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ABSTRACT

We present Causal-Adapter, a modular framework that adapts frozen text-to-image
diffusion backbones for counterfactual image generation. Our method enables
causal interventions on target attributes, consistently propagating their effects to
causal dependents without altering the core identity of the image. In contrast to
prior approaches that rely on prompt engineering without explicit causal structure,
Causal-Adapter leverages structural causal modeling augmented with two attribute
regularization strategies: prompt-aligned injection, which aligns causal attributes
with textual embeddings for precise semantic control, and a conditioned token
contrastive loss to disentangle attribute factors and reduce spurious correlations.
Causal-Adapter achieves state-of-the-art performance on both synthetic and real-
world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute
control and 87% FID reduction on ADNI for high-fidelity MRI image generation.
These results show that our approach enables robust, generalizable counterfactual
editing with faithful attribute modification and strong identity preservation.

1 INTRODUCTION
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Figure 1: Non-causal editing modifies only the
target attribute (e.g. age, gender); causal editing
propagates changes to related attributes (e.g. beard,
baldness) enforced by the causal graph.

Answering counterfactual questions (e.g. infer-
ring what an event would have happened un-
der an alternative action) requires understanding
the cause–effect relationships among variables
and performing hypothetical reasoning (Pearl,
2009; Schölkopf et al., 2021; Weinberg et al.,
2024). Classical generative models typically
tackle counterfactual-style tasks such as image
editing or style transfer in a non-causal manner,
whereas subsequent work augments such models
with explicit structural causal models (SCMs) to
implement abduction–action–prediction (Pearl,
2013; Pawlowski et al., 2020; De Sousa Ribeiro et al., 2023). This design drives advances in coun-
terfactual image generation (Figure 1) by enforcing edits consistent with an implied causal graph
which enables critical domain-specific counterfactual generation applications, such as simulating
medical images with fine-grained anatomical changes associated with aging or disease progression
to improve clinical interpretation (Starck et al., 2025). Faithful counterfactual generation remains
challenging, as real-world attributes are often causally entangled (e.g., only males can grow beards).
This entanglement complicates disentangling factors and generalizing edits, making it nontrivial to
ensure that interventions yield the intended visual effect while keeping non-intervened attributes
invariant and preserving identity-specific details (Komanduri et al., 2024a).

Counterfactual Image Generation. Early approaches modeled counterfactual image generation
using normalizing flows (Papamakarios et al., 2021; Winkler et al., 2020), variational autoencoders
(VAEs) (Kingma & Welling, 2013; Yang et al., 2021), hierarchical VAEs (Vahdat & Kautz, 2020;
De Sousa Ribeiro et al., 2023), and generative adversarial networks (GANs) (Goodfellow et al.,
2014; Kocaoglu et al., 2018), and encouraged attribute disentanglement through variational objec-
tives (Higgins et al., 2017). However, variational optimization inevitably introduces uncertainty into
the latent space, which can lead to posterior collapse of meaningful factors, creating a trade-off
between image fidelity and controllable attribute manipulation (Figure 2a). Recent works integrate
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Figure 2: A sketch comparison of counterfactual image generation methods based on: (a) VAE or
GAN, which fail to achieve high-fidelity results. (b) Diffusion SCM and (c) Diffusion autoencoder,
which are sensitive to spurious correlations. (d) T2I based editing, which requires heavy prompt
engineering. (e) Vanilla Causal-Adapter, which injects causal attributes into image-embedding. (f)
Causal-Adapter with attribute regularization, which injects causal attributes into learnable textual
embeddings with contrastive optimization. Detailed discussion is presented in Appendix A.

diffusion models with the SCM, capitalizing on its high perceptual quality to explore counterfac-
tual identifiability (Sanchez & Tsaftaris, 2022; Rasal et al., 2025; Komanduri et al., 2024c; Pan &
Bareinboim, 2024; Xia et al., 2025). Despite domain-specific tuning, previous approaches perform
disentanglement only in auxiliary encoders, which has limited effect on diffusion latents and leads to
incomplete disentanglement (Figure 2b and c). This makes models prone to spurious correlations,
where target factor interventions often cause unintended changes in non-intervened attributes.

Text-to-Image based Editing. An alternative perspective is to view counterfactual image generation
as a text-to-image (T2I) based editing, which typically relies on an inversion process (Song et al.,
2021). The aim is to generate a target edited image from projected latent states with condition
manipulation (Hertz et al., 2023; Ho & Salimans, 2021). To reduce reconstruction error and preserve
essential contents, several methods optimize either the unconditional text embedding (Mokady et al.,
2023; Xu et al., 2024; Miyake et al., 2025; Ju et al., 2024; Dong et al., 2023), or learn conditional
concept embeddings for better attribute disentanglement (Gal et al., 2023; Vinker et al., 2023; Jin
et al., 2024). However, generic T2I based editing remains insufficient for counterfactual generation.
Existing methods heavily rely on carefully engineered inversion prompts to obtain reliable editing
guidance. These approaches lack an explicit, learnable SCM over semantic attributes, making
them difficult to guarantee both causal faithfulness and identity preserved counterfactual image
generation (Figure 2d). A broader discussion of related works can be found in Appendix A.

Herein, we propose Causal-Adapter, an adaptive and modular framework that tames text-to-image
diffusion model, such as Stable-Diffusion (SD) (Rombach et al., 2022), for counterfactual generation.
Unlike prior diffusion-based methods that require considerable re-training or fine-tuning (Sanchez &
Tsaftaris, 2022; Komanduri et al., 2024c; Pan & Bareinboim, 2024; Rasal et al., 2025), our method
simply injects causal semantic attributes into a frozen backbone via a pluggable adapter (Figure 2e).
Inspired by advances in controllable diffusion (Zhang et al., 2023; Zhao et al., 2023; Mou et al., 2024;
Li et al., 2025), we investigate integrating semantic attributes with image embeddings as additional
conditions. We find that naive fusion fails to achieve sufficient disentanglement or semantic alignment
with spatial features in the diffusion latents. To address this, we introduce two regularization strategies
that align causal semantic attributes with textual embeddings, improving disentanglement and causal
faithfulness (Figure 2f). Our main contributions are summarized as follows:

• Our motivational studies revealed that relying solely on a frozen text-to-image diffusion model
with prompt tuning is insufficient for counterfactual image generation, as it fails to jointly represent
causal semantic attributes and image embeddings, leading to imprecise reasoning and edits. This
underscores the need to inject causal semantics into diffusion models.

• We propose Causal-Adapter, a framework that employs an adapter encoder to learn causal interac-
tions between semantic variables. These interactions are injected into a frozen diffusion backbone
and jointly optimized, introducing a dynamic prior that enables faithful counterfactual generation.

• To enhance causal disentanglement between semantic variables, we introduce two regularization
strategies: Prompt-Aligned Injection (PAI) and Conditioned Token Contrastive Loss (CTC). These
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Figure 3: Motivational study and preliminary counterfactual generation results between T2I
methods and Causal-Adapter. (a) Fine-grained anatomical counterfactual editing of brain ventricular
volume using inversion-based editing (NTI (Mokady et al., 2023)), multi-concept prompt-learning
editing (MCPL (Jin et al., 2024)), and our approach. (b) Comparison of counterfactual editing
results on human faces. (c) Averaged cross-attention maps from the base Causal-Adapter and the
Causal-Adapter with regularizers. Full results and technical details are presented in Appendix B.

strategies separate token embeddings across conditions, enhancing causal representation learning
and reducing spurious correlations for more precise counterfactual reasoning.

• We validate Causal-Adapter through extensive experiments on both synthetic and real-world
datasets, including human face editing and medical image generation. Our method consistently
achieves state-of-the-art performance across key metrics: counterfactual effectiveness (up to 50%
MAE reduction on ADNI), realism (81% FID reduction on CelebA), composition (86% LPIPS
reduction on CelebA), and minimality (4% CLD reduction on ADNI).

2 METHODOLOGY

We first present the preliminaries in Section 2.1, followed by a motivational study in Section 2.2. This
study examines the systematic limitations of current T2I based editing methods for counterfactual
generation and emphasizes the need to leverage causal semantic attributes for producing faithful
counterfactuals (Figure 3). Motivated by these findings, we further introduce the proposed Causal-
Adapter in Section 2.3 and describe our regularization strategies in Section 2.4, which further enhance
counterfactual generation through semantic disentanglement.

2.1 PRELIMINARIES

Structural Causal Model (SCM). SCM provides a formal framework for modeling causal rela-
tionships between variables (Pearl, 2010). An SCM is defined as a triplet S = ⟨Y, F, U⟩, where
Y = {yi}Ki=1 denotes a set ofK endogenous (observed) variables, U = {ui}Ki=1 is a set of exogenous
(latent) variables, and F = {fi}Ki=1 is a set of deterministic functions defining yi = fi(Pai, ui),
with Pai ⊆ Y \ {yi} denoting the parent variables of yi. The structural assignments of the SCM
induce a directed acyclic graph (DAG) G, where each node represents a variable yi, and each edge
Pai → yi represents a direct causal dependency between variables Pai and yi. A SCM is called
Markovian if the exogenous variables are mutually independent p(U) =

∏K
i=1 p(ui). A Markovian

causal model induces the unique joint observational distribution that satisfies the causal Markov
condition pS(Y ) =

∏K
i=1 p(yi | Pai).

Counterfactual Reasoning. Counterfactual reasoning aims to answer queries “Given observation
Y , what would yi have been if its parents Pai had been different?” This is formalized by the
abduction–action–prediction procedure (Pearl, 2013; Pawlowski et al., 2020; Shen et al., 2022):

1. Abduction: inferring posterior over exogenous variables consistent with observation, pS(U | Y ).
2. Action: perform an intervention do(yi = ỹi), which replaces the structural function fi with a

constant assignment. This yields a modified SCM S̃ = ⟨Ỹ , F̃ , U⟩, where Ỹ and F̃ denote the
modified endogenous variables and structural mechanisms respectively.

3. Prediction: compute the counterfactual outcome by evaluating pS̃(Ỹ ) under the modified structural
mechanism and the inferred exogenous noise.
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Text-to-image Diffusion Model (T2I). T2I models are a class of probabilistic generative mod-
els that synthesize images conditioned on textual prompts by progressively denoising Gaussian
noise (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022). Given an input image x, a
frozen image encoder E maps it to a latent representation z0 = E(x). A conditional text embedding
V = cϕ(Prompt) is obtained from a pre-trained text encoder cϕ with parameters ϕ, where Prompt
denotes the input text. To train the denoising network ϵθ, Gaussian noise ϵ ∼ N (0, I) is added to z0
to obtain a noisy latent zt at timestep t ∼ Uniform{1, . . . , T}. The denoising loss LDM is defined as:

min
θ,ϕ

EE(x),V,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, V )∥22

]
. (1)

2.2 MOTIVATIONAL STUDY

To examine the generalization limits of existing text-to-image (T2I) based models for counterfactual
image generation, we conducted a motivational study on two real-world datasets: CelebA for human
faces and ADNI for brain MRI. Preliminary results are shown in Figure 3, including counterfactual
image generation based on different conditional signals in brain volume MRI, as well as interventions
on different target attributes in the CelebA dataset. Our study reveals two systematic limitations of
directly applying T2I based models to counterfactual generation:

• Text-only prompting is inadequate for counterfactual generation. Counterfactual generation
should yield consistent visual changes when a single attribute is intervened. However, current
T2I based models ignore continuous attributes, making fine-grained edits infeasible, and hence
particularly concerning for safety-critical domains such as medical imaging (Figure 3a).

• Existing T2I based counterfactual generation suffer from attribute entanglement. Current
methods often confuse (entangle) unrelated attributes or require instance-specific fine-tuning,
underscoring the need for explicit causal modeling and controllable semantic representations for
faithful counterfactual generation (Figure 3b).

2.3 OVERVIEW OF CAUSAL-ADAPTER

Recent advances on controllable diffusion methods (Zhang et al., 2023; Zhao et al., 2023; Mou et al.,
2024; Li et al., 2025) show that a frozen T2I diffusion backbone can be steered by auxiliary control
signals (e.g., segmentation masks or human poses) supplied through a trainable side module. We
adopt the same high-level recipe by treating causal semantic attributes as the auxiliary control signals.
The causal mechanism between attributes is then learned and injected explicitly into the diffusion
backbone via a compact modular encoder that we term as Causal-Adapter (Figure 4).

Causal Mechanism Modeling. Let x denote an image and Y = {yi}Ki=1 denote a vector of
semantic variables, where each yi represents a scalar value corresponding to a high-level semantic
attribute. We assume a known causal graph G encodes the causal relationships among the variables
in Y . Let A ∈ {0, 1}K×K be the binary adjacency matrix of G, where the i-th row Ai ∈ {0, 1}K
indicates the parent variables Pai of the i-th attribute yi, i.e., Aij = 1 if and only if yj ∈ Pai. We
model each causal mechanism fi using a nonlinear additive noise model such that:

ȳi := fi(Pai, ui) = fi(Ai ⊙ Y ;ωi) + ui, ui ∼ N (0, σ2
i ), (2)

where ωi are the learnable parameters and ⊙ denotes element-wise multiplication. ȳi is the model’s
prediction of yi under the change of parent variables Pai. For root nodes (Ai = 0), we simply set
ȳi = yi as no causal parents exist. The row vector Ai acts as a binary mask on Y , passing only
the true parents of yi to fi. To estimate the parameters of mechanisms F = {fi}Ki=1 and the noise
variances {σi}Ki=1, we minimize the negative log-likelihood of the observations:

LNLL := −
K∑
i=1

log p
(
yi | fi(Pai, ui)

)
=

1

2

K∑
i=1

∥yi − ȳi∥22
σ2
i

+ log(2πσ2
i ). (3)

Unlike prior methods that infer endogenous and exogenous from latent image features (Yang et al.,
2021; Komanduri et al., 2024b), we operate directly in the observed semantic attribute space. This
reduces reliance on the quality of learned visual representations and enables exact, interpretable
do-interventions on attributes. The mechanism modeling can be transferred across domains by
simply replacing the attribute set and causal graph G. Moreover, it is modular that any differentiable
alternatives (e.g., DeepSCM (Pawlowski et al., 2020)) can be seamlessly integrated.
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Figure 4: Method overview. A counterfactual prompt and input image x are fed into a pretrained
text-to-image diffusion model with a learnable Causal-Adapter ϵ̈ψ. Causal mechanisms, modeled
over a known causal graph and attributes yi, are injected into token embeddings via Prompt-Aligned
Injection (PAI) to align semantic and spatial features. The adapter ϵ̈ψ operates alongside the frozen
diffusion U-Net ϵθ, optimized with MSE LDM and a Conditioned Token Contrastive (CTC) loss LCTC
to enforce disentanglement. At inference, interventions on yi update token embeddings, and the
counterfactual x̄ is generated using the abducted exogenous noise z⋆t . Optionally, Attention Guidance
(AG) updates the cross-attention map of intervened tokens (e.g. age, beard, bald) to achieve localized
editing and preserving non-intervened attributes identity (e.g. human, gender).

Integrating Causal Conditions into a Frozen T2I Backbone. Prior attempts have treated causal
attributes as the conditioning signal to the diffusion backbone, which is computationally expensive as
it requires retraining the entire model when switching across datasets (Sanchez & Tsaftaris, 2022;
Komanduri et al., 2024c; Rasal et al., 2025). To overcome this limitation, we introduce a branch
module that delivers causal guidance without modifying the backbone parameters to preserve the
flexibility and scalability of a pretrained T2I model. Given the image latent representation zt = E(x, t)
at diffusion step t and the text embeddings V , we instantiate a half-scale replica ϵ̈ψ of the denoiser
ϵθ. This replica specializes ϵ̈ψ in injecting control signals and is parameterized by ψ. The causal
attributes Y are added to zt and processed by ϵ̈ψ:

rt := ϵ̈ψ
(
zt ⊕ Y, t, V

)
, (4)

the residuals rt are injected into the mid- and up-sampling blocks of the frozen denoiser ϵθ. During
training, we keep all backbone parameters fixed and optimize only ψ under the loss in Eqn. 1.

Counterfactual Image Generation. We implement counterfactual generation under the abduc-
tion–action–prediction procedure via DDIM inversion and sampling (Song et al., 2021). Let
Hθ(zt, V, t) denote the DDIM inversion operator and let H−1

θ be its generative inverse. The pro-
cedure is as follows: (1) Abduction: given an observed image x, we inject the original condition
residuals rt and run Hθ(zt=0, rt, V, t) to recover the corresponding exogenous noise z⋆T . (2) Action:
we intervene yi by setting yi← ȳi via do(yi = ȳi), propagate the attribute change through Eqn. 2 and
Eqn. 4 to obtain the updated Ȳ = {ȳi}Kk=1 and its residuals r̄t. (3) Prediction: the counterfactual
outcome is generated with H−1

θ (z⋆t=T , r̄t, V, t). Optionally, classifier-free guidance (CFG) (Ho &
Salimans, 2021) can be applied to amplify the counterfactual signal with guidance weight α:

ϵ̃θ(zt, r̄t, t, V,∅) = α ϵθ(zt, r̄t, t, V ) + (1− α) ϵθ(zt, r∅t , t,∅), (5)

where ∅ = cϕ(“ ”) is the null-text embedding, and r∅t := ϵ̈ψ(zt ⊕ Ȳ , t, ∅) are the residuals
computed under the null-text condition.
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2.4 REGULARIZING THE CAUSAL-ADAPTER

A key challenge in counterfactual generation is ensuring that interventions modify only the intended
attribute while leaving others unaffected. Prior work highlights that achieving such disentanglement in
the latent space is crucial for faithful counterfactuals (Yang et al., 2021; Shen et al., 2022; Komanduri
et al., 2024b; De Sousa Ribeiro et al., 2023; Komanduri et al., 2024c; Rasal et al., 2025). To assess
the degree of disentanglement in a multi-modal setting, we use cross-attention maps to reveal attribute
separation in latent space. Figure 3c visualizes averaged cross-attention maps across total denoising
time steps among all Causal-Adapter variants. Plain Causal-Adapter, which directly injects causal
attributes into the image embedding, fails to align attribute semantics with spatial features and disrupts
attribute independence, resulting in entangled, off-target edits. To tackle this issue, we introduce two
regularization terms that reinforce the conditional causal attribute disentanglement.

Prompt Aligned Injection. Causal conditions Y are numeric attributes that lack direct alignment
with pixel-level representations but are semantically closer to text embeddings. Inspired by prior
finding (Yang et al., 2024) that disentangled tokens in the prompt can guide cross-attention to align
semantics with spatial structure in diffusion latents, we inject Y through the prompt channel. This
allows the cross-attention module to propagate attribute semantics into spatial image features during
generation. We introduce a prompt-aligned injection (PAI) mechanism that maps each causal attribute
to a learnable token embedding. Let C = [ c1, . . . , cK ]⊤ ∈ RK×d denote the embeddings of K
placeholder tokens with dimension d. Each attribute yi is mapped into the text space via a small
linear projector gi : R→Rd. We form the attribute-injected token embeddings:

vi(yi) = ci + gi(yi), V (Y ) = [ v1(y1), . . . , vK(yK) ]⊤ ∈ RK×d. (6)

The set V (Y ) serve as the conditioning input to both the frozen denoiser and the adapter via cross-
attention. During training, we jointly optimize the adapter ψ, the placeholders token embeddings C,
and the projectors G = {gi}Ki=1 using the standard MSE:

min
ψ,G,C

Ez,r,Y,ϵ,t
[∥∥∥ϵ− ϵ̂θ,ψ(zt, rt, V (Ȳ ), t

)∥∥∥2
2

]
, (7)

where ϵ̂θ,ψ denotes the U-Net prediction modulated by the adapter with PAI. At inference, the learned
placeholders C and projectors G are reused to construct V (Ȳ ) for counterfactual query. Notably,
PAI only updates token-level embeddings without fine-tuning the CLIP tokenizer or pretrained text
encoder, ensuring compatibility between counterfactual queries and existing T2I backbones.

Conditioned Token Contrast (CTC). Motivated by prior efforts that contrastive objectives improve
concept separation and reduce cross-factor leakage (Jin et al., 2024; Liu et al., 2025), we introduce a
token-conditioned contrastive loss that enforces each placeholder token to capture only a single causal
factor. Given a batch with B samples and K attributes (tokens), PAI produces a batch of textual
embeddings {vkb }

B,K
b=1,k=1. For a specific anchor (b, k), positive pairs are same attribute token across

samples {vkb′ | b′ ̸= b} and negative pairs are different attribute tokens across samples {vk′b | k′ ̸= k}.
By enforcing inter-token invariance (positive pairs) and intra-token separation (negative pairs), CTC
reduces attribute entanglement and suppresses spurious correlations. We implement the objective
using InfoNCE (Oord et al., 2018; Chen et al., 2020):

LCTC =
1

BK

K∑
k=1

B∑
b=1

− sim(vkb , v
k
b′)/τ + log

( K∑
k′=1,k′ ̸=k

B∑
b′=1,b′ ̸=b

exp
(
sim(vkb , v

k′

b′ )/τ
)) (8)

where sim denotes the cosine similarity and τ is the temperature. Our final training objective becomes:

L = LDM + λLCTC, (9)

λ denotes a scaling coefficient. The proposed regularizers improve semantic–spatial alignment in the
latent space (Figure 3c) and reduce spurious correlations (Figure 10c). The learned attention maps can
be leveraged for localized editing through attention-guided manipulation. Following Ju et al. (2024),
interventions are applied only to cross-attention weights corresponding to targeted tokens, while
attention for non-intervened tokens is preserved. This ensures that edits remain spatially localized
(e.g., gender) without altering unrelated attributes (e.g., hairstyle), improving identity preservation
without introducing extra training objectives. Full algorithm is presented in Appendix. C.3.
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Table 1: Intervention effectiveness on Pendulum test set. We report MAE from pretrained regressors
under four interventions. w/ CM: with causal mechanisms; w/o CM: without causal mechanisms; w/
GT: ground-truth labels injected. “∼” denotes descendant attributes remain unaffected. The table
follows the causal graph: e.g., under the “Pendulum (p) MAE”, do(p) or do(l) report the pendulum
MAE after intervening on p or l.

Method Pendulum (p) MAE ↓ Light (l) MAE ↓ Shadow Length (sl) MAE ↓ Shadow Position (sp) MAE ↓
do(p) do(l) do(sl) do(sp) do(p) do(l) do(sl) do(sp) do(p) do(l) do(sl) do(sp) do(p) do(l) do(sl) do(sp)

1. CausalVAE 24.86 23.03 20.47 11.58 34.20 26.01 35.49 47.06 1.946 1.430 2.020 1.720 52.52 72.50 57.03 32.78
2. DisDiffAE 0.668 0.648 0.647 0.647 0.656 0.654 0.630 0.651 0.550 0.527 0.560 0.516 0.474 0.475 0.479 0.534
3. CausalDiffAE 0.297 0.132 0.031 0.034 0.045 0.434 0.035 0.064 0.136 0.322 0.492 0.082 0.146 0.303 0.064 0.471

4. Oursw/ CM 0.014 0.035 0.043 0.259 0.045 0.041 0.058 0.120 0.028 0.051 0.489 0.110 0.030 0.033 0.041 0.336
5. Oursw/o CM 0.159 0.183 ∼ ∼ 0.060 0.173 ∼ ∼ 0.143 0.235 ∼ ∼ 0.086 0.155 ∼ ∼
6. Oursw/ GT 0.013 0.033 ∼ ∼ 0.043 0.039 ∼ ∼ 0.025 0.036 ∼ ∼ 0.028 0.035 ∼ ∼

3 EXPERIMENTS

We conduct extensive experiments on four counterfactual image generation datasets across different
domains: the synthetic Pendulum dataset (Yang et al., 2021), the human-face dataset CelebA (Liu
et al., 2015) and its high-resolution restoration CelebA-HQ (Karras et al., 2017), and the medical
imaging dataset Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen et al., 2010). We
follow the benchmarking experimental settings (Melistas et al., 2024; Komanduri et al., 2024c; Rasal
et al., 2025) for fair comparison. During evaluation, we follow the official setups for each of the
datasets and report: (1) Effectiveness: whether the intervention succeeds, measured by pretrained
classifiers using F1-score or MAE depending on the attribute type. (2) Composition: reconstruction
quality under null interventions, measured by MAE and LPIPS distance. (3) Realism: visual quality
of counterfactual images, evaluated with Fréchet Inception Distance (FID). (4) Minimality: non-
intervened attributes remain minimally affected, assessed with the Counterfactual Latent Divergence
(CLD) metric. Implementation details are presented in Appendix C.

3.1 RESULTS

do(𝑠𝑙)
do(𝑙)

do(𝑝)
do(𝑠𝑝)

Image traversal editing

𝑝:	Pendulum Angle, 𝑙: Light Position
𝑠𝑙: Shadow Length, 𝑠𝑝: Shadow Position

Causal Graph for Pendulum

C
hange 

Pendulum
 Angle

C
hange

Light Position
C

hange
Shadow

 Length
C

hange
Shadow

 Position

Figure 5: Pendulum counterfactuals with traversal edit-
ing along each attribute.

Synthetic Imaging Counterfactuals.
We first evaluate our approach on the
Pendulum dataset, which consists of four
continuous causal variables (pendulum
angle, light position, shadow length,
and shadow position). We compare
against CausalVAE (Yang et al., 2021),
as well as diffusion-based methods
DisDiffAE (Preechakul et al., 2022) and
CausalDiffAE (Komanduri et al., 2024c),
using the causal graph shown in Figure 5. As reported in Table 1, our method (row 4) achieves
state-of-the-art intervention performance across most attributes. In particular, under do(l) (light
intervention), we obtain up to a 91% reduction in MAE for light prediction (from 0.434 to 0.041),
indicating highly accurate control over light movement. Moreover, when intervening on light, our
approach correctly preserves the pendulum angle while inducing causal changes in the descendant
shadow attributes (shadow length and position), consistent with the real-world physical law. We
further conduct an investigation into the role of causal mechanisms. Without explicit causal
mechanisms (row 5), the model exhibits larger intervention errors, underscoring the necessity of
updating semantic variables with causal dependencies during generation. In contrast, injecting
synthetic ground-truth labels (row 6) yields performance close to ours (row 4), indicating that our
causal mechanism injection provides a principled approximation to ground-truth causal reasoning,
generating precise and faithful counterfactuals over all attributes as shown in Figure 5.

Human Face Counterfactuals. Following the benchmarking of Melistas et al. (2024), we evaluate
Causal-Adapter on CelebA test set for human face counterfactual generation across four categorical
attributes (age, gender, beard, bald) with the causal graph shown in Figure 1. We also incorporate
attention guidance to perform localized editing and assess the utility of our learned attention maps.
Table 2 reports intervention effectiveness, while Table 3 summarizes composition, realism, and
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Table 2: Intervention effectiveness on CelebA test set. Average F1 scores under four interventions.

Method Age (a) F1 ↑ Gender (g) F1 ↑ Beard (br) F1 ↑ Bald (bl) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

1. VAE 35.0 78.2 81.6 81.9 97.7 90.9 95.9 97.3 94.4 82.8 29.6 94.5 2.3 49.6 4.5 41.2
2. HVAE 65.4 89.3 90.8 89.9 98.8 94.9 99.4 95.0 95.2 95.1 44.1 91.6 2.0 86.0 4.5 61.1
3. GAN 41.3 71.0 81.8 79.9 95.2 98.2 92.0 96.1 90.8 83.8 23.3 90.7 2.1 82.0 5.5 49.2

4. Ours 58.5 89.8 94.0 89.4 99.6 99.9 74.5 92.5 99.7 96.1 52.1 98.1 59.2 91.2 74.5 58.8

with attention guidance for localized editing
5. Ours 57.1 89.5 94.5 81.5 99.6 99.7 73.8 89.2 99.7 96.8 48.2 96.6 38.7 78.4 47.7 51.4

Table 3: Composition, realism and minimal-
ity results on CelebA test set. “-” indicates
attention guidance was not applied for recon-
struction.

Method Composition Realism Minimality
MAE ↓ LPIPS ↓ FID ↓ CLD ↓

1. VAE 18.695 0.282 59.397 0.299
2. HVAE 7.143 0.122 35.712 0.305
3. GAN 60.120 0.276 27.861 0.304

4. Ours 3.535 0.017 8.152 0.310

with attention guidance for better realism and minimality
5. Ours - - 5.213 0.301

O
ur
s

G
AN

H
VA
E

VA
E

Image do(age) do(gender) do(beard) do(bald)

O
ur
s(
w
/A
G
)

Image do(age) do(gender) do(beard) do(bald)

Figure 6: CelebA counterfactuals from Causal-
Adapter compared with prior methods.

minimality. Compared with VAE, HVAE, and GAN, our method achieves best performance across
most interventions, including up to an 86% reduction in LPIPS (composition, from 0.122 to 0.017) and
an 79% reduction in FID (realism, from 27.861 to 8.152). HVAE achieves competitive effectiveness
via post-training classifier optimization but produces classifier-biased artifacts and reduced fidelity
(Figure 6). Besides, our method delivers significant improvements under do(a) and do(br) on F1
score of bald attribute, demonstrating causal faithfulness in representing baldness across diverse
individuals. As illustrated in Figure 6, Causal-Adapter can successfully add baldness to both male
and female under do(bl), and under interventions on causal parents such as do(a), it can jointly edit
age and baldness, whereas baselines fail to maintain causal consistency. Further localized editing with
attention guidance balances intervention effectiveness and identity preservation, achieving the best
FID (from 8.152 to 5.213). Qualitative results confirm that the learned attention maps enable precise,
localized detailed editing (e.g., modifying gender without altering hairstyle), enable Causal-Adapter
to preserve core identity while enforcing causal interventions. Full results are in Appendix E.2.

Brain Imaging Counterfactuals We further evaluate our method on ADNI dataset, which includes
six attributes in both categorical variables (ApoE, Sex, Slice) and continuous variables (Age, Brain
Volume, Ventricular Volume). Following Melistas et al. (2024), we intervene on three generative
conditioning attributes (Brain Volume, Ventricular Volume, Slice) and report the results in Table 4.
Our approach achieves best performance in intervention effectiveness (up to 50% MAE reduction in
fine-grained edits) and minimality, while also delivering strong realism (87% FID reduction) even
without attention guidance. Qualitative results in Figure 7 further show that our model produces sharp
and localized interventional changes consistent with the causal graph. For example, edits to ApoE,
Age, or Sex appropriately influence Brain and Ventricular Volumes. In particular, fine-grained edits to
Ventricular Volume visibly enlarge the ventricle region while faithfully preserving subject identity.

High-Resolution Face Counterfactuals We further compare Causal-Adapter with recent state-
of-the-art counterfactual methods including VCI (Wu et al., 2025), HVAE (De Sousa Ribeiro et al.,
2023), and DiffCounter (Rasal et al., 2025) on high-resolution human face dataset CelebA-HQ. We
follow the same settings in DiffCounter for fair comparison, focusing on three categorical variables
(glasses, smile, mouth-open). The quantitative results are presented in Table 5, with an additional
reversibility metric that measures how well the generated counterfactuals can be recovered back to the
original observations. Our Causal-Adapter (row 4) achieves intervention effectiveness comparable to
DiffCounter, while substantially improving both reversibility and identity preservation. For example,
under the smile intervention, our method reduces LPIPS by 57% (from 0.66 to 0.028), and for
glasses reversal, it reduces L1 by 73% (from 0.185 to 0.049). Qualitative results in Figure 8 further
demonstrate that our model performs causal faithful generation. The reversibility analysis empirically

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Effectiveness on ADNI test set, evaluated with MAE/F1 from pretrained regressors/classifiers
(std. dev. reported). Composition, realism, and minimality metrics are also included.

Method Brain volume (b) MAE ↓ Ventricular volume (v) MAE ↓ Slice (s) F1 ↑ Composition Realism Minimality
do(b) do(v) do(s) do(b) do(v) do(s) do(b) do(v) do(s) MAE ↓ LPIPS↓ FID↓ CLD↓

1. VAE 0.170.03 0.150.06 0.150.06 0.080.05 0.200.04 0.080.05 0.520.15 0.480.15 0.460.10 18.88 0.306 278.245 0.352
2. HVAE 0.090.03 0.120.06 0.130.06 0.060.04 0.040.01 0.060.04 0.380.15 0.410.16 0.410.11 3.38 0.101 74.696 0.347
3. GAN 0.170.02 0.160.07 0.160.06 0.120.02 0.220.03 0.120.03 0.140.03 0.160.03 0.050.02 24.26 0.268 113.749 0.353

4. Ours 0.090.01 0.110.03 0.110.03 0.030.01 0.030.01 0.030.01 0.530.09 0.550.09 0.480.06 3.54 0.035 9.130 0.346

with attention guidance for localized editing
5. Ours 0.100.01 0.140.04 0.140.06 0.100.02 0.040.01 0.100.02 0.550.08 0.570.08 0.460.08 - - 9.066 0.332

𝑎𝑝:	ApoE, 𝑠𝑥: Sex, 𝑎: Age, 𝑏: Brain 
𝑣: Ventricle volume, 𝑠: Slice

do(Brain Vol=.57)

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.47, 𝑣=0.16, 𝑠=9

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.47, 𝑣=0.16, 𝑠=9

Null InterventionImage do(ApoE=0) do(Age=62) do(Sex=male) do(Vent Vol=.96) do(Slice=1)

𝑎𝑝=0, 𝑎=75, 𝑠𝑥=female,
𝑏=0.36, 𝑣=0.23, 𝑠=9

𝑎𝑝=1, 𝑎=62, 𝑠𝑥=female,
𝑏=0.45, 𝑣=0.21, 𝑠=9

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.47, 𝑣=0.16, 𝑠=9

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.57, 𝑣=0.19, 𝑠=9

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.47, 𝑣=0.96, 𝑠=9

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.47, 𝑣=0.16, 𝑠=1

C
ounterfactuals

D
irect Effect

Causal Graph for ADNI

Figure 7: ADNI brain MRI counterfactual results from Causal-Adapter. Direct causal effects are
shown (red: increase; blue: decrease). The results show sharp, localized interventional changes
consistent with the causal graph (left), while preserving the observation’s identity.

Table 5: Soundness of CelebA-HQ counterfactual images generated by the proposed Causal-Adapter.
Effectiveness is evaluated using F1-scores from pre-trained classifiers for eyeglasses (g) and smiling
(s), while reversibility (Rev.) and compositional consistency (Comp.) are measured using L1. Identity
preservation (IDP) is assessed using LPIPS.

EYEGLASSES INTERVENTION (do(g)) SMILING INTERVENTION (do(s)) NULL

EFFECTIVENESS REV. IDP EFFECTIVENESS REV. IDP COMP.

METHOD F1(s) ↑ F1(g) ↑ L1 ↓ LPIPS ↓ F1(s) ↑ F1(g) ↑ L1 ↓ LPIPS ↓ L1 ↓
1. VCI 97.84 3.39 - - 33.81 99.85 - - -
2. HVAE 90.05 65.31 - - 75.33 95.82 - - -
3. DiffCounter 99.09 96.86 0.185 0.096 94.93 99.45 0.183 0.066 0.130
4. Ours 96.89 99.26 0.049 0.084 94.15 99.15 0.028 0.028 0.010

5. Ours (DiT) 98.19 97.39 0.086 0.060 94.71 99.71 0.089 0.035 0.001

indicates that our model can recover counterfactuals back to their original observations (Appendix F),
suggesting potential for achieving counterfactual identifiability (Ribeiro et al., 2025).

Generalization Robustness To further verify the generalization capability of our framework, we
additionally test the Causal-Adapter with a different diffusion backbone, Stable Diffusion 3 (Esser
et al., 2024), which uses a diffusion transformer (DiT) architecture. The quantitative results (Table 5,
row 5) and qualitative examples in Figure 9, demonstrate that our method generalizes effectively
across distinct T2I backbones and produces causally faithful, high-resolution counterfactuals, going
beyond prior studies that were limited to low-resolution settings (Wu et al., 2025; Rasal et al., 2025;
Melistas et al., 2024). Extended generalization results are provided in Appendix E.4

Ablation Study. We conduct an ablation study on the CelebA validation set to evaluate the
contribution of each regularizer in Causal-Adapter. As shown in Figures 10a and b, the plain
adapter achieves the lowest intervention effectiveness. Adding the PAI module yields a con-
sistent average gain of +11.6% F1 across all attributes with slight increases in FID and CLD,
indicating that aligning causal semantics with spatial features in the diffusion latents enables
more effective edits. Incorporating CTC further improves intervention effectiveness by enforc-
ing token embedding disentanglement, while also reducing CLD (from 0.317 to 0.310) and
keeping FID stable (from 8.453 to 8.643), resulting more faithful counterfactual generation.
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Causal graph for CelebA-HQ. 
Observed variables include 
the image (𝑥), smile (𝑠), glass 
(𝑔), mouth-open (𝑚)

Image do(𝑔=1) do(𝑠=0) do(𝑚=0)
Counterfactual Generation

Null Intervention Rev.(𝑔→0) Rev.(𝑠→ 1) Rev.(𝑚→ 1)

Reversal Generation

Image do(𝑔=1) do(𝑠=0) do(𝑚=0)
Counterfactual Generation

Null Intervention Rev.(𝑔→0) Rev.(𝑠→ 1) Rev.(𝑚→ 1)
Reversal Generation

Figure 8: CelebA-HQ counterfactuals (256×256) from Causal-Adapter using SD1.5 backbone.

Image do(glass) do(smile) do(mouth) Image do(glass) do(smile) do(mouth)

Figure 9: CelebA-HQ counterfactuals (512×512) from Causal-Adapter using SD3 backbone.

(a) (b)

Image

do
(b
l=
1)

do
(b
r=
1)

+PAI
+CTC+PAIPlain

+PAI
+CTC

(c)
c1 c2 c3 c4 c5

Figure 10: Ablation study on CelebA valida-
tion set. (a) Average intervention effective-
ness. (b) Realism and minimality. (c) Quali-
tative examples, with dotted boxes indicating
results of localized editing.

Figure 10c presents qualitative ablation results. Spu-
rious correlations arise in plain adapter, e.g., beard
interventions in females induce male facial features
(c2). PAI alleviates attribute entanglement (c3),
while the complete regularization with CTC produces
bearded female, demonstrating mitigation of such
correlations (c4). Under bald interventions, the base-
lines alter skin color or age (c2–c3), whereas the full
regularization edits baldness with only minor facial
changes (c4). Finally, attention guidance enhances
identity preservation with localizing edits (c5). Ex-
tended results are presented in Appendix D.

4 CONCLUSION

We introduced Causal-Adapter to tame Text-to-Image
diffusion models for counterfactual image generation.
Our motivational study revealed that current Text-
to-Image diffusion model based editing approaches
lack an explicit structural causal model for attribute
control and rely heavily on prompt engineering, making it difficult to generate faithful counterfactual
images. In contrast, Causal-Adapter is a simple yet effective framework that leverages a frozen
diffusion backbone and injects causal semantic attributes through a pluggable adapter network to
explicitly learn causal semantics. We further proposed prompt aligned injection and conditioned
token contrastive optimization, which align attribute semantics with spatial features and promote
disentanglement in the latent space, reducing spurious correlations while preserving identity for
generations. Causal-adapter achieves superior counterfactual generation performance on multiple
datasets. Extensive evaluation across diverse settings further confirm that Causal-Adapter provides a
robust, scalable, and practical alternative for enabling causal editing in modern T2I systems.
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ETHICS STATEMENT

This work makes use of two real-world datasets: CelebA (Liu et al., 2015) and ADNI (Petersen et al.,
2010), together with pretrained text-to-image generation models. We emphasize that our research
is conducted strictly for scientific purposes, and we strongly condemn any misuse of generative AI
to produce content that harms individuals, violates privacy, or spreads misinformation. While our
approach demonstrates capabilities in generating human faces and MRI images, we acknowledge
the potential for misuse. To mitigate these risks, we uphold the highest ethical standards, including
adherence to applicable legal and institutional frameworks, respect for data privacy, and a commitment
to promoting socially beneficial applications of generative models.

REPRODUCIBILITY STATEMENT

In Section 2, we provide detailed formulations, illustrative examples, and visual demonstrations (e.g.,
Figure 4) to clarify the model structure and mechanisms. Section 3 and Appendix C describe the
training datasets, model parameters, and implementation components. Comprehensive quantitative
and qualitative results are reported across multiple domains, including Table 1, Table 2, Figure 6, and
Figure 7, with comparisons to existing baselines under standard benchmarks. All experiments are
conducted on publicly available datasets (CelebA and ADNI) and evaluated with widely used metrics
such as FID and LPIPS. To further promote reproducibility, we will release the experimental code
upon acceptance of this work.
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A EXTENDED RELATED WORKS

Counterfactual Image Generation aims to synthesize images that reflect the visual effect of a
hypothetical intervention while preserving non-intervened attributes according to an underlying causal
graph and maintaining instance-specific identity details (Komanduri et al., 2024a; Melistas et al.,
2024). Existing approaches often augment generative models with explicit structural causal models
(SCMs) and follow Pearl’s abduction–action–prediction paradigm (Pearl, 2009; 2013; Pawlowski
et al., 2020; Shen et al., 2022; Sanchez & Tsaftaris, 2022; De Sousa Ribeiro et al., 2023; Wu
et al., 2025; Spyrou et al., 2025). Early work predominantly relied on VAEs or GANs (Kingma
& Welling, 2013; Goodfellow et al., 2014; Kocaoglu et al., 2018; Pawlowski et al., 2020), as their
noise-injection and variational sampling mechanisms offered a natural way to represent exogenous
uncertainty, while their objectives encouraged disentanglement of causal factors, inspired by β-
VAE (Higgins et al., 2017). De Sousa Ribeiro et al. (2023) extends this line by incorporating
hierarchical VAEs (Vahdat & Kautz, 2020) to estimate direct, indirect, and total causal effects,
whereas Wu et al. (2025) combined variational Bayesian inference with adversarial training to improve
abduction and preserve identity. Other works (Yang et al., 2021; Shen et al., 2022; Komanduri et al.,
2024b; Li et al., 2024) integrates SCM priors directly into the latent space of VAEs, enabling implicit
causal reasoning on image encodings. However, variational optimization inevitably introduces
uncertainty into the learned representations, which can lead to posterior collapse or the loss of
semantically meaningful factors. This results in an inherent trade-off between high-fidelity image
synthesis and flexible attribute control (Higgins et al., 2017; Alemi et al., 2018). Sanchez & Tsaftaris
(2022) introduces DiffSCM, the first framework to integrate diffusion with SCMs for counterfactual
generation. DiffSCM employed DDIM inversion (Song et al., 2021) for abduction and conditioned the
generative process on causal labels, but it was limited to small parent sets and simple causal structures.
Pan & Bareinboim (2024) extends DiffSCM by combining a VAE for preliminary counterfactual
generation with diffusion-based refinement, shifting the conditioning from attribute labels to pre-
generated images to produce refined counterfactuals. Chao et al. (2024) models structural equations
directly using diffusion processes, enabling counterfactual sampling on a predefined causal graph.
While DCM also answers interventional queries, it trains a dedicated diffusion model per causal
node. Recent works (Komanduri et al., 2024c; Rasal et al., 2025; Xia et al., 2025) build on Diffusion
Autoencoder framework (Preechakul et al., 2022), equipping diffusion models with variational
encoders to inject semantic attributes into diffusion latents. However, these methods require heavy
post-training or fine-tuning and remain prone to spurious correlations. A key limitation is that
disentanglement is typically enforced through auxiliary encoders with limited influence on the
intrinsic latent space of diffusion models, failing to align semantic attributes with disentangled spatial
representations of images and leaving causal disentanglement incomplete (Wu et al., 2025; Yang
et al., 2024).

To address these limitations, we propose Causal-Adapter, an adaptive and modular framework that
employs an adapter encoder to explicitly learn causal interactions between semantic attributes. We
further introduce two regularization strategies: Prompt Aligned Injection (PAI) and Conditioned
Token Contrastive Loss (CTC). These strategies align semantic attributes with spatial features in
the diffusion latents and separate token embeddings across conditions, thereby enhancing causal
representation learning and reducing spurious correlations, all while preserving the pre-trained
diffusion weights.

Text-to-Image based Editing aims to manipulate existing images according to user-provided natu-
ral language instructions (Brooks et al., 2023). Most approaches rely on an inversion process (Song
et al., 2021), where the image is projected into a latent state and then synthesized under modified
conditions (Hertz et al., 2023; Ho & Salimans, 2021). However, DDIM inversion and classifier-free
guidance often often interfere with each other, leading to a trade-off between preserving essential
content and achieving faithful edits (Ju et al., 2024; Huberman-Spiegelglas et al., 2024; Kynkäänniemi
et al., 2024). To mitigate this, Null-text inversion (Mokady et al., 2023) learns a null embedding to
account for reconstruction discrepancies, while Dong et al. (2023) optimizes conditional embeddings
to reduce information loss in unconditional guidance. Yet, both methods require costly per-sample op-
timization. Subsequent works (Ju et al., 2024; Xu et al., 2024; Miyake et al., 2025) improve efficiency
by recording residual losses between conditional and unconditional embeddings and re-injecting
them during editing, to stabilize edits and preserving content. Textual inversion (Gal et al., 2023)
improves content preservation by disentangling single concepts: it learns new text embeddings from
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a few personalized images to represent objects in novel contexts. Extending this, Vinker et al. (2023)
decomposes concept embeddings into sub-concepts via learned vectors injected into the latent space
of T2I model, while Jin et al. (2024) performs multi-concept disentanglement using adjective-based
prompts and contrastive optimization. Lyu et al. (2024) propose a one-dimensional non-invasive
adapter that modulates concept semi-permeability in frozen diffusion models for concept erosion,
and Yeganeh et al. (2025) address domain shift in medical imaging, supporting counterfactual-like
edits such as aging or disease progression without explicit structural constraints. Despite these
advances, generic T2I editing remains insufficient for causal counterfactual generation. Existing
methods depend heavily on prompt manipulation and do not incorporate a learnable structural causal
model (SCM). They make no use of observed semantic attributes or a predefined causal graph, and
therefore cannot enforce that edits follow correct causal dependencies. As a result, current T2I-based
editing techniques struggle to simultaneously maintain causal faithfulness and identity preservation
in counterfactual image generation.

As shown in our motivational study (Appendix B), we evaluate the adaptation of text-to-image
diffusion models for counterfactual image generation. Our findings show that relying solely on a
frozen diffusion backbone with prompt-tuning is insufficient, as it fails to jointly represent causal
semantic attributes and image embeddings. As a result, the model struggles to achieve precise
counterfactual reasoning and generation. This highlights the need for an adaptive mechanism within
the diffusion model, enhanced with injected causal semantics. Following the standard formulation
of counterfactual image generation (Pearl, 2009; De Sousa Ribeiro et al., 2023; Wu et al., 2025;
Rasal et al., 2025), where a predefined causal graph is treated as the structural prior, our Causal-
Adapter models the SCM directly on the observed semantic attributes. This enforces correct causal
dependencies during intervention and enables the generation of counterfactual images that are both
visually plausible and causally faithful. When the SCM module is omitted, the framework naturally
reduces to a standard conditional generation setting for that attribute, as illustrated in Figure 1.

Controllable Diffusion Models extend T2I diffusion frameworks by incorporating additional
user-specified signals to guide generation (Huang et al., 2025). One approach is to train diffusion
models from scratch with multi-conditional objectives (Huang et al., 2023; Puglisi et al., 2024),
which achieves strong controllability and high-quality synthesis but at huge computational cost. More
recently, adapter-based methods (Zhang et al., 2023; Li et al., 2023; Zhao et al., 2023; Mou et al.,
2024; Li et al., 2025) have emerged as a scalable alternative. By attaching lightweight, trainable
modules to a frozen Stable Diffusion backbone, these methods enable the model to incorporate
auxiliary control signals such as segmentation masks or pose skeletons, significantly reducing training
overhead while maintaining stability and fidelity. We adopt the same high-level recipe by treating
causal semantic attributes as the auxiliary control signals, and employ an adapter encoder to explicitly
learn causal interactions between high-level variables. These interactions are then injected into a
a frozen diffusion backbone, and jointly optimized with partial textual embeddings. The design
of Causal-Adapter introduces a dynamic and learnable prior, enabling the effective adaptation of a
frozen diffusion network for realistic and faithful counterfactual image generation.
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B FULL MOTIVATIONAL STUDY RESULTS

To assess the feasibility of using a pretrained text-to-image (T2I) model for counterfactual generation,
we conduct a motivation study to answer the following three questions.

1. Can existing T2I based editing methods perform counterfactual generation? We begin by ex-
amining a representative text-to-image (T2I) editing method, Null-Textual Inversion (NTI) (Mokady
et al., 2023). Our findings highlight two fundamental issues: (1) Heavy reliance on prompt engi-
neering and instability. As shown in Figure 11a, the success of NTI-based edits is highly sensitive
to prompt wording. For example, when editing age, the token “old” may fail while the synonym
“aged” succeeds under one inversion prompt, yet the opposite occurs under another prompt. This
indicates that editing success and visual quality depend not only on the choice of attribute word
but also on the particular inversion prompt. Even minor wording changes that preserve semantic
meaning can alter tokenization and cross-attention patterns, leading to inconsistent success rates and
perceptual artifacts. Moreover, to preserve identity while achieving the desired edit, practitioners
must manually try multiple prompt variants, requiring extensive hand-crafted effort. (2) Weak coun-
terfactual faithfulness. Beyond instability, prompt-based editing fails to reliably reflect the intended
intervention. In Figure 11b, using the word “man” to edit gender (woman case) or “old” to edit
age (man case) yields different counterfactual characteristics depending on the inversion prompt:
one “old” edit introduces glasses while another does not. Such variability arises purely from prompt
formulation, introducing extraneous variance unrelated to the target attribute. This illustrates weak
counterfactual faithfulness: the same intervention should yield coherent edits of the intended factor,
without unintended changes in other attributes. Hence, purely text-driven control is inadequate for
reliable counterfactual generation.

Prompt: A young, unbearded, and haired woman.

Image “man” ✓“old” ✗ “aged” ✓ “male” ✓

Prompt: A human is young, female, unbearded, and haired.

Image “man” ✓“old” ✓ “aged” ✗ “male” ✗

Modify the inversion prompt
(a)

Prompt: A human is young, male, unbearded, and haired.

Image “old” ✓ “woman” ✓ “bearded” ✗ “bald” ✗

“female” ✗ “facial-haired” ✗ “hairless” ✗“aged” ✓

Prompt: A young, unbearded, and haired woman.

Image “old” ✗ “man” ✓ “bearded” ✗ “bald” ✗

“male” ✓ “facial-haired” ✗ “hairless” ✗“aged” ✓

Prompt: A human is young, female, unbearded, and haired.

Image “old” ✓ “man” ✓ “bearded” ✗ “bald” ✗

“male” ✗ “facial-haired” ✗ “hairless” ✗“aged” ✗

Prompt: A human is young, male, clean-shaven, and haired.

Image “old” ✓ “woman” ✓ “bearded” ✓ “bald” ✗

“female” ✓ “facial-haired” ✓ “hairless” ✗“aged” ✓

(b)

Figure 11: Null-Textual Inversion (NTI) relies heavily on prompt engineering, where minor word
changes can determine editing success. (a) Illustration of our study: two inversion prompts are given
for the same image, and attribute words are replaced with different synonyms. Successful edits are
marked with ✓ and failures with ✗ (human evaluation). Results show that editing outcomes are
highly sensitive to prompt wording and reveal weak counterfactual faithfulness. (b) Full results of
this investigation.
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2. Can multi-concept prompt learning yield disentangled attribute control? Prompt-learning
approaches such as Textual Inversion (Gal et al., 2023), Inspiration Tree (Vinker et al., 2023) and
Multi-Concept Prompt Learning (MCPL) framework (Jin et al., 2024) to learn conditional concept
embeddings for attribute disentanglement. We adopt MCPL framework as our baseline. As shown
in Figure 12, MCPL can perform certain edits that NTI fails to capture (e.g., editing baldness for
men or adding beards for women) by equipping text embeddings learned from multiple samples.
However, we observe two key limitations: (1) Entangled edits and lack of faithfulness. Edits often
induce changes in unrelated attributes, heavily altering the background or unintended regions. This
leads to a loss of fidelity and identity preservation, thus violating the faithfulness requirement of
counterfactual generation. (2) Per-sample optimization is still required. Similar to NTI, prompt-
learning approaches need separate fine-tuning for each image instance. This makes them impractical
for scalable, real-world causal reasoning tasks. Our findings show that relying solely on a frozen
diffusion backbone with prompt-tuning is insufficient, as it fails to jointly represent causal semantic
attributes and image embeddings. As a result, the model struggles to achieve precise counterfactual
reasoning and generation. This highlights the need for an adaptive mechanism within the diffusion
model, enhanced with causal semantics.

Prompt:“a human is @<age> and *<gender> and &<bearded> and #<bald>”

Tgt. Image Ref. Image Ref. Image Ref. Image

“<old>” “<female>” “<bearded>” “<bald>”

MCPL:  per-sample disentanglement 

+ + + +

+ + + +

Image “<age>” “<gender>” “<bearded>” “<bald>”

Prompt:“a human is @ and * and & and #”

Causal-Adapter: injects attributes into image-embedding Image do(age) do(gender) do(bearded) do(bald)

age gender beard bald

1 1 0 0

0 1 0 0

1 0 0 0

0 1 1 1

Image Representations Semantic Attributes

age=0 gender=0 bearded=1 bald=1

age=0 gender=1 bearded=1 bald=1

Figure 12: Multi-Concept Prompt Learning (MCPL) as a representative prompt-learning baseline.
Each placeholder token (e.g., @ for “young”, ∗ for “male”) is initialized with a pretrained embedding
and jointly optimized across multiple concepts. At test time, counterfactuals are generated by
swapping embeddings with target embeddings (e.g., “old”, “female”). MCPL can achieve some edits
missed by NTI (e.g., baldness, beard), but often entangles unrelated attributes, alters backgrounds, and
requires per-instance optimization. In contrast, our vanilla Causal-Adapter injects causal attributes
into image embeddings, supporting batch optimization and counterfactual generation via direct
attribute interventions.
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3. Can existing T2I based methods do fine-grained editing? In causal editing, interventions on a
single factor (e.g., increasing object size) should consistently induce predictable and proportional
changes in the generated image. However, with current T2I based methods, numerical attributes
must be mapped to discrete linguistic tokens, making it difficult to express edits along a continuous
range. In practice, the primary way to adjust editing strength is by tuning the classifier-free guidance
scale (Ho & Salimans, 2021). As shown in Figure 13, both NTI and MCPL fail to achieve fine-grained
anatomical counterfactual editing of brain ventricular volume, even with different guidance scales.
Their text-only control mechanisms cannot reliably translate numeric interventions into gradual visual
changes. This limitation is particularly problematic in medical imaging domains, where precise,
numerically controlled edits (e.g., adjusting brain or ventricular volume in MRI scans) are essential
for simulating disease progression.

Prompt: An MRI image showing brain 
volume, small ventricular volume, and 
slice class.

Prompt: An MRI image showing brain 
volume, <ventricular> volume, and 
slice class.

Image 1.0 5.0guidance scale 1.0 5.0guidance scale

large

NTI (edit words) MCPL (swap word embeddings)

Prompt: An MRI image is @ and * and 
&.”

0.0 1.0ventricular volume

Causal-Adapter (edit attribute value)

Figure 13: Fine-grained anatomical counterfactual editing of brain ventricular volume. NTI and
MCPL cannot achieve fine-grained control with text-only prompts. In contrast, our Causal-Adapter
produces sharp, localized interventions that smoothly adjust ventricular volume from small to large
while preserving subject identity.
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C DATASET AND IMPLEMENTATION

C.1 IMPLEMENTATION DETAILS

We build our method on the backbone of Stable Diffusion v1.5 (Rombach et al., 2022), using the
same hyperparameter settings as the original implementation. The pre-trained weights are trained at a
resolution of 256× 256. Our adapter network ϵ̈ψ is designed as a half-copy of the diffusion U-Net
backbone, consisting of the encoder and bottleneck layers.

Unless specified, experimental setups on CelebA and ADNI follow the benchmark protocol in (Melis-
tas et al., 2024), and CelebA-HQ experiments follow the setup in (Rasal et al., 2025). To ensure
fairness, we adopt the same causal mechanism (normalizing flow) as described in the benchmark
implementation. Experimental setup on Pendulum follows the configuration in CausalDiffAE (Ko-
manduri et al., 2024c). Since both approaches assume linear causal modeling, we use our constructed
simple MLP-based causal mechanism.

We construct prompts in the form of “a human is @ and ...” or “an MRI image is
@ and ...”, where the placeholder tokens like “@” is aligned with semantic attributes in the
embedding space via PAI. Prefix words (e.g. “a human is” and “an image is”) are kept fixed
across datasets, as we observed no significant performance differences when switching them.

During training, we apply the proposed CTC loss with a temperature τ = 0.2 and scaling factor
λ = 0.0005 for all datasets. At inference, all images are first generated at 256× 256 resolution and
then down-sampled via bicubic interpolation to match the resolution of the original benchmarks.

For counterfactual image generation, we employ DDIM inversion (Song et al., 2021). To best
preserve identity, we set the inversion guidance scale to 1.0 (no classifier-free guidance (CFG)). For
the forward process, we use CFG: CelebA uses α = 3.0 and CelebA-HQ uses α = 1.5 for effective
edits, while ADNI and Pendulum perform well without CFG. Optionally, we incorporate token-level
attention guidance manipulation following (Ju et al., 2024), replacing only the intervened token
attentions while keeping the others fixed.

All experiments are executed on a single NVIDIA A100 GPU. Training completes within one day,
and generating a single counterfactual image takes approximately 5–7 seconds. Table 6 presents
detailed training configurations.

Table 6: Experimental settings for our Causal-Adapter across three datasets.

CELEBA ADNI PENDULUM CELEBA-HQ

TRAIN SET SIZE 162,770 10,780 5,000 24000
VALIDATION SET SIZE 19,867 0 500 3000
TEST SET SIZE 19,962 2,240 2,000 3000
RESOLUTION 256 × 256 × 3 256 × 256 × 3 256 × 256 × 3 256 × 256 × 3
DOWNSAMPLED RESOLUTION 64 × 64 × 3 192 × 192 × 1 94 × 94 × 3 64 × 64 × 3
BATCH SIZE 40 40 40 40
TRAINING STEPS 200k 100k 50k 100k

NUM OF ATTRIBUTES 4 6 4 7

PROMPT TEMPLATE
“a human is @
and * and & and #”

“an MRI image is @
and * and &”

“an image is @
and * and & and #”

“a human is @
and * and & and #
and ! and ? and %”

CTC TEMPERATURE τ 0.2 0.2 0.2 0.2
CTC SCALE λ 0.0005 0.0005 0.0005 0.0005
DDIM STEPS T 100 100 100 100
GUIDANCE SCALE α 3.0 1.0 1.0 1.5

LEARNING RATE 1e-5
OPTIMIZER AdamW (weight decay 1e-2)
LOSS MSE (noise prediction) + CTC (proposed)
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C.2 METRICS

We detail the counterfactual evaluation metrics used in our experiments below.

Effectiveness. Effectiveness measures how successfully an intervention alters the intended attributes
in counterfactual images. To quantitatively evaluate effectiveness, we leverage an anti-causal predictor
trained on the observed data distribution for each parent variable of the image x defined in the causal
graph (Monteiro et al., 2023). For CelebA and ADNI, we train deep convolutional regressors as
anti-causal predictors for continuous attributes (e.g., brain volume, ventricular volume), and deep
convolutional classifiers for categorical attributes (e.g., age, gender, beard, bald, slice class). Both
models use a ResNet-18 backbone pretrained on ImageNet, following the implementation of (Melistas
et al., 2024). For the Pendulum dataset, we train regressors for the four continuous attributes following
the implementation of (Komanduri et al., 2024c).

Composition. If an attribute variable yi is forced to take the same value ȳi that it would assume
without intervention, the intervention should have no effect on any other variables. This corresponds
to the null intervention, which leaves all variables unchanged and, in the generative setting, can
reduce to a standard reconstruction task. To evaluate counterfactual generation under null intervention,
we perform abduction via DDIM inversion and prediction via DDIM sampling, but skip the action
step that edits the original attribute value. For evaluation, we report the MAE distance between
the reconstructed and input images, as well as the Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018), which better reflects perceptual fidelity and content preservation.

Realism. Realism evaluates the perceptual quality of counterfactual images by measuring their
similarity to real samples. We adopt the Fréchet Inception Distance (FID) (Heusel et al., 2017),
which quantifies the similarity between the distribution of generated counterfactual images and
the real dataset. Specifically, real and counterfactual samples are passed through an Inception
v3 network (Szegedy et al., 2015) pretrained on ImageNet to extract high-level semantic feature
representations, which are then used to compute the FID score.

Minimality. Minimality evaluates whether a counterfactual differs from the factual image only
in the intervened parent attribute, ideally leaving all other attributes unaffected. Counterfactual
Latent Divergence (CLD) quantifies this by measuring the “distance” between counterfactual and
factual images in a latent space (Sanchez & Tsaftaris, 2022). Intuitively, CLD captures a trade-
off: the counterfactual should move sufficiently away from the factual class, but not farther than
real samples belonging to the counterfactual class. Following Melistas et al. (2024), we compute
CLD using an unconditional VAE. Specifically, we measure the KL divergence between the latent
distributions of real and counterfactual images. The metric is minimized when both probabilities
remain low, reflecting the balance between departing from the factual class while remaining closer to
the counterfactual class than unrelated real samples.
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C.3 FULL REGULARIZATION ALGORITHM

In the following, we present the fully regularized Causal-Adapter in Algorithms 1–2. Below we
summarize the training and inference algorithm in high-level description.

Training:

1. Learn the causal mechanisms F : Using the predefined adjacency matrix A derived from the
causal graph and semantic attributes Y , the model learns how attributes causally influence
one another. This produces a standalone SCM that governs how attributes should update
when interventions are applied.

2. Train the conditional adapter: Each semantic attribute yi is projected into a token embedding
vi(yi) through Prompt-Aligned Injection (PAI). With the diffusion model frozen, the adapter
ϵ̈ψ is trained to produce residuals rt conditioned on the attribute embeddings V (Y ). A
diffusion loss LDM ensures correct denoising behaviour, while a contrastive loss LCTC
encourages disentanglement and suppresses spurious attribute correlations.

Inference (Counterfactual Reasoning):

1. Abduction: The input image x is inverted through the diffusion model (via DDIM inversion
Hθ) to obtain a latent trajectory [z⋆0 , . . . , z

⋆
T ] consistent with the observed image.

2. Action: A user-specified intervention y′i is applied to the semantic attributes. The learned
causal mechanisms update all causally connected attributes to produce a new attribute set ȳ′i
that respects the causal graph.

3. Prediction: Starting from the abducted latent z̄T , the model synthesizes a counterfactual
image using the conditional adapter ϵ̈ψ and the updated token embeddings V

(
Ydo(yi=y′i)

)
,

yielding the final counterfactual image x̄.
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Algorithm 1 Causal-Adapter: Training

1: Input: Image x, semantic attributes Y = {yi}Ki=1, binary adjacency matrix A ∈ {0, 1}K×K , frozen
modules {E , cϕ, ϵθ}, projector G = {gi}Ki=1

2: Output: causal mechanisms F = {fi}Ki=1, updated placeholder embeddings C = {ci}Ki=1, updated
projector G = {gi}Ki=1, causal adapter ϵ̈ψ .

3: # Train causal mechanisms F
4: ȳi := fi(Ai ⊙ Y ;ωi) + ui, ui ∼ N (0, σ2

i ),
5: F := argminF LNLL(yi, ȳi)
6: # Construct attribute injected token embeddings
7: initialize placeholder embeddings C = {ci}Ki=1,
8: vi(yi) = ci + gi(yi), i = {1, · · · ,K}
9: V (Y ) = [v1(y1), . . . , vK(yK)]⊤

10: # Train conditional adapter
11: for t = 1 to T do
12: Encode latent: zt = E(x, t)
13: Compute residual from causal adapter: rt = ϵ̈ψ(zt, t, V (Y ))
14: Update parameters: ψ,G,C := argminψ,G,C (LDM + LCTC)
15: end for
16: Return F = {fi}Ki=1, ϵ̈ψ , V

Algorithm 2 Causal-Adapter: Inference

1: Input: Image x, semantic attributes Y , frozen modules {E , cϕ, ϵθ}, trained causal mechanisms F =
{fi}Ki=1, learned placeholder embedding C = {ci}Ki=1, trained causal adapter ϵ̈ψ , DDIM Inversion operator
Hθ and its generative inverse H−1

θ
2: Output: Counterfactual image x̄
3: vi(yi) = ci + gi(yi), i = {1, · · · ,K}
4: V (Y ) = [v1(y1), . . . , vK(yK)]⊤

5: # Abduction - infer inversed latent noise
6: z⋆0 = E(x, 0)
7: for t = 0 to T − 1 do
8: rt = ϵ̈ψ(z

⋆
t , t, V (Y ))

9: z⋆t+1 = Hθ(z
⋆
t , rt, V (Y ), t)

10: end for
11: # Action - apply intervention with do(yi = y′i)
12: ȳ′i := fi(Ai ⊙ Ydo(yi=y′i);ωi) + ui, ui ∼ N (0, σ2

i ), i = {1, · · · ,K}
13: vi(ȳ′i) = ci + gi(ȳ

′
i), i = {1, · · · ,K}

14: V (Ydo(yi=y′i)) = [v1(ȳ
′
1), . . . , vK(ȳ′K)]⊤

15: # Prediction - generate counterfactual
16: initialize z̄T ← z⋆T
17: for t = T to 1 do
18: r̄t = ϵ̈ψ(z

⋆
t , t, V (Ydo(yi=y′i)))

19: z̄t−1 = H−1
θ (z̄t, r̄t, V (Ydo(yi=y′i)), t)

20: end for
x̄ = Decode(z̄0)

21: Return x̄

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D EXTENDED ABLATION RESULTS

We further investigate the impact of guidance scale (Appendix D.1), DDIM steps ( Appendix D.2)„
and attention guidance on counterfactual generation(Appendix D.3), and provide additional qualitative
evidence (Appendix D.4). To reduce computational cost, these experiments are conducted on the
CelebA validation set using 400 random samples.

D.1 EFFECT OF GUIDANCE SCALE

We study the influence of the classifier-free guidance scale α on intervention effectiveness, real-
ism, and minimality, as summarized in Table 7 and Figure 14. Increasing α consistently improves
intervention effectiveness across attributes, with all variants showing stronger F1-scores as inter-
ventions become more easily separable by the anti-causal predictor (classifier). For instance, the
fully regularized model (Table 7 rows 11-15) improves Age F1 from 42.0 at α = 1.0 to 63.4 at
α = 5.0, with similar improvement for beard and bald interventions. These results suggest that
aligning semantic and spatial features and enforcing disentanglement allow more effective editing,
particularly at higher guidance scales. This effectiveness improvement comes at a cost: both FID,
reflecting reduced realism and causal minimality (Figure 14). Thus, we adopt α = 3.0 as the default
setting, where intervention effectiveness is already strong across all variants (Table 7 rows 3,8,13)
while FID and CLD remain relatively low. Further increasing α beyond this point will leads to
marginal improvements in effectiveness but rapidly increases FID and CLD. Qualitative example is
shown in Figure 16.

Table 7: Influence of guidance scale on counterfactual effectiveness. α denotes the classifier-free
guidance scale. “Ours” refers to the plain Causal-Adapter, “Ours⋆” to the regularized Causal-Adapter
(+PAI), and “Ours⋆⋆” to the fully regularized Causal-Adapter (+PAI+CTC).

Method Age (a) F1 ↑ Gender (g) F1 ↑ Beard (br) F1 ↑ Bald (bl) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

1. Ours(α = 1.0) 38.0 79.9 86.0 77.8 96.1 97.1 65.1 86.6 95.4 75 32.2 93.7 100 39.7 66.7 22.9
2. Ours(α = 2.0) 38.1 80.2 95.8 75.5 95.5 96.7 61 82.3 95 78 39.2 93 100 50 85.7 32
3. Ours(α = 3.0) 38.2 81.1 85.3 73.9 95.3 95.6 59.7 77.8 93.9 81.3 42.1 92.2 100 61.3 85.7 39.8
4. Ours(α = 4.0) 37.2 80.1 84.8 72.6 93.7 95.2 58.7 75.4 92.8 82.4 45.2 91.3 100 66.7 75 50.2
5. Ours(α = 5.0) 37.1 80.7 83.1 71 92.8 94.8 57.8 71.5 92.3 84.1 43.4 90.1 80 67 85.7 54.9

6. Ours⋆(α = 1.0) 37.5 78.1 87.6 70.8 96.1 96.8 71.7 86.1 95.1 77.4 29 93.3 100 44.2 85.7 22.5
7. Ours⋆(α = 2.0) 46.8 85.4 93 84.3 99 99.8 72.8 95.5 98.6 93.7 43.8 97 50 84.8 50 47.2
8. Ours⋆(α = 3.0) 48.5 90.8 92.7 89.4 99 100 72.1 97 99.4 97.4 50.7 97.3 50 91.8 66.7 55.8
9. Ours⋆(α = 4.0) 48.8 90.2 92.2 90.6 99.7 100 71.1 97.5 99.7 98.6 53 98.6 50 94.7 54.5 57.7

10. Ours⋆(α = 5.0) 48.6 90 91.6 91.8 100 100 70.5 97.5 100 99.1 54.1 99 66.7 94.3 40 58.2

11. Ours⋆⋆(α = 1.0) 42.0 80.2 86.0 73.6 96.2 97.7 67.8 81.5 94.9 78.0 31.5 92.9 1 45.9 75.0 29.4
12. Ours⋆⋆(α = 2.0) 51.9 88.0 93.4 84.9 98.1 99.6 72.3 90.1 98.8 91.0 46.4 97.0 80.0 84.2 75.0 55.1
13. Ours⋆⋆(α = 3.0) 58.8 91.3 94.4 89.4 100 99.8 74.5 91.1 99.7 96.4 53.4 97.8 80.0 92.4 66.7 59.8
14. Ours⋆⋆(α = 4.0) 61.3 89.9 94.7 91.5 99.7 100 77.4 92.2 100 97.2 55.6 97.6 75.0 92.4 66.7 59.8
15. Ours⋆⋆(α = 5.0) 63.4 90.7 95.2 91.4 99.7 100 79.0 93.5 100 98.0 57.0 97.8 75.0 92.4 66.7 63.0

Figure 14: Impact of guidance scale on FID and CLD across three Causal-Adapter variants. Note that
FID values here are higher than in the main manuscript due to the smaller evaluation set, which shifts
the distribution mean and variance. The implied relative trends in image quality remain consistent.
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D.2 EFFECT OF DDIM STEPS

We further evaluate the effect of DDIM steps on counterfactual effectiveness using our fully regu-
larized model (Table 8). As T increases, intervention effectiveness remains stable, indicating that
performance is insensitive to the number of denoising steps. Realism and minimality also show
negligible variation. The main drawback of larger T lies in increased inference time: generating one
counterfactual takes 5–7 seconds at T = 100, about 20 seconds at T = 200, and nearly 40 seconds
at T = 500. Balancing efficiency and accuracy, we adopt T = 100 as the default setting for all
experiments.

Table 8: Influence of DDIM steps under α = 3.0 on counterfactual effectiveness. T denote the used
steps.

Method Age (a) F1 ↑ Gender (g) F1 ↑ Beard (br) F1 ↑ Bald (bl) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

1. Ours⋆⋆(T = 50) 57.1 90.5 93.8 89.4 99.7 99.6 75.7 91.6 99.7 96.1 49.1 98 80.0 89.4 75.0 60
2. Ours⋆⋆(T = 100) 58.8 91.3 94.4 89.4 100 99.8 74.5 91.1 99.7 96.4 53.4 97.8 80.0 92.4 66.7 61.8
3. Ours⋆⋆(T = 200) 60.5 91.7 94.9 89.6 100 99.8 74.1 91.4 99.7 96.4 54.3 97.4 80.0 91.9 66.7 61.3
4. Ours⋆⋆(T = 500) 60.7 91.6 94.7 90.0 100 99.8 73.8 91.9 99.7 96.1 54.8 98.0 85.7 91.9 66.7 61.3

Figure 15: Impact of DDIM steps on FID and CLD
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D.3 INVESTIGATION OF ATTENTION GUIDANCE

Attention guidance (AG) has been proposed as an external mechanism to enforce localized edits.
While our primary contribution lies in Causal-Adapter and its regularizers, we further examine
whether AG can complement different variants of our model. As shown in Tables 9–10, incorporating
AG sometimes reduces intervention effectiveness, particularly for the plain adapter (Table 9 rows
1,3). For example, Age F1 drops sharply from 38.2 to 28.1 when switching from global to local
editing, reflecting misaligned attention maps that disrupt counterfactual consistency. In contrast, the
regularized variants exhibit only mild decreases (Table 9 rows 2,5), indicating that aligning semantic
and spatial features in diffusion latents via PAI is a prerequisite for stable local editing. Our fully
regularized model (Table 9 rows 3,6) not only maintains strong intervention effectiveness but also
achieves the lowest FID (31.216) with AG, highlighting that PAI and CTC help produce more precise
attention maps. By comparison, applying AG to the plain adapter actually worsens FID and CLD
(Table 10 row 4), suggesting that noisy or misaligned attention can harm editing quality. Qualitative
evidence is provided in Figures 17–18.

We emphasize that while AG can be beneficial for identity preservation in human faces (CelebA),
in other domains such as ADNI or Pendulum, our model already produces accurate, faithful, and
identity-preserving counterfactuals without AG. This underscores that our contribution lies not in
AG itself, but in designing Causal-Adapter such that causal attributes are naturally aligned with
token embeddings, enabling both disentanglement and, if desired, effective integration with AG for
localized editing.

Table 9: Effectiveness of Causal-Adapter variants with and without attention guidance.

Method Age (a) F1 ↑ Gender (g) F1 ↑ Beard (br) F1 ↑ Bald (bl) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

without attention guidance for global editing
1. Ours 38.2 81.1 85.3 73.9 95.3 95.6 59.7 77.8 93.9 81.3 42.1 92.2 100 61.3 85.7 39.8
2. Ours⋆ 48.5 90.8 92.7 89.4 99 100 72.1 97 99.4 97.4 50.7 97.3 50 91.8 66.7 55.8
3. Ours⋆⋆ 58.8 91.3 94.4 89.4 100 99.8 74.5 91.1 99.7 96.4 53.4 97.8 80.0 92.4 66.7 61.8

with attention guidance for local editing
4. Ours 28.1 79.4 83.2 63.3 94.7 93.4 62.4 78.1 96.5 80.6 40.4 89.4 66.7 70.6 33.3 34.5
5. Ours⋆ 49.4 88.8 91.2 73.9 98.8 96.4 71.1 92.8 99.5 96.1 47.4 94.6 22.2 76.2 40 52.4
6. Ours⋆⋆ 57.1 88.7 94 77 99.4 100 73.3 90.4 99.7 95.6 49.4 95.1 66.7 80.7 50 54.4

Table 10: Realism and minimality of Causal-Adapter variants with and without attention guidance

Method Realism Minimality
FID ↓ CLD ↓

without attention guidance for global editing
1. Ours 31.604 0.307
2. Ours⋆ 33.278 0.320
3. Ours⋆⋆ 31.52 0.312

with attention guidance for localized editing
4. Ours 33.849 0.311
5. Ours⋆⋆ 31.885 0.299
6. Ours⋆⋆ 31.216 0.300
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D.4 QUALITATIVE EVIDENCE

do
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d)

do
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)

Image
plain
𝛼=3.0

plain
𝛼=1.0

+PAI
𝛼=3.0

+PAI
+CTC
𝛼=3.0

+PAI
+CTC
𝛼=5.0

Figure 16: Counterfactuals from Causal-Adapter variants under different guidance scales. The plain
variant shows weak effectiveness at α = 1.0 and 3.0. Adding PAI strengthens the editing signal,
while further incorporating CTC yields the most effective edits with strong identity preservation. At
α = 5.0, the counterfactuals become slightly over-edited.
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Figure 17: Full ablation visualizations with optional attention guidance (AG). Causal-Adapter with
the two regularizers reduces spurious correlations, AG can enhance identity preservation through
localized editing. Dotted boxes indicate results with AG-based localized edits.
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Figure 18: Average cross-attention maps from Causal-Adapter variants. Tokens denote attributes:
“@” for age, “*” for gender, “&” for beard, and “#” for bald. The plain adapter fails to align semantics
with spatial features, producing poor maps. Adding PAI improves alignment but some tokens (e.g.,
“*”, “#”) remain entangled. With both PAI and CTC, token embedding disentanglement is enforced,
and attentions are clearly localized to the semantic regions.
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E ADDITIONAL RESULTS

E.1 PENDULUM

Image traversal editing

do(𝑠𝑙)
do(𝑙)

do(𝑝)
do(𝑠𝑝)

Image traversal editing

do(𝑠𝑙)
do(𝑙)

do(𝑝)
do(𝑠𝑝)

Figure 19: Pendulum counterfactuals from Causal-Adapter. p for pendulum, l for light, sl for shadow
length and sp for shadow position.Traversal editing across four attributes demonstrates that our
method produces high-quality, fine-grained generations of attribute variations.
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Image traversal editing
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Figure 20: Pendulum counterfactuals from Causal-Adapter. p for pendulum, l for light, sl for shadow
length and sp for shadow position.
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E.2 CELEBA

We report results across three random seeds on the CelebA dataset, with corresponding means and
standard deviations shown in Table 11-13. In Table 13, we additionally provide LPIPS distances
between each counterfactual and its original image as a measure of identity preservation under
different attribute interventions.

Table 11: Intervention effectiveness on CelebA test set (3 seeds). Age and Gender F1 under four
interventions.

Method Age (a) F1 ↑ Gender (g) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

1. VAE 35.00.04 78.20.02 81.60.02 81.90.02 97.70.01 90.90.02 95.90.02 97.30.01
2. HVAE 65.40.10 89.30.04 90.80.03 89.90.03 98.80.02 94.90.03 99.40.01 95.00.03
3. GAN 41.30.04 71.00.02 81.80.02 79.90.01 95.20.01 98.20.01 92.00.01 96.10.01
4. Ours 58.50.14 89.90.35 94.00.07 89.40.00 99.60.00 99.90.00 74.50.07 92.50.21

with attention guidance for localized editing
5. Ours (AG) 57.10.14 89.51.76 94.50.00 81.50.63 99.60.00 99.70.00 73.80.56 89.20.14

Table 12: Intervention effectiveness on CelebA test set (3 seeds). Beard and Bald F1 under four
interventions.

Method Beard (br) F1 ↑ Bald (bl) F1 ↑
do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)

1. VAE 94.40.01 82.80.03 29.60.05 94.50.02 2.30.03 49.60.05 4.50.04 41.20.03
2. HVAE 95.20.03 95.10.03 44.10.11 91.60.04 2.00.05 86.00.05 4.50.07 61.10.04
3. GAN 90.80.01 83.80.02 23.30.03 90.70.01 2.10.02 82.00.02 5.50.02 49.20.02
4. Ours 99.70.00 96.10.00 52.10.21 98.10.07 59.20.91 91.20.28 74.52.75 58.80.35
with attention guidance for localized editing
5. Ours (AG) 99.70.07 96.80.00 48.20.14 96.60.07 38.71.90 78.40.49 47.71.76 51.40.49

Table 13: Identity preservation, realism, and minimality on the CelebA test set. VAE, HVAE, and
GAN are reported as single-run results from prior work, while our methods report meanstd over three
random seeds. “–” indicates that LPIPS was not reported for the corresponding method.

Method Identity Preservation (LPIPS ↓) Realism Minimality
Age Gender Bearded Bald FID ↓ CLD ↓

1. VAE – – – – 59.393 0.299
2. HVAE – – – – 35.712 0.305
3. GAN – – – – 27.861 0.304
4. Ours 0.0870.0066 0.1570.0067 0.07970.0060 0.1570.0073 8.1520.365 0.3100.001

Ours with attention guidance for improved realism and minimality
5. Ours (AG) 0.0610.0171 0.0720.0178 0.03300.0088 0.1090.0192 5.2130.173 0.3010.001
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Figure 21: Additional counterfactual results on the CelebA dataset (with edit samples selected in a non-
cherrypicked manner following (Melistas et al., 2024)). Our Causal-Adapter effectively disentangles
target attributes compared with prior methods and achieve faithful counterfactual generations.
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Figure 22: Additional counterfactual results on the CelebA dataset (with edit samples selected in a
non-cherrypicked manner following (Melistas et al., 2024)).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E.3 ADNI

do(Brain Vol=.87)

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=female,
𝑏=0.43, 𝑣=0.28, 𝑠=0

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=female,
𝑏=0.43, 𝑣=0.28, 𝑠=0

Null InterventionObservation do(ApoE=1) do(Age=68) do(Sex=male) do(Vent Vol=.42) do(Slice=3)

𝑎𝑝=1, 𝑎=70, 𝑠𝑥=female,
𝑏=0.37, 𝑣=0.23, 𝑠=0

𝑎𝑝=2, 𝑎=68, 𝑠𝑥=female,
𝑏=0.38, 𝑣=0.22, 𝑠=0

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=male,
𝑏=0.54, 𝑣=0.22, 𝑠=0

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=female,
𝑏=0.87, 𝑣=0.41, 𝑠=0

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=female,
𝑏=0.44, 𝑣=0.42, 𝑠=0

𝑎𝑝=2, 𝑎=70, 𝑠𝑥=female,
𝑏=0.43, 𝑣=0.28, 𝑠=3

Counterfactuals
D

irect Effect

do(Brain Vol=.09)

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=female,
𝑏=0.33, 𝑣=0.08, 𝑠=0

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=female,
𝑏=0.33, 𝑣=0.08, 𝑠=0

Null InterventionObservation do(ApoE=2) do(Age=81) do(Sex=male) do(Vent Vol=.13) do(Slice=7)

𝑎𝑝=2, 𝑎=71, 𝑠𝑥=female,
𝑏=0.37, 𝑣=0.22, 𝑠=0

𝑎𝑝=0, 𝑎=81, 𝑠𝑥=female,
𝑏=0.34, 𝑣=0.24, 𝑠=0

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=male,
𝑏=0.58, 𝑣=0.22, 𝑠=0

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=female,
𝑏=0.09, 𝑣=0.21, 𝑠=0

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=female,
𝑏=0.33, 𝑣=0.13, 𝑠=0

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=female,
𝑏=0.33, 𝑣=0.08, 𝑠=7
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do(Brain Vol=.35)

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.47, 𝑣=0.16, 𝑠=5

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.47, 𝑣=0.16, 𝑠=5

Null InterventionObservation do(ApoE=2) do(Age=66) do(Sex=male) do(Vent Vol=.18) do(Slice=8)

𝑎𝑝=2, 𝑎=73, 𝑠𝑥=male,
𝑏=0.34, 𝑣=0.23, 𝑠=5

𝑎𝑝=1, 𝑎=66, 𝑠𝑥=male,
𝑏=0.42, 𝑣=0.22, 𝑠=5

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=female,
𝑏=0.47, 𝑣=0.16, 𝑠=5

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.35, 𝑣=0.23, 𝑠=5

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.47, 𝑣=0.18, 𝑠=5

𝑎𝑝=1, 𝑎=75, 𝑠𝑥=male,
𝑏=0.47, 𝑣=0.16, 𝑠=8
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do(Brain Vol=.43)

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=male,
𝑏=0.52, 𝑣=0.42, 𝑠=1

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=male,
𝑏=0.52, 𝑣=0.42, 𝑠=1

Null InterventionObservation do(ApoE=0) do(Age=77) do(Sex=female) do(Vent Vol=.02) do(Slice=7)

𝑎𝑝=0, 𝑎=80, 𝑠𝑥=male,
𝑏=0.48, 𝑣=0.34, 𝑠=1

𝑎𝑝=1, 𝑎=77, 𝑠𝑥=male,
𝑏=0.51, 𝑣=0.31, 𝑠=1

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=female,
𝑏=0.52, 𝑣=0.42, 𝑠=1

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=male,
𝑏=0.43, 𝑣=0.28, 𝑠=1

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=male,
𝑏=0.52, 𝑣=0.02, 𝑠=1

𝑎𝑝=1, 𝑎=80, 𝑠𝑥=male,
𝑏=0.52, 𝑣=0.42, 𝑠=7

Counterfactuals
D

irect Effect

Figure 23: Additional counterfactual results from random interventions on each attribute in the
ADNI dataset (non-cherrypicked). We observe localized changes consistent with the performed
interventions and the assumed causal graph. Importantly, the identity of the original observation is
well preserved, demonstrating the effectiveness of Causal-Adapter.
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do(Brain Vol=.30)

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=female,
𝑏=0.36, 𝑣=0.05, 𝑠=7

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=female,
𝑏=0.36, 𝑣=0.05, 𝑠=7

Null InterventionObservation do(ApoE=2) do(Age=61) do(Sex=male) do(Vent Vol=.63) do(Slice=2)

𝑎𝑝=2, 𝑎=55, 𝑠𝑥=female,
𝑏=0.48, 𝑣=0.2, 𝑠=7

𝑎𝑝=1, 𝑎=61, 𝑠𝑥=female,
𝑏=0.46, 𝑣=0.2, 𝑠=7

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=male,
𝑏=0.67, 𝑣=0.2, 𝑠=7

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=female,
𝑏=0.3, 𝑣=0.2, 𝑠=7

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=female,
𝑏=0.36, 𝑣=0.63, 𝑠=7

𝑎𝑝=1, 𝑎=55, 𝑠𝑥=female,
𝑏=0.36, 𝑣=0.05, 𝑠=2

Counterfactuals
D

irect Effect

do(Brain Vol=.09)

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=male,
𝑏=0.53, 𝑣=0.12, 𝑠=0

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=male,
𝑏=0.53, 𝑣=0.12, 𝑠=0

Null InterventionObservation do(ApoE=2) do(Age=81) do(Sex=female) do(Vent Vol=.13) do(Slice=4)

𝑎𝑝=2, 𝑎=73, 𝑠𝑥=male,
𝑏=0.52, 𝑣=0.24, 𝑠=0

𝑎𝑝=1, 𝑎=81, 𝑠𝑥=male,
𝑏=0.49, 𝑣=0.36, 𝑠=0

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=female,
𝑏=0.37, 𝑣=0.23, 𝑠=0

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=male,
𝑏=0.09, 𝑣=0.22, 𝑠=0

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=male,
𝑏=0.53, 𝑣=0.13, 𝑠=0

𝑎𝑝=1, 𝑎=73, 𝑠𝑥=male,
𝑏=0.53, 𝑣=0.12, 𝑠=4

Counterfactuals
D

irect Effect

do(Brain Vol=.62)

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=male,
𝑏=0.56, 𝑣=0.69, 𝑠=9

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=male,
𝑏=0.56, 𝑣=0.69, 𝑠=9

Null InterventionObservation do(ApoE=1) do(Age=71) do(Sex=female) do(Vent Vol=.44) do(Slice=2)

𝑎𝑝=1, 𝑎=87, 𝑠𝑥=male,
𝑏=0.43, 𝑣=0.48, 𝑠=9

𝑎𝑝=0, 𝑎=71, 𝑠𝑥=male,
𝑏=0.57, 𝑣=0.24, 𝑠=9

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=female,
𝑏=0.3, 𝑣=0.48, 𝑠=9

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=male,
𝑏=0.62, 𝑣=0.52, 𝑠=9

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=male,
𝑏=0.56, 𝑣=0.44, 𝑠=9

𝑎𝑝=0, 𝑎=87, 𝑠𝑥=male,
𝑏=0.56, 𝑣=0.69, 𝑠=2

Counterfactuals
D

irect Effect

do(Brain Vol=.59)

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=female,
𝑏=0.38, 𝑣=0.32, 𝑠=4

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=female,
𝑏=0.38, 𝑣=0.32, 𝑠=4

Null InterventionObservation do(ApoE=0) do(Age=81) do(Sex=male) do(Vent Vol=.2) do(Slice=3)

𝑎𝑝=0, 𝑎=79, 𝑠𝑥=female,
𝑏=0.35, 𝑣=0.24, 𝑠=4

𝑎𝑝=2, 𝑎=81, 𝑠𝑥=female,
𝑏=0.3, 𝑣=0.26, 𝑠=4

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=male,
𝑏=0.48, 𝑣=0.24, 𝑠=4

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=female,
𝑏=0.59, 𝑣=0.37, 𝑠=4

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=female,
𝑏=0.38, 𝑣=0.2, 𝑠=4

𝑎𝑝=2, 𝑎=79, 𝑠𝑥=female,
𝑏=0.38, 𝑣=0.32, 𝑠=3

Counterfactuals
D

irect Effect

Figure 24: Additional counterfactual results from random interventions on each attribute in the ADNI
dataset
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E.4 CELEBA-HQ

Additional counterfactual and reversal results. Supplementary counterfactual and reversal exam-
ples generated by Causal-Adapter are provided in Figure 25–26. These visualizations demonstrate
faithful interventions and strong identity preservation across diverse attribute edits.

Stress test with compositional interventions. Following the settings of Rasal et al. (2025), we
concatenated four confounding attributes (Male, Wearing Lipstick, Bald, Wearing Hat) during training
to mitigate cross-attribute spurious correlations. Based on the disentangled attributes, we perform
a compositional stress test in which we select five non-overlapping attributes (smile, mouth-open,
gender, glasses, hat) and progressively apply multiple interventions, i.e., do(smile), do(smile,mouth),
etc. Results in Figure 27–28 show that Causal-Adapter produces plausible counterfactuals under
progressively complex intervention sets while maintaining strong identity consistency.

Generalization test (SD3 backbone). To further validate generalizability, we apply Causal-Adapter
to a different diffusion backbone, Stable Diffusion 3 (SD3) (Esser et al., 2024), based on the Diffusion
Transformer (DiT) architecture. SD3 employs three text encoders that we inject attribute information
via PAI across all token-embedding streams. The diffusion loss LDM is replaced by a flow-matching
loss following the SD3 training recipe. During inference, we adopt FlowEdit (Kulikov et al., 2025),
an inversion-free editing method designed for flow-matching models. As shown in the manuscript
and in Figure 29–31, Causal-Adapter successfully tames the SD3 backbone and produces causally
faithful counterfactuals. This confirms that our method is not tied to DDIM inversion and naturally
extends across different T2I generative families. Other inversion techniques, such as null-text
inversion (Mokady et al., 2023), can also be integrated, but they require per-sample optimization and
are therefore unsuitable for large-scale benchmarks.

Overall, these additional experiments show that Causal-Adapter is a simple yet effective framework
for counterfactual image generation. It is modular, generalizable, and scalable across multiple T2I
backbones and editing paradigms.
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E.4.1 QUALITATIVE RESULTS WITH THE SD1.5 BACKBONE

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=0) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→ 1) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=0) do(smile=1) do(mouth=1)

Counterfactual Generation

Null Intervention reverse(glass→ 1) reverse(smile→ 0) reverse(mouth→ 0)

Reversal Generation

Image do(glass=0) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→ 1) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Figure 25: Additional counterfactual and reversal results (256×256) on CelebA-HQ.
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Image do(glass=1) do(smile=1) do(mouth=1)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 0) reverse(mouth→ 0)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=1) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 0) reverse(mouth→ 1)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=1)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 0)

Reversal Generation

Image do(glass=1) do(smile=1) do(mouth=1)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 0) reverse(mouth→ 0)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=1)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 0)

Reversal Generation

Image do(glass=1) do(smile=0) do(mouth=0)

Counterfactual Generation

Null Intervention reverse(glass→0) reverse(smile→ 1) reverse(mouth→ 1)

Reversal Generation

Figure 26: Additional counterfactual and reversal results (256×256) on CelebA-HQ.
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Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=1)

do(smile=0, mouth=0, 
gender=1, glass=1)

do(smile=0, mouth=0, 
gender=1, glass=1, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=0)

do(smile=0, mouth=0, 
gender=0, glass=1)

do(smile=0, mouth=0, 
gender=1, glass=1, hat=1)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=1)

do(smile=1, mouth=1, 
gender=1, glass=0)

do(smile=1, mouth=1, 
gender=1, glass=0, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=1)

do(smile=0, mouth=0, 
gender=1, glass=1)

do(smile=0, mouth=0, 
gender=1, glass=1, hat=1)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=1)

do(smile=1, mouth=1, 
gender=0, glass=1, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=0)

do(smile=0, mouth=0, 
gender=0, glass=1)

do(smile=0, mouth=0, 
gender=0, glass=1, hat=0)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=1)

do(smile=1, mouth=1, 
gender=0, glass=1, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=0)

do(smile=0, mouth=0, 
gender=0, glass=0)

do(smile=0, mouth=0, 
gender=0, glass=0, hat=1)

Figure 27: Stress test with compositional interventions: five attributes (smile, mouth-open, gender,
glasses, hat) are progressively intervened. For example, the second column applies do(smile); the
third column applies do(smile,mouth); subsequent columns add further interventions in sequence.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=1)

do(smile=1, mouth=1, 
gender=0, glass=1, hat=1)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=1, glass=0)

do(smile=1, mouth=1, 
gender=1, glass=0, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=1)

do(smile=0, mouth=0, 
gender=1, glass=1)

do(smile=0, mouth=0, 
gender=1, glass=1, hat=1)

Image do(smile=0, mouth=0)do(smile=0) do(smile=0, mouth=0, 
gender=1)

do(smile=0, mouth=0, 
gender=1, glass=1)

do(smile=0, mouth=0, 
gender=1, glass=1, hat=1)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=1)

do(smile=1, mouth=1, 
gender=0, glass=1, hat=1)

Image do(smile=0, mouth=1)do(smile=0) do(smile=0, mouth=1, 
gender=1)

do(smile=0, mouth=1, 
gender=1, glass=1)

do(smile=0, mouth=1, 
gender=1, glass=1, hat=1)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=0)

do(smile=1, mouth=1, 
gender=0, glass=0, hat=0)

Image do(smile=1, mouth=1)do(smile=1) do(smile=1, mouth=1, 
gender=0)

do(smile=1, mouth=1, 
gender=0, glass=1)

do(smile=1, mouth=1, 
gender=0, glass=1, hat=1)

Figure 28: Stress test with compositional interventions: five attributes (smile, mouth-open, gender,
glasses, hat) are progressively intervened. For example, the second column applies do(smile); the
third column applies do(smile,mouth); subsequent columns add further interventions in sequence.
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E.4.2 QUALITATIVE RESULTS WITH THE SD3 BACKBONE

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Figure 29: Additional counterfactuals (512×512) generated by using SD3 Backbone.
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Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Figure 30: Additional counterfactuals (512×512) generated by using SD3 Backbone.
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Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Image do(glass) do(smile) do(mouth)

Figure 31: Additional counterfactuals (512×512) generated by using SD3 Backbone.
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E.5 ATTENTION MAPS

“a human is @ andand and* & #”Image

Figure 32: Average cross-attention maps from Causal-Adapter on CelebA dataset. Token denote
attributes: “@” for age, “*” for gender, “&” for beard, and “#” for bald.

“an mri image @ and and* &”isImage

Figure 33: Average cross-attention maps from Causal-Adapter on ADNI dataset. Token denote
attributes: “@” for brain volume, “*” for ventricular volume, “&” for slice.
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“a image is @ andand and* & #”Image

Figure 34: Average cross-attention maps from Causal-Adapter on Pendulum dataset. Token denote
attributes: “@” for pendulum, “*” for light, “&” for shadow length, and “#” for shadow position.
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F COUNTERFACTUAL IDENTIFIABILITY

The abduction step in counterfactual generation implicitly assumes that the frozen diffusion model
provides a counterfactually valid inverse mapping that DDIM inversion can approximately recover
the exogenous noise consistent with the true data-generating process. This relates to the broader
challenge of counterfactual identifiability in high-dimensional generative models (Ribeiro et al., 2025;
Komanduri et al., 2024a; Nasr-Esfahany et al., 2023), where recovering latent exogenous variables
from observations is generally non-trivial and often non-identifiable without additional assumptions.

To empirically assess identifiability, we perform a reversibility analysis, following the principle
that counterfactual outputs should be reconstructable from the observed image distribution. In our
CelebA-HQ experiments, we compare Causal-Adapter with DiffCounter and observe substantially
stronger reversibility under our approach. Representative examples for three interventions (glasses,
smile, mouth) are shown in Figure 25–26. These results suggest that our adapter improves the model’s
ability to produce counterfactuals that remain consistent with the underlying observational manifold.

However, we note that strong empirical recovery does not imply a formal identifiability guarantee.
DDIM inversion is approximate, and imperfect reconstruction may cause information loss, especially
under complex or compound interventions. Thus, even our Causal-Adapter “tames” causal priors
into the frozen T2I backbone and yields practically robust counterfactual behavior, exact theoretical
identifiability remains an open challenge.

Achieving formal counterfactual identifiability would require improved inverse operators or diffusion
models explicitly designed to recover exogenous noise, may potentially leveraging recent progress
in flow matching. We regard this as an important direction for future work, complementary to our
empirical findings.
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G LIMITATIONS AND MITIGATION STUDIES

This section describes practical evaluation constraints observed in our experiments and presents
corresponding mitigation studies.

G.1 CLASSIFIER BIAS IN OOD SETTINGS

Causal-Adapter demonstrates strong counterfactual generation across domains, but evaluation may
fail when generated counterfactuals exceed the representational scope of the intervention classifier,
especially in out-of-distribution (OOD) cases. As shown in Figure 35, our method successfully adds
beards to female faces while preserving identity. However, intervention classifiers may misclassify
these counterfactuals as male, since their training data does not contains examples of bearded females.
This illustrates that current evaluation may occasionally fail when counterfactual generation been
much stronger than the classifier, especially in OOD settings.

Image Counterfactual Image Counterfactual Image Counterfactual Image Counterfactual

Figure 35: Counterfactuals generated by Causal-Adapter on CelebA under beard interventions.
Our method successfully adds beards to female faces while preserving identity. However, since
the intervention classifiers were trained without any bearded females, such counterfactuals may
occasionally be misclassified as male.

Mitigation Study To obtain a more reliable assessment beyond biased intervention classifiers, we
conducted an evaluation on a random subset of CelebA and their beard intervention counterfactuals
(Figure 36). We evaluated each counterfactual using three judges: 1. Intervention classifiers (original
pre-trained classifiers), 2. Human annotators (three raters; majority vote), 3. GPT-5.1 acting as a
vision–language evaluator. Human and GPT followed the same instruction: “Given an original face
and its counterfactual version (intervention: beard), determine (1) whether a beard was successfully
added, and (2) whether the person’s gender changed. Respond yes/no for each.”

Quantitative results are shown in Table 14. We observe a consistent trend: Classifier accuracy <
Human accuracy < GPT-5.1 accuracy. This confirms that intervention classifiers mislabel a part of
counterfactuals, while human and VLM-based evaluators provide more robust and reliable measure-
ments. These findings suggest that future counterfactual image benchmarks can incorporate human
or VLM-based evaluation to eliminate biases arising from classifiers.

Original Images Counterfactual Images

Figure 36: Sampled subset: original images (left) and counterfactuals from Causal-Adapter (right).

Table 14: Bearded-female counterfactual evaluation across classifier, human, and VLM-based judges.

Metric Cls. Gender Acc Cls. Beard Acc Human Gender Acc Human Beard Acc GPT-5.1 Gender Acc GPT-5.1 Beard Acc
Ours 78% 74% 90% 86% 96% 86%
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G.2 ASSUMPTION OF A KNOWN CAUSAL GRAPH

Counterfactual generation frameworks assume that a pre-defined causal graph is provided as part of
the input (Pearl, 2009; De Sousa Ribeiro et al., 2023; Wu et al., 2025; Komanduri et al., 2024a; Rasal
et al., 2025). This assumption enables active interventions and makes evaluation comparable across
methods. However, it is a relatively strong requirement: in many real-world scenarios, the causal
graph may be misspecified, partially known, or even completely unknown. To understand whether
our framework can adapt to such settings, we conduct a mitigation study through causal discovery.

Mitigation Study Our Causal-Adapter is modular and can be extended with minimal modifi-
cation to jointly learn the causal graph. Instead of fixing the adjacency matrix A, we treat it as
a learnable parameter initialized to zeros. Following differentiable DAG-based methods such as
NOTEARS (Zheng et al., 2018) and DAGMA (Bello et al., 2022), we impose an acyclicity constraint
(e.g., log-determinant penalty) directly on A. No additional networks or architectural changes are
required; only an extra structural loss term is added.

As shown in Figure 37, this extension allows the causal adapter to perform causal structure learning,
and it achieves competitive or superior performance compared with state-of-the-art differentiable
causal discovery methods, including SDCD (Nazaret et al., 2024). Across three benchmark settings,
our method recovers more true edges than competing baselines. Nevertheless, consistent with prior
literatures (Nazaret et al., 2024; Olko et al., 2025), recovering the full causal graph from purely
observational data (e.g., CelebA or ADNI) remains fundamentally challenging due to the lack of
interventional signals.

Additionally, the learning dynamics of A during training are visualized in Figure 38, showing
stable convergence toward the truth graph and demonstrating interpretable behavior of our model.
Overall, these results indicate that Causal-Adapter has the potential to unify causal discovery and
counterfactual generation within a single, simple, and efficient framework.

Causal graph for Pendulum. 
Pendulum (𝑝), l (𝑙), shadow 
length (𝑠𝑙) and position 𝑠𝑝). True Graph Ours SDCD Notears Dagma

Causal graph for CelebA. 
Observed variables include 
the image (𝑥), age (𝑎), gender 
(𝑔), beard (𝑏𝑟), and bald (𝑏𝑙) True Graph Ours SDCD Notears Dagma

Causal graph for ADNI. ApoE
(𝑎𝑝), sex (𝑠𝑥), age (𝑎), brain (𝑏) 
& ventricle (𝑣) volume, slice (𝑠). True Graph Ours SDCD Notears Dagma

Figure 37: Causal discovery performance of Causal-Adapter compared with SDCD, NOTEARS, and
DAGMA across three benchmarks. Using the predefined graph as ground truth, our method recovers
more true edges than competing methods, demonstrating the potential to unify causal discovery and
counterfactual generation within a single framework.
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Initialize After 5 epochs After 10 epochs After 15 epochs After 20 epochs

The learning process of using our method for causal discovery on the Pendulum dataset

Initialize After 5 epochs After 20 epochs After 35 epochs After 50 epochs

The learning process of using our method for causal discovery on the Celeba dataset

Initialize After 5 epochs After 10 epochs After 15 epochs After 20 epochs

The learning process of using our method for causal discovery on the ADNI dataset

Figure 38: Learning trajectory of the adjacency matrix A. As training progresses, the learned
graph progressively converges toward the true structure. A fixed threshold of 0.1 is applied across
benchmarks for fair comparison in the end.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

To clarify, we only used an LLM (ChatGPT) for grammar checking and text polishing, without any
involvement in content generation.
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