 488 and BOFT results are not included as they were an order of magnitude slower than the others. One
 489 observes that the LatTE methods achieve suitable balance between performance and speed.

490 We present the TPOT results in Table 4, for Qwen2.5-
 491 7B, adapters on half layers. The context length is
 492 10k and the results are averaged over 10 runs. This
 493 demonstrates LatTE’s key advantage: constant-time
 494 inference regardless of the number of adapters and en-
 495 abling multi-task batch inference, making it valuable
 496 for personalized and multi-domain deployment sce-
 497 narios where merged LoRA’s linear scaling becomes
 498 prohibitive and cannot be deployed in multi-task batch
 499 scenarios without constant load-unloading.

500 The inference efficiency also includes flexibility in
 501 intra-batch multi-adapter. While it is generally chal-
 502 lenging to use multi-adapter within a batch, LatTE nat-
 503 urally supports such inference with the help of mask-
 504 ing. When applying m LatTEs, the inference batch
 505 will have mr auxiliary embeddings. The task-
 506 dependent mask can be generated and applied through-
 507 out the forward pass to ensure the correct results. For
 508 example, the mask shown in Figure 5 is for a batch
 509 with tasks [2, 1, 1, 2, 1, 0]. This is applied in four pos-
 510 itions per Transformer block as indicated with the mask
 511 symbol. Another mask is required in $(W_h^K x)^\top W_h^Q x$
 512 but can be merged with the rotary embeddings (Su et al., 2024). With masking, LatTE enables effi-
 513 cient intra-batch multi-task inference within a shared model backbone – highlighting its scalability
 514 for real-world multi-task applications.

6 CONCLUSION

518 We presented LatTE, a novel PEFT method that leverages auxiliary latent embeddings to achieve
 519 fast, scalable, and composable adaptation of large pretrained models. LatTE operates through a
 520 simple expansion of the embedding space, enabling task-specific adaptation via a single matrix
 521 multiplication per weight while keeping the base model frozen. Through extensive experiments
 522 we demonstrated that LatTE matches or exceeds the performance of strong PEFT baselines while
 523 offering significant improvements in inference efficiency. Beyond its empirical benefits, LatTE in-
 524 troduces a flexible design space for auxiliary embedding interactions. We anticipate that future work
 525 will build upon the core ideas of LatTE, and hope it serves as a foundation for further innovation.

REFERENCES

529 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
 530 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 tech-
 531 nical report. *arXiv preprint arXiv:2412.08905*, 2024.

532 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 533 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 534 report. *arXiv preprint arXiv:2303.08774*, 2023.

535 Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
 536 fectiveness of language model fine-tuning. In *Proceedings of the 59th Annual Meeting of the*
 537 *Association for Computational Linguistics and the 11th International Joint Conference on Natu-*
 538 *ral Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, 2021.

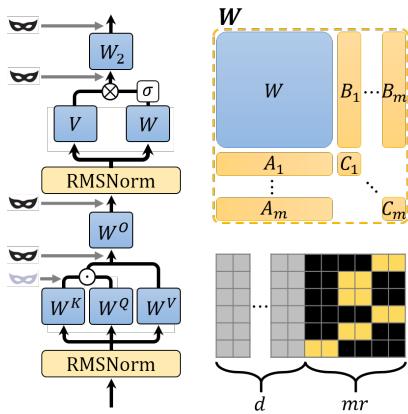


Figure 5: Masking (black squares) in intra-batch multi-adapter scenario. The mask symbol indicates where masking should be applied for Transformers.

540 Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning for
 541 cross-lingual transfer. In *Proceedings of the 60th annual meeting of the association for computa-*
 542 *tional linguistics (volume 1: long papers)*, pp. 1778–1796, 2022.

543 Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
 544 fine-tuning to large language models. *arXiv preprint arXiv:2401.16405*, 2024.

545 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
 546 Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
 547 berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
 548 550 ald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
 551 Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
 552 Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
 553 sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
 554 Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria
 555 Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
 556 Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
 557 don Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary,
 558 Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
 559 Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
 560 Sergey Kashirsky, Robert McQueen, Izzy Puttermans, George Lam, Arun Venkatesan, Sherry
 561 Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
 562 Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
 563 564 sander Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
 565 566 man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
 567 568 ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
 569 Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
 570 Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
 571 Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
 572 Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
 573 574 man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
 575 <https://arxiv.org/abs/2505.00949>.

576 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
 577 578 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 579 volume 34, pp. 7432–7439, 2020.

580 Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
 581 Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization:
 582 583 Perspectives of challenges and opportunities. *World Wide Web*, 27(4):42, 2024.

584 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 585 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings*
 586 *of the 2019 Conference of the North American Chapter of the Association for Computational*
 587 *Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936,
 588 2019.

589 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 590 591 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 592 *arXiv preprint arXiv:1803.05457*, 2018.

593 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 594 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 595 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 596 2021.

597 Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
 598 599 convolutional networks. In *International conference on machine learning*, pp. 933–941. PMLR,
 600 2017.

601 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 602 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 603 604 of models. *arXiv preprint arXiv:2407.21783*, 2024.

594 Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
 595 In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*
 596 and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
 597 Papers), pp. 4884–4896, 2021.

598 Haoze He, Juncheng B Li, Xuan Jiang, and Heather Miller. Smt: Fine-tuning large language models
 599 with sparse matrices. In *The Thirteenth International Conference on Learning Representations*,
 600 2025.

602 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
 603 a unified view of parameter-efficient transfer learning. In *International Conference on Learning
 604 Representations*, 2022.

606 Lukas Hedegaard, Aman Alok, Juby Jose, and Alexandros Iosifidis. Structured pruning adapters.
 607 *Pattern Recognition*, 156:110724, 2024.

608 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 609 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 610 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

612 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 613 et al. Lora: Low-rank adaptation of large language models. In *International Conference on
 614 Learning Representations*, 2022.

616 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 617 Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
 618 language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
 guage Processing*, pp. 5254–5276, 2023.

619 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 620 local experts. *Neural computation*, 3(1):79–87, 1991.

622 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
 623 adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.

625 Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
 626 Zhao, Yuxin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with
 627 fast inference. *Advances in Neural Information Processing Systems*, 36:8152–8172, 2023.

629 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 630 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
 631 cessing*, pp. 3045–3059, 2021.

632 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 633 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
 634 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 635 pp. 4582–4597, 2021.

636 Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
 637 banks. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

639 Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
 640 new baseline for efficient model tuning. *Advances in Neural Information Processing Systems*, 35:
 641 109–123, 2022.

642 Baohtao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
 643 new latency. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 644 Linguistics (Volume 1: Long Papers)*, pp. 4242–4260, 2023.

646 Mengqi Liao, Wei Chen, Junfeng Shen, Shengnan Guo, and Huaiyu Wan. Hmora: Making llms more
 647 effective with hierarchical mixture of lora experts. In *The Thirteenth International Conference on
 Learning Representations*, 2025.

648 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 649 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 650 *International Conference on Learning Representations*, 2023.

651

652 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
 653 ation: Learning to solve and explain algebraic word problems. *ACL*, 2017.

654

655 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 656 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 657 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022a.

658

659 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 660 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 661 *International Conference on Machine Learning*, 2024a.

662

663 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
 664 Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
 665 factorization. In *The Twelfth International Conference on Learning Representations*, 2024b.

666

667 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
 668 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Proceedings of the*
 669 *60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*,
 670 pp. 61–68, 2022b.

671

672 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 673 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. [https://github.](https://github.com/huggingface/peft)
 674 [huggingface/peft](https://github.com/huggingface/peft), 2022.

675

676 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
 677 tricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference*
 678 *on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.

679

680 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
 681 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 682 models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–
 683 4304, 2024.

684

685 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple
 686 math word problems? In *Proceedings of the 2021 Conference of the North American Chapter of*
 687 *the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–2094,
 688 2021.

689

690 Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
 691 work for multi-task cross-lingual transfer. In *Proceedings of the 2020 Conference on Empirical*
 692 *Methods in Natural Language Processing (EMNLP)*, pp. 7654–7673, 2020.

693

694 Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
 695 fusion: Non-destructive task composition for transfer learning. In *Proceedings of the 16th Con-*
 696 *ference of the European Chapter of the Association for Computational Linguistics: Main Volume*,
 697 pp. 487–503, 2021.

698

699 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
 700 and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances*
 701 *in Neural Information Processing Systems*, 36:79320–79362, 2023.

702

703 Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv*
 704 *preprint arXiv:1710.05941*, 2017.

705

706 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 707 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 708 benchmark. In *First Conference on Language Modeling*, 2024. URL [https://openreview.](https://openreview.net/forum?id=Ti67584b98)
 709 [net/forum?id=Ti67584b98](https://openreview.net/forum?id=Ti67584b98).

702 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 703 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 704 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
 705

706 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 707 ical image segmentation. In *International Conference on Medical image computing and computer-
 708 assisted intervention*, pp. 234–241. Springer, 2015.

709 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 710 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 711 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 712 22510, 2023.

713 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 714 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 715

716 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
 717 sense reasoning about social interactions. In *Proceedings of the 2019 Conference on Empirical
 718 Methods in Natural Language Processing and the 9th International Joint Conference on Natural
 719 Language Processing (EMNLP-IJCNLP)*, pp. 4463–4473, 2019.

720 Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

721 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 722 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

723 Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
 724 *Advances in Neural Information Processing Systems*, 34:24193–24205, 2021.

725 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 726 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 727 report. *arXiv preprint arXiv:2503.19786*, 2025.

728 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 729 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 730 tion processing systems*, 30, 2017.

731 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 732 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 733 neural information processing systems*, 35:24824–24837, 2022.

734 Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. In *The Twelfth International
 735 Conference on Learning Representations*, 2024a.

736 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Man-
 737 ning, and Christopher Potts. Reft: Representation finetuning for language models. *Advances in
 738 Neural Information Processing Systems*, 37:63908–63962, 2024b.

739 Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device
 740 language models: A comprehensive review. *arXiv preprint arXiv:2409.00088*, 2024.

741 Jingwei Xu, Junyu Lai, and Yunpeng Huang. MeteoRA: Multiple-tasks embedded loRA for large
 742 language models. In *The Thirteenth International Conference on Learning Representations*, 2025.

743 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 744 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 745 arXiv:2412.15115*, 2024.

746 Shen Yuan, Haotian Liu, and Hongteng Xu. Bridging the gap between low-rank and orthogonal
 747 adaptation via householder reflection adaptation. In *The Thirty-eighth Annual Conference on
 748 Neural Information Processing Systems*, 2024.

749 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 750 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association
 751 for Computational Linguistics*, pp. 4791–4800, 2019.

756 Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In *The Twelfth*
757 *International Conference on Learning Representations*, 2024.
758

759 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
760 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
761 pp. 3836–3847, 2023a.

762 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
763 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh Inter-*
764 *national Conference on Learning Representations*, 2023b.

765 Weilin Zhao, Yuxiang Huang, Xu Han, Zhiyuan Liu, Zhengyan Zhang, Kuai Li, Chen Chen, TAO
766 YANG, and Maosong Sun. Ca-lora: Adapting existing lora for compressed llms to enable efficient
767 multi-tasking on personal devices. In *First Conference on Language Modeling*, 2024.

769 Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference
770 adapter for multilingual machine translation. In *Findings of the Association for Computational*
771 *Linguistics: EMNLP 2021*, pp. 2812–2823, 2021.

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 811	Model	Fintuning	Accuracy								
			OBQA	BoolQ	PIQA	SIQA	Hella.	Wino.	ARC-e	ARC-c	ave.
812 813 814 815 816 817 818 819	$r = 8$	Prompt	85.60	85.55	76.18	76.01	78.65	67.68	95.64	88.44	81.72
		Serial	89.95	88.43	88.07	79.18	91.89	80.82	95.62	89.40	87.92
		Parallel	90.44	88.70	88.66	78.36	92.27	82.04	95.35	88.72	88.07
		OFT	90.30	88.65	87.46	78.21	90.40	80.51	96.40	90.38	87.79
		BOFT	90.00	88.43	87.60	78.25	91.13	80.62	96.35	90.02	87.80
		LoRA	90.90	89.27	88.97	78.45	92.42	82.87	95.81	88.91	88.45
		LatTE-m	92.10	89.21	88.52	78.80	92.67	82.20	95.56	89.80	88.61
820 821 822 823 824 825 826	$r = 16$	LatTE-w	91.20	89.44	88.74	79.72	92.56	82.46	95.95	89.44	88.69
		Prompt	87.95	85.24	86.60	76.67	76.44	66.75	96.39	89.23	83.16
		Serial	89.64	87.98	87.91	79.30	91.66	81.14	95.79	89.57	87.87
		Parallel	90.90	88.32	87.85	79.11	91.94	80.27	95.63	89.29	87.92
		OFT	90.35	88.49	88.40	79.49	91.89	82.20	96.32	89.78	88.36
		BOFT	90.00	88.43	87.60	78.25	91.13	80.62	96.35	90.02	87.80
		LoRA	91.10	89.05	88.29	78.68	92.67	83.09	95.57	89.38	88.48
827 828 829 830 831 832 833	$r = 32$	LatTE-m	91.70	89.34	88.79	79.45	92.20	83.80	95.91	89.69	88.86
		LatTE-w	91.20	89.26	88.55	78.90	91.94	83.19	95.76	90.17	88.62
		Prompt	85.80	83.75	86.28	76.26	70.95	62.49	96.03	88.82	81.30
		Serial	89.50	88.29	87.99	79.35	91.64	80.80	95.80	89.68	87.88
		Parallel	90.70	88.52	88.15	79.55	92.00	80.60	95.75	89.31	88.07
		OFT	90.55	89.20	88.48	79.26	92.20	83.28	96.26	89.93	88.65
		BOFT	91.50	89.32	88.23	79.08	92.37	83.11	96.37	89.68	88.71
		LoRA	91.64	89.14	89.01	78.43	92.64	83.52	95.40	88.78	88.57
		LatTE-m	92.04	89.33	88.69	80.12	92.21	82.32	96.30	90.27	88.91
		LatTE-w	92.44	89.07	88.69	79.93	92.29	82.64	96.02	90.34	88.93

Table 5: Rank sensitivity analysis on Qwen2.5-7B commonsense QA with adapters in half layers. Both LatTE and LoRA show consistent improvement with increased rank, with LatTE maintaining competitive performance across all settings.

A PROOF OF THEOREM

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from LatTE, given that \bar{x} is a linear transform of x .

Proof.

i) Attention matrix of LoRA:

$$\begin{aligned} & x^\top ((W_k + \Delta W_k)^\top (W_Q + \Delta W_Q)) x \\ &= x^\top ((W_k + b_k^\top a_k^\top)^\top (W_Q + a_Q b_Q)) x \end{aligned} \quad (4)$$

ii) Attention matrix of LatTE:

$$\begin{aligned} & [x^\top \bar{x}^\top] \begin{bmatrix} W_K^\top & A_K^\top \\ B_K^\top & C_K^\top \end{bmatrix} \begin{bmatrix} W_Q & B_Q \\ A_Q & C_Q \end{bmatrix} \begin{bmatrix} x \\ \bar{x} \end{bmatrix} \\ &= x^\top (W_K^\top W_Q + B_K^\top B_Q) x + x^\top (W_K^\top A_Q + B_K^\top C_Q) \bar{x} \\ &+ \bar{x}^\top (A_K^\top W_Q + C_K^\top B_Q) x + \bar{x}^\top (A_K^\top A_Q + C_K^\top C_Q) \bar{x} \end{aligned} \quad (5)$$

We claim that any LoRA attention can be expressed by LatTE attention. Let $A_Q = a_Q$, $A_K = a_K$, $B_Q = a_K^\top W_Q$, $C_Q = a_K^\top a_Q$, B_K, C_K satisfies $B_K + C_K b_Q = b_K - b_Q$, and $\bar{x} = b_Q x$. Note that the solution for $B_K + C_K b_Q = b_K - b_Q$ always exists since $B_K = b_K$ and $C_K = -1_r$ (identity matrix) satisfies the condition.

Model	Fintuning	Accuracy								Degradation
		OBQA	BoolQ	PIQA	SIQA	Hella.	Wino.	ARC-e	ARC-c	
Qwen2.5-14B (BF16)	LoRA	94.20	90.30	91.07	81.41	93.85	87.04	97.61	93.28	91.09
	LatTE-m	94.10	90.31	91.01	80.90	94.07	87.12	97.63	93.58	91.09
	LatTE-w	94.10	90.47	91.57	81.12	94.09	87.25	97.54	93.75	91.24
Qwen2.5-14B (INT8)	LoRA	93.76	90.22	90.92	80.67	93.51	86.86	97.50	93.26	90.84
	LatTE-m	94.24	90.41	91.02	81.01	93.93	86.54	97.47	93.47	91.01
	LatTE-w	94.04	90.24	91.51	80.67	93.86	87.39	97.48	93.36	91.07

Table 6: Accuracy results on the commonsense QA benchmark for Qwen2.5-14B model, with BF16 and INT8 precision. Adapters are applied to half of the layers. LatTE shows robust performance retention under quantization, demonstrating compatibility with standard inference acceleration techniques.

Then the LatTE attention becomes:

$$\begin{aligned}
 & x^\top (W_K^\top W_Q + B_K^\top B_Q + W_K^\top a_Q b_Q + B_K^\top C_Q b_Q \\
 & + b_Q^\top a_K^\top W_Q + b_Q^\top C_K^\top B_Q + b_Q^\top a_K^\top a_Q b_Q + b_Q^\top C_K^\top C_Q b_Q) x \\
 & = x^\top (W_K^\top + b_K^\top a_K^\top) (W_Q + a_Q b_Q) x \\
 & + x^\top ((b_Q - b_K)^\top a_K^\top W_Q + (b_Q - b_K)^\top a_K^\top a_Q b_Q \\
 & + (B_K + C_K b_Q)^\top B_Q + (B_K + C_K b_Q)^\top C_Q b_Q) x
 \end{aligned} \tag{6}$$

The second term identically vanishes with $C_Q = a_K^\top a_Q$, $B_Q = a_K^\top W_Q$ and $B_K + C_K b_Q = b_K - b_Q$. This proves any LoRA attention matrix can be expressed as LatTE attention matrix assuming \bar{x} is a linear transform of x .

B ADDITIONAL RESULTS

Here we provide additional experimental results.

B.1 ABLATION ON EMBEDDING SIZE

We show the ablation study on embedding size (r) on Qwen2.5-7B for commonsense QA benchmark in Table 5. The scaling behavior of LatTE for r is similar to that of LoRA, as expected. The consistent relative performance across ranks indicates LatTE and LoRA have similar expressivity – increasing rank benefits both methods equally, showing no fundamental expressivity gap.

B.2 LARGER MODELS AND EFFECT OF QUANTIZATION

To address the issue of scalability, we present results for larger model size. Table 6 shows results for Qwen2.5-14B for commonsense QA benchmark, with adapters in half of the layers. LatTE models showed competitive accuracy compared to LoRA, consistent with the smaller models, with LatTE-w achieving the highest average accuracy. While this is not as large a model as tens or hundreds of billions of parameters, we experimented on a range of parameters (1-14B) which showed consistent effectiveness. Together with the theoretical analysis, we believe that the effectiveness of LatTE will hold for substantially larger models.

We also consider the effect of quantization, and quantize the weights to INT8 for the same model. The results showed that LatTE was equally effective even for quantized models, and the accuracy degradation from quantization is of similar level to LoRA.

B.3 EPOCH-WISE PERFORMANCE

For the Commonsense QA task, we show the performance of each epoch in Figure 6

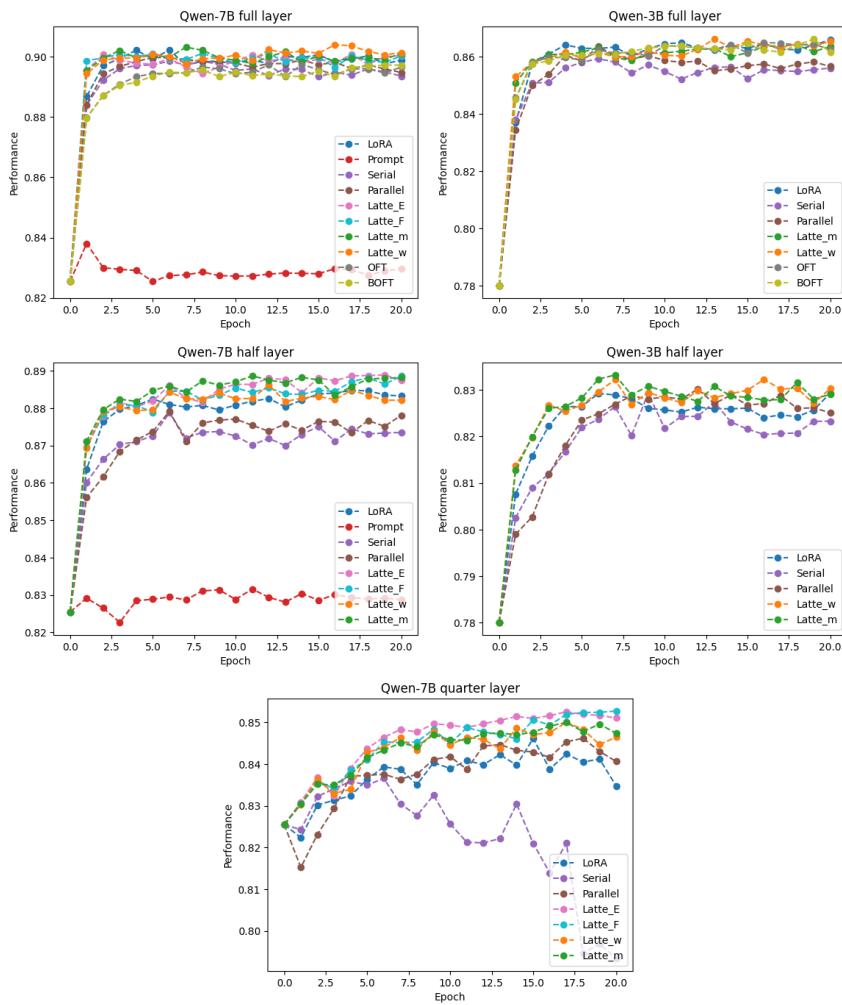


Figure 6: Epoch-wise performance for QA task.

B.4 MORE RESULTS ON TEXT-TO-IMAGE GENERATION

More qualitative results for the subject-driven generation is shown in Figure 7.

972
973
974
975
976
977

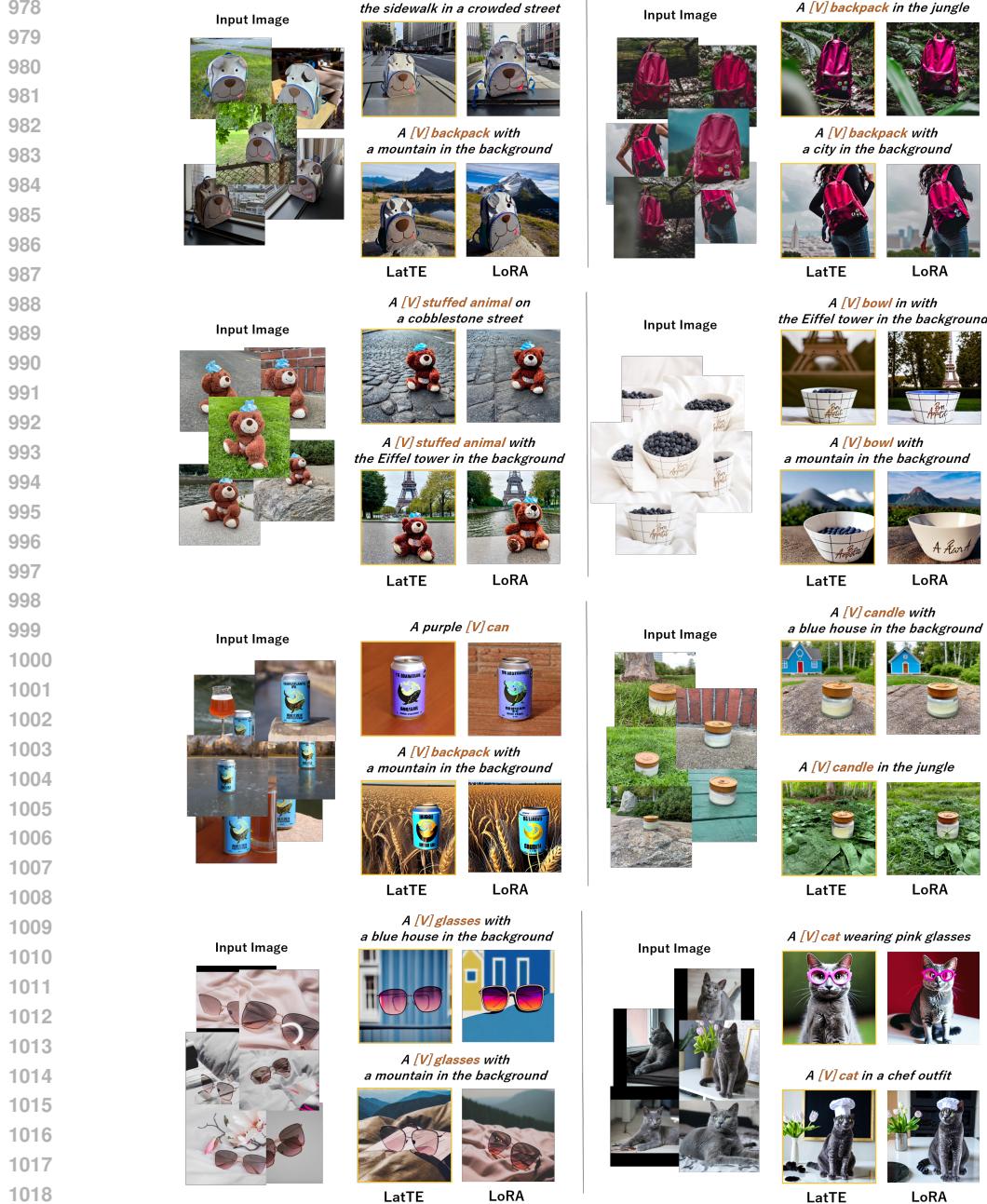


Figure 7: Additional results for subject-driven generation of LoRA and LatTE.