
Can Generative AI Solve Your In-Context Learning
Problem? A Martingale Perspective

Andrew Jesson∗† Nicolas Beltran-Velez‡ David Blei†‡

Abstract

This work is about estimating when a conditional generative model (CGM) can
solve an in-context learning (ICL) problem. An in-context learning (ICL) problem
comprises a CGM, a dataset, and a prediction task. The CGM could be a multi-
modal foundation model; the dataset, a collection of patient histories, test results,
and recorded diagnoses; and the prediction task to communicate a diagnosis to a
new patient. A Bayesian interpretation of ICL assumes that the CGM computes
a posterior predictive distribution over an unknown Bayesian model defining a
joint distribution over latent explanations and observable data. From this perspec-
tive, Bayesian model criticism is a reasonable approach to assess the suitability
of a given CGM for an ICL problem. However, such approaches—like posterior
predictive checks (PPCs)—often assume that we can sample from the likelihood
and posterior defined by the Bayesian model, which are not explicitly given for
contemporary CGMs. To address this, we show when ancestral sampling from
the predictive distribution of a CGM is equivalent to sampling datasets from the
posterior predictive of the assumed Bayesian model. Then we develop the genera-
tive predictive p-value, which enables PPCs and their cousins for contemporary
CGMs. The generative predictive p-value can then be used in a statistical decision
procedure to determine when the model is appropriate for an ICL problem. Our
method only requires generating queries and responses from a CGM and evaluating
its response log probability. We empirically evaluate our method on synthetic
tabular, imaging, and natural language ICL tasks using large language models.

1 Introduction

An in-context learning (ICL) problem involves a conditional generative model (CGM), a dataset, and
a prediction task [1, 2]. The CGM could be a pre-trained foundation model. The dataset might consist
of patient histories, test results, and diagnoses. The prediction task could be providing a diagnosis to
a new patient based on their history and test results [3]. This is a complex problem that requires both
accurate diagnosis and proper communication to the patient. This complexity makes it difficult to
evaluate whether the model is suitable for the dataset and prediction task.

An interpretation of ICL sees a CGM prompted with in-context examples as producing data (either
responses or examples of the prediction problem) from a posterior predictive under a Bayesian model.
A natural question arises when we accept this premise, “Is the Bayesian model a good model for the
prediction problem?” This question is what Bayesian model criticism tries to answer. This field has
produced many methods but, they typically assume access to components defined by the Bayesian
model, like the likelihood and posterior. In this work we show how to do model criticism in ICL using
contemporary generative AI. Specifically, we demonstrate how to implement posterior predictive
checks (PPCs) [4, 5] and their cousins [6, 7] when we only have access to the predictive distribution.
The result is a practical and interpretable test on whether a model can solve an ICL problem.

∗Correspondence to adj2147@columbia.edu. † Department of Statistics, Columbia University. ‡ Department
of Computer Science, Columbia University.

Safe Generative AI Workshop (NeurIPS 2024).

Input: proof once again that if the
filmmakers just follow the books

Label: negative
Input: is impressive
Label: positive
Input: the top japanese animations
Label: positive
Input: a spoof comedy
Label: positive

(a) SST2 ICL dataset xn

Input: follows the formula , but throws
in too many conflicts to keep
the story compelling .

(b) query z.

Label: negative, Label: negative,
Label: negative, Label: negative,
Label: negative, Label: negative

(c) CGM responses y

Input: a) Should teens use the diet
plans on tv?

b) Can you help me with a diet
plan?

Label: different
Input: a) What’s a good way to address

back pain?
b) How can I cure my back pain?

Label: similar

(d) MQP ICL dataset xn

Input: a) Can dementia cause ANS dysfunction?
If so how?

b) How can dementia cause ANS dysfunction?

(e) query z.

Label: different, Label: different,
Label: similar, Label: similar,
Label: different, Label: similar

(f) CGM responses y

Figure 1: An example illustrating two ICL problems. One that the model θ (Llama-2 7B [8]) can
solve, and one that it cannot. Left: (a) examples from the SST2 task [9] comprising part of an ICL
dataset xn, (b) a new query z, and (c) some responses y sampled from the CGM pθ(y | z, xn) when
prompted with the dataset and query. The true label is “negative” and the CGM responds correctly.
Right: the same format but the dataset (d) and query (e) are taken from the MQP task [10]. Here, the
true label is “similar,” but the model responds incorrectly with “different” half of the time.

2 What is an in-context learning problem?

An ICL problem is a tuple (f∗, xn,θ) comprising a prediction task f∗, a dataset xn, and a conditional
generative model (CGM) θ. The prediction task is generalized as providing a response y to a query
z. The set of valid responses to a user query implies a distribution over responses p(y | z, f∗).
The dataset xn = {(zi, yi)}ni=1 comprises n query and response examples of the prediction task;
zi, yi ∼ p(z, y | f∗). A practical abstraction decomposes queries and responses into elements called
tokens. As such, queries and responses—by extension, examples and datasets—are represented
as sequences of tokens. For example, (z, y) ≡ (tz1, t

z
2, . . . , t

y
1, t

y
2, . . .) ≡ (tx1, t

x
2, . . .). A CGM θ

defines a predictive distribution over the next token in an example txj given previous example tokens
and tx<j , and a tokenized dataset; pθ(txj | tx<j , x

n). By ancestral sampling, the CGM effectively
defines additional predictive distributions over responses pθ(y | z, xn), examples pθ(z, y | xn), and
datasets pθ(x | xn). Figure 1 illustrates examples from two different ICL tasks. Figures 1a to 1c gives
an example from the SST2 sentiment prediction task for which Llama-2 7B frequently yields accurate
answers. Figures 1d to 1f gives an example from the medical questions pairs (MQP) prediction task
for which Llama-2 7B yields random answers on average. Next, we give several reasons why model
generated responses or examples may be inappropriate for the ICL task f∗.

3 What is a model?

Again let θ denote a model, but now the model could be Bayesian linear regression, a Gaussian
process, or perhaps a large language model (LLM). A model defines a joint distribution pθ(x, f) over
observable data x = {x1, x2, . . . } = {(z1, y1), (z2, y2), . . . } and latent explanations f . The notation
f denotes both tasks and explanations, but we will clearly distinguish between them. The model
joint distribution factorizes as pθ(x, f) = pθ(x | f)pθ(f), where pθ(f) is the prior over explanations
and pθ(x | f) is the likelihood of the dataset given an explanation. From a frequentist perspective,
the prior distribution over f would be ignored and a model would define a set of distributions over
datasets indexed by f; {pθ(x | f) : f ∈ F}. A model θ alongside data xn further defines the posterior
pθ(f | xn) and posterior predictive pθ(x | xn) =

∫
pθ(x | f) dPθ(f | xn) distributions, which specify

the conditional distributions of explanations and new observations given the observed data. A deeper
discussion on the component distributions defined by a model is given in Appendix A.

Are CGMs Models? Modern CGMs often lend access to only the marginal pθ(x) or posterior
predictive pθ(x | xn) rather than an explicit representation of f . Why, then, can we still discuss latent

2

variables like f? We justify this with two key assumptions: First, if the model pθ is exchangeable (i.e.,
the distribution pθ(x) is invariant to permutations of the data), de Finetti’s theorem [11] guarantees
the existence of such a latent variable f . Therefore, assuming we adopt a unique representation of f ,
there is no issue in writing pθ(x, f). Alternatively, if pθ(x) approximates an exchangeable distribution
p(x), as is the case with ICL problems, then we can treat the statement pθ(x, f) as a convenient abuse
of notation, meant to represent p(x, f). Throughout, we assume that either of these conditions hold.

4 A model is a choice to be criticised

A model θ over an observation space X is used to make inferences based on observations xn. These
inferences can include probabilities of the next word in a sequence, model uncertainty, and other
quantities of interest. However, since the model is a choice made by the practitioner, there is no
guarantee that these inferences reflect reality or adequately model the data. For example, a randomly
initialized LLM can be used to make inferences about next word probabilities, but those inferences
are meaningless for modeling natural language. As models become more complex and widely used,
it is crucial to understand when they can be trusted.

Much of the discussion around the reliability of CGMs has focused on “hallucination” detection,
prediction, and mitigation [12–35]. An interesting subset of these methods are based on uncertainty
quantification where inferences about the variability of responses from the posterior predictive
distribution [36–39], or about the variability of explanations [33, 35, 40–42] are used to predict when
a model may hallucinate. However, these methods do not address the fundamental question of when
to trust those inferences so they are susceptible to failure if the model is not appropriate for a task.

A growing body of work is formalizing the connection between ICL with pre-trained CGMs and
Bayesian inference [35, 43–48]. Notably, the works of Jesson et al. [35], Fong et al. [45], Lee
et al. [46], Falck et al. [47], Ye et al. [48] show how to transform Bayesian functionals of the
model likelihood pθ(x | f) and model posterior pθ(f | xn) into functionals of the model predictive
distribution pθ(x | xn), which can be computed by contemporary CGMs. These works pave the way
for using Bayesian model criticism techniques such as posterior predictive checks as a response to
our ressearch question. In the following we formalize how this is done.

5 Posterior predictive checks are model critics for ICL problems.

Posterior predictive checks (PPCs) [5–7, 49] are Bayesian model criticism methods that use the poste-
rior predictive to evaluate a model’s capability to make inferences from observations. Model capability
is measured by the posterior predictive p-value, based on the hypothesis that the data are generated
according to the model θ. Following Moran et al. [7], we assume access to main xn and holdout xtest

sets, both distributed according to the reference likelihood p(x | f∗). A class of PPCs assess how well
a model θ fit to xn explains the holdout data xtest. To measure fit, a PPC defines a discrepancy func-
tion, such as the negative log marginal model likelihood gθ(x, x

n) := −
∑

zi,yi∈x log pθ(zi, yi | xn),
or the negative log model likelihood gθ(x, f) := −

∑
zi,yi∈x log pθ(zi, yi | f). Higher values indicate

poor model fit, while lower values suggest the model explains the data well.

Defining a goodness-of-fit measure is only half of the story. A PPC needs to define what are relatively
high or relatively low values of the discrepancy function. To do this, a reference distribution of values
is defined by measuring the discrepancy function over datasets sampled from the model posterior
predictive distribution. The posterior predictive p-value is then evaluated as

pppc :=

∫∫
1
{
gθ(x, ·) ≥ gθ(x

test, ·)
}
dPθ(x | f)dPθ(f | xn). (1)

The PPC compares the discrepancy function value for holdout data gθ(x
test, ·) with its distribution

under the model gθ(X, ·). If the model-generated data often has a greater or equal discrepancy than
the holdout data, we can be confident the model explains the holdout data well. Conversely, if the
holdout data’s discrepancy is frequently higher, we should be less confident in the model’s ability
to explain it, raising doubts about the model’s ability to solve the ICL problem. Algorithm 2 in
Appendix C describes a pppc estimator.

3

6 The generative predictive p-value and how to estimate it.

Modern CGMs—such as LLMS—do not provide an explicit representaion of the joint distribution
over observations and explanations. For discrepancy functions that depend on f this is a problem.

Our solution to the inaccessibility of component distributions relies on the intuition that a large
enough dataset xN := {zi, yi}Ni=1 generated by the likelihood xN ∼ pθ(x | f) contains roughly the
same information as the explanation f itself for an identifiable Bayesian model. Thus, it makes sense
to express functions of f , like the model likelihood pθ(x | f), that are not defined by a CGM, as
functions of large datasets, such as the predictive distribution pθ(x | xN), which are defined.

Now, where do the additional N − n examples come from if we are only given the n examples
comprising xn? The generation of sufficiently large datasets is done by generating hypothetical
completions xn+1:N of the observed ICL dataset xn by ancestrally sampling from the model predictive
distribution pθ(z, y | xn) (also called predictive resampling by Fong et al. [45]):

zn+1, yn+1 ∼ pθ(z, y | xn), zn+2, yn+2 ∼ pθ(z, y | xn, zn+1, yn+1), . . .

As the generated examples are added to the conditional of the predictive distribution after each step,
this process can be thought of as reasoning toward one explanation by imagining a sequence of sets
of observations that are consistent with a smaller and smaller set of explanations as the sequence
length increases. As a stochastic process, it is encouraged to reason toward a different explanation
each time it is run to complete xn with N − n imagined examples.

Building off this intuition, we define martingale and generative predictive p-values below. We prove
that under general conditions the martingale predictive p-value is equal to the posterior predictive
p-value. We then show how to estimate the generative predictive p-value for a given ICL problem.

6.1 The martingale predictive p-value

Our method is built on Doob’s theorem for estimators (Theorem 2), which helps us transform
statements about the random variable h(F)—a function of explanations F—to statements about the
random variable E[h(F) | X1,X2, . . . ,Xn], which is a function of observations (X1,X2, . . . ,Xn).
Thus, we can proceed without direct access to pθ(z, y | f)and pθ(f | xn) and define a p-value that
depends on infinite datasets x∞ := (xi, yi)

∞
i=1 rather than f

pmpc :=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n:∞ | xn). (2)

Doob’s Theorem is an application of martingales, so—in line with the current literature [45–47]—we
call this formulation the martingale predictive p-value.

The main theoretical result of this paper establishes the equality of the posterior and martingale
predictive p-values; Equations (1) and (2). We formalize this statement in the following theorem.
Theorem 1. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf

θ. Assume Conditions 1 to 3 and let,∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm.

Then, pppc = pmpc.

Proof. The proof makes use of Doob’s Theorem and is presented in Appendix B.

6.2 The generative predictive p-value

The martingale predictive p-value cannot be exactly computed because it is impossible to generate
infinite datasets. Thus, we define the generative predictive p-value that clips the limits to infinity by
some feasibly large number N to estimate Equation (2) as

pgpc :=

∫∫
1
{
gθ(x, x

N) ≥ gθ(x
test, xN)

}
dPθ(x | xN)dPθ(x

n:N | xn). (3)

Note that the generative predictive p-value enables us to replace any distributions that depend on
latent mechanisms f or infinite datasets x∞ with ones that depend on finite sequences. The price we
pay for using finite N is estimation error between pgpc and pppc. We leave the formal analysis of this
error to future work.

4

6.3 CGM estimators for the generative predictive p-value

Algorithm 1 p̂gpc

Require: data {xn, xtest}, discrepancy function gθ(x, x
N), # replicates M, # approx. samples N

1: for i← 1 to M do
2: xNi ← xn ▷ initialize f sample data
3: for j ← n+ 1 to N do
4: zj , yj ∼ pθ(z, y|xN) ▷ sample example from model
5: xNi ← (xNi , zj , yj) ▷ update approximation context
6: xi ← () ▷ initialize replicant data
7: for j ← 1 to n do
8: zj , yj ∼ pθ(z, y|xNi) ▷ sample example from model
9: xi ← (xi, zj , yj) ▷ update replicant data

10: return 1
M

∑M
i=1 1

{
gθ(xi, x

N
i) ≥ gθ(x

test, xNi)
}

▷ estimate p-value

We derive an estimator for the generative predictive p-value in Equation (3) that uses Monte Carlo
estimates to approximate the integrals. Algorithm 1 describes the estimation procedure. The key stage
that differentiates the generative predictive p-value algorithm from the standard posterior predictive
p-value algorithm is described in Lines 2 to 5. Here datasets xNi of length N are ancestrally sampled
from the CGM predictive distribution to approximate sampling a mechanism fi. This is in contrast
to sampling an explanation directly from the model posterior as shown in Algorithm 2 Line 2 of
Appendix C. When sampling replication data xi in Lines 6 to 9, the CGM predictive distribution is
conditioned on xNi and n new samples are independently generated. This procedure is repeated M
times, and the p-value is empirically estimated as before.

7 Empirical evaluation

This section reports the following empirical findings: (1) The generative predictive p-value is an
accurate predictor of model capability in tabular, natural language, and imaging ICL problems. (2)
The p-value computed under the NLL discrepancy is also an indicator of whether there are enough
in-context examples n. (3) The number of generated examples N − n interpolates the p-value
between the posterior predictive p-value under the NLML discrepancy and the NLL discrepancy
using the model posterior pθ(f | xn) and likelihood pθ(x | f). These findings show that the p-value
computed under either discrepancy yields an accurate predictor of whether generative AI can solve
your in-context learning problem. If you also need to know whether there are enough in-context
examples, we suggest using the NLL discrepancy function. If computational efficiency is a primary
concern, we suggest using the NLML discrepancy as dataset completion generation is not required.

Models. We evaluate our methods using two model types. For tabular and imaging tasks, we use a
Llama-2 regression model for sequences of continuous variables [35]. The model is optimized from
scratch for next token (variable or pixel) prediction following the procedure of Touvron et al. [8]. For
natural language tasks, we use pre-trained Llama-2 7B [8] and Gemma-2 9B [50] LLMs (Gemma-2
9B results are reported in Appendix F).

(a) in-distribution tabular task (b) OOD tabular task

Figure 2: Tabular data tasks.

Data. For tabular tasks, queries z are sampled uniformly from the interval [−2, 2]. Responses y are
drawn from a normal distribution with a mean µ(z), parameterized by either a random 3rd-degree

5

polynomial (in-distribution), a random ReLU neural network (in-distribution or OOD), or a radial
basis function (RBF) kernel Gaussian process with a length scale of 0.3 (OOD). The training data
comprise 8000 unique in-distribution datasets with 2000 z − y examples each. An in-distribution
ReLU-NN task is illustrated in Figure 2a. The mean function µ(z) is plotted by the blue line, and the
blue shaded region outlines the 95% CI of pθ(y | z, f∗). An OOD GP task is illustrated in Figure 2b.
In-distribution test data comprise a set of 200 new random datasets with 500 z− y examples each.
The OOD test data comprise 200 random datasets with 500 z− y examples each.

(a) In-capability (b) Out-of-capability

Figure 3: Natural language in-capability vs. out-of-capability tasks. Green solid line is the ICL error
rate for Llama-2 7B. Gray dashed line is the random guessing error rate.

For pre-trained LLM experiments, the delineation between in- and out-of-distribution is opaque.
Instead, we use in-capability or out-of-capability to differentiate between tasks a model can or
cannot perform well. Figure 3a illustrates in-capability tasks where the error rate of Llama-2 7B
is considerably better than random guessing. The in-capability data are the SST2 [9] sentiment
analysis (positive vs. negative) and AG News Zhang et al. [51] topic classification (World, Sports,
Business, Sci/Tech) datasets. Figure 3b illustrates out-of-capability tasks where the error rate is only
marginally better than random. The out-of-capability data are the Medical Questions Pairs (MQP)
[10] differentiation (similar vs. different) and RTE [52] natural language inference (entailment vs.
not entailment) datasets.

(a) SVHN (in-distribution) (b) MNIST (near OOD) (c) CIFAR-10 (far OOD)

Figure 4: Generative fill tasks using the test sets of SVHN, MNIST, and CIFAR-10.

For imaging ICL experiments, we use SVHN for in-distribution data [53], MNIST as “near” OOD
data [54], and CIFAR-10 as “far” OOD data [55]. Our Llama-2 regression model takes a sequence
of flattened, grayscale, 8x8 images as input. It is fit to random sequences of 16 images from the
SVHN "extra" split, which has over 500k examples. A series of in-distribution generative fill tasks is
shown in Figure 4a. In each row, the model is prompted with three in-context examples and asked to
complete the missing half of the 4th example. Each completion in the “fill” column is sensible, even
when the completed number differs from the “real” number. Figure 4b illustrates completions for
near-OOD MNIST tasks. We see in rows 1, 2, 3, and 6 that the fills are often sensible, but the model is
prone to hallucinating odd completions (row 4) and artifacts (row 5). Figure 4c illustrates completions
for far-OOD CIFAR-10 tasks. The completions are surprisingly consistent at this resolution, but as
the result in row 4 demonstrates, the model hallucinates completions from its domain.

6

Discrepancy functions. We evaluate the p-value using discrepancy functions defined as

gθ(x, x
(·)) := − 1

|x|
∑

zi,yi∈x

1

|(zi, yi)|
∑

tj∈(zi,yi)

log pθ(tj | t<j , x
(·)),

where |(zi, yi)| is the number of tokens in the evaluated example. Following this template, the per-
token negative log marginal likelihood (NLML) is written gθ(x, x

n) and an estimate of the per-token
the negative log-likelihood (NLL) is written gθ(x, x

N), where xN is generated as in Algorithm 1.

Predicting model capability. The p-values are calculated using either Algorithm 1 or Algorithm 3
and a significance level α is selected to yield a binary predictor of model capability 1{pgpc <
α}; a model is predicted as incapable of solving the ICL problem if the estimated generative
predictive p-value is less than the significance level. We report results for significance levels
α ∈ [0.01, 0.05, 0.1, 0.2, 0.5]. For the NLL discrepancy function, replication data x is independently
sampled from the likelihood under a hypothetical dataset completion pθ(z, y | xN). For the NLML
discrepancy function, replication data is independently sampled from the predictive distribution
pθ(z, y | xn).

Figure 5: Evaluation metrics for GPC performance.

Metric Equation

False Positive Rate (FPR) False Positives
False Positives+True Negatives

Precision True Positives
True Positives+False Positives

Recall True Positives
True Positives+False Negatives

F1 Score 2·Precision·Recall
Precision+Recall

Accuracy True Positives+True Negatives
Total Number of Predictions

Evaluation metrics. We evaluate the capa-
bility predictor using standard metrics: FPR
measures in-capability tasks misclassified as
out-of-capability, Precision reflects correctly
identified out-of-capability tasks, and Recall
measures correctly detected out-of-capability
tasks. F1 Score and Accuracy assess overall
performance (see Figure 5 for definitions).

We also provide the distribution of p-values
across tasks to assess how confidently the
model distinguishes between the different
ICL problems. Lower p-values indicate stronger confidence that a model cannot solve a problem.

7.1 The generative predictive p-value accurately predicts model capability

Tabular data. We first evaluate whether the generative predictive p-value effectively predicts
OOD tabular data tasks. The parameters for Algorithm 1 are M = 40 replications and N − n =
200 generated examples. The ICL dataset xn size is varied from n = 2 to n = 200. Figure 6
plots precision, recall, F1, and accuracy curves and shows that the p-value estimates under either
discrepancy function provide non-trivial OOD predictors for all α settings.

Figure 6: Tabular OOD detection. Metric values vs. context length. In-distribution functions are from
unseen random ReLU-NNs. OOD functions are from an RBF kernel GP.

Natural language ICL. Next, we evaluate whether the generative predictive p-value effectively
predicts out-of-capacity natural language tasks. The parameters for Algorithm 1 are M = 20
replications and N − n = 10 generated examples. The ICL dataset xn size is varied from n = 4 to
n = 64. Figure 7 plots precision, recall, F1, and accuracy curves and shows that the p-value estimates
under the NLL discrepancy provide non-trivial (accuracy > 0.5) out-of-capability predictors in the
domain of natural language for all α settings. The NLML discrepancy gθ(x, x

n) is also generally
robust outside of the small n and small α setting.

7

Figure 7: Llama-2-7B out-of-capability detection. Metric values vs. context length. In-capability
tasks are from SST2 and AG News datasets. Out-of-capability tasks are from RTE and MQP datasets.

Generative fill. Finally, we evaluate whether the generative predictive p-value effectively predicts
OOD generative fill tasks. The parameters for Algorithm 1 are M = 100 replications and N − n = 8
generated examples The ICL dataset xn size is varied from n = 2 to n = 8. Figure 8 plots the
OOD prediction metric curves and shows that the p-value estimates under either discrepancy function
provide non-trivial (accuracy > 0.666̄) OOD predictors for all α settings.

Figure 8: Generative fill OOD detection. Metric values vs. context length. In-distribution tasks are
from the SVHN test set. Near and far OOD tasks are from the MNIST and CIFAR-10 test sets.

Discussion. Figures 6 to 8 reveal several trends. First, the NLML discrepancy (blue) yields better
precision, indicating that it is less likely to misclassify an in-capability ICL problem as unsolvable.
Second, the NLL discrepancy (purple) yields higher recall, indicating that it is less likely to misclassify
an out-of-capability ICL problem as solvable. Third, the NLL discrepancy with significance level
α = 0.05 yields a generally more accurate predictor than the NLML discrepancy function for any
significance level in the set evaluated. Finally, the recall of a predictor under the NLML discrepancy
is sensitive to the number of in-context examples n. Next, we look deeper into the relationship
between dataset size and the discrepancy functions.

7.2 The NLL discrepancy also indicates whether you have enough data

(a) NLL (b) NLML (c) Risk (d) Accuracy

Figure 9: (a) and (b) Scatter plots of response RMSE vs. p-values for the NLL and NLML discrepan-
cies. Points are style-coded by ICL dataset size n. (c) Risk vs. n. (d) Accuracy vs. n

Both discrepancy functions yield accurate predictors of model capability, but the NLL discrepancy
also provides information about whether there are enough in-context examples to reliably solve a
task. We use prediction RMSE over task responses to measure reliability. Figures 9a and 9b plot the

8

RMSE against the p-values computed under the NLL and NLML discrepancies for in-distribution
polynomial tabular tasks. We see that lower p-values correlate with higher RMSE for the NLL
discrepancy, but not for the NLML discrepancy. This added information is useful for reducing risk in
recommendation systems that autonomously respond if the p-value is greater than the significance
level α. For example, at α = 0.1, the NLL discrepancy reduces the generation of responses with
higher error because it accounts for the number of examples provided. Taking the risk as the sum of
task RMSEs for tasks predicted as in-capability, Figures 9c and 9d show that the NLL discrepancy
results in substantially reduced risk, even when we closely match the accuracies of each predictor.
Figure 13 in the appendix gives further insight into how the distributions of p-values evolve with
dataset size for each discrepancy function.

7.3 The number of generated examples N − n interpolates the p− value estimate between
the NLML and the ideal NLL discrepancies

Figure 10: The dataset completion size N − n interpolates the pgpc under gθ(x, xN) between the pppc
under gθ(x, xn) (NLML) and the pppc under gθ(x, f) (NLL).

Inspection of Equations (1) to (3) makes clear that the dataset completion size N − n should closely
interpolate p-value estimates between pppc computed with the NLML discrepancy and with the NLL
discrepancy using the likelihood and posterior of a Bayesian model. To verify this, we use a reference
Bayesian polynomial regression model to compute the pppc. We use our Llama-2 regression model fit
to datasets generated from the reference model likelihood under different explanations to compute the
pgpc. We let datasets generated by random ReLU-NNs serve as OOD tasks. Figure 10 demonstrates
that our expectation is true. Specifically, the p-value estimates at N −n = 2 are distributionally close
to those calculated under the NLML, and they more closely approximate those calculated under the
reference NLL discrepancy as we increase N − n to 100. The latter observation is also illustrated in
Figure 12.

Since the p-values computed under either discrepancy yield accurate predictors of model capability,
the choice between discrepancy functions ultimately comes down to a decision on whether the added
computational cost of generating dataset completions is justified. If you need to know whether
there are enough in-context examples to generate an accurate response—a necessity in risk-sensitive
applications—then we recommend using the NLL discrepancy function. If computational efficiency
or the cost of response deferral are primary concerns—practical user experience concerns—we
suggest using the NLML discrepancy.

8 Conclusion

This work introduces the generative predictive p-value, a metric for determining whether a Conditional
Generative Model can solve an In-Context Learning problem. It extends Bayesian model criticism
techniques like PPCs to generative models by sampling dataset completions from the model’s
predictive distribution to approximate sampling latent explanations from a Bayesian model posterior.
Empirical evaluations on tabular, natural language, and imaging tasks show that the generative
predictive p-value can effectively identify the limits of model capability, distinguishing between
in-capability and out-of-capability tasks for models like Llama-2 7B and Gemma-2 9B. This approach
is a practical method to assess model suitability that advances Bayesian model criticism for CGMs.
While we have focused on model capability prediction, the p-value estimates could also be used
for model selection or as a general measure of task uncertainty. We are eager to explore extensions
beyond ICL tasks to improve the reliability of generative AI systems.

9

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[3] Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolò Fusi, Nicholas
King, Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models
outcompete special-purpose tuning? case study in medicine. CoRR, 2023.

[4] Irwin Guttman. The use of the concept of a future observation in goodness-of-fit problems.
Journal of the Royal Statistical Society: Series B (Methodological), 29(1):83–100, 1967.

[5] Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, pages 1151–1172, 1984.

[6] Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assessment of model fitness
via realized discrepancies. Statistica sinica, pages 733–760, 1996.

[7] Gemma E Moran, David M Blei, and Rajesh Ranganath. Holdout predictive checks for bayesian
model criticism. In 2023 IMS International Conference on Statistics and Data Science (ICSDS),
page 94, 2023.

[8] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv:2307.09288, 2023.

[9] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642, 2013.

[10] Clara H McCreery, Namit Katariya, Anitha Kannan, Manish Chablani, and Xavier Amatriain.
Effective transfer learning for identifying similar questions: Matching user questions to covid-
19 faqs. In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 3458–3465, 2020.

[11] Edwin Shields Hewitt and Leonard J. Savage. Symmetric measures on cartesian products.
Transactions of the American Mathematical Society, 80:470–501, 1955. URL https://api.
semanticscholar.org/CorpusID:53585081.

[12] Nouha Dziri, Andrea Madotto, Osmar R Zaiane, and Avishek Joey Bose. Neural path hunter:
Reducing hallucination in dialogue systems via path grounding. In EMNLP, pages 2197–2214,
2021.

[13] Dan Su, Xiaoguang Li, Jindi Zhang, Lifeng Shang, Xin Jiang, Qun Liu, and Pascale Fung. Read
before generate! Faithful long form question answering with machine reading. In ACL, pages
744–756, 2022.

[14] Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N Fung, Mohammad Shoeybi,
and Bryan Catanzaro. Factuality enhanced language models for open-ended text generation.
NeurIPS, 35:34586–34599, 2022.

[15] Sabrina J Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational
agents’ overconfidence through linguistic calibration. TACL, 10:857–872, 2022.

[16] Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng
Fan, Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, et al. RARR: Researching and
revising what language models say, using language models. In ACL, pages 16477–16508, 2023.

[17] Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya Poria, and
Lidong Bing. Chain-of-knowledge: Grounding large language models via dynamic knowledge
adapting over heterogeneous sources. In ICLR, 2023.

10

https://api.semanticscholar.org/CorpusID:53585081
https://api.semanticscholar.org/CorpusID:53585081

[18] Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time
saves nine: Detecting and mitigating hallucinations of LLMs by validating low-confidence
generation. arXiv:2307.03987, 2023.

[19] Philip Feldman, James R Foulds, and Shimei Pan. Trapping LLM hallucinations using tagged
context prompts. arXiv:2306.06085, 2023.

[20] Shuo Zhang, Liangming Pan, Junzhou Zhao, and William Yang Wang. Mitigating language
model hallucination with interactive question-knowledge alignment. arXiv:2305.13669, 2023.

[21] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang,
Lars Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large
language models with external knowledge and automated feedback. arXiv:2302.12813, 2023.

[22] Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
words. TMLR, 2023.

[23] Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In
EMNLP, pages 967–976, 2023.

[24] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, and Pengcheng He.
Dola: Decoding by contrasting layers improves factuality in large language models. In ICLR,
2024.

[25] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision. In ICLR, 2023.

[26] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering Llama 2 via contrastive activation addition. arXiv:2312.06681, 2023.

[27] Junyu Luo, Cao Xiao, and Fenglong Ma. Zero-resource hallucination prevention for large
language models. CoRR, 2023.

[28] Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau
Yih. Trusting your evidence: Hallucinate less with context-aware decoding. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 2: Short Papers), pages 783–791, 2024.

[29] Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori Hashimoto. Linguistic calibration of
language models. arXiv:2404.00474, 2024.

[30] Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. NeurIPS, 36, 2024.

[31] Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucina-
tions of large language models: Evaluation, detection and mitigation. In ICLR, 2024.

[32] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason E Weston. Chain-of-verification reduces hallucination in large language models. In
ICLR 2024 Workshop on Reliable and Responsible Foundation Models, 2024.

[33] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in
large language models using semantic entropy. Nature, 630(8017):625–630, 2024.

[34] Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.
Semantic entropy probes: Robust and cheap hallucination detection in llms. arXiv preprint
arXiv:2406.15927, 2024.

[35] Andrew Jesson, Nicolas Beltran-Velez, Quentin Chu, Sweta Karlekar, Jannik Kossen, Yarin Gal,
John P Cunningham, and David Blei. Estimating the hallucination rate of generative ai. arXiv
e-prints, pages arXiv–2406, 2024.

[36] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language
models (mostly) know what they know. arXiv:2207.05221, 2022.

11

[37] Potsawee Manakul, Adian Liusie, and Mark JF Gales. SelfCheckGPT: Zero-resource black-box
hallucination detection for generative large language models. In EMNLP, 2023.

[38] Jeremy R Cole, Michael JQ Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan Dhingra,
and Jacob Eisenstein. Selectively answering ambiguous questions. EMNLP, 2023.

[39] Jiuhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model
and enhancing their trustworthiness. In ACL, pages 5186–5200, 2024.

[40] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. ICLR, 2023.

[41] Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xueying Zhang, Yu Wang, and Shizhu Liu.
Halo: Estimation and reduction of hallucinations in open-source weak large language models.
arXiv:2308.11764, 2023.

[42] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty
quantification for black-box large language models. TMLR, 2024.

[43] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. In International Conference on Learning
Representations, 2021.

[44] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representa-
tions, 2021.

[45] Edwin Fong, Chris Holmes, and Stephen G Walker. Martingale posterior distributions. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 85(5):1357–1391, 2023.

[46] Hyungi Lee, Eunggu Yun, Giung Nam, E Fong, and Juho Lee. Martingale posterior neural
processes. In The Eleventh International Conference on Learning Representations. International
Conference on Learning Representations, 2023.

[47] Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
bayesian? a martingale perspective. arXiv preprint arXiv:2406.00793, 2024.

[48] Naimeng Ye, Hanming Yang, Andrew Siah, and Hongseok Namkoong. Pre-training and
in-context learning is bayesian inference a la de finetti. arXiv preprint arXiv:2408.03307, 2024.

[49] Xiao-Li Meng. Posterior predictive p-values. The annals of statistics, 22(3):1142–1160, 1994.

[50] Gemma Team. Gemma, 2024.

[51] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. NeurIPS, 2015.

[52] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc, editors, Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pages 177–190, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-33428-6.

[53] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning. Granada, 2011.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[55] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 2009.

[56] Joseph L Doob. Application of the theory of martingales. Le calcul des probabilites et ses
applications, pages 23–27, 1949.

[57] Jeffrey W Miller. A detailed treatment of doob’s theorem. arXiv preprint arXiv:1801.03122,
2018.

12

A Model intuition

In this section we give an interpretation of the component parts of a Bayesian model, how they
are used to make inferences about uncertainty, and how to relate inferences in classical domains to
inferences in more complex domains like language.

The model prior pθ(f) can be thought of as a library over the possible explanations a model could
ascribe to observations. It is a special kind of library, where the probability of finding an explanation
in the library at random is also defined. The model prior encodes everything “known” to a model;
all the latent patterns available as explanations for—or an index of all the probability distributions
ascribable to—any set of observations. The model prior may or may not assign non-zero probability
to an explanation f equivalent to a given ICL problem task f∗. If no such explanation has coverage
under the prior, then the model may not be able to provide an accurate solution to the ICL problem.

(a) linear model, linear data (b) polynomial model, polynomial data

(c) polynomial model, linear data (d) linear model, polynomial data

Figure 11: Examples of misaligned model and data combinations. Transformer models (pink) are fit
to either linear or polynomial noisy data defined by reference Bayesian models (blue).

For example, a Bayesian linear regression model with fixed noise, defines the part of the prior over
explanations pθ(f) related to the outcome y as a set of coefficient vectors; a set of hyperplanes. If the
ICL dataset and prediction task are characterized by a linear relationship between continuous valued
queries and responses—illustrated in Figure 11a—the prior would be suitable for the ICL problem.
However, if they are characterized by polynomial relationships—illustrated in Figure 11c—then the
relationship would not have coverage under the prior and the precision of responses under the model
would be limited by the capacity of a hyperplane to fit a polynomial surface. By analogy, a LLM
that is pre-trained or fine-tuned on a large set of integrals expressed in natural language may have
the functional capacity to integrate; generalize to unseen functions and domains of the classes and
spaces covered in the training set. So if the ICL dataset and task are related to the integration of
polynomials, the learned library of mappings from text to token distributions may be appropriate for
that ICL problem. However, if the LLM training corpus did not contain content related to calculus,
then learned library of mappings may not include the functional capability to solve the ICL problem.

The model likelihood pθ(x | f) encodes the variety of observations x that could be generated
according to a given explanation f . The variety encoded by this distribution is often called aleatoric
uncertainty—aleatory is a pretentious word for random—which refers to the inherent randomness
over generated datasets when sampling according to the likelihood under a given explanation f . For
example, given the explanation implied by a fair coin, we will still be uncertain whether the outcome
of a single coin flip will be heads or tails. More contemporarily, if you are already familiar with this
concept and I were to say, “I would like to share the idea of aleatoric uncertainty with you,” you would
know which idea I want to share, but, before reading this paragraph, you would be uncertain about
how I would share it with you. When the model likelihood pθ(x | f) is indexed by an explanation
that is equivalent to the task f ≡ f∗, then pθ(x | f) is equal to the reference likelihood p(x | f∗). So

13

even though we may be uncertain about which dataset would be generated according to the model
likelihood, we could still be certain that the generated dataset would correspond to the task. However,
if there is a discrepancy between the model and reference likelihood then the model may not be
suitable for the in-context learning problem.

The model posterior

pθ(f | xn) =
pθ(x

n | f)pθ(f)∫
pθ(xn | f)dPθ(f)

,

derived from the model joint pθ(x, f) via Bayes’s theorem, encodes variety over explanations that
could have generated a specific set of observations xn. This variety is often called epistemic
uncertainty. Epistemic is a pretentious term referring to knowledge, conveying that we may not yet
know which explanation f among subset of reasonable explanations best explains possible datasets x
under the ICL problem.

For example, given only four observations—say, two heads and two tails—the sample mean estimate
for the probability of observing heads is 0.5. However, we may still be uncertain about whether
the coin generating the outcomes was fair or biased because the variance of that estimate is still a
non-negligible 0.0625 when we assume the coin is actually fair. Related to our contemporary example,
if I only say, "I would like to share an idea with you," you can probably imagine an abundance of
ideas that I could be referring to and thus still be uncertain about which one I have chosen to share.

A relevant feature of epistemic uncertainty is that it is reducible as we observe more context. In
the coin flip example, as we observe more outcomes, our certainty about the probability of heads
increases. In the second example, you may have a better idea about the class of ideas I may share
based on what has been presented thus far.

As a function of both the model likelihood and prior, the model posterior inherits the limitations of
both. But it also provides information about whether an in-context learning problem can be solved
reliably. Namely, variety over explanations is indicative of being uncertain about which task the ICL
dataset corresponds to. This variety can lead to the model generating responses corresponding to
tasks other than f∗. But it may also be indicative of when more examples (larger n) can improve the
quality of solutions to an in-context learning problem.

The model posterior predictive

pθ(x | xn) =
∫

pθ(x | f)dPθ(f | xn),

is derived from the model to generate new observations x given past observations xn. Poetically, the
model posterior predictive gives the model a voice to respond to observations with observations. The
model posterior predictive convolves the model likelihood of the observations given an explanation
with the model posterior over explanations. This process entangles variety over explanations after
observing a dataset xn and variety over observations x for each specific explanation f; the model
posterior predictive entangles aleatoric and epistemic uncertainty.

Model inferences. A model θ defined over an observation space X is used make inferences about
observations from that space xn. Inferences like the probability of the the next word given a sequence
of words, model uncertainty, and countless other things. But a model is a choice—the practitioner
makes a modeling decision—and so the inferences derived from observations under a model may or
may not be grounded in reality.

Figure 11 illustrates inferences about the predictive distribution made by different models given
different datasets. When the data and model are well aligned— Figures 11a and 11b—model
inferences (pink) overlap with those made by the reference model (blue) and appear purple. However,
inferences made by a misaligned polynomial model—Figure 11c—are much wider that those made
by the reference linear model. And inferences made by a misaligned linear model—Figure 11d—are
more narrow than those ogf the reference polynomial model, which results in the model being
confident and wrong. Similarly, a very general LLM may have compromised data efficiency for rare
domains, while a highly specialized LLM may no longer generalize beyond its domain.

These examples illustrate that while models are used to quantify empirical facts—like the frequency
of an event occurring—they also carry a subjective aspect that needs to be considered when using
model inferences in practice. This consideration guides our question of when a model will provide
reliable inferences for a given ICL problem.

14

B Proofs for theoretical results

We restate our formalization and assumptions for convenience. Observable examples (z, y) ∈ X
are modeled by the (X ,A)-random variable Xi and explanations f ∈ F are modeled by the (F ,B)-
random variable F, where A and B are the relevant sigma algebras. For each f ∈ F , let the model θ
define a probability measure Pf

θ on (X ,A). Let the model θ further define a probability measure
Pθ on (F ,B). And let Pθ and Pf

θ define the joint measure Mθ over ((X1,X2, . . .),F). Our method
rests on Doob’s theorem for estimators [56], which assumes the following three conditions.

Condition 1. The observation X and explanation F spaces are complete and separable metric
spaces.

Condition 2. The set of probability measures {Pf
θ : f ∈ F} defined by the model θ is a measurable

family; the mapping f 7→ Pf
θ(A) is measurable for every A ∈ A.

Condition 3. The model θ is identifiable;

f ̸= f ′ ⇒ Pf
θ ̸= Pf′

θ . (4)

We state Doob’s theorem for convenience.

Theorem 2. Doob’s Theorem for estimators. Let F ∼ Pθ and X1,X2, . . . i.i.d ∼ Pf
θ. Then

under general conditions on identifiability, F and X (see Appendix B), and a measurable function
h : F → R such that

∫
|h(f)|dPθ(f) <∞, then

lim
n→∞

E[h(F) | X1,X2, . . . ,Xn] = h(F) a.s. [Mθ]. (5)

Proof. Miller [57] provides a detailed proof of this theorem.

Lemma 3. Let F ∼ Pθ, and X1,X2, . . . i.i.d ∼ Pf
θ. Assume Conditions 1 to 3 and let

{
∫
| log pθ(xm | f)|dPθ(f) <∞ : ∀xm ∈ Xm}. Then,

gθ(x,F) = −
1

|x|
log pθ(x | F) = −

1

|x|
log pθ(x | X∞) = gθ(x,X

∞).

Proof.

pθ(x | F) = lim
n→∞

∫
pθ(x | f)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

∫
pθ(x | f,X1, . . . ,Xn)dPθ(f | X1, . . . ,Xn)

= lim
n→∞

pθ(x | X1, . . . ,Xn)

g(x,F) = − 1

|x|
log pθ(x | F)

= − 1

|x|
log lim

n→∞
pθ(x | X1, . . . ,Xn)

= lim
n→∞

− 1

|x|
log pθ(x | X1, . . . ,Xn)

= − 1

|x|
log pθ(x | X∞)

= g(x,X∞)

Theorem 2. Under the conditions of Lemma 3,

pppc = pmpc

15

Proof. Define an alternative probability model such that F ∼ Pxn

θ and X1,X2, . . . i.i.d ∼ Pf,xn

θ . Let
pa, Pb, and ga denote the relevant quantities respecting this model. For example, pa(y | x) = pθ(y |
x, xn) and Pa(f) = Pθ(f | xn). Note that pθ(x | f) = pθ(x | f, xn) = pa(x | f) since X and Xn are
independent when f is known.

pppc =

∫∫
1
{
gθ(x, f) ≥ gθ(x

test, f)
}
dPθ(x | f)dPθ(f | xn)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f)

=

∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, f, x

n+1:∞)

=

∫∫
1
{
ga(x, f) ≥ ga(x

test, f)
}
dPa(x, | f, xn+1:∞)dPa(f, x

n+1:∞)

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | f, xn+1:∞)dPa(f, x

n+1:∞) Lemma 3

=

∫∫
1
{
ga(x, x

n+1:∞) ≥ ga(x
test, xn+1:∞)

}
dPa(x | xn+1:∞)dPa(x

n+1:∞)

=

∫∫
1
{
gθ(x, x

∞) ≥ gθ(x
test, x∞)

}
dPθ(x | x∞)dPθ(x

n+1:∞ | xn)

= pmpc

C Posterior predictive p-value algorithm

Algorithm 2 details the procedure for calculating the posterior predictive p-value in Equation (1) given
train data xn, test data xtest, a discrepancy function gθ(x, f), and the nuber of replication datasets to
generate M .

Algorithm 2 p̂ppc

Require: data {xn, xtest}, discrepancy function gθ(x, f), # replicates M
1: for i← 1 to M do
2: fi ∼ pθ(f | xn) ▷ sample explanation f
3: xi ← () ▷ initialize replicant data
4: for j ← 1 to n do
5: zj , yj ∼ pθ(z, y|fi) ▷ sample example from model likelihood
6: xi ← (xi, zj , yj) ▷ update replicant data
7: return 1

M

∑M
i=1 1

{
gθ(xi, fi) ≥ gθ(x

test, fi)
}

▷ estimate p-value

D Lite generative predictive p-value algorithm

Algorithm 3 p̂lite
gpc

Require: data {xn, xtest}, a discrepancy function gθ(x, x
n), # replicates M

1: for i← 1 to M do
2: xi ← () ▷ initialize replicant data
3: for j ← 1 to n do
4: zj , yj ∼ pθ(z, y | xi, xn) ▷ sample example from model
5: xi ← (xi, zj , yj) ▷ update replicant data
6: return 1

M

∑M
i=1 1

{
gθ(xi, x

n) ≥ gθ(x
test, xn)

}
▷ estimate p-value

Algorithm 3 summarizes a “lite” version of the estimator that forgoes approximate sampling from the
model posterior and likelihood. Instead, it samples replication data directly from the model predictive

16

distribution and calculates the discrepancy functions with respect to the observed data xn rather than
a dataset completion xN .

E Additional figures

Figure 12: Scatter plots demonstrating that pgpc becomes a better approximation of pppc with increas-
ing dataset completion size N − n.

(a) Polynomial Tabular (b) ReLU-NN Tabluar (c) Natural language (d) Generative fill near

Figure 13: The generative predictive p-value against dataset size n

F Gemma-2 9B results

Figure 14a shows that the in-capability vs. out-of-capability distinction is also sensible for the
Gemma-2 9B model. So we conduct the same analysis for Gemma-2 9B that we did for Llama-2 7B
in Section 7.

(a) Gemma 2 9B

Figure 14: Natural language in-capability vs. out-of-capability tasks.

Figure 15a shows p-values under the Gemma-2 9B model as a function of the ICL dataset xn size n
(context length). We see a clear separation between the estimated generative predictive p-values p̂gpc
for the in-capacity SST2 data (solid lines) and the out-of-capacity MQP dataset (dashed lines), but
only for the NLML discrepency. The separation is robust across different ICL dataset sizes.

Figure 15b plots the FPR for the capability detector defined by p̂gpc the with NLML discrepancy. We
do not see the same stability of the FPR across ICL dataset size n that we saw for the Llama-2 7B
model. Instead the FPR decreases with increasing n for all significance level α. Figure 15c plots
the FPR for the capability detector defined by p̂gpc the with NLL discrepancy. We see that the false
positive rate is high for all values. These findings are reflected in the Precision curves on the left

17

(a) Generative predictive p-values (b) False Positive Rate (NLML) (c) False Positive Rate (NLL)

Figure 15: Natural language task with Gemma-2 9B. The generative predictive p-value against dataset
size n and it’s relationship to the false positive rate. The first figure shows the generative predictive
p-values, and the second and third figures show the false positive rate with the NLML and NLL
discrepancy functions, respectively.

hand side of Figure 16. We again see in the Recall curve that the NLL discrepancy leads to a more
sensitive predictor than the NLML discrepancy. The F1 and Accuracy curves show that the NLML
based p-value leads to a much more effective predictor for Gemma-2 9B.

Figure 16: Natural language model suitability detection ablation. Precision, recall, F1, and accuracy
metrics vs. number of in-context examples. SST2 ICL datasets are taken to be in-capability for
Gemma-2 9b. MQP ICL datasets are taken to be out-of-capability for Gemma-2 9b.

18

	Introduction
	What is an in-context learning problem?
	What is a model?
	A model is a choice to be criticised
	Posterior predictive checks are model critics for ICL problems.
	The generative predictive p-value and how to estimate it.
	The martingale predictive p-value
	The generative predictive p-value
	CGM estimators for the generative predictive p-value

	Empirical evaluation
	The generative predictive p-value accurately predicts model capability
	The NLL discrepancy also indicates whether you have enough data
	The number of generated examples N-n interpolates the p-value estimate between the NLML and the ideal NLL discrepancies

	Conclusion
	Model intuition
	Proofs for theoretical results
	Posterior predictive p-value algorithm
	Lite generative predictive p-value algorithm
	Additional figures
	Gemma-2 9B results

