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ABSTRACT

The widespread adoption of large pretrained models has made fine-tuning an
essential step for tailoring models to specific tasks. As these models continue
to scale larger and as the demand for task-specific and personalized adaptation
grows, parameter-efficient fine-tuning (PEFT) has emerged as a practical alterna-
tive to full fine-tuning. PEFT enables effective adaptation while updating only a
small fraction of the total parameters. While various PEFT techniques have shown
strong performance, many still suffer from increased inference latency and inef-
ficiencies in multi-adapter scenarios. Motivated by these limitations, we propose
a novel PEFT approach that leverages auxiliary representations to enable fast and
flexible inference. In our method, Latent Task Embedding fine-tuning, a small
task-specific latent embedding is concatenated to the original embedding. The
corresponding weight matrices are extended, and only the additional parameters
introduced by this expansion are trained. This design allows for efficient inference
using a single matrix multiplication per weight, minimizing latency overhead, and
supports task-specific masking to handle multiple adapters within a single model.
We evaluate our method on large language models and latent diffusion models,
demonstrating competitive accuracy with existing PEFT baselines while provid-
ing faster inference and enabling efficient intra-batch multi-task processing.

1 INTRODUCTION

The remarkable success of large pretrained models is largely attributed to scale and generality –
large-scale training on diverse data results in highly capable models that can be fine-tuned for a wide
range of downstream applications (Achiam et al., 2023; Grattafiori et al., 2024; Abdin et al., 2024;
Yang et al., 2024; Team et al., 2025). However, as model sizes continue to grow, full fine-tuning
(FFT), where all parameters are updated for each task, has become increasingly impractical due to its
high computational and storage demands. To address this, parameter-efficient fine-tuning (PEFT)
methods have emerged as a compelling alternative. PEFT techniques adapt pretrained models by
introducing and updating only a small number of parameters while keeping the base model frozen.
Various PEFT approaches have shown that strong downstream performance can be achieved with
significantly fewer trainable parameters, enabling rapid adaptation and deployment (Houlsby et al.,
2019; Lester et al., 2021; Hu et al., 2022).

While existing PEFT methods have proven effective, the rapidly expanding landscape of down-
stream applications – ranging from hyper-personalization (Chen et al., 2024) to privacy-preserving
edge deployment (Xu et al., 2024) – poses critical challenges for inference efficiency. In these
resource-constrained environments, where dedicated cloud-tier GPUs are often absent, the demand
extends beyond simple adaptation to the simultaneous serving of multiple task-specific adapters.
This requirement exposes a fundamental limitation in current approaches: a stark trade-off between
latency and memory. Merging adapters (e.g., via LoRA) achieves fast single-task inference but
forces memory usage to scale linearly with the number of tasks, rendering it impractical for multi-
tenant scenarios. Conversely, maintaining unmerged adapters conserves memory but introduces se-
quential computational overhead that significantly degrades latency. Consequently, modern deploy-
ment faces an unresolved trilemma among accuracy, latency, and multi-task flexibility that existing
methods struggle to resolve.
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(a) Base (b) LoRA (c) LatTE (d) Forward pass of LatTE

Figure 1: (a-c) The comparison of the forward pass through a single weight for the base, LoRA, and
LatTE model. While the A and B matrices in LoRA are expressed conventionally as trapezoids to
emphasize their low ranks, they are identical in the matrix dimensions with the A and B in LatTE.
(d) The forward pass a MLP model with LatTE. We have omitted the non-linearity between the
layers for simplicity. The shaded region can be conceptually regarded as a single LoRA unit.

PEFT techniques can be broadly categorized into three types. The first modifies the model architec-
ture, such as in serial or parallel adapters (Houlsby et al., 2019; Pfeiffer et al., 2021; He et al., 2022),
by introducing adapter modules into each transformer block which alters the flow of intermediate
representations. The second category centers on finding efficient ways to tune the weight matri-
ces that resemble FFT. This category includes LoRA (Hu et al., 2022) and its variants. The third
category focuses on representations, and either introduce additional learnable embeddings such as
prompt-based methods (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022b), or modify the hid-
den states to steer the model’s behavior (Liu et al., 2022a; Wu et al., 2024b). While each strategy
has its merits, existing PEFT approaches do not focus on inference efficiency.

In this work, we propose a new direction: leveraging auxiliary latent representations as a com-
pact and efficient carrier of task-specific information. This design choice offers several distinct
advantages: (1) it preserves fast inference by reducing the adaptation to the same single matrix mul-
tiplication as in the base model (but with increased dimension), (2) its simple architecture introduces
few hyperparameters and has low memory requirement, and (3) it enables flexible composition and
switching of multiple tasks. Motivated by these properties, we introduce Latent Task Embedding
(LatTE) fine-tuning, a novel PEFT method that injects task-specific latent embeddings directly into
the model’s input layer. LatTE enables fast, simple, and composable fine-tuning with minimal la-
tency overhead and strong empirical performance across diverse tasks and model families.

LatTE concatenates the learnable auxiliary embedding to the original latent embedding, which
serves as a compact, task-specific representation. The projection weights are expanded accordingly,
and only the newly-introduced parameters are updated during fine-tuning. The gist of the method,
acting on a single weight, is compared with the base model and LoRA in Figure 1 (a-c). This re-
sults in a lightweight and latency-free tuning mechanism, where inference remains as efficient as
the base model. Our approach enables multiple adapters to coexist within the enlarged embedding
space with task-specific mask controlling the adapter to be used – an important capability for effi-
cient multi-task and multi-domain deployment. We evaluate our method across various LLMs and a
diffusion model on a variety of tasks. Both experimental results and theoretical analysis demonstrate
that LatTE consistently matches the performance of leading PEFT baselines while achieving faster
inference speed. By bridging the gap between efficient fine-tuning and real-world deployment con-
straints, our method paves the way for scalable and high-performance model adaptation in practical
applications.

We summarize our main contributions as follows:

• We propose LatTE, a novel PEFT method that utilizes auxiliary latent embeddings, enabling
low-latency adaptation with a minimal number of trainable parameters.

• We conduct extensive experiments across LLMs and diffusion models, demonstrating strong
performance compared to robust PEFT baselines.
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• We demonstrate the unique flexibility of LatTE for efficient intra-batch multi-task inference
via task-specific masking, maintaining near-constant latency when serving heterogeneous tasks
simultaneously.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT). PEFT is a series of methods that update only a small
fraction of the model’s parameters during fine-tuning, while keeping the rest frozen. This enables
adaptation to new tasks with minimal computational overhead while preserving the capabilities of
the base model. We broadly categorize existing PEFT methods into the following three classes.

• Module-based methods introduce additional trainable modules (adapters) to the model architec-
ture. The adapters mostly consist of a down- and up-projection with a nonlinearity in between.
There are serial adapter (Houlsby et al., 2019; Pfeiffer et al., 2021) and parallel adapter (He
et al., 2022) based on how the adapter is attached to the base module. CIAT (Zhu et al., 2021)
and CoDA (Lei et al., 2023) are also variants of the parallel adapter.

• Weight-based methods aim to efficiently update the weights of the model, and can be con-
sidered as a direct approximation of FFT. The update of the weights can be either additive or
multiplicative. LoRA (Hu et al., 2022) and its variants (Zhang et al., 2023b; Liu et al., 2024a;
Kopiczko et al., 2024; Li et al., 2024), the most widely used PEFT, are additive weight-based
methods. Multiplicative-update method includes OFT (Qiu et al., 2023), BOFT (Liu et al.,
2024b), and HRA (Yuan et al., 2024).

• Representation-based methods use representations as a tool for fine-tuning. Soft-prompt meth-
ods are in this category, where learnable embeddings are prefixed to the prompt. Prefix-tuning (Li
& Liang, 2021), prompt-tuning (Lester et al., 2021), and p-tuning (Liu et al., 2022b) are examples
of such methods. Another group in this category modifies or edits the intermediate representa-
tions to fit the model to downstream tasks. This includes methods such as (IA)3 (Liu et al.,
2022a), SSF (Lian et al., 2022), and ReFT (Wu et al., 2024b).

• Sparsity-Based methods leverages sparsity and selectively update subsets of model parameters
identified as most critical for the target task, often by masking (Guo et al., 2021; Sung et al.,
2021; Ansell et al., 2022). More recent work on sparsity methods, SpIEL (Ansell et al., 2024)
and SMT (He et al., 2025), scales these ideas to LLMs up to 13B parameters.

Notably, despite the extensive research over the past years, no PEFT approach explores the use
of representations auxiliary to the embeddings as a mechanism for adaptation, to the best of our
knowledge.

Inference-Efficient PEFT. Recent works have recognized the need for reducing inference-time
overhead in PEFT. SPLoRA (Hedegaard et al., 2024) and CA-LoRA (Zhao et al., 2024) combine
LoRA with pruning or quantization for faster inference. Our method differs from these approaches
as we preserve the precision and expressivity of the base model. Liao et al. (2023) introduces
zero latency PEFT methods, PaFi and HiWi, which are a task-agnostic sparse fine-tuning and a
multiplicative version of LoRA, respectively. These methods do not introduce additional latency as
they (partially) update the original model as in FFT. Inference of LatTE, on the other hand, is as
fast as the base model while keeping the original weights intact, which is beneficial for fast task-
switching.

We emphasize a critical distinction often overlooked in the literature: many weight-based methods
such as LoRA and OFT claim inference speed identical to the base model. However, this only holds
when weight updates are pre-merged before inference – i.e., low-rank weights are pre-added for
LoRA or orthogonal matrices are pre-multiplied for OFT. Pre-merging destroys multi-task capabil-
ity: serving N tasks requires N separate merged models or constant loading/unloading overhead. In
contrast, LatTE maintains near-base model inference speed while supporting multiple tasks through
a single expanded model with task-specific masking, making it uniquely suited for multi-adapter
deployment scenarios.

Multi-Adapter and Multi-Task Adaptation. Scenarios involving multiple downstream tasks or
domains often demand flexible and composable fine-tuning strategies. MAD-X (Pfeiffer et al., 2020)
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and AdapterFusion (Pfeiffer et al., 2021) allow for combining multiple adapters, yet require addi-
tional merging logic and may incur runtime costs. Mixture of Expert (MoE) (Jacobs et al., 1991)
style combination of multiple task LoRAs (Wu et al., 2024a; Xu et al., 2025; Liao et al., 2025) may
be effective, but adds complexity during inference. Our approach supports multiple tasks through
task-specific masking applied to the embedding, introducing minimal latency compared to single-
task inference. Moreover, this flexibility is an intrinsic feature of vanilla LatTE, and has much room
for improvements in future variants specialized for such purposes.

3 OUR METHOD

We propose LatTE, a fine-tuning method in which a task-specific auxiliary embedding is concate-
nated to the original token embeddings. This increases the embedding dimensionality, which cor-
respondingly expands the associated weight matrices. The fine-tuned knowledge is thus stored in
the additional weight parameters introduced by this expansion, and the interaction with the original
forward pass is mediated by the auxiliary embedding. Architecturally, LatTE resembles LoRA and
other weight-based PEFT methods, as it modifies individual weights without altering the model’s
overall structure (see Figure 1). However, a unique feature of LatTE is that the forward pass
through one weight is calculated by a single matrix multiplication while keeping the original weight
frozen. This enables inference-time performance comparable to that of the original model, making
LatTE both efficient and scalable.

The comparison between the base model, LoRA, and LatTE is illustrated in Figure 1 (a-c), which
shows the forward pass through a single weight matrix W ∈ Rd×k. Given an input embedding x ∈
Rk, the base model computes the output y ∈ Rd as y = Wx. In LoRA, task-specific information
is introduced via a low-rank adapter, yielding: y = Wx + BAx, where A ∈ Rr×k and B ∈
Rd×r, and r is the low-rank dimension. In LatTE, the input embedding is concatenated with an
auxiliary embedding x̄ ∈ Rr to form [x; x̄] ∈ Rk+r. The forward pass is computed in the expanded
embedding space: [

y
ȳ

]
=

[
W B
A C

] [
x
x̄

]
, (1)

where A, B, and C ∈ Rr×r are trainable matrices. For convenience, we denote the expanded vectors

and matrix as x =

[
x
x̄

]
, y =

[
y
ȳ

]
, and W =

[
W B
A C

]
, so that Eq. (1) simplifies to the familiar

linear form y = Wx. In Figure 1 (c), the block matrix W is highlighted with a yellow dashed
outline. We deliberately set the auxiliary embedding dimension r to match the low-rank dimension
used in LoRA, allowing for a fair parameter comparison. LoRA introduces (d + k)r additional
parameters per weight matrix, while LatTE adds (d+ k+ r)r, which remains comparable under the
common assumption r ≪ min(d, k). Proper initialization is crucial to PEFT model’s performance
and we initialize A as Kaiming uniform and B, C to zero. This follows LoRA’s default strategy
in the Huggingface PEFT library (Mangrulkar et al., 2022), and ensures that LatTE’s forward pass
exactly replicates the base model at the start of the training.

To compute in the expanded space, we define expansion and compression functions fin and fout,
which are applied once per forward pass:

fin(x) = x, fout(y) = y.

In practice, we initialize the auxiliary embedding a learnable constant vector c: fin(x) = [x; c], and
extract the final output as a linear combination: fout([y; ȳ]) = y+Bȳ. Note that the matrix B used in
this post-processing step is a separate trainable parameter and not reused from the block matrix W,
although it shares the same shape Rd×r. Alternative design choices for fin and fout are discussed
in Section 5. We emphasize that fin and fout are applied only once per forward pass through the
entire network, not once per layer. The auxiliary embedding is expanded once at the input (fin),
propagates through all layers in the expanded space, and is compressed once at the output (fout),
ensuring minimal overhead.

3.1 APPLICATION TO THE MULTI-LAYER PERCEPTRON

With the LatTE building block in place, we now apply it to a multilayer perceptron (MLP) network.
Consider an L-layer MLP with weight matrices Wi for 1 ≤ i ≤ L and an activation function σ.

4
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Given an input embedding x, the MLP computes the output as:

y = WL · σ(WL−1 · σ(· · ·σ(W1x))).

To incorporate LatTE, we replace each Wi with its expanded counterpart Wi and insert the ex-
pansion and compression functions fin and fout at the input and output, respectively. The input
embedding is first expanded from a d-dimensional vector to a (d+ r)-dimensional one by fin, then
propagated through the network using the sequence of Wi matrices. The final embedding is com-
pressed back to a d-dimensional output by fout. The resulting output becomes:

y = fout (WL · σ(WL−1 · σ(· · ·σ(W1fin(x))))) . (2)

The feed-forward network (FFN) block in a Transformer architecture (Vaswani et al., 2017) is typi-
cally a two-layer MLP of the form:

FFNσ(x,W1,W2) = W2 · σ(W1x).

Modern LLMs, including those used in our experiments (Grattafiori et al., 2024; Yang et al., 2024),
often use the SwiGLU activation function (Shazeer, 2020), a variant of the Gated Linear Unit
(GLU) (Dauphin et al., 2017) based on Swish (Ramachandran et al., 2017). A single FFN using
SwiGLU can be expressed as:

FFNSwiGLU(x,W, V,W2) = W2 · (Swish1(Wx)⊗ V x),

where Swishβ(x) = x · sigmoid(βx) and ⊗ denotes the element-wise (Hadamard) product. Apply-
ing LatTE to this FFN block involves replacing each weight matrix with its expanded form. The
resulting forward pass becomes:

FFNSwiGLU(x,W,V,W2) = W2 · (Swish1(Wx)⊗Vx). (3)

3.2 APPLICATION TO THE ATTENTION MODULE

Figure 2: The two strategies on
allocating the additional dimen-
sion of Wx (yellow) to atten-
tion heads. Here, the vertical di-
mension represents the context
length.

Unlike MLP layers – where applying LatTE is straightforward
and leaves little room for design choices beyond fin and fout – the
attention module presents several implementation options. The
core strategy remains the same: expand the embedding dimension
and replace the weight matrices with their extended counterparts.
However, the key challenge lies in how to allocate the auxiliary
embedding dimensions across the attention heads.

Assume a standard multi-head attention (MHA) mechanism with
H heads, where the per-head dimension is dH = d/H . The usual
output of an MHA layer can be written as:

H∑
h=1

(WO
h )⊤WV

h x · softmax
(
(WK

h x)⊤WQ
h x

)
,

where Wh denotes the h-th row-wise split submatrix of a full
weight matrix W , i.e., Wh = W [(h− 1)dH : hdH , :]. When the
embedding dimension increases from d to d + r, we must adjust
the MHA configuration so that dH = (d + r)/H holds. Two
simple approaches can achieve this:

1. More heads: Increase the number of attention heads H such
that the added auxiliary dimension r fits into additional heads.
Specifically, ⌈r/dH⌉ additional heads are introduced.

2. Wider heads: Increase the per-head dimension dH while keeping the number of heads fixed.
This distributes the auxiliary dimension across all heads by enlarging dH by 2⌈r/(2H)⌉. The factor
of 2 ensures an even extension, which is necessary to preserve compatibility with rotary positional
embeddings (Su et al., 2024), where embedding vectors are decomposed into pairs for 2d-rotations.

If r is not divisible by dH (the more-heads case) or by H (the wider-heads case), the unmatched
dimensions are zero-padded. Figure 2 provides a schematic of these two integration strategies.
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Model Fintuning Params (%) Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Qwen2.5-3B

Prompt 0.0021 77.04 80.46 80.60 73.54 69.95 62.63 93.82 82.98 77.63
Serial 0.7546 86.70 86.86 85.81 79.20 91.99 79.99 93.39 83.53 85.93

Parallel 0.7546 85.90 87.08 85.77 79.77 92.26 82.75 94.03 83.32 86.36
OFT 0.7025 87.50 87.58 85.69 78.97 92.36 82.44 93.98 83.49 86.50

BOFT 0.7025 87.90 87.74 86.29 79.86 92.01 82.06 93.81 83.21 86.61
LoRA 0.7546 87.15 87.50 86.28 79.38 92.46 83.11 93.61 83.29 86.60

LatTE-m 0.7573 86.04 87.60 85.58 79.02 91.98 84.35 93.60 83.12 86.41
LatTE-w 0.7573 86.80 87.97 85.73 78.67 92.20 83.94 94.14 83.55 86.63

Qwen2.5-7B

Prompt 0.0015 86.50 85.85 86.04 76.67 81.59 68.01 96.20 89.57 83.81
Serial 0.5273 92.84 89.45 89.40 81.88 94.03 85.83 96.19 89.18 89.85

Parallel 0.5273 92.04 89.30 89.15 81.26 94.01 87.83 96.50 89.76 89.98
OFT 0.4943 91.84 89.04 90.08 80.99 93.84 85.65 96.68 89.80 89.74

BOFT 0.4943 92.35 89.46 89.67 79.94 94.14 86.15 96.39 89.69 89.72
LoRA 0.5303 92.55 89.59 90.22 81.94 93.84 86.76 96.57 90.29 90.22

LatTE-m 0.5317 91.84 89.81 90.08 81.28 94.52 87.49 96.74 90.76 90.32
LatTE-w 0.5317 92.60 89.49 90.59 80.73 94.67 87.86 97.00 90.25 90.40

Llama-3.2-3B

Prompt 0.0031 71.64 79.30 77.20 67.41 62.12 60.10 85.47 72.54 71.97
Serial 0.7550 82.10 86.73 84.22 77.19 89.61 80.84 88.90 77.52 83.39

Parallel 0.7550 82.10 87.50 83.42 77.79 90.66 82.57 89.27 78.65 83.99
OFT 0.7666 84.84 88.44 85.01 79.17 90.91 82.89 91.25 79.82 85.29

BOFT 0.7666 86.30 88.76 85.55 78.51 91.32 81.77 90.88 78.82 85.24
LoRA 0.7568 84.44 88.56 85.61 77.94 91.41 83.78 89.82 78.07 84.95

LatTE-m 0.7599 85.70 88.35 85.36 78.39 91.42 84.89 89.98 79.24 85.42
LatTE-w 0.7599 86.40 88.74 85.23 79.21 91.15 84.47 90.49 79.76 85.68

Llama-3.1-8B

Prompt 0.0016 82.35 86.12 84.48 77.38 83.29 72.26 92.56 80.87 82.41
Serial 0.4570 89.70 88.73 87.81 80.45 93.61 84.35 94.00 83.92 87.82

Parallel 0.4570 89.75 88.87 88.15 81.35 94.10 86.03 93.80 84.91 88.37
OFT 0.4492 89.00 89.30 88.45 81.54 93.79 84.02 94.43 84.68 88.15

BOFT 0.4492 88.90 89.72 88.75 80.81 93.58 84.85 94.32 83.94 88.11
LoRA 0.4570 88.90 89.09 88.85 80.92 94.31 87.23 93.81 84.85 88.50

LatTE-m 0.4585 90.15 89.63 88.80 80.80 94.39 88.38 94.14 84.45 88.84
LatTE-w 0.4585 90.60 89.33 88.87 80.28 94.25 86.68 94.73 84.47 88.65

Table 1: Accuracy results on the commonsense QA benchmark, which includes eight diverse rea-
soning tasks. Adapters are applied to all layers.

With the application of LatTE to both FFN and attention layers explained, we are now ready to
implement it in Transformer-based LLMs. In diffusion models, PEFT is typically applied to the
text encoder and the cross-attention modules within the U-Net architecture (Ruiz et al., 2023; Zhang
et al., 2023a; Mou et al., 2024). This means that the same recipe used for LLMs can be applied to
diffusion models as well.

3.3 COMPARISON WITH LORA

We provide theoretical context for LatTE by drawing comparisons with LoRA. The intuition behind
LoRA stems from the observation that the intrinsic dimension of many NLP tasks is significantly
lower than the dimension of large pretrained models (Aghajanyan et al., 2021). Building on this,
LoRA hypothesizes that the required weight updates for task adaptation also lie in a low-rank sub-
space (Hu et al., 2022). However, the argument in Aghajanyan et al. (2021) supports a low intrinsic
dimension as a necessary, but not sufficient, condition for low-rank adaptation to be effective.

Interestingly, LatTE can also be interpreted as a composition of low-rank updates. As illustrated in
Figure 1 (d), when examining the green-shaded information flow over two layers (omitting activation
for simplicity), the input embedding x is transformed by a low-rank operation BA and reintegrated
with the base embedding. Thus, while LoRA applies a single low-rank update per layer, LatTE effec-
tively performs two low-rank transformations across two layers. This structural similarity suggests
that the same theoretical motivation underlying LoRA – namely, that task-specific transformations
can be captured in low-rank subspaces – also supports the design of LatTE.

Beyond the qualitative arguments presented above, we provide two formal results establishing cases
where the expressive power of LatTE is equivalent to that of LoRA.
Theorem 1 For linear models, the minimum low-rank dimension required for adapter models to
exactly recover the FFT target is identical for both LoRA and LatTE.
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Model Fintuning Params (%) Accuracy
AOuA GPQA MATH GSM8K SVAMP ave.

Qwen2.5-1.5B

Prompt 0.0016 37.80 24.24 37.80 54.80 72.33 45.39
Serial 0.2982 42.13 25.25 42.40 65.00 71.67 49.29

Parallel 0.2982 50.79 29.29 45.00 63.00 70.67 51.75
OFT 0.2847 40.09 30.81 39.40 52.40 64.00 46.14

BOFT 0.2847 41.34 28.79 39.60 54.00 68.00 46.35
LoRA 0.2991 49.61 31.82 42.40 61.80 74.00 51.92

LatTE-m 0.3003 50.79 31.31 40.80 62.60 73.67 51.83
LatTE-w 0.3003 49.61 30.30 43.20 63.80 73.00 51.98

Qwen2.5-3B

Prompt 0.0011 46.85 25.76 49.20 67.00 70.67 51.89
Serial 0.1877 49.61 26.26 52.80 76.40 78.67 56.75

Parallel 0.1877 48.43 28.79 49.60 73.00 83.33 56.63
OFT 0.1821 43.31 22.73 49.00 65.40 72.67 50.62

BOFT 0.1821 45.67 28.79 48.20 65.60 71.00 51.85
LoRA 0.1886 45.28 28.28 51.40 73.60 81.33 55.98

LatTE-m 0.1894 49.61 30.30 53.20 71.00 80.33 56.89
LatTE-w 0.1894 48.03 26.26 52.40 73.80 78.33 55.77

Llama-3.2-1B

Prompt 0.0027 21.46 25.25 - 36.10 53.50 34.08
Serial 0.3991 18.11 25.00 - 37.10 55.33 33.89

Parallel 0.3991 31.50 36.77 - 36.70 50.67 36.41
OFT 0.3979 25.20 24.49 - 34.10 52.67 34.11

BOFT 0.3979 25.98 20.96 - 34.40 52.17 33.38
LoRA 0.3991 22.24 24.24 - 37.70 56.00 35.05

LatTE-m 0.4009 24.80 22.22 - 38.10 57.17 35.57
LatTE-w 0.4009 24.41 22.22 - 38.50 56.00 35.28

Llama-3.2-3B

Prompt 0.0015 54.92 23.74 40.60 71.20 78.83 53.86
Serial 0.1874 51.57 30.56 37.10 69.10 78.83 53.43

Parallel 0.1874 51.38 27.78 39.10 67.70 81.33 53.46
OFT 0.1977 48.62 28.54 39.60 69.90 81.33 53.60

BOFT 0.1977 50.59 28.54 37.20 68.00 78.67 52.60
LoRA 0.1892 50.59 27.78 39.30 68.10 78.17 52.79

LatTE-m 0.1902 45.67 26.26 39.10 67.70 79.67 51.68
LatTE-w 0.1902 45.47 30.56 39.70 69.30 81.50 53.31

Table 2: Accuracy on multiple-choice and arithmetic reasoning benchmarks using various PEFT
methods. MATH results for Llama-1B is omitted as it replied in forms which cannot be parsed in all
methods.

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that x̄ is a linear transform of x.
While rigorously establishing equivalence between highly non-linear models remains challenging,
these results provide theoretical evidence supporting LatTE’s expressive capacity. Complete proofs
and a comprehensive theoretical analysis of LatTE’s expressive power (Zeng & Lee, 2024) are pro-
vided in Appendix A.

4 EXPERIMENTS

We evaluate our LatTE method on both natural language processing (NLP) and text-to-image (T2I)
generation tasks. For NLP, we conduct experiments using the Llama 3 (Grattafiori et al., 2024)
and Qwen2.5 (Yang et al., 2024) language models, covering a range of model sizes from 1B to 8B
parameters. For T2I generation, we fine-tune Stable Diffusion v1.5 (Rombach et al., 2022) as the
base model. All fine-tuning is performed on 4 NVIDIA H100 GPUs, and inference is conducted
using a single H100.

We compare both variants of LatTE – more heads (LatTE-m) and wider heads (LatTE-w) – against
several strong PEFT baselines. The baseline methods include prompt tuning (Lester et al., 2021), se-
rial (Houlsby et al., 2019) and parallel (He et al., 2022) adapters, OFT (Qiu et al., 2023), BOFT (Liu
et al., 2024b), and LoRA (Hu et al., 2022). We follow the training setups from the respective ref-
erences and use official implementations from the Huggingface PEFT library (Mangrulkar et al.,
2022) for prompt tuning, LoRA, OFT, and BOFT.

Unless otherwise stated, we set the rank r = 16 for both LatTE and LoRA. For a fair comparison,
the adapter hidden size and the block sizes for OFT and BOFT are chosen such that the number of
trainable parameters closely match that of LatTE and LoRA; we use 2 blocks for BOFT by default.
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Design Accuracy (Qwen2.5-7B)
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Baseline (LatTE-w) 92.60 89.49 90.59 80.73 94.67 87.86 97.00 90.25 90.40
LatTE-m 91.84 89.81 90.08 81.28 94.52 87.49 96.74 90.76 90.32
fin(x) = [x;0r] 90.53 96.56 89.50 92.00 89.61 80.73 94.40 86.50 89.98
fout([y, ȳ]) = y 90.19 96.77 89.86 91.56 89.89 81.12 93.83 85.78 89.88
fin(x) = [x;0r]; fout([y, ȳ]) = y 90.44 96.72 89.77 92.40 89.69 80.30 94.27 86.44 90.00

Table 3: Accuracy results on the commonsense QA benchmark compared across different design
choices, including fin, fout, and the more/wider heads.

All models are trained for up to 20 epochs for commonsense QA and 4 epochs for reasoning, and
we report results using the best checkpoint selected via measuring with 4 different seeds.

4.1 COMMONSENSE QA

We begin with commonsense QA, a multiple-choice question answering task. Models are fine-
tuned on the Commonsense 170K dataset (Hu et al., 2023), which comprises eight distinct QA
benchmarks: OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy, and ARC-challenge (Clark et al., 2018). These datasets focus on direct-answer selection
without requiring chain-of-thought (CoT) reasoning (Wei et al., 2022).

Table 1 presents the performance of Llama-3.2-3B, Llama-3.1-8B and Qwen2.5-3B/7B models fine-
tuned with LatTE and baseline methods. Across all model sizes and configurations, LatTE con-
sistently matches or exceeds the performance of established PEFT baselines. Notably, LatTE-w
achieves the highest average performance on three of the four models and ranks second on the
remaining model. This performance gain exceeds our theoretical expectation, which suggested
LatTE would perform comparably to LoRA. While further investigation is needed, we hypothesize
that the C matrix contributes significantly to this improvement. We also observe that LatTE demon-
strates superior training efficiency relative to baseline methods, achieving better performance within
a single epoch.

4.2 MULTIPLE-CHOICE AND ARITHMETIC REASONING

We next evaluate our method on reasoning tasks. These tasks additionally require chain-of-thought
(CoT) reasoning before arriving at a final answer. We construct the training set by filtering ex-
amples from the Llama-Nemotron-Post-Training-Dataset (Bercovich et al., 2025), selecting those
whose answers contain numeric characters and do not involve blank spaces. This filtering yields
approximately 0.3M examples per epoch for training.

We evaluate on five benchmarks: AQuA (Ling et al., 2017), GPQA (Rein et al., 2024), MATH-
500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021). Follow-
ing standard practice, evaluation is based on the accuracy of the final answer, independent of the CoT

Figure 3: Subject-driven generation of LoRA and LatTE. All examples share the same seed for the
two methods.
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Inference type Split Base (=merged LoRA) Unmerged LoRA LatTE-m LatTE-w

Single example

All 0.236 0.294 0.243 0.264
Attention 0.126 0.168 0.133 0.154
FFN 0.051 0.066 0.053 0.053
Embedding 0.059 0.060 0.057 0.057

8 batch (1 task)

All 0.229 0.285 0.238 0.254
Attention 0.138 0.174 0.145 0.160
FFN 0.047 0.062 0.047 0.047
Embedding 0.044 0.049 0.046 0.047

8 batch (4 task)

All - - 0.247 0.251
Attention - - 0.153 0.155
FFN - - 0.049 0.050
Embedding - - 0.045 0.046

Table 4: Time per output token (in milliseconds) for Base, LoRA, and LatTE for Qwen2.5-7B
(adapters on half of layers) with H100 GPU, context length 10k, averaged over 10 runs. The time is
splited into attention, FFN, and embedding.

content. Table 2 presents results for Llama-3.2-1B/3B and Qwen2.5-1.5B/3B. Again, LatTE pre-
sented overall good results compared to the baselines, demonstrating its applicability to reasoning.

4.3 TEXT-TO-IMAGE GENERATION

We now turn to latent diffusion models and demonstrate that LatTE can also be applied to image
generation models. Specifically, we use DreamBooth (Ruiz et al., 2023) dataset on Stable Diffusion
v1.5 and test LoRA and LatTE’s adaptation to subject-driven generation. We follow the default
settings of the Huggingface Diffusers library for LoRA finetuning and applied LatTE to the identical
positions, which are the attention blocks of the U-net (Ronneberger et al., 2015).

The qualitative results are shown in Figure 3. One observes that LoRA and LatTE both show ef-
fectiveness in subject-driven generation. However, LatTE’s enlarged embedding cannot pass the
base-model convolution layer without engaging with fout. Therefore, multiple expansion and com-
pression should be done for the forward pass, actually introducing overhead to inference. One can
skip-connect the extra dimension after the convolutional layer to overcome this, however, the effec-
tiveness of this strategy is yet to be explored.

5 DISCUSSION

Figure 4: QA task score and in-
ference speed on Qwen2.5-7B.

Effect of fin and fout. While LatTE does not introduce numer-
ical hyperparameters beyond the rank r, it does involve several
architectural design choices. As discussed in Section3, these in-
clude: (1) the implementation of multi-head attention, (2) the
initial expansion function fin(x), and (3) the final compression
function fout([y, ȳ]).

In addition to our default settings for fin and fout, we con-
sider several plausible alternatives. For the expansion function
fin, we experiment with fin(x) = [x;0r], where the auxiliary
embedding is an r-dimensional zero vector 0r. For the com-
pression function fout, we test discarding the auxiliary output,
fout([y, ȳ]) = y. fin(x) = [x; pool(x)], where the auxiliary em-
bedding is derived via pooling, and fout([y, ȳ]) = y + repeat(ȳ)
was also considered but showed subobtimal performance. Ta-
ble 3 reports the impact of these alternatives on commonsense
QA performance.

Inference Efficiency. We also evaluate the inference-time ef-
ficiency of LatTE by measuring the time-per-output-token (TPOT). Figure 4 plots TPOT with the
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QA score with 7, 14, and 28 layers of adapters applied to Qwen2.5-7B model. We measured the
inference time of 100 token generation with 10k context length, and averaged over 10 trials. OFT
and BOFT results are not included as they were an order of magnitude slower than the others. One
observes that the LatTE methods achieve suitable balance between performance and speed.

Figure 5: Masking (black squares) in intra-
batch multi-adapter scenario. The mask
symbol indicates where masking should be
applied for Transformers.

We present the TPOT results in Table 4, for Qwen2.5-
7B, adapters on half layers. The context length is
10k and the results are averaged over 10 runs. This
demonstrates LatTE’s key advantage: constant-time
inference regardless of the number of adapters and en-
abling multi-task batch inference, making it valuable
for personalized and multi-domain deployment sce-
narios where merged LoRA’s linear scaling becomes
prohibitive and cannot be deployed in multi-task batch
scenarios without constant load-unloading.

The inference efficiency also includes flexibility in
intra-batch multi-adapter. While it is generally chal-
lenging to use multi-adapter within a batch, LatTE nat-
urally supports such inference with the help of mask-
ing. When applying m LatTEs, the inference batch
will have mr auxiliary embeddings. The task-
dependent mask can be generated and applied through-
out the forward pass to ensure the correct results. For
example, the mask shown in Figure 5 is for a batch
with tasks [2, 1, 1, 2, 1, 0]. This is applied in four posi-
tions per Transformer block as indicated with the mask
symbol. Another mask is required in (WK

h x)⊤WQ
h x

but can be merged with the rotary embeddings (Su et al., 2024). With masking, LatTE enables effi-
cient intra-batch multi-task inference within a shared model backbone – highlighting its scalability
for real-world multi-task applications.

6 CONCLUSION

We presented LatTE, a novel PEFT method that leverages auxiliary latent embeddings to achieve
fast, scalable, and composable adaptation of large pretrained models. LatTE operates through a
simple expansion of the embedding space, enabling task-specific adaptation via a single matrix
multiplication per weight while keeping the base model frozen. Through extensive experiments
we demonstrated that LatTE matches or exceeds the performance of strong PEFT baselines while
offering significant improvements in inference efficiency. Beyond its empirical benefits, LatTE in-
troduces a flexible design space for auxiliary embedding interactions. We anticipate that future work
will build upon the core ideas of LatTE, and hope it serves as a foundation for further innovation.
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Model Fintuning Accuracy
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

r = 8

Prompt 85.60 85.55 76.18 76.01 78.65 67.68 95.64 88.44 81.72
Serial 89.95 88.43 88.07 79.18 91.89 80.82 95.62 89.40 87.92

Parallel 90.44 88.70 88.66 78.36 92.27 82.04 95.35 88.72 88.07
OFT 90.30 88.65 87.46 78.21 90.40 80.51 96.40 90.38 87.79

BOFT 90.00 88.43 87.60 78.25 91.13 80.62 96.35 90.02 87.80
LoRA 90.90 89.27 88.97 78.45 92.42 82.87 95.81 88.91 88.45

LatTE-m 92.10 89.21 88.52 78.80 92.67 82.20 95.56 89.80 88.61
LatTE-w 91.20 89.44 88.74 79.72 92.56 82.46 95.95 89.44 88.69

r = 16

Prompt 87.95 85.24 86.60 76.67 76.44 66.75 96.39 89.23 83.16
Serial 89.64 87.98 87.91 79.30 91.66 81.14 95.79 89.57 87.87

Parallel 90.90 88.32 87.85 79.11 91.94 80.27 95.63 89.29 87.92
OFT 90.35 88.49 88.40 79.49 91.89 82.20 96.32 89.78 88.36

BOFT 90.00 88.43 87.60 78.25 91.13 80.62 96.35 90.02 87.80
LoRA 91.10 89.05 88.29 78.68 92.67 83.09 95.57 89.38 88.48

LatTE-m 91.70 89.34 88.79 79.45 92.20 83.80 95.91 89.69 88.86
LatTE-w 91.20 89.26 88.55 78.90 91.94 83.19 95.76 90.17 88.62

r = 32

Prompt 85.80 83.75 86.28 76.26 70.95 62.49 96.03 88.82 81.30
Serial 89.50 88.29 87.99 79.35 91.64 80.80 95.80 89.68 87.88

Parallel 90.70 88.52 88.15 79.55 92.00 80.60 95.75 89.31 88.07
OFT 90.55 89.20 88.48 79.26 92.20 83.28 96.26 89.93 88.65

BOFT 91.50 89.32 88.23 79.08 92.37 83.11 96.37 89.68 88.71
LoRA 91.64 89.14 89.01 78.43 92.64 83.52 95.40 88.78 88.57

LatTE-m 92.04 89.33 88.69 80.12 92.21 82.32 96.30 90.27 88.91
LatTE-w 92.44 89.07 88.69 79.93 92.29 82.64 96.02 90.34 88.93

Table 5: Rank sensitivity analysis on Qwen2.5-7B commonsense QA with adapters in half layers.
Both LatTE and LoRA show consistent improvement with increased rank, with LatTE maintaining
competitive performance across all settings.

A PROOF OF THEOREM

Theorem 2. Any attention matrix produced by LoRA can be represented as an attention matrix from
LatTE, given that x̄ is a linear transform of x.

Proof.

i) Attention matrix of LoRA:

x⊤ (
(Wk +∆Wk)

⊤(WQ +∆WQ)
)
x

=x⊤ (
(Wk + b⊤k a

⊤
k )

⊤(WQ + aQbQ)
)
x (4)

ii) Attention matrix of LatTE:

[
x⊤ x̄⊤] [W⊤

K A⊤
K

B⊤
K C⊤

K

] [
WQ BQ

AQ CQ

] [
x
x̄

]
=x⊤(W⊤

KWQ +B⊤
KBQ)x+ x⊤(W⊤

KAQ +B⊤
KCQ)x̄

+x̄⊤(A⊤
KWQ + C⊤

KBQ)x+ x̄⊤(A⊤
KAQ + C⊤

KCQ)x̄ (5)

We claim that any LoRA attention can be expressed by LatTE attention. Let AQ = aQ, AK = aK ,
BQ = a⊤KWQ, CQ = a⊤KaQ, BK , CK satisfies BK + CKbQ = bK − bQ, and x̄ = bQx. Note that
the solution for BK + CKbQ = bK − bQ always exists since BK = bK and CK = −1r (identity
matrix) satisfies the condition.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Fintuning Accuracy Degradation
OBQA BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c ave.

Qwen2.5-14B
(BF16)

LoRA 94.20 90.30 91.07 81.41 93.85 87.04 97.61 93.28 91.09 -
LatTE-m 94.10 90.31 91.01 80.90 94.07 87.12 97.63 93.58 91.09 -
LatTE-w 94.10 90.47 91.57 81.12 94.09 87.25 97.54 93.75 91.24 -

Qwen2.5-14B
(INT8)

LoRA 93.76 90.22 90.92 80.67 93.51 86.86 97.50 93.26 90.84 0.27%
LatTE-m 94.24 90.41 91.02 81.01 93.93 86.54 97.47 93.47 91.01 0.09%
LatTE-w 94.04 90.24 91.51 80.67 93.86 87.39 97.48 93.36 91.07 0.19%

Table 6: Accuracy results on the commonsense QA benchmark for Qwen2.5-14B model, with BF16
and INT8 precision. Adapters are applied to half of the layers. LatTE shows robust performance
retention under quantization, demonstrating compatibility with standard inference acceleration tech-
niques.

Then the LatTE attention becomes:

x⊤(W⊤
KWQ +B⊤

KBQ +W⊤
KaQbQ +B⊤

KCQbQ

+ b⊤Qa
⊤
KWQ + b⊤QC

⊤
KBQ + b⊤Qa

⊤
KaQbQ + b⊤QC

⊤
KCQbQ)x

=x⊤(W⊤
K + b⊤Ka⊤K)(WQ + aQbQ)x

+ x⊤((bQ − bK)⊤a⊤KWQ + (bQ − bK)⊤a⊤KaQbQ

+ (BK + CKbQ)
⊤BQ + (BK + CKbQ)

⊤CQbQ)x

(6)

The second term identically vanishes with CQ = a⊤KaQ, BQ = a⊤KWQ and BK+CKbQ = bK−bQ.
This proves any LoRA attention matrix can be expressev as LatTE attention matrix assuming x̄ is a
linear transform of x.

B ADDITIONAL RESULTS

Here we provide additional experimental results.

B.1 ABLATION ON EMBEDDING SIZE

We show the ablation study on embedding size (r) on Qwen2.5-7B for commonsense QA benchmark
in Table 5. The scaling behavior of LatTE for r is similar to that of LoRA, as expected. The
consistent relative performance across ranks indicates LatTE and LoRA have similar expressivity –
increasing rank benefits both methods equally, showing no fundamental expressivity gap.

B.2 LARGER MODELS AND EFFECT OF QUANTIZATION

To address the issue of scalability, we present results for larger model size. Table 6 shows results for
Qwen2.5-14B for commonsense QA benchmark, with adapters in half of the layers. LatTE models
showed competitive accuracy compared to LoRA, consistent with the smaller models, with LatTE-w
achieving the highest average accuracy. While this is not as large a model as tens or hundreds of
billions of parameters, we experimented on a range of parameters (1-14B) which showed consistent
effectiveness. Together with the theoretical analysis, we believe that the effectiveness of LatTE will
hold for substantially larger models.

We also consider the effect of quantization, and quantize the weights to INT8 for the same model.
The results showed that LatTE was equally effective even for quantized models, and the accuracy
degradation from quantization is of similar level to LoRA.

B.3 EPOCH-WISE PERFORMANCE

For the Commonsense QA task, we show the performance of each epoch in Figure 6
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Figure 6: Epoch-wise performance for QA task.

B.4 MORE RESULTS ON TEXT-TO-IMAGE GENERATION

More qualitative results for the subject-driven generation is shown in Figure 7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Additional results for subject-driven generation of LoRA and LatTE.
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