
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT FINE-TUNING VIA
AUXILIARY REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The widespread adoption of large pretrained models has made fine-tuning an
essential step for tailoring models to specific tasks. As these models continue
to scale larger and as the demand for task-specific and personalized adaptation
grows, parameter-efficient fine-tuning (PEFT) has emerged as a practical alterna-
tive to full fine-tuning. PEFT enables effective adaptation while updating only a
small fraction of the total parameters. While various PEFT techniques have shown
strong performance, many still suffer from increased inference latency and inef-
ficiencies in multi-adapter scenarios. Motivated by these limitations, we propose
a novel PEFT approach that leverages auxiliary representations to enable fast and
flexible inference. In our method, Latent Task Embedding fine-tuning, a small
task-specific latent embedding is concatenated to the original embedding. The
corresponding weight matrices are extended, and only the additional parameters
introduced by this expansion are trained. This design allows for efficient inference
using a single matrix multiplication per weight, minimizing latency overhead, and
supports task-specific masking to handle multiple adapters within a single model.
We evaluate our method on large language models and latent diffusion models,
demonstrating competitive accuracy with existing PEFT baselines while provid-
ing faster inference and enabling efficient intra-batch multi-task processing.

1 INTRODUCTION

The remarkable success of large pretrained models is largely attributed to scale and generality –
large-scale training on diverse data results in highly capable models that can be fine-tuned for a wide
range of downstream applications (Achiam et al., 2023; Grattafiori et al., 2024; Abdin et al., 2024;
Yang et al., 2024; Team et al., 2025). However, as model sizes continue to grow, full fine-tuning
(FFT), where all parameters are updated for each task, has become increasingly impractical due to its
high computational and storage demands. To address this, parameter-efficient fine-tuning (PEFT)
methods have emerged as a compelling alternative. PEFT techniques adapt pretrained models by
introducing and updating only a small number of parameters while keeping the base model frozen.
Various PEFT approaches have shown that strong downstream performance can be achieved with
significantly fewer trainable parameters, enabling rapid adaptation and deployment (Houlsby et al.,
2019; Lester et al., 2021; Hu et al., 2022).

While existing PEFT methods have proven effective, the rapidly expanding landscape of down-
stream applications – ranging from hyper-personalization (Chen et al., 2024) to privacy-preserving
edge deployment (Xu et al., 2024) – poses critical challenges for inference efficiency. In these
resource-constrained environments, where dedicated cloud-tier GPUs are often absent, the demand
extends beyond simple adaptation to the simultaneous serving of multiple task-specific adapters.
This requirement exposes a fundamental limitation in current approaches: a stark trade-off between
latency and memory. Merging adapters (e.g., via LoRA) achieves fast single-task inference but
forces memory usage to scale linearly with the number of tasks, rendering it impractical for multi-
tenant scenarios. Conversely, maintaining unmerged adapters conserves memory but introduces se-
quential computational overhead that significantly degrades latency. Consequently, modern deploy-
ment faces an unresolved trilemma among accuracy, latency, and multi-task flexibility that existing
methods struggle to resolve.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Base (b) LoRA (c) LatTE (d) Forward pass of LatTE

Figure 1: (a-c) The comparison of the forward pass through a single weight for the base, LoRA, and
LatTE model. While the A and B matrices in LoRA are expressed conventionally as trapezoids to
emphasize their low ranks, they are identical in the matrix dimensions with the A and B in LatTE.
(d) The forward pass a MLP model with LatTE. We have omitted the non-linearity between the
layers for simplicity. The shaded region can be conceptually regarded as a single LoRA unit.

PEFT techniques can be broadly categorized into three types. The first modifies the model architec-
ture, such as in serial or parallel adapters (Houlsby et al., 2019; Pfeiffer et al., 2021; He et al., 2022),
by introducing adapter modules into each transformer block which alters the flow of intermediate
representations. The second category centers on finding efficient ways to tune the weight matri-
ces that resemble FFT. This category includes LoRA (Hu et al., 2022) and its variants. The third
category focuses on representations, and either introduce additional learnable embeddings such as
prompt-based methods (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022b), or modify the hid-
den states to steer the model’s behavior (Liu et al., 2022a; Wu et al., 2024b). While each strategy
has its merits, existing PEFT approaches do not focus on inference efficiency.

In this work, we propose a new direction: leveraging auxiliary latent representations as a com-
pact and efficient carrier of task-specific information. This design choice offers several distinct
advantages: (1) it preserves fast inference by reducing the adaptation to the same single matrix mul-
tiplication as in the base model (but with increased dimension), (2) its simple architecture introduces
few hyperparameters and has low memory requirement, and (3) it enables flexible composition and
switching of multiple tasks. Motivated by these properties, we introduce Latent Task Embedding
(LatTE) fine-tuning, a novel PEFT method that injects task-specific latent embeddings directly into
the model’s input layer. LatTE enables fast, simple, and composable fine-tuning with minimal la-
tency overhead and strong empirical performance across diverse tasks and model families.

LatTE concatenates the learnable auxiliary embedding to the original latent embedding, which
serves as a compact, task-specific representation. The projection weights are expanded accordingly,
and only the newly-introduced parameters are updated during fine-tuning. The gist of the method,
acting on a single weight, is compared with the base model and LoRA in Figure 1 (a-c). This re-
sults in a lightweight and latency-free tuning mechanism, where inference remains as efficient as
the base model. Our approach enables multiple adapters to coexist within the enlarged embedding
space with task-specific mask controlling the adapter to be used – an important capability for effi-
cient multi-task and multi-domain deployment. We evaluate our method across various LLMs and a
diffusion model on a variety of tasks. Both experimental results and theoretical analysis demonstrate
that LatTE consistently matches the performance of leading PEFT baselines while achieving faster
inference speed. By bridging the gap between efficient fine-tuning and real-world deployment con-
straints, our method paves the way for scalable and high-performance model adaptation in practical
applications.

We summarize our main contributions as follows:

• We propose LatTE, a novel PEFT method that utilizes auxiliary latent embeddings, enabling
low-latency adaptation with a minimal number of trainable parameters.

• We conduct extensive experiments across LLMs and diffusion models, demonstrating strong
performance compared to robust PEFT baselines.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We demonstrate the unique flexibility of LatTE for efficient intra-batch multi-task inference
via task-specific masking, maintaining near-constant latency when serving heterogeneous tasks
simultaneously.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT). PEFT is a series of methods that update only a small
fraction of the model’s parameters during fine-tuning, while keeping the rest frozen. This enables
adaptation to new tasks with minimal computational overhead while preserving the capabilities of
the base model. We broadly categorize existing PEFT methods into the following three classes.

• Module-based methods introduce additional trainable modules (adapters) to the model architec-
ture. The adapters mostly consist of a down- and up-projection with a nonlinearity in between.
There are serial adapter (Houlsby et al., 2019; Pfeiffer et al., 2021) and parallel adapter (He
et al., 2022) based on how the adapter is attached to the base module. CIAT (Zhu et al., 2021)
and CoDA (Lei et al., 2023) are also variants of the parallel adapter.

• Weight-based methods aim to efficiently update the weights of the model, and can be con-
sidered as a direct approximation of FFT. The update of the weights can be either additive or
multiplicative. LoRA (Hu et al., 2022) and its variants (Zhang et al., 2023b; Liu et al., 2024a;
Kopiczko et al., 2024; Li et al., 2024), the most widely used PEFT, are additive weight-based
methods. Multiplicative-update method includes OFT (Qiu et al., 2023), BOFT (Liu et al.,
2024b), and HRA (Yuan et al., 2024).

• Representation-based methods use representations as a tool for fine-tuning. Soft-prompt meth-
ods are in this category, where learnable embeddings are prefixed to the prompt. Prefix-tuning (Li
& Liang, 2021), prompt-tuning (Lester et al., 2021), and p-tuning (Liu et al., 2022b) are examples
of such methods. Another group in this category modifies or edits the intermediate representa-
tions to fit the model to downstream tasks. This includes methods such as (IA)3 (Liu et al.,
2022a), SSF (Lian et al., 2022), and ReFT (Wu et al., 2024b).

• Sparsity-Based methods leverages sparsity and selectively update subsets of model parameters
identified as most critical for the target task, often by masking (Guo et al., 2021; Sung et al.,
2021; Ansell et al., 2022). More recent work on sparsity methods, SpIEL (Ansell et al., 2024)
and SMT (He et al., 2025), scales these ideas to LLMs up to 13B parameters.

Notably, despite the extensive research over the past years, no PEFT approach explores the use
of representations auxiliary to the embeddings as a mechanism for adaptation, to the best of our
knowledge.

Inference-Efficient PEFT. Recent works have recognized the need for reducing inference-time
overhead in PEFT. SPLoRA (Hedegaard et al., 2024) and CA-LoRA (Zhao et al., 2024) combine
LoRA with pruning or quantization for faster inference. Our method differs from these approaches
as we preserve the precision and expressivity of the base model. Liao et al. (2023) introduces
zero latency PEFT methods, PaFi and HiWi, which are a task-agnostic sparse fine-tuning and a
multiplicative version of LoRA, respectively. These methods do not introduce additional latency as
they (partially) update the original model as in FFT. Inference of LatTE, on the other hand, is as
fast as the base model while keeping the original weights intact, which is beneficial for fast task-
switching.

We emphasize a critical distinction often overlooked in the literature: many weight-based methods
such as LoRA and OFT claim inference speed identical to the base model. However, this only holds
when weight updates are pre-merged before inference – i.e., low-rank weights are pre-added for
LoRA or orthogonal matrices are pre-multiplied for OFT. Pre-merging destroys multi-task capabil-
ity: serving N tasks requires N separate merged models or constant loading/unloading overhead. In
contrast, LatTE maintains near-base model inference speed while supporting multiple tasks through
a single expanded model with task-specific masking, making it uniquely suited for multi-adapter
deployment scenarios.

Multi-Adapter and Multi-Task Adaptation. Scenarios involving multiple downstream tasks or
domains often demand flexible and composable fine-tuning strategies. MAD-X (Pfeiffer et al., 2020)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and AdapterFusion (Pfeiffer et al., 2021) allow for combining multiple adapters, yet require addi-
tional merging logic and may incur runtime costs. Mixture of Expert (MoE) (Jacobs et al., 1991)
style combination of multiple task LoRAs (Wu et al., 2024a; Xu et al., 2025; Liao et al., 2025) may
be effective, but adds complexity during inference. Our approach supports multiple tasks through
task-specific masking applied to the embedding, introducing minimal latency compared to single-
task inference. Moreover, this flexibility is an intrinsic feature of vanilla LatTE, and has much room
for improvements in future variants specialized for such purposes.

3 OUR METHOD

We propose LatTE, a fine-tuning method in which a task-specific auxiliary embedding is concate-
nated to the original token embeddings. This increases the embedding dimensionality, which cor-
respondingly expands the associated weight matrices. The fine-tuned knowledge is thus stored in
the additional weight parameters introduced by this expansion, and the interaction with the original
forward pass is mediated by the auxiliary embedding. Architecturally, LatTE resembles LoRA and
other weight-based PEFT methods, as it modifies individual weights without altering the model’s
overall structure (see Figure 1). However, a unique feature of LatTE is that the forward pass
through one weight is calculated by a single matrix multiplication while keeping the original weight
frozen. This enables inference-time performance comparable to that of the original model, making
LatTE both efficient and scalable.

The comparison between the base model, LoRA, and LatTE is illustrated in Figure 1 (a-c), which
shows the forward pass through a single weight matrix W ∈ Rd×k. Given an input embedding x ∈
Rk, the base model computes the output y ∈ Rd as y = Wx. In LoRA, task-specific information
is introduced via a low-rank adapter, yielding: y = Wx + BAx, where A ∈ Rr×k and B ∈
Rd×r, and r is the low-rank dimension. In LatTE, the input embedding is concatenated with an
auxiliary embedding x̄ ∈ Rr to form [x; x̄] ∈ Rk+r. The forward pass is computed in the expanded
embedding space: [

y
ȳ

]
=

[
W B
A C

] [
x
x̄

]
, (1)

where A, B, and C ∈ Rr×r are trainable matrices. For convenience, we denote the expanded vectors

and matrix as x =

[
x
x̄

]
, y =

[
y
ȳ

]
, and W =

[
W B
A C

]
, so that Eq. (1) simplifies to the familiar

linear form y = Wx. In Figure 1 (c), the block matrix W is highlighted with a yellow dashed
outline. We deliberately set the auxiliary embedding dimension r to match the low-rank dimension
used in LoRA, allowing for a fair parameter comparison. LoRA introduces (d + k)r additional
parameters per weight matrix, while LatTE adds (d+ k+ r)r, which remains comparable under the
common assumption r ≪ min(d, k). Proper initialization is crucial to PEFT model’s performance
and we initialize A as Kaiming uniform and B, C to zero. This follows LoRA’s default strategy
in the Huggingface PEFT library (Mangrulkar et al., 2022), and ensures that LatTE’s forward pass
exactly replicates the base model at the start of the training.

To compute in the expanded space, we define expansion and compression functions fin and fout,
which are applied once per forward pass:

fin(x) = x, fout(y) = y.

In practice, we initialize the auxiliary embedding a learnable constant vector c: fin(x) = [x; c], and
extract the final output as a linear combination: fout([y; ȳ]) = y+Bȳ. Note that the matrix B used in
this post-processing step is a separate trainable parameter and not reused from the block matrix W,
although it shares the same shape Rd×r. Alternative design choices for fin and fout are discussed
in Section 5. We emphasize that fin and fout are applied only once per forward pass through the
entire network, not once per layer. The auxiliary embedding is expanded once at the input (fin),
propagates through all layers in the expanded space, and is compressed once at the output (fout),
ensuring minimal overhead.

3.1 APPLICATION TO THE MULTI-LAYER PERCEPTRON

With the LatTE building block in place, we now apply it to a multilayer perceptron (MLP) network.
Consider an L-layer MLP with weight matrices Wi for 1 ≤ i ≤ L and an activation function σ.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Given an input embedding x, the MLP computes the output as:

y = WL · σ(WL−1 · σ(· · ·σ(W1x))).

To incorporate LatTE, we replace each Wi with its expanded counterpart Wi and insert the ex-
pansion and compression functions fin and fout at the input and output, respectively. The input
embedding is first expanded from a d-dimensional vector to a (d+ r)-dimensional one by fin, then
propagated through the network using the sequence of Wi matrices. The final embedding is com-
pressed back to a d-dimensional output by fout. The resulting output becomes:

y = fout (WL · σ(WL−1 · σ(· · ·σ(W1fin(x))))) . (2)

The feed-forward network (FFN) block in a Transformer architecture (Vaswani et al., 2017) is typi-
cally a two-layer MLP of the form:

FFNσ(x,W1,W2) = W2 · σ(W1x).

Modern LLMs, including those used in our experiments (Grattafiori et al., 2024; Yang et al., 2024),
often use the SwiGLU activation function (Shazeer, 2020), a variant of the Gated Linear Unit
(GLU) (Dauphin et al., 2017) based on Swish (Ramachandran et al., 2017). A single FFN using
SwiGLU can be expressed as:

FFNSwiGLU(x,W, V,W2) = W2 · (Swish1(Wx)⊗ V x),

where Swishβ(x) = x · sigmoid(βx) and ⊗ denotes the element-wise (Hadamard) product. Apply-
ing LatTE to this FFN block involves replacing each weight matrix with its expanded form. The
resulting forward pass becomes:

FFNSwiGLU(x,W,V,W2) = W2 · (Swish1(Wx)⊗Vx). (3)

3.2 APPLICATION TO THE ATTENTION MODULE

Figure 2: The two strategies on
allocating the additional dimen-
sion of Wx (yellow) to atten-
tion heads. Here, the vertical di-
mension represents the context
length.

Unlike MLP layers – where applying LatTE is straightforward
and leaves little room for design choices beyond fin and fout – the
attention module presents several implementation options. The
core strategy remains the same: expand the embedding dimension
and replace the weight matrices with their extended counterparts.
However, the key challenge lies in how to allocate the auxiliary
embedding dimensions across the attention heads.

Assume a standard multi-head attention (MHA) mechanism with
H heads, where the per-head dimension is dH = d/H . The usual
output of an MHA layer can be written as:

H∑
h=1

(WO
h )⊤WV

h x · softmax
(
(WK

h x)⊤WQ
h x

)
,

where Wh denotes the h-th row-wise split submatrix of a full
weight matrix W , i.e., Wh = W [(h− 1)dH : hdH , :]. When the
embedding dimension increases from d to d + r, we must adjust
the MHA configuration so that dH = (d + r)/H holds. Two
simple approaches can achieve this:

1. More heads: Increase the number of attention heads H such
that the added auxiliary dimension r fits into additional heads.
Specifically, ⌈r/dH⌉ additional heads are introduced.

2. Wider heads: Increase the per-head dimension dH while keeping the number of heads fixed.
This distributes the auxiliary dimension across all heads by enlarging dH by 2⌈r/(2H)⌉. The factor
of 2 ensures an even extension, which is necessary to preserve compatibility with rotary positional
embeddings (Su et al., 2024), where embedding vectors are decomposed into pairs for 2d-rotations.

If r is not divisible by dH (the more-heads case) or by H (the wider-heads case), the unmatched
dimensions are zero-padded. Figure 2 provides a schematic of these two integration strategies.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model Fintuning Params (%) Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Qwen2.5-3B

Prompt 0.0021 77.04 80.46 80.60 73.54 69.95 62.63 93.82 82.98 77.63
Serial 0.7546 86.70 86.86 85.81 79.20 91.99 79.99 93.39 83.53 85.93

Parallel 0.7546 85.90 87.08 85.77 79.77 92.26 82.75 94.03 83.32 86.36
OFT 0.7025 87.50 87.58 85.69 78.97 92.36 82.44 93.98 83.49 86.50

BOFT 0.7025 87.90 87.74 86.29 79.86 92.01 82.06 93.81 83.21 86.61
LoRA 0.7546 87.15 87.50 86.28 79.38 92.46 83.11 93.61 83.29 86.60

LatTE-m 0.7573 86.04 87.60 85.58 79.02 91.98 84.35 93.60 83.12 86.41
LatTE-w 0.7573 86.80 87.97 85.73 78.67 92.20 83.94 94.14 83.55 86.63

Qwen2.5-7B

Prompt 0.0015 86.50 85.85 86.04 76.67 81.59 68.01 96.20 89.57 83.81
Serial 0.5273 92.84 89.45 89.40 81.88 94.03 85.83 96.19 89.18 89.85

Parallel 0.5273 92.04 89.30 89.15 81.26 94.01 87.83 96.50 89.76 89.98
OFT 0.4943 91.84 89.04 90.08 80.99 93.84 85.65 96.68 89.80 89.74

BOFT 0.4943 92.35 89.46 89.67 79.94 94.14 86.15 96.39 89.69 89.72
LoRA 0.5303 92.55 89.59 90.22 81.94 93.84 86.76 96.57 90.29 90.22

LatTE-m 0.5317 91.84 89.81 90.08 81.28 94.52 87.49 96.74 90.76 90.32
LatTE-w 0.5317 92.60 89.49 90.59 80.73 94.67 87.86 97.00 90.25 90.40

Llama-3.2-3B

Prompt 0.0031 71.64 79.30 77.20 67.41 62.12 60.10 85.47 72.54 71.97
Serial 0.7550 82.10 86.73 84.22 77.19 89.61 80.84 88.90 77.52 83.39

Parallel 0.7550 82.10 87.50 83.42 77.79 90.66 82.57 89.27 78.65 83.99
OFT 0.7666 84.84 88.44 85.01 79.17 90.91 82.89 91.25 79.82 85.29

BOFT 0.7666 86.30 88.76 85.55 78.51 91.32 81.77 90.88 78.82 85.24
LoRA 0.7568 84.44 88.56 85.61 77.94 91.41 83.78 89.82 78.07 84.95

LatTE-m 0.7599 85.70 88.35 85.36 78.39 91.42 84.89 89.98 79.24 85.42
LatTE-w 0.7599 86.40 88.74 85.23 79.21 91.15 84.47 90.49 79.76 85.68

Llama-3.1-8B

Prompt 0.0016 82.35 86.12 84.48 77.38 83.29 72.26 92.56 80.87 82.41
Serial 0.4570 89.70 88.73 87.81 80.45 93.61 84.35 94.00 83.92 87.82

Parallel 0.4570 89.75 88.87 88.15 81.35 94.10 86.03 93.80 84.91 88.37
OFT 0.4492 89.00 89.30 88.45 81.54 93.79 84.02 94.43 84.68 88.15

BOFT 0.4492 88.90 89.72 88.75 80.81 93.58 84.85 94.32 83.94 88.11
LoRA 0.4570 88.90 89.09 88.85 80.92 94.31 87.23 93.81 84.85 88.50

LatTE-m 0.4585 90.15 89.63 88.80 80.80 94.39 88.38 94.14 84.45 88.84
LatTE-w 0.4585 90.60 89.33 88.87 80.28 94.25 86.68 94.73 84.47 88.65

Table 1: Accuracy results on the commonsense QA benchmark, which includes eight diverse rea-
soning tasks. Adapters are applied to all layers.

With the application of LatTE to both FFN and attention layers explained, we are now ready to
implement it in Transformer-based LLMs. In diffusion models, PEFT is typically applied to the
text encoder and the cross-attention modules within the U-Net architecture (Ruiz et al., 2023; Zhang
et al., 2023a; Mou et al., 2024). This means that the same recipe used for LLMs can be applied to
diffusion models as well.

3.3 COMPARISON WITH LORA

We provide theoretical context for LatTE by drawing comparisons with LoRA. The intuition behind
LoRA stems from the observation that the intrinsic dimension of many NLP tasks is significantly
lower than the dimension of large pretrained models (Aghajanyan et al., 2021). Building on this,
LoRA hypothesizes that the required weight updates for task adaptation also lie in a low-rank sub-
space (Hu et al., 2022). However, the argument in Aghajanyan et al. (2021) supports a low intrinsic
dimension as a necessary, but not sufficient, condition for low-rank adaptation to be effective.

Interestingly, LatTE can also be interpreted as a composition of low-rank updates. As illustrated in
Figure 1 (d), when examining the green-shaded information flow over two layers (omitting activation
for simplicity), the input embedding x is transformed by a low-rank operation BA and reintegrated
with the base embedding. Thus, while LoRA applies a single low-rank update per layer, LatTE effec-
tively performs two low-rank transformations across two layers. This structural similarity suggests
that the same theoretical motivation underlying LoRA – namely, that task-specific transformations
can be captured in low-rank subspaces – also supports the design of LatTE.

Beyond the qualitative arguments presented above, we provide two formal results establishing cases
where the expressive power of LatTE is equivalent to that of LoRA.
Theorem 1 For linear models, the minimum low-rank dimension required for adapter models to
exactly recover the FFT target is identical for both LoRA and LatTE.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Fintuning Params (%) Accuracy
AOuA GPQA MATH GSM8K SVAMP ave.

Qwen2.5-1.5B

Prompt 0.0016 37.80 24.24 37.80 54.80 72.33 45.39
Serial 0.2982 42.13 25.25 42.40 65.00 71.67 49.29

Parallel 0.2982 50.79 29.29 45.00 63.00 70.67 51.75
OFT 0.2847 40.09 30.81 39.40 52.40 64.00 46.14

BOFT 0.2847 41.34 28.79 39.60 54.00 68.00 46.35
LoRA 0.2991 49.61 31.82 42.40 61.80 74.00 51.92

LatTE-m 0.3003 50.79 31.31 40.80 62.60 73.67 51.83
LatTE-w 0.3003 49.61 30.30 43.20 63.80 73.00 51.98

Qwen2.5-3B

Prompt 0.0011 46.85 25.76 49.20 67.00 70.67 51.89
Serial 0.1877 49.61 26.26 52.80 76.40 78.67 56.75

Parallel 0.1877 48.43 28.79 49.60 73.00 83.33 56.63
OFT 0.1821 43.31 22.73 49.00 65.40 72.67 50.62

BOFT 0.1821 45.67 28.79 48.20 65.60 71.00 51.85
LoRA 0.1886 45.28 28.28 51.40 73.60 81.33 55.98

LatTE-m 0.1894 49.61 30.30 53.20 71.00 80.33 56.89
LatTE-w 0.1894 48.03 26.26 52.40 73.80 78.33 55.77

Llama-3.2-1B

Prompt 0.0027 21.46 25.25 - 36.10 53.50 34.08
Serial 0.3991 18.11 25.00 - 37.10 55.33 33.89

Parallel 0.3991 31.50 36.77 - 36.70 50.67 36.41
OFT 0.3979 25.20 24.49 - 34.10 52.67 34.11

BOFT 0.3979 25.98 20.96 - 34.40 52.17 33.38
LoRA 0.3991 22.24 24.24 - 37.70 56.00 35.05

LatTE-m 0.4009 24.80 22.22 - 38.10 57.17 35.57
LatTE-w 0.4009 24.41 22.22 - 38.50 56.00 35.28

Llama-3.2-3B

Prompt 0.0015 54.92 23.74 40.60 71.20 78.83 53.86
Serial 0.1874 51.57 30.56 37.10 69.10 78.83 53.43

Parallel 0.1874 51.38 27.78 39.10 67.70 81.33 53.46
OFT 0.1977 48.62 28.54 39.60 69.90 81.33 53.60

BOFT 0.1977 50.59 28.54 37.20 68.00 78.67 52.60
LoRA 0.1892 50.59 27.78 39.30 68.10 78.17 52.79

LatTE-m 0.1902 45.67 26.26 39.10 67.70 79.67 51.68
LatTE-w 0.1902 45.47 30.56 39.70 69.30 81.50 53.31

Table 2: Accuracy on multiple-choice and arithmetic reasoning benchmarks using various PEFT
methods. MATH results for Llama-1B is omitted as it replied in forms which cannot be parsed in all
methods.

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that x̄ is a linear transform of x.
While rigorously establishing equivalence between highly non-linear models remains challenging,
these results provide theoretical evidence supporting LatTE’s expressive capacity. Complete proofs
and a comprehensive theoretical analysis of LatTE’s expressive power (Zeng & Lee, 2024) are pro-
vided in Appendix A.

4 EXPERIMENTS

We evaluate our LatTE method on both natural language processing (NLP) and text-to-image (T2I)
generation tasks. For NLP, we conduct experiments using the Llama 3 (Grattafiori et al., 2024)
and Qwen2.5 (Yang et al., 2024) language models, covering a range of model sizes from 1B to 8B
parameters. For T2I generation, we fine-tune Stable Diffusion v1.5 (Rombach et al., 2022) as the
base model. All fine-tuning is performed on 4 NVIDIA H100 GPUs, and inference is conducted
using a single H100.

We compare both variants of LatTE – more heads (LatTE-m) and wider heads (LatTE-w) – against
several strong PEFT baselines. The baseline methods include prompt tuning (Lester et al., 2021), se-
rial (Houlsby et al., 2019) and parallel (He et al., 2022) adapters, OFT (Qiu et al., 2023), BOFT (Liu
et al., 2024b), and LoRA (Hu et al., 2022). We follow the training setups from the respective ref-
erences and use official implementations from the Huggingface PEFT library (Mangrulkar et al.,
2022) for prompt tuning, LoRA, OFT, and BOFT.

Unless otherwise stated, we set the rank r = 16 for both LatTE and LoRA. For a fair comparison,
the adapter hidden size and the block sizes for OFT and BOFT are chosen such that the number of
trainable parameters closely match that of LatTE and LoRA; we use 2 blocks for BOFT by default.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Design Accuracy (Qwen2.5-7B)
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Baseline (LatTE-w) 92.60 89.49 90.59 80.73 94.67 87.86 97.00 90.25 90.40
LatTE-m 91.84 89.81 90.08 81.28 94.52 87.49 96.74 90.76 90.32
fin(x) = [x;0r] 90.53 96.56 89.50 92.00 89.61 80.73 94.40 86.50 89.98
fout([y, ȳ]) = y 90.19 96.77 89.86 91.56 89.89 81.12 93.83 85.78 89.88
fin(x) = [x;0r]; fout([y, ȳ]) = y 90.44 96.72 89.77 92.40 89.69 80.30 94.27 86.44 90.00

Table 3: Accuracy results on the commonsense QA benchmark compared across different design
choices, including fin, fout, and the more/wider heads.

All models are trained for up to 20 epochs for commonsense QA and 4 epochs for reasoning, and
we report results using the best checkpoint selected via measuring with 4 different seeds.

4.1 COMMONSENSE QA

We begin with commonsense QA, a multiple-choice question answering task. Models are fine-
tuned on the Commonsense 170K dataset (Hu et al., 2023), which comprises eight distinct QA
benchmarks: OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy, and ARC-challenge (Clark et al., 2018). These datasets focus on direct-answer selection
without requiring chain-of-thought (CoT) reasoning (Wei et al., 2022).

Table 1 presents the performance of Llama-3.2-3B, Llama-3.1-8B and Qwen2.5-3B/7B models fine-
tuned with LatTE and baseline methods. Across all model sizes and configurations, LatTE con-
sistently matches or exceeds the performance of established PEFT baselines. Notably, LatTE-w
achieves the highest average performance on three of the four models and ranks second on the
remaining model. This performance gain exceeds our theoretical expectation, which suggested
LatTE would perform comparably to LoRA. While further investigation is needed, we hypothesize
that the C matrix contributes significantly to this improvement. We also observe that LatTE demon-
strates superior training efficiency relative to baseline methods, achieving better performance within
a single epoch.

4.2 MULTIPLE-CHOICE AND ARITHMETIC REASONING

We next evaluate our method on reasoning tasks. These tasks additionally require chain-of-thought
(CoT) reasoning before arriving at a final answer. We construct the training set by filtering ex-
amples from the Llama-Nemotron-Post-Training-Dataset (Bercovich et al., 2025), selecting those
whose answers contain numeric characters and do not involve blank spaces. This filtering yields
approximately 0.3M examples per epoch for training.

We evaluate on five benchmarks: AQuA (Ling et al., 2017), GPQA (Rein et al., 2024), MATH-
500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021). Follow-
ing standard practice, evaluation is based on the accuracy of the final answer, independent of the CoT

Figure 3: Subject-driven generation of LoRA and LatTE. All examples share the same seed for the
two methods.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Inference type Split Base (=merged LoRA) Unmerged LoRA LatTE-m LatTE-w

Single example

All 0.236 0.294 0.243 0.264
Attention 0.126 0.168 0.133 0.154
FFN 0.051 0.066 0.053 0.053
Embedding 0.059 0.060 0.057 0.057

8 batch (1 task)

All 0.229 0.285 0.238 0.254
Attention 0.138 0.174 0.145 0.160
FFN 0.047 0.062 0.047 0.047
Embedding 0.044 0.049 0.046 0.047

8 batch (4 task)

All - - 0.247 0.251
Attention - - 0.153 0.155
FFN - - 0.049 0.050
Embedding - - 0.045 0.046

Table 4: Time per output token (in milliseconds) for Base, LoRA, and LatTE for Qwen2.5-7B
(adapters on half of layers) with H100 GPU, context length 10k, averaged over 10 runs. The time is
splited into attention, FFN, and embedding.

content. Table 2 presents results for Llama-3.2-1B/3B and Qwen2.5-1.5B/3B. Again, LatTE pre-
sented overall good results compared to the baselines, demonstrating its applicability to reasoning.

4.3 TEXT-TO-IMAGE GENERATION

We now turn to latent diffusion models and demonstrate that LatTE can also be applied to image
generation models. Specifically, we use DreamBooth (Ruiz et al., 2023) dataset on Stable Diffusion
v1.5 and test LoRA and LatTE’s adaptation to subject-driven generation. We follow the default
settings of the Huggingface Diffusers library for LoRA finetuning and applied LatTE to the identical
positions, which are the attention blocks of the U-net (Ronneberger et al., 2015).

The qualitative results are shown in Figure 3. One observes that LoRA and LatTE both show ef-
fectiveness in subject-driven generation. However, LatTE’s enlarged embedding cannot pass the
base-model convolution layer without engaging with fout. Therefore, multiple expansion and com-
pression should be done for the forward pass, actually introducing overhead to inference. One can
skip-connect the extra dimension after the convolutional layer to overcome this, however, the effec-
tiveness of this strategy is yet to be explored.

5 DISCUSSION

Figure 4: QA task score and in-
ference speed on Qwen2.5-7B.

Effect of fin and fout. While LatTE does not introduce numer-
ical hyperparameters beyond the rank r, it does involve several
architectural design choices. As discussed in Section3, these in-
clude: (1) the implementation of multi-head attention, (2) the
initial expansion function fin(x), and (3) the final compression
function fout([y, ȳ]).

In addition to our default settings for fin and fout, we con-
sider several plausible alternatives. For the expansion function
fin, we experiment with fin(x) = [x;0r], where the auxiliary
embedding is an r-dimensional zero vector 0r. For the com-
pression function fout, we test discarding the auxiliary output,
fout([y, ȳ]) = y. fin(x) = [x; pool(x)], where the auxiliary em-
bedding is derived via pooling, and fout([y, ȳ]) = y + repeat(ȳ)
was also considered but showed subobtimal performance. Ta-
ble 3 reports the impact of these alternatives on commonsense
QA performance.

Inference Efficiency. We also evaluate the inference-time ef-
ficiency of LatTE by measuring the time-per-output-token (TPOT). Figure 4 plots TPOT with the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

QA score with 7, 14, and 28 layers of adapters applied to Qwen2.5-7B model. We measured the
inference time of 100 token generation with 10k context length, and averaged over 10 trials. OFT
and BOFT results are not included as they were an order of magnitude slower than the others. One
observes that the LatTE methods achieve suitable balance between performance and speed.

Figure 5: Masking (black squares) in intra-
batch multi-adapter scenario. The mask
symbol indicates where masking should be
applied for Transformers.

We present the TPOT results in Table 4, for Qwen2.5-
7B, adapters on half layers. The context length is
10k and the results are averaged over 10 runs. This
demonstrates LatTE’s key advantage: constant-time
inference regardless of the number of adapters and en-
abling multi-task batch inference, making it valuable
for personalized and multi-domain deployment sce-
narios where merged LoRA’s linear scaling becomes
prohibitive and cannot be deployed in multi-task batch
scenarios without constant load-unloading.

The inference efficiency also includes flexibility in
intra-batch multi-adapter. While it is generally chal-
lenging to use multi-adapter within a batch, LatTE nat-
urally supports such inference with the help of mask-
ing. When applying m LatTEs, the inference batch
will have mr auxiliary embeddings. The task-
dependent mask can be generated and applied through-
out the forward pass to ensure the correct results. For
example, the mask shown in Figure 5 is for a batch
with tasks [2, 1, 1, 2, 1, 0]. This is applied in four posi-
tions per Transformer block as indicated with the mask
symbol. Another mask is required in (WK

h x)⊤WQ
h x

but can be merged with the rotary embeddings (Su et al., 2024). With masking, LatTE enables effi-
cient intra-batch multi-task inference within a shared model backbone – highlighting its scalability
for real-world multi-task applications.

6 CONCLUSION

We presented LatTE, a novel PEFT method that leverages auxiliary latent embeddings to achieve
fast, scalable, and composable adaptation of large pretrained models. LatTE operates through a
simple expansion of the embedding space, enabling task-specific adaptation via a single matrix
multiplication per weight while keeping the base model frozen. Through extensive experiments
we demonstrated that LatTE matches or exceeds the performance of strong PEFT baselines while
offering significant improvements in inference efficiency. Beyond its empirical benefits, LatTE in-
troduces a flexible design space for auxiliary embedding interactions. We anticipate that future work
will build upon the core ideas of LatTE, and hope it serves as a foundation for further innovation.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning for
cross-lingual transfer. In Proceedings of the 60th annual meeting of the association for computa-
tional linguistics (volume 1: long papers), pp. 1778–1796, 2022.

Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
ald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria
Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
don Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary,
Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry
Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
sandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
https://arxiv.org/abs/2505.00949.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu, Gangwei Jiang, Yuanhao Pu, Yuxuan
Lei, Xiaolong Chen, Xingmei Wang, et al. When large language models meet personalization:
Perspectives of challenges and opportunities. World Wide Web, 27(4):42, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

11

https://arxiv.org/abs/2505.00949


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4884–4896, 2021.

Haoze He, Juncheng B Li, Xuan Jiang, and Heather Miller. Smt: Fine-tuning large language models
with sparse matrices. In The Thirteenth International Conference on Learning Representations,
2025.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022.

Lukas Hedegaard, Aman Alok, Juby Jose, and Alexandros Iosifidis. Structured pruning adapters.
Pattern Recognition, 156:110724, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5254–5276, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Processing Systems, 36:8152–8172, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
banks. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:
109–123, 2022.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4242–4260, 2023.

Mengqi Liao, Wei Chen, Junfeng Shen, Shengnan Guo, and Huaiyu Wan. Hmora: Making llms more
effective with hierarchical mixture of lora experts. In The Thirteenth International Conference on
Learning Representations, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. ACL, 2017.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. In The Twelfth International Conference on Learning Representations, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61–68, 2022b.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 4296–
4304, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
2021.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 7654–7673, 2020.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 487–503, 2021.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

13

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–
22510, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2024a.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Man-
ning, and Christopher Potts. Reft: Representation finetuning for language models. Advances in
Neural Information Processing Systems, 37:63908–63962, 2024b.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device
language models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Jingwei Xu, Junyu Lai, and Yunpeng Huang. MeteoRA: Multiple-tasks embedded loRA for large
language models. In The Thirteenth International Conference on Learning Representations, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shen Yuan, Haotian Liu, and Hongteng Xu. Bridging the gap between low-rank and orthogonal
adaptation via householder reflection adaptation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 3836–3847, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023b.

Weilin Zhao, Yuxiang Huang, Xu Han, Zhiyuan Liu, Zhengyan Zhang, Kuai Li, Chen Chen, TAO
YANG, and Maosong Sun. Ca-lora: Adapting existing lora for compressed llms to enable efficient
multi-tasking on personal devices. In First Conference on Language Modeling, 2024.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference
adapter for multilingual machine translation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2812–2823, 2021.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Model Fintuning Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

r = 8

Prompt 85.60 85.55 76.18 76.01 78.65 67.68 95.64 88.44 81.72
Serial 89.95 88.43 88.07 79.18 91.89 80.82 95.62 89.40 87.92

Parallel 90.44 88.70 88.66 78.36 92.27 82.04 95.35 88.72 88.07
OFT 90.30 88.65 87.46 78.21 90.40 80.51 96.40 90.38 87.79

BOFT 90.00 88.43 87.60 78.25 91.13 80.62 96.35 90.02 87.80
LoRA 90.90 89.27 88.97 78.45 92.42 82.87 95.81 88.91 88.45

LatTE-m 92.10 89.21 88.52 78.80 92.67 82.20 95.56 89.80 88.61
LatTE-w 91.20 89.44 88.74 79.72 92.56 82.46 95.95 89.44 88.69

r = 16

Prompt 87.95 85.24 86.60 76.67 76.44 66.75 96.39 89.23 83.16
Serial 89.64 87.98 87.91 79.30 91.66 81.14 95.79 89.57 87.87

Parallel 90.90 88.32 87.85 79.11 91.94 80.27 95.63 89.29 87.92
OFT 90.35 88.49 88.40 79.49 91.89 82.20 96.32 89.78 88.36

BOFT 90.00 88.43 87.60 78.25 91.13 80.62 96.35 90.02 87.80
LoRA 91.10 89.05 88.29 78.68 92.67 83.09 95.57 89.38 88.48

LatTE-m 91.70 89.34 88.79 79.45 92.20 83.80 95.91 89.69 88.86
LatTE-w 91.20 89.26 88.55 78.90 91.94 83.19 95.76 90.17 88.62

r = 32

Prompt 85.80 83.75 86.28 76.26 70.95 62.49 96.03 88.82 81.30
Serial 89.50 88.29 87.99 79.35 91.64 80.80 95.80 89.68 87.88

Parallel 90.70 88.52 88.15 79.55 92.00 80.60 95.75 89.31 88.07
OFT 90.55 89.20 88.48 79.26 92.20 83.28 96.26 89.93 88.65

BOFT 91.50 89.32 88.23 79.08 92.37 83.11 96.37 89.68 88.71
LoRA 91.64 89.14 89.01 78.43 92.64 83.52 95.40 88.78 88.57

LatTE-m 92.04 89.33 88.69 80.12 92.21 82.32 96.30 90.27 88.91
LatTE-w 92.44 89.07 88.69 79.93 92.29 82.64 96.02 90.34 88.93

Table 5: Rank sensitivity analysis on Qwen2.5-7B commonsense QA with adapters in half layers.
Both LatTE and LoRA show consistent improvement with increased rank, with LatTE maintaining
competitive performance across all settings.

A PROOF OF THEOREM

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that x̄ is a linear transform of x.

Proof.

i) Attention matrix of LoRA:

x⊤ (
(Wk +∆Wk)

⊤(WQ +∆WQ)
)
x

=x⊤ (
(Wk + b⊤k a

⊤
k )

⊤(WQ + aQbQ)
)
x (4)

ii) Attention matrix of LatTE:

[
x⊤ x̄⊤] [W⊤

K A⊤
K

B⊤
K C⊤

K

] [
WQ BQ

AQ CQ

] [
x
x̄

]
=x⊤(W⊤

KWQ +B⊤
KBQ)x+ x⊤(W⊤

KAQ +B⊤
KCQ)x̄

+x̄⊤(A⊤
KWQ + C⊤

KBQ)x+ x̄⊤(A⊤
KAQ + C⊤

KCQ)x̄ (5)

We claim that any LoRA attention can be expressed by LatTE attention. Let AQ = aQ, AK = aK ,
BQ = a⊤KWQ, CQ = a⊤KaQ, BK , CK satisfies BK + CKbQ = bK − bQ, and x̄ = bQx. Note that
the solution for BK + CKbQ = bK − bQ always exists since BK = bK and CK = −1r (identity
matrix) satisfies the condition.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Fintuning Accuracy Degradation
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Qwen2.5-14B
(BF16)

LoRA 94.20 90.30 91.07 81.41 93.85 87.04 97.61 93.28 91.09 -
LatTE-m 94.10 90.31 91.01 80.90 94.07 87.12 97.63 93.58 91.09 -
LatTE-w 94.10 90.47 91.57 81.12 94.09 87.25 97.54 93.75 91.24 -

Qwen2.5-14B
(INT8)

LoRA 93.76 90.22 90.92 80.67 93.51 86.86 97.50 93.26 90.84 0.27%
LatTE-m 94.24 90.41 91.02 81.01 93.93 86.54 97.47 93.47 91.01 0.09%
LatTE-w 94.04 90.24 91.51 80.67 93.86 87.39 97.48 93.36 91.07 0.19%

Table 6: Accuracy results on the commonsense QA benchmark for Qwen2.5-14B model, with BF16
and INT8 precision. Adapters are applied to half of the layers. LatTE shows robust performance
retention under quantization, demonstrating compatibility with standard inference acceleration tech-
niques.

Then the LatTE attention becomes:

x⊤(W⊤
KWQ +B⊤

KBQ +W⊤
KaQbQ +B⊤

KCQbQ

+ b⊤Qa
⊤
KWQ + b⊤QC

⊤
KBQ + b⊤Qa

⊤
KaQbQ + b⊤QC

⊤
KCQbQ)x

=x⊤(W⊤
K + b⊤Ka⊤K)(WQ + aQbQ)x

+ x⊤((bQ − bK)⊤a⊤KWQ + (bQ − bK)⊤a⊤KaQbQ

+ (BK + CKbQ)
⊤BQ + (BK + CKbQ)

⊤CQbQ)x

(6)

The second term identically vanishes with CQ = a⊤KaQ, BQ = a⊤KWQ and BK+CKbQ = bK−bQ.
This proves any LoRA attention matrix can be expressev as LatTE attention matrix assuming x̄ is a
linear transform of x.

B ADDITIONAL RESULTS

Here we provide additional experimental results.

B.1 ABLATION ON EMBEDDING SIZE

We show the ablation study on embedding size (r) on Qwen2.5-7B for commonsense QA benchmark
in Table 5. The scaling behavior of LatTE for r is similar to that of LoRA, as expected. The
consistent relative performance across ranks indicates LatTE and LoRA have similar expressivity –
increasing rank benefits both methods equally, showing no fundamental expressivity gap.

B.2 LARGER MODELS AND EFFECT OF QUANTIZATION

To address the issue of scalability, we present results for larger model size. Table 6 shows results for
Qwen2.5-14B for commonsense QA benchmark, with adapters in half of the layers. LatTE models
showed competitive accuracy compared to LoRA, consistent with the smaller models, with LatTE-w
achieving the highest average accuracy. While this is not as large a model as tens or hundreds of
billions of parameters, we experimented on a range of parameters (1-14B) which showed consistent
effectiveness. Together with the theoretical analysis, we believe that the effectiveness of LatTE will
hold for substantially larger models.

We also consider the effect of quantization, and quantize the weights to INT8 for the same model.
The results showed that LatTE was equally effective even for quantized models, and the accuracy
degradation from quantization is of similar level to LoRA.

B.3 EPOCH-WISE PERFORMANCE

For the Commonsense QA task, we show the performance of each epoch in Figure 6

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Epoch-wise performance for QA task.

B.4 MORE RESULTS ON TEXT-TO-IMAGE GENERATION

More qualitative results for the subject-driven generation is shown in Figure 7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Additional results for subject-driven generation of LoRA and LatTE.

19


	Introduction
	Related Works
	Our Method
	Application to the multi-layer perceptron
	Application to the attention module
	Comparison with LoRA

	Experiments
	Commonsense QA
	Multiple-Choice and Arithmetic Reasoning
	Text-to-Image Generation

	Discussion
	Conclusion
	Proof of Theorem
	Additional results
	Ablation on embedding size
	Larger models and effect of quantization
	Epoch-wise performance
	More results on Text-to-Image generation


