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Abstract

Recently, there has been extensive study of cooperative multi-agent multi-armed
bandits where a set of distributed agents cooperatively play the same multi-armed
bandit game. The goal is to develop bandit algorithms with the optimal group and
individual regrets and low communication between agents. Prior algorithms either
cannot achieve constant communication costs or fail to achieve optimal individual
regrets. This paper presents a simple yet effective communication policy and inte-
grates it into a learning algorithm for cooperative bandits. Our algorithm achieves
the best of both paradigms: optimal individual regret and constant communication
costs. We also provide a tight communication lower bound that matches the con-
stant communication upper bound of our algorithms in all terms, suggesting the
optimality of our algorithm design and analysis.

1 Introduction

Recently, there has been a surge of various online learning problems in distributed settings, where a
set of agents perform individual learning algorithms to complete a common task and can cooperate
with each other to improve the performance of the learning process. Distributed online learning
is naturally motivated by a broad range of applications where computational resources are geo-
graphically distributed, and a group of machines has to communicate with each other to complete
a common task cooperatively. Examples include inference engines in a software-defined network,
servers in a data center, and drones in a swarm. In distributed online learning settings, agents take
actions over time and receive sequential samples associated with the selected actions. While the
agents can cooperate to speed up the learning process, it comes at the expense of communication
overhead in sharing sequential samples with others. Hence, distributed online learning problems
involve a natural trade-off between learning performance and communication overheads.

Table 1: A comparison summary of prior literature and this work.

Algorithm Group regret Individual regret Communication cost
DPE2 (leader-follower) (Wang et al., 2020a) O(

∑
k ∆−1

k log T ) O(
∑

k ∆−1
k log T ) O(K2M2∆−2

min)
GosInE (Chawla et al., 2020) O((

∑
k ∆−1

k + 2M) log T ) O(((
∑

k ∆−1
k /M) + 2) log T ) O(log T )

ComEx (Madhushani & Leonard, 2021) O(
∑

k ∆−1
k log T ) O(

∑
k ∆−1

k log T ) O(KM log T )
Dec_UCB (Zhu et al., 2021) O(

∑
k ∆−1

k log T ) O((
∑

k ∆−1
k /M) log T ) O(MT )

UCB-TCOM (Wang et al., 2023) O(
∑

k ∆−1
k log T ) O((

∑
k ∆−1

k /M) log T ) O(KM log log T )
BatchedMAB (Karpov & Zhang, 2024) O(

∑
k ∆−1

k log T ) O((
∑

k ∆−1
k /M) log T ) O(KM log ∆−1

min)
DoE-bandit O(

∑
k ∆−1

k log T ) O((
∑

k ∆−1
k /M) log T ) O(M

∑
k log ∆−1

k )
Communication Lower Bound O(

∑
k ∆−1

k log T ) O((
∑

k ∆−1
k /M) log T ) Ω(max{

∑
k log ∆−1

k , M})

This paper focuses on studying Cooperative Multi-Agent Multi-Armed Bandit (CMA2B) problems
where multiple agents tackle the same instance of a bandit problem. In the standard setting of
CMA2B, a set of M independent agents existing over the entire time horizon pull an arm at each time
from a common set of K arms. Associated with arms are mutually independent sequences of i.i.d.
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[0, 1]-valued rewards with mean 0 ≤ µ(k) ≤ 1, for arm k ∈ K. Each agent has full access to the set of
arms: agents are allowed to pull and receive a reward from any arm without any reward degradation
when pulling the same arm. The goal of each agent is to learn the best arm, with performance
characterized by group regret and maximum individual regret according to different application
scenarios. In addition to regret, another important metric is the communication overheads that the
agents spend in cooperative learning.

The above CMA2B problem is a natural extension of the basic MAB problem (Auer et al., 2002;
Bubeck, 2010) in a cooperative multi-agent setting, with extensive recent literature, to name a
few (Szorenyi et al., 2013; Landgren et al., 2016; Chakraborty et al., 2017; Kolla et al., 2018;
Martínez-Rubio et al., 2019; Féraud et al., 2019; Wang et al., 2020a; Bistritz & Bambos, 2020;
Chawla et al., 2020; Wang et al., 2020b; Madhushani & Leonard, 2021; Zhu et al., 2021; Yang et al.,
2021; Chen et al., 2023). In terms of solution design, the prior work could be categorized into
two paradigms of leader-follower, where a leader agent coordinates the learning process, and fully
distributed algorithms, where there is no central coordinator.

In the leader-follower paradigm Shi et al. (2021a); Mehrabian et al. (2020); Shi et al. (2021b); Shi
& Shen (2021); Wang et al. (2019; 2020a); Bar-On & Mansour (2019); Chakraborty et al. (2017);
Dubey et al. (2020), a leader agent coordinates the learning process among all agents. The state-of-
the-art result in this paradigm is the DPE2 algorithm proposed in (Wang et al., 2020a) and achieves
the optimal group regret with a constant number of communication overheads1, Yet, DPE2 (and
all other leader-follower-based algorithms) relies on a structure where the leader solely pays the
exploration costs and incurs almost all the regret in the system. Hence, by nature, this paradigm
fails to achieve a good individual regret since all the regret is imposed on the leader agent. It is
worth noting that in many practical applications, agents’ individual regrets are crucial for a system’s
overall performance. For example, in a drone swarm, the failure/misbehavior of a single drone, e.g.,
it crashes into other drones, can dramatically degrade the whole system’s overall performance; or
in network measurement, the slowest inference engine determines how fast the network parameters,
e.g., traffic flows and channel bandwidths, are learned.

An alternative approach is to remove the leader as the central coordinator and design fully distributed
cooperative algorithms. While there has been a success in achieving the optimal group and individual
regrets for fully distributed algorithms, they still fail to achieve low communication overhead, such as
those in the leader-follower-based algorithms. Early works in this space, e.g., (Buccapatnam et al.,
2015; Yang et al., 2021; 2022) adopted immediate broadcasting as their communication scheme,
incurring a high communication cost of O(T ). More recent works (Martínez-Rubio et al., 2019;
Wang et al., 2019; Chawla et al., 2020), improved the communication overhead of the cooperative
algorithms to O(log T ) by optimizing the use of communication budget. The state-of-the-art in this
line of work is the UCB-TCOM algorithm (Wang et al., 2023) that achieves the optimal individual
regret of O(K/M log T ) with communication cost of O(KM log log T ). Despite the above efforts,
prior to this work, no existing algorithm, either based on leader-follower or fully distributed, achieves
optimal group and individual regret with constant communication costs.

Besides the literature on distributed multi-agent bandits, there is a line of works on batched ban-
dits (Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2021; Jin et al., 2021; Karpov & Zhang,
2024) that relate to CMA2B. In batched bandits, the time horizon is separated into several batches,
and the reward observations of pulling arms during each batch are only revealed at the end of the
batch. This scheme is similar to the distributed bandits, where the observations of other agents
after the last communication are only revealed at these agents’ next communication. Therefore,
the batched bandits algorithm can adapt to our multi-agent bandits setting. The current state-of-
the-art batched algorithm, BatchedMAB (Karpov & Zhang, 2024), requires O(K log ∆−1

min) batches
to attain the near-optimal problem-dependent regret bound. That is, transferring their algorithms
to the distributed setting leads to O(KM log ∆−1

min) communication costs. In contrast, our work
shows a smaller constant communication cost O(M

∑
k:∆k>0 log ∆−1

k ) is enough to guarantee the

1Constant communication cost in this paper means it is independent of time horizon T .
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optimal individual and group regrets, and we prove a communication lower bound showing that this
communication cost is tight in terms of all factors.

Contributions. This paper presents DoE-bandit, the first fully distributed algorithm that guar-
antees the optimal group and maximum individual regrets with optimal communication costs (see
Theorem 3). Specifically, DoE-bandit achieves an O(

∑
k:∆k>0 ∆−1

k log T ) group regret and an
O(
∑

k:∆k>0(∆−1
k /M) log T ) maximum individual regret, where ∆k is the gap of reward means be-

tween the optimal arm k∗ and arm k. Further, DoE-bandit achieves the constant communication cost
of O(M

∑
k log ∆−1

k ). We also propose a novel communication lower bound Ω(max{
∑

k log ∆−1
k , M})

for any MA2B algorithm that achieves near-optimal group and individual regrets (see Theorem 1).
This lower bound shows that the cost communication cost of DoE-bandit is tight in terms of all
factors. A summary of our results and the most relevant prior work is given in Table 1.

2 Problem Description

We introduce a basic multi-agent multi-armed bandit system model. We note that the communica-
tion policy developed in this paper is generic and could be applied to a broad range of cooperative
online learning settings.

Consider a multi-agent stochastic bandit setting with a setM := {1, . . . , M} of independent agents
existing over the entire time period, and a set K := {1, 2, . . . , K} of arms. Associated with arms
are mutually independent sequences of i.i.d. [0, 1]-valued (e.g., Bernoulli) rewards with mean 0 ≤
µ(k) ≤ 1, for arm k ∈ K. Agent m ∈ M has full access to the set of arms. Agents are allowed to
pull and receive a reward from any arm k from K. For ease of presentation, we focus on a basic
model formulation where agents reside on a complete graph, incur no communication delays, and
the communication is lossless. However, the basic model and communication policy proposed in this
paper could be extended to account for these practical additions.

In bandit learning, the goal of each agent m is to learn the best arm as fast as possible with mini-
mizing the pseudo-regret in T ∈ N+ decision rounds (called regret for short in the rest of this paper).
The expected regret of an agent m is formally defined as E[R(m)

T ] := µ(k∗)T − E[
∑T

t=1 xt(I(m)
t )],

where k∗ is the optimal arm, I
(m)
t is the action taken by agent m at round t, and xt(I(m)

t ) is the
realized reward. Also, the expectation is taken over the randomness of stochastic rewards and the
algorithms. In a multi-agent setting, the total performance is measured by the total expected regret
of all agents, defined as

E [RT ] :=
∑

m∈M
E
[
R

(m)
T

]
.

In addition to the group regret, which characterizes overall performance, the individual performance
of each agent is also important. To capture this individual performance, we measure the maximum
individual regret defined as follows,

E
[
R̄T

]
:= E

[
max
m∈M

R
(m)
T

]
.

Similar to other distributed learning problems, the MA2B setting encourages distributed agents to
cooperate with each other by sharing information through messages, which include reward obser-
vations, reward averages, or arm indices. We assume any message can be communicated within a
single time slot. The total number of messages communicated among these agents quantifies the
communication cost of an algorithm. We denote the expected total communication cost in T rounds
among M agents as follows,

E[CT ] =
T∑

t=1

∑
m∈M

∑
k∈K

E[c(m)
t (k)],
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where c
(m)
t (k) := 1{agent m communicates about arm k at time slot t}. The communication cost

definition assumes that each message only contains the information of one arm, and if the agents
want to share information of multiple arms, they need multiple separated messages. We choose this
dentition in order to show the tightness of our communication cost analysis in arm level, and our
algorithm design and theoretical analysis can be adapted to the case that one message aggregates
multiple arms’ information.

3 Algorithm

This section presents an algorithm that adds a Distributed Online Estimation (DoE) subroutine to
each learning agent m and enables them to approximate the estimate of the optimal centralized
algorithm having all samples when estimating the parameter of a common i.i.d. process. We
introduce the details of the DoE algorithms in Section 3.1 and then integrate it to a bandit algorithm
in Section 3.2.

3.1 Distributed Online Estimation Algorithm (DoE)

To facilitate the presentation of the high-level idea of DoE, let us focus on a simplified setting that
involves only one arm k whose reward mean µ(k) is unknown to the distributed agents, where agents
sample the process simultaneously in each slot. Since each agent possesses the same number of pulls,
we denote nt(k) as the number of samples available to each agent up to time t. The idea of DoE
is to synchronize the estimates of distributed agents when the local estimates deviate substantially
from the centralized one with all samples. By properly configuring DoE, each individual agent needs
to efficiently control the deviation of its local estimates with incurring low communication costs.

More specifically, during the running time, DoE adopts a threshold policy to decide whether to trigger
a communication round for agents to synchronize their estimates with all samples in the system.
To decide whether to start a communication round, each agent maintains the so-called Common
Mean (CM) for the mean over all system-wide available samples in the last communication round,
and simply compare CM with Auxiliary Local Estimates (ALE, details shown in (1)). The value
of CM, denoted as µ̂com,t(k), is calculated by averaging all samples up to the last communication
round, so, its value is updated only once at each communication round and remains unchanged in
the subsequent non-communication rounds. At specific time slots, each agent checks whether the
gap between CM and ALE is smaller than some threshold value.

In DoE, all agents share a common threshold value denoted as ECRt(k), which can be time-varying
with the number of available samples nt(k). If the gap between ALE and CM is larger than the
threshold value, a new communication round is triggered to synchronize the estimates. By doing so,
the sum of new samples from other agents will be collected, a new common mean is calculated, and
then the agent broadcasts the new CM to all others.

The threshold value ECRt(k) plays a key role in controlling estimate deviations and communication
overheads. Intuitively, when the ALEs of each individual agent center around the common mean,
the actual estimates of all agents center around CM as well. Thus, no communication is needed.
Otherwise, a communication round is triggered to synchronize the estimates of all agents. Hence,
the threshold value determines how far the estimates deviate from each other during the non-
communication rounds; the smaller the threshold value, the smaller the deviations, and the closer
the local estimates of agents approach the global mean over all samples. On the other hand, with
smaller threshold values ECRt(k), agents communicate more frequently with each other. Hence, the
trade-off of estimation performance versus communication overheads is associated with ECRt(k).

Next, we present the technical details of the DoE algorithm and show how to construct the estimate
interval for each agent by using local estimates.
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Algorithm 1 DoE: an algorithm for estimating the mean of arm k by agent m, subscript t is dropped
1: Parameters: β > 1;
2: Variables: µ̂

(m)
aux (k), n(k)← 0 µ̂com(k)← 0, ECRlast ← 0; X(m′)(k)← 0, X

(m′)
last (k)←∞, ∀m′ ∈M, ECRt(k)← 0

3: for each round t when the agent gets a new sample do
4: n(k)← n(k) + 1
5: Update X(m)(k) with the new sample
6: if βECR(k) ≤ ECRlast then
7: ECRlast ← ECR(k)
8: if |µ̂(m)

aux (k)− µ̂com(k)| > ECR(k) then
9: //Communicate to synchronize the estimates

10: Collect X(m′)(k) from other agents and calculate the new µ̂com(k)
11: Broadcast the new µ̂com(k) to other agents
12: X

(m′)
last (k)← X(m′)(k) for all m′ ∈M

13: Update µ̂
(m)
aux (k) according to (1) and µ̂(m)(k) according to (2)

Constructing the Auxiliary Local Estimates (ALE). At a non-communication round t, an
agent only accesses partial external samples from others. Below we introduce how an agent builds
up the Auxiliary Local Estimate with missing samples from others.

Note that nt(k) is the number of samples that an agent has made for arm k up to time slot t.
Let tlast denote the last round before t that the Condition in Line 6 holds, and X

(m)
t (k) be the

sum of rewards from nt(k) samples of agent m at time slot t for arm k. For agent m, there are
nt(k) − ntlast(k) missing samples from any other agents. In DoE, agent m uses local samples in the
same time slot to compensate the missing samples from other agents to construct ALE, denoted by
µ̂

(m)
aux,t(k). That is

µ̂
(m)
aux,t(k) =

∑M
m′=1(X(m′)

tlast
(k) + X

(m)
t (k)−X

(m)
tlast

(k))
Mnt(k) (1)

where the term X
(m)
t (k)−X

(m)
tlast

(k) serves as the compensation for the missing samples from other
agents m′ ̸= m from tlast to t. In DoE, ALE mimics the estimate of the estimator, which possesses
all Mnt(k) samples and serves as an index through which the agents decide when to communicate.

We weight the local estimates in ALE such that it may involve a larger estimation error. Hence, in
addition to ALE, each agent m calculates the local estimate µ̂

(m)
t (k) to be used in a bandit algorithm

using the following equation.

µ̂
(m)
t (k) =

(
∑M

m′=1 X
(m′)
tlast

(k)) + X
(m)
t (k)−X

(m)
tlast

(k)
Mntlast(k) + nt(k)− ntlast(k) (2)

Communication Policy of DoE. Now with the definition of ALE, we present the communication
policy of DoE. The pseudocode of DoE is summarized in Algorithm 1. To decide a communication
round, an agent m checks the values of µ̂

(m)
aux,t(k) and µ̂com,t(k) := (

∑M
m=1 X

(m)
tlast

(k))/(Mntlast(k))
every time the specified threshold value ECR(k) reduces to 1/β (β > 1) times of the original value
ECRlast (Lines 6, 7). In DoE, β determines how frequently the algorithm checks those values. Once
the deviation of the local estimate µ̂

(m)
aux,t(k) from the common mean µ̂com,t(k) is larger than ECR(k)

(Line 8), agent m calls for triggering of a new communication round. In a communication round
triggered by agent m, the sum of missing samples from the last communication round tlast from
each other agent will be collected to calculate a new common mean. Then, this new common mean
will be broadcast to all other agents.

Our analysis in Lemma 2 shows that DoE can provide a provable performance guarantee for the
single-arm-estimation problem (in the form of confidence interval) with a tunable trade-off between
the estimation quality and communication overheads. With a richer communication budget, the
estimation performance of DoE approaches that of the optimal estimator with full access to the
samples. Since DoE can provide an explicit confidence interval for the mean to be estimated, it is
straightforward to plug DoE into bandit algorithms, as exemplified in the next section.
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Algorithm 2 DoE-bandit for agent m; subscript t is dropped
1: Parameters: α > 0, β > 1; ECRn, n = 1, 2, . . .

2: Initialization: µ̂
(m)
com (k)← 0; ECRlast(k); n(k)← 0, µ̂

(m)
aux (k), for ∀i; ECRn ← αCR(Mn, δt), n = 1, 2, . . .

3: for each round t do
4: if an arm is eliminated by some other agent then
5: Update the candidate set
6: Pull arm k from the candidate set in round-robin manner
7: Execute Lines 4-12 of DoE (Algorithm 1) for communication on arm k
8: Update the candidate set via (4)
9: Notify other agents if an arm is eliminated

3.2 Integrating DoE to a Bandit Learning Algorithm

In this section, we present a distributed bandit algorithm named DoE-bandit that uses DoE as the
underlying communication policy. We summarize the pseudocode of DoE-bandit in Algorithm 2.

DoE-bandit is based on active arm elimination, which is a classic approach to address the well-
known tradeoff between exploration (acquiring new information) and exploitation (optimizing based
on available information) in bandit problems. In this approach, the learner constructs a candidate
set for the arms, which are likely to be optimal, and exploration is allowed only from the arms in
the candidate set. When exploring the candidate set, the algorithm periodically pulls an arm in and
dynamically eliminates the arms which are unlikely to be optimal.

To integrate DoE with the bandit algorithm, we initiate multiple instances of DoE run by DoE-bandit,
each of which tackles the estimation of a single arm. To implement the DoE subroutine, each agent
notifies others once an arm is eliminated (Line 9 in Algorithm 2) and pulls arms in the candidate
set in a round-robin manner (Line 6), so that all agents always pull the same arm at each time slot
and DoE is able to keep track of the total number of samples in the system by Mnt(k). The above
rules imply that all agents have a common candidate set, which is denoted by Ct.

Constructing the candidate set. To construct the candidate set, DoE-bandit determines an
explicit confidence interval for the reward means of arms. Define CR(n, δt) as the radius of the
confidence interval for the reward process with n samples and confidence level 1− δt. If the reward
process is [0, 1]-valued, we define

CR(n, δt) =

√
log δ−1

t

2n
, (3)

where δt specifies the violation probability that the true mean lies outside the above confidence
interval. As we mentioned, the threshold value, ECRt(k), in DoE determines the deviation of the
estimates in individual agents from the optimal one with all samples. Hence, in order to guarantee
distributed agents to achieve the same order of the convergence rate as the optimal one, we set
ECRt(k) according to the confidence interval with the total of Mnt(k) samples. By setting ECRt(k) =
αCR(Mnt(k), δt) where α > 0, DoE yields a confidence interval for the mean of arm k, whose radius
is (2αβ + β)CR(Mnt(k), δt) (see Lemma 2 on detailed derivation). With the above result, an arm k
is eliminated by agent m from the candidate set Ct at time t if there exist an arm k′ ∈ Ct such that
µ̂

(m)
t (k) + (2α + β)CR(Mnt(k), δt) < µ̂

(m)
t (k′)− (2α + β)CR(Mnt(k′), δt). That is, the candidate arm

set C is updated as follows,

C ←
{

k ∈ C : max
k′∈C

µ̂
(m)
t (k′) < µ̂

(m)
t (k) + 2(2α + β)CR(Mnt(k), δt)

}
(4)

4 Regret and Communication Cost Analysis

In this section, we summarize the theoretical results. We start with a novel communication lower
bound for the MA2B model in Section 4.1. Then, we turn to analyze the DoE-bandit algorithm in
Section 4.2. With both results, we show that DoE-bandit attains near-optimal guarantees in both
group and individual regrets and communication costs in Section 4.3.
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4.1 Communication Lower Bound

In this section, we present a communication lower bound for the MA2B model. Our focus is on inves-
tigating the necessary number of communications (lower bound) for any MA2B algorithm attaining
near-optimal group and individual regrets. The result is provided in Theorem 1 as follows:
Theorem 1. For any algorithm that achieves the near-optimal group regret O(

∑
k ∆−1

k log T ) and
individual regret O((

∑
k ∆−1

k /M) log T ) and for any MA2B instance, the algorithm spends a number
of communications that is lower bounded as follows,

E[CT ] ≥ Ω

max

 ∑
k:∆k>0

log ∆−1
k , M


 .

4.2 Regret and Communication Cost Upper Bound

The following lemma shows the upper bound of estimation error of DoE is proportional to the radius
of the confidence interval with system-wide samples. Then, we summarize the results for DoE-bandit
in Theorem 3.
Lemma 2. Assume M agents independently sample an arm with an i.i.d. reward process with
unknown mean µ(k), and nt(k) is the available samples for each agent up to time slot t. With
β > 1 and ECRt(k) = αCR(Mnt(k), δt), where δt ∈ (0, 1) is a sequence of parameters non-increasing
with respect to t, then, for any t, with probability 1 −Mtδ

1/2
t , we have |µ̂(m)

t (k) − µ(k)| ≤ (2αβ +
β)CR(Mnt(k), δt).
Theorem 3. Let CR[0,1](n, δt) in (3) with 1 ≥ δt > 0 be the radius of the confidence interval of a
[0, 1]-valued i.i.d. process with n samples. Set β > 1 and ECRt(k) = α min{1, CR[0,1](Mnt(k), δt)},
where α > 0. DoE-bandit achieves the following performance:

(Group Regret) E [RT ] ≤MK +
∑

k:∆k>0

8(2αβ + β)2 log δ−1
T

∆k
+ KM3T

∑
t≤T

tδ
1/2
t ,

(Maximum Individual Regret) E
[
R̄T

]
≤ K +

∑
k:∆k>0

8(2αβ + β)2 log δ−1
T

M∆k
+ KM2T

∑
t≤T

tδ
1/2
t ,

(Communication Cost) E[CT ] ≤MK +
∑

k:∆k>0

6M logβ

(
4(2α + 1)

α∆k

)
+ KM3T

∑
t≤T

tδ
1/2
t . (5)

4.3 Discussion

We first present a special case of Theorem 3 and then discuss the significance of our results.
Corollary 4. With the same parameters as Theorem 3 and setting δt ← 1/(K2M6T 2t6),
DoE-bandit achieves the following performance:

(Group Regret) E [RT ] ≤ O

 ∑
k:∆k>0

8(2αβ + β)2 log T

∆k

 , (6)

(Maximum Individual Regret) E
[
R̄T

]
≤ O

 ∑
k:∆k>0

8(2αβ + β)2 log T

M∆k

 , (7)

(Communication Cost) E[CT ] ≤ O

 ∑
k:∆k>0

M logβ

(
2α + 1
α∆k

) . (8)
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Optimality in all three metrics. Corollary 4’s (6) and (7) show that we can recover a
O(
∑

k:∆k>0(1/∆k) log T ) group regret and O(
∑

k:∆k>0(1/∆k) log T/M) individual regret for the
distributed bandit problem, implying that the proposed algorithm attains both the (order-) optimal
group and maximum individual regrets (Wang et al., 2023). In the meantime, compared with the
communication lower bound Ω(max

{∑
k:∆k>0 log ∆−1

k , M
}

) in Theorem 1, the communication up-
per bound of DoE-bandit in (8), i.e., O(M

∑
k:∆k>0 log ∆−1

k ), is optimal in terms of both the agent
number M and the summation

∑
k:∆k>0 log ∆−1

k .

Influence of α and β. Corollary 4’s (8) shows that communication overheads influence the esti-
mation quality through parameters α and β. Generally speaking, β specifies the frequency that DoE
checks the deviation of individual estimates, directly upper bounding the communication overheads
for DoE-bandit. Hence, β seems to have a larger influence in the communication overheads bound
than α. On the other hand, α specifies the radius of the estimate interval CR as well as the threshold
for the estimate deviation ECR, which triggers an actual communication demand.

Results for other i.i.d. processes. In DoE-bandit, the communication overheads on a suboptimal
arm k is approximately O(logβ(ECR1/ECRT )).The threshold value ECRt is set based on that of the
confidence interval with all samples (up to a tunable parameter α). For a Bernoulli process, the mean
always lies in [0, 1]. Hence, we can set ECR1 = 1, which results in O(logβ(1/ECRT )) communication
overheads. By slight modification, the DoE-bandit algorithm can tackle other i.i.d. processes with
similar results obtained. For an i.i.d. process with an unbounded mean, such as the Gaussian process,
the DoE-bandit may choose to start a communication round only when the size of the confidence
interval shrinks to O(

√
M). This will not degrade the regret results guaranteed in Theorem 3, since

the algorithm only has to spend on average O(log T ) samples in shrinking the confidence intervals of
all arms, with an increase of O(K log T ) regret. On the other hand, the communication overheads
is only O(log(

√
M/δt)), since ECR1 can be set to O(

√
M).

5 Conclusions

This paper presented DoE-bandit, a fully distributed algorithm for a cooperative multi-agent multi-
armed bandits problem. DoE-bandit achieves the optimal group and individual regret with constant
communication overhead. We also proposed a new communication lower bound that matches the
constant communication overhead. This implied that our algorithm is near-optimal in all three
metrics. The theoretical claims are verified by numerical experiments and show that DoE-bandit
outperforms prior algorithms. We also conducted numerical simulations to show that DoE-bandit
has the best communication cost among all algorithms in Appendix A.

The core communication policy proposed in this paper could be further extended in multiple di-
rections. To address the exploitation-exploration dilemma in bandit learning, DoE-bandit adopts
an elimination-based strategy, but there also exists other strategy, such as upper confidence bound
and Thompson sampling. As Figure 1 shows UCB-like algorithm has better regret performance, it
is interesting to develop an UCB/TS-based algorithm which achieves better practical performance
with guaranteeing the same optimal theoretical results claimed in this work. Second, one can extend
the work to capture more practical concerns, such as considering an underlying topology for agents,
communication delays between agents, and lossy communication between agents.
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A Numerical Results

In this section, we conduct numerical experiments to corroborate the performance of the DoE-bandit
algorithm. We aim to highlight the advantage of DoE-bandit in group and individual regrets and
in communication costs over start-of-the-art baselines.

Setups and Baselines. In DoE-bandit algorithm, we set parameters α = 1, β = 3 and δt = 1/T 2.
We run 50 trials of each experiment and plot the means as lines and their standard deviations as
shaded regions. We compare the regret and communication costs of DoE-bandit with six baselines,
ComEx (Madhushani & Leonard, 2021), GosInE (Chawla et al., 2020), Dec_UCB (Zhu et al., 2021),
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(a) Communication cost (b) Group regret (c) Individual regret

Figure 1: DoE-bandit (this work) vs. baseline algorithms listed in Table 1

(a) Vary reward gap (b) Vary agent number (c) Vary arm number

Figure 2: Communications: DoE-bandit vs. DPE2 and BatchedMAB

DPE2 (Wang et al., 2020a), UCB-TCOM (Wang et al., 2023)) and BatchedMAB (Karpov & Zhang, 2024)
outlined in Table 1. We note that some of the baseline algorithms are developed for a set of agents
that are connected through an underlying graph topology. Hence, to make the comparison fair, we
consider a complete graph for all algorithms so that any two agents can communicate. Among these
baselines, the most relevant ones to ours are BatchedMAB and DPE2, as they also achieve constant
communications. Especially, Batched has an important parameter λ (≥ 2) that is used to tune
its communication frequency. To make the comparison fair, we pick both λ = 2 and λ = 5 in the
experiments. All other baselines’ parameters follow their default choice.

Experimental Results. Figure 1 reports the comparison results in group regret, individual regret,
and communication costs. Figure 1a shows that DoE-bandit achieves the smallest communication
costs among all algorithms. The experiments is conducted in a multi-agent bandits setting with
K = 100 arms, M = 50 agents, and T = 30K, and each arm is associated with a Bernoulli
distribution with mean randomly taken from the click-through-rate in Ad-Clicks Avito (2015).
Figure 1b reports the group regrets of algorithms. The results show DoE-bandit is not as good
as DPE2, ComEx, and UCB-TCOM. This is because DoE-bandit is based on the arm-elimination policy
and others are UCB-like algorithms. It is known that with the same order-wise regret performance,
UCB algorithms are empirically better than elimination ones in general (Garivier et al., 2016, §6).
Figure 1c reports the maximum individual regrets of agents. UCB-like algorithms perform still better
than others. However, DPE2—one of the other algorithms with constant communication cost—suffer
poor individual regret since DPE2 leverages a leader-follower structure, where the leader agent incurs
high individual regret. For both λ = 2 and λ = 5 cases, BatchedMAB, the other baseline with
constant communication, has relative bad group and individual regret performance.

Figure 2 compares the communication costs of DoE-bandit with the constant communication cost
alternatives DPE2 and BatchedMAB across various parameter settings. Three parameters are analyzed:
(1) reward gap ∆ between arms (K = 10 with mean µ(k) = 0.09 + k∆, M = 5) in Figure 2a; (2)
number of agents M (K = 20) in Figure 2b; and (3) number of arms K (M = 25) in Figure 2c, where
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the reward means of Figures 2b and 2c are also drawn from Ad-Clicks Avito (2015). The log-y-
axis represents cumulative communication costs at the time horizon’s end. DoE-bandit consistently
outperforms DPE2 and BatchedMAB in all scenarios, except for large ∆, where DPE2 excels. Notably,
as ∆ decreases, DoE-bandit’s communication costs remain stable, contrasting with DPE2, which
experiences an increase. This is attributed to the superior O(KM log ∆−1) communication cost of
DoE-bandit compared to DPE2’s O(K2M2∆−2). Lastly, communication costs for all algorithms rise
with increasing M (Figure 2b) or K (Figure 2c), confirming their dependence on K and M as per
their communication cost upper bounds.

B Proof for Regret and Communication Cost Upper Bounds (Theorem
3)

Proof for the Regret Results By running the DoE subroutine, the bandit learning algorithm
can build up a confidence interval for the mean reward of an arm. In Lemma 2, we provide the
estimation performance of DoE in estimating the mean of an arm.

According to the results in Lemma 2, letting ECRt(k) = α min{1, CR[0,1](Mnt(k), δt)}, each agent can
attain the order-optimal estimate (up to a constant factor 2αβ + β) for the mean reward, which
slightly degrades the performance of the bandit algorithm. We prove the regret of DoE-bandit by
using the observation in Lemma 2.

In our analysis, we categorize decisions made by the agents into Type-I and Type-II decisions. Type-
I corresponds to the decisions of an agent when the true mean values of all arms lie in the confidence
intervals calculated by each agent, i.e., for any arm k and agent m,

µ(k) ∈
[
µ̂

(m)
t (k)− (2αβ + β)CR[0,1](Mnt(k), δt), µ̂

(m)
t (k) + (2αβ + β)CR[0,1](Mnt(k), δt)

]
.

Otherwise, Type-II decision occurs, i.e., the actual mean value of some arm is not within the con-
fidence interval calculated by some agents. Note that agents may incur high regret when wrongly
eliminating the optimal arm from the candidate set at some time slot with making a Type-II deci-
sion. To prove the regret, we upper bound the probability that a Type-II decision happens and the
number of pulls of suboptimal arms without any Type-II decision occurring, respectively.

We first upper bound the probability of the occurrence of a Type-II decision. Note that an agent
makes a Type-II decision once the true mean of some arm is outside the confidence interval. For
any time slot t, any agent m and any arm k, from Lemma 2, we have that

µ(k) ̸∈
[
µ̂

(m)
t (k)− (2αβ + β)CR[0,1](Mnt(k), δt), µ̂

(m)
t (k) + (2αβ + β)CR[0,1](Mnt(k), δt)

]
,

with a probability of at most Mtδ
1/2
t . Then, an agent at any time slot makes a Type-II decision

with probability at most KMtδ
1/2
t (there are K arms). Hence, with a union bound, the probability

that a Type-II decision has happened before a time slot s can be obtained by summing up the above
probabilities over investigated time slots (up to s) and agents, which is KM2∑

t≤s tδ
1/2
t .

Now we proceed to upper bound the number of pulls of a suboptimal arm with only Type-I decisions
happening. According to the rule of the elimination-based bandit algorithm, a suboptimal arm
will be removed from the candidate set without further consideration only when the radius of the
confidence interval for this arm reduces to a small value with enough samples. By the following
lemma, we upper bound the number of pulls of suboptimal arms by all agents, i.e., Mnt(k), when
Type-I decision happens.
Lemma 5. At any time t ≤ T , if the optimal arm lies in the candidate set and an agent makes a
Type-I decision with pulling a suboptimal arm k, i.e., I

(m)
t = k, there is

Mnt(k) ≤ 8(2α + 1)2β2 log δ−1
t

∆2
k

+ M.
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Lemma 5’s proof is presented at Appendix B.2. Lemma 5 holds for any arm, and, therefore, the
total number of times of pulling all K arms (before elimination, in a round-robin manner) is upper
bounded by τ := 8K(2α+1)2β2 log δ−1

t

∆2 , where ∆ := mink:∆k>0 ∆k. Hence, if there is no Type-II decision
happening before τ , the optimal arm will stay in the candidate set all the time, and the regret of
DoE-bandit in this case is∑

k:∆k>0

Mnt(k)∆k =
∑

k:∆k>0

(
8(2αβ + β)2 log δ−1

t

∆k
+ M∆k

)
.

On the other hand, if there is a Type-II decision happening before τ , we can upper bound the regret
of DoE-bandit by MT .

Last, with the regrets in the cases with/without a Type-II decision, we can upper bound the expected
regret of the DoE-bandit algorithm.

E [RT ] ≤
∑

k:∆k>0

(
8(2αβ + β)2 log δ−1

T

∆k
+ M∆k

)
+ KM3T

∑
t≤τ

tδ
1/2
t ,

where the first term on the right-hand side corresponds to the regret portion when there is no Type-II
decision before τ , and the second term corresponds to the other case.

Due to the same round-robin arm pulling manner in Line 6 of Algorithm 2, all agents by DoE-bandit
pull the same arm at any time slot, and, therefore, all agents’ individual regrets (rewards) are equal.
So, we obtain the individual regret for each agent by dividing the above total regret upper bound
equally. We summarize the above results and give the regret upper bounds for DoE-bandit in
Theorem 3.

Proof for the Communication Costs We analyze the communication overheads of DoE-bandit
arm by arm. If there is a Type-II decision before τ , we use MT to upper bound the communication
overheads. The expected communication complexity in this case is then

KM3T
∑
t≤τ

tδ
1/2
t . (9)

In the following, we focus on Type-I decisions. For any suboptimal arm k (with ∆k > 0), let τk be
the last time that DoE-bandit pulls the arm k. At τk, we have

4(2αβ + β)CR[0,1] (Mnτk
(k), δt) ≥ ∆k.

The above equation is proved in the proof of Lemma 5 (at Appendix B.2). With ECRτk
(k) =

αCR[0,1](Mnτk
(k), δt), and

4(2αβ + β) 1
α

ECRτk
(k) ≥ ∆k.

Hence, up to time τk, the communications due to arm k is (recall ECR1(k) = 1)

logβ

ECR1(k)
ECRτk

(k) ≤ logβ

(
4(2αβ + β)

α∆k

)
.

The expected number of communications by suboptimal arms is at most∑
k:∆k>0

logβ

(
4(2αβ + β)

α∆k

)
.

For the optimal arm, the number of communications (when there is no Type-II decision) can be
upper bounded by the largest communication overheads of suboptimal arms. That is, the number of
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communications about the optimal arm is upper bounded by O(logβ(1/∆)) where the ∆ corresponds
to the smallest non-zero reward gap. That is because when there are multiple arms in the candidate
set, the optimal arm with others in the candidate set is pulled in a round-robin manner and incurs
the same communication overheads as others in the set; and when there is only one arm left in
the candidate set, the DoE-bandit stops communication. So, to sum up, the total communication
overheads is upper bounded by

∑
k:∆k>0

logβ

(
4(2αβ + β)

α∆k

)
+ logβ

(
4(2αβ + β)

α∆

)
≤ 2 ·

∑
k:∆k>0

logβ

(
4(2αβ + β)

α∆k

)

At each communication time, agents spend totally 3M messages in collecting messages and synchro-
nize the estimates in each agent. In addition, DoE may update the candidate set in agents when
an arm is eliminated, that costs another M(K − 1) messages. Therefore, combined with (9)), the
expected communication overheads of DoE-bandit (the total number of messages) is upper bounded
by (5)).

B.1 A Proof of Lemma 2

We prove the lemma by analyzing the following two cases. Let s denote the last detection point,
i.e., the last time slot (before t) that the condition in Line ?? of Algorithm 2 holds.

Case (1): the agent communicated at the last detection point s. In this case, the estimate µ̂
(m)
t (k)

is obtained by averaging Mns(k) + nt(k)−ns(k) samples. Hence, the following equation holds with
probability 1−Mtδ

1/2
t ,

|µ̂(m)
t (k)− µ(k)|

(a)
≤ CR[0,1](Mns(k) + nt(k)− ns(k), δt)
(b)
≤ CR[0,1](Mns(k), δt)
(c)
≤ CR[0,1](Mns(k), δs)
(d)
≤ βCR[0,1](Mnt(k), δt),

where the inequality (a) is proved by Hoeffding’s inequality and union bound (see below), inequality
(b) is due to that the confidence radius CR increases with a smaller number of samples, inequality
(c) is because δt is decreasing with respect to t and s < t, and the inequality (d) is due to that the
condition in Line ?? is false at time slot t.
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Below, we present the detailed steps for proving inequality (a) as follows,

P
(
|µ̂(m)

t (k)− µ(k)| ≤ CR[0,1](Mns(k) + nt(k)− ns(k), δt)
)

= P

|µ̂(m)
t (k)− µ(k)| ≤

√
log δ−1

t

2 (Mns(k) + nt(k)− ns(k))


= 1− P

|µ̂(m)
t (k)− µ(k)| >

√
log δ−1

t

2 (Mns(k) + nt(k)− ns(k))


(a1)= 1−

M ·t∑
n=1

P

|µ̂(m)
t (k)− µ(k)| >

√
log δ−1

t

2n

∣∣∣∣∣∣Mns(k) + nt(k)− ns(k) = n


× P (Mns(k) + nt(k)− ns(k) = n)

≥ 1−
M ·t∑
n=1

P

|µ̂(m)
t (k)− µ(k)| >

√
log δ−1

t

2n

∣∣∣∣∣∣Mns(k) + nt(k)− ns(k) = n


(a2)
≥ 1−

M ·t∑
n=1

δ
1/2
t ≥ 1−Mtδ

1/2
t ,

where the equation (a1) is due to union bound, and inequality (a2) is by applying Hoeffding’s
inequality.

In this case, the result in Lemma 2 holds.

Case (2): there is no communication at s. Let A be the sum of samples obtained by agent m if
communication happened at s. We have∣∣∣(Mns(k) + nt(k)− ns(k))µ̂(m)

t (k)−A
∣∣∣

=

∣∣∣∣∣(Mns(k)µ̂(m)
aux,s(k) +

(
X

(m)
t (k)−X(m)

s (k)
))
−

(
M∑

m′=1
X(m′)

s (k) +
(

X
(m)
t (k)−X(m)

s (k)
))∣∣∣∣∣

=

∣∣∣∣∣Mns(k)µ̂(m)
aux,s(k)−

M∑
m′=1

X(m′)
s (k)

∣∣∣∣∣ .
The above equation is based on the fact that agent always has the local samples after s no matter
there is communication at s.

Hence,∣∣∣∣µ̂(m)
t (k)− A

Mns(k) + nt(k)− ns(k)

∣∣∣∣ = 1
(Mns(k) + nt(k)− ns(k))

∣∣∣∣∣Mns(k)µ̂(m)
aux,s(k)−

M∑
m′=1

X(m′)
s (k)

∣∣∣∣∣
≤

∣∣∣∣∣µ̂(m)
aux,s(k)− 1

Mns(k)

M∑
m′=1

X(m′)
s (k)

∣∣∣∣∣
(a)
≤ 2αCR[0,1](Mns(k), δs(k))
≤ 2αCR[0,1](Mns(k), δt(k))
≤ 2αβCR(Mnt(k), δt(k)),

where inequality (a) is because the condition in Line ?? in Algorithm 2 does not hold at time
slot s (since there is no communication at s). In this case,

∣∣∣µ̂(m)
aux,s(k)− µ̂

(m′)
aux,s(k)

∣∣∣ ≤ 2ECRs(k) =
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2αCR[0,1](Mns(k), δs) for any agents m and m′. Also, 1
Mns(k)

∑M
m′=1 X

(m′)
s (k) averages all samples

up to s, and hence its value lies between minm′ µ̂
(m′)
aux,s(k) and maxm′ µ̂

(m′)
aux,s(k), which weight partial

local samples with a factor M to replace missing ones. Combining the two facts yields inequality
(a).

Since A contains the same set of samples as the µ̂
(m)
t (k) in Case (1), the following equation also

holds with probability 1−Mtδ
1/2
t :∣∣∣∣ A

Mns(k) + nt(k)− ns(k) − µ(k)
∣∣∣∣ ≤ βCR[0,1](Mnt(k), δt).

Combining the above two equations yields∣∣∣µ̂(m)
t (k)− µ(k)

∣∣∣ ≤ (2α + 1)βCR[0,1](Mnt(k), δt), with probability 1−Mtδ
1/2
t .

As a result, we prove the Lemma 2.

B.2 A Proof of Lemma 5

We consider agent m running the proposed algorithm makes a Type-I decision at time t and I
(m)
t = k.

First, we claim that the following holds.

2(2αβ + β)CR[0,1] (Mnt(k), δt) + 2(2αβ + β)CR[0,1] (Mnt(k∗), δt) ≥ ∆k, (10)

where k∗ is the optimal arm.

Otherwise, we have

µ̂
(m)
t (k∗)− (2αβ + β)CR[0,1] (Mnt(k∗), δt)

= µ̂
(m)
t (k∗) + (2αβ + β)CR[0,1] (Mnt(k∗), δt)− 2(2αβ + β)CR[0,1] (Mnt(k∗), δt)

≥ µ (k∗)− 2(2αβ + β)CR[0,1] (Mnt(k∗), δt)
= µ(k) + ∆k − 2(2αβ + β)CR[0,1] (Mnt(k∗), δt)
(a)
> µ(k) + 2(2αβ + β)CR[0,1] (Mnt(k), δt)

≥ µ̂
(m)
t (k) + (2αβ + β)CR[0,1] (Mnt(k), δt) ,

where inequality (a) uses the negation of (10). It shows the fact that the lower confidence bound of
arm k∗ is larger than the upper confidence bound of arm k, contradicting the rules of the algorithm
to pull arm k.

It follows from Equation (10) that 4(2αβ + β)CR[0,1] (M(nt(k)− 1), δt) ≥ ∆k, since the algorithm
pull arms in a round robin manner. Last, we apply the confidence interval function for a Bernoulli
process, and prove that the number of observations of k received by agent m is upper bounded by

Mnt(k) ≤ 8(2α + 1)2β2 log δ−1
t

∆2
k

+ M.

C Proof for Communication Lower Bound (Theorem 1)

Proof of Theorem 1. We first prove the Ω(
∑

k:∆k>0 log ∆−1
k ) communication lower bound. Let us fix

a suboptimal arm k. To facilitate the proof presentation, we denote n
(m)
t (k) as the accessible number

of observations for arm k of agent m at time t, where the “accessible” observations includes the agent’s
own local observations as well as other agents’ observations received through communications (on
or before time slot t). We first prove two key claims by contradiction as follows,
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Claim 1. The initial communication concerning arm k must occur on or before the time slot when
the accessible number of observations of arm k of all agents reach G log T for a universal constant
G.
Claim 2. If the algorithm communicates regarding arm k at a specific time slot t, it must have
a further communication on arm k either on or before the time slot when the expected accessible
number of observations of arm k of all agents reach twice the count recorded at time slot t.

Proof of Claim 1. If at the initial communication, all agents’ accessible observations of arm k are
all Ω(G log T ) and noticing that all of these observations are local, the total number of pulls on arm
k at time t would be Ω(MG log T ), where the M factor contradicts the near-optimal group regret
(without M) that the algorithm achieves.

Proof of Claim 2. For the communication time slot t, the accessible observations of an agent is
equivalent to the global observations of all agents. So, we have n

(m)
t (k) = nt(k) for all agents m ∈M.

We note that since the algorithm achieves near-optimal regrets, we have that E[nt(k)] = Ω
(

log t
∆2

k

)
.

After time slot t, if there is no communication till time slot t′ such that n
(m)
t′ (k) ≥ 2nt(k) for all

agent m, then all agents more respectively pull arm k for n
(m)
t′ (k)−n

(m)
t (k) ≥ nt(k). Then, the total

number of pulls of arm k between time slots t and t′ is at least Ω(Mnt(k)) = Ω
(

M log t
∆2

k

)
. This M

factor on the number of pulling times of arm k contradicts the near-optimal group regret that the
algorithm achieves. Therefore, there must exist a communication on arm k between time slots t and
t′.

With Claims 1 and 2 and assuming that the algorithm makes E[CT (k)] number of communications
on arm k, then the total number of pulls on arm k is at most 2E[CT (k)]G log T . Since the algorithm
also achieves the near-optimal regret upper bound, we have

2E[CT (k)]G log T ≥ Θ
(

log T

∆2
k

)
,

which yields the communication lower bound for arm k as follows,

E[CT (k)] ≥ Ω
(

log
(

1
G∆2

k

))
= Ω(log ∆−1

k ).

Therefore, summing over all suboptimal arms yields the overall communication lower bound
Ω(
∑

k:∆k>0 log ∆−1
k ).

Next, we prove another communication lower bound Ω(M), which, together with the above bound,
concludes the proof. Blow, we prove the bound via contradiction. That is, we start from assuming
the communication is less than cM where c is a constant.

Denote Y (m) as the number of integers or real numbers that agent m sends or receives throughout
a run. Y (m) is a random variable. Since expected communication cost is less than cM , we have

M∑
m=1

E[Y (m)] ≤ cM.

Denote S as the set of M/2 agents with smaller E[Y (m)]. The expected communication cost of any
agent m ∈ S is at most 2c. For any agent m ∈ S, we have P(Y (m) ≥ 1) ≤ E[Y (m)] ≤ 2c, where
the first inequality is by Markov’s inequality. That is, for any of these agents, the probability of
communicating with some agent is less than 2c. Suppose that agent m is such an agent. Then, we
can map the communication protocol to a single-agent algorithm by simulating the learning process
of agent m.
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The simulation proceeds as follows: We engage with a single-agent bandit over a time horizon of T ,
executing the code corresponding to agent m within the specified protocol. In the absence of any
communication requirements, we advance to the subsequent line in agent m’s code. However, if the
code initiates message transmission or awaits a message, we conclude the execution. Throughout
the remaining time steps, we employ a single-agent optimal algorithm, specifically the one employed
to achieve the optimal regret upper bound, denoted as R∗

T .

Then, if agent m’s code has δ probability of involving in communication, and if agent m’s regret
R

(m)
T ≤ A (in its original distributed algorithm design), via this reduction, we can obtain an algo-

rithm for single-agent MAB with expected regret

RT ≤ A + δ ·R∗
T .

By the regret lower bound result of Lai et al. (1985, Theorem 1), we have∑
k>1

∆k

KL(µk, µ1) ≤ lim inf
T →∞

RT

log T
≤ lim inf

T →∞

A + δ ·R∗
T

log T
≤ lim inf

T →∞

A

log T
+ δ ·

∑
k>1

∆k

KL(µk, µ∗) .

That is,
lim inf
T →∞

A

log T
≥ (1− δ)

∑
k>1

∆k

KL(µk, µ1) ≥ (1− 2c)
∑
k>1

∆k

KL(µk, µ1) .

If setting c = 0.0005, then the regret of any agent m in set S fulfills the above lower bound. So, the
total regret is at least ∑

m∈S
lim inf
T →∞

A

log T
≥
(

1
2 − c

)
·M

∑
k>1

∆k

KL(µk, µ1) ,

which contradicts the near-optimal regret upper bound (without the linear dependence on M).
Therefore, a MA2B algorithm with near-optimal regret requires at least Ω(M) communications.
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