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Abstract

Bayesian causal structure learning aims to learn a posterior distribution over directed acyclic
graphs (DAGs), and the mechanisms that define the relationship between parent and child
variables. By taking a Bayesian approach, it is possible to reason about the uncertainty
of the causal model. The notion of modelling the uncertainty over models is particularly
crucial for causal structure learning since the model could be unidentifiable when given only
a finite amount of observational data. In this paper, we introduce a novel method to jointly
learn the structure and mechanisms of the causal model using Variational Bayes, which we
call Variational Bayes-DAG-GFlowNet (VBG). We extend the method of Bayesian causal
structure learning using GFlowNets to learn not only the posterior distribution over the
structure, but also the parameters of a linear Gaussian model. Our results on simulated
and real-world data suggest that VBG is competitive against several baselines in modelling
the posterior over DAGs and mechanisms, while offering several advantages over existing
methods which include guaranteed acyclicity of graphs and unlimited sampling from the
posterior once the model is trained.

1 Introduction

Bayesian networks (Pearl, 1988) represent the relationships between random variables as Directed Acyclic
Graphs (DAGs). This modelling choice allows for inspecting of the conditional independence relations
between random variables in a visual and straightforward manner. A Bayesian network can be used to
represent a joint distribution over its variables. A causal Bayesian network, or a causal model, defines a
family of distributions with shared parameters, corresponding to all possible interventions on the variables
(Peters et al., 2017). Causal models allow for questions of importance to be answered such as: can we find
an intervention that will result in the desired outcome in the modelled system? Answering these questions
using causal models has been prominent in fields such as genetics (Belyaeva et al., 2021), medical diagnosis
(Chowdhury et al., 2020) and economics (Awokuse, 2005).

The challenge of causal modelling lies in the fact that the search space of all possible DAGs grows super-
exponentially in the number of nodes. As a result, many different heuristic methods have been suggested to
tackle this problem. In addition to finding the graph, quantifying the uncertainty over causal models poses
another challenge. Without assumptions on the DAG, observational data alone only identifies the Markov
equivalence class of DAGs (Verma & Pearl, 1990), as a result, graph-finding algorithms that capture the
uncertainty of the whole Markov equivalence class are beneficial, e.g., to avoid confidently wrong predictions
or to explore in a way that will minimize this uncertainty. Reducing this uncertainty about the causal model
requires interventions in the real world (Pearl, 2000) that could be prohibitively expensive, and quantifying
uncertainty to direct the most informative interventions is a topic of particular interest in causal modelling.

Recently, a host of Bayesian causal structure learning algorithms that leverage the recent advances in gradient
descent methods have been proposed (Lorch et al., 2021; Cundy et al., 2021; Deleu et al., 2022; Annadani
et al., 2021). Each of these methods infers different aspects of the causal model and their uncertainty, given
some assumptions on the model. The DAG-GFlowNet algorithm (Deleu et al., 2022) promises a unique way
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of modelling a distribution over DAGs using GFlowNets (Bengio et al., 2021a;b). The method is limited to
inferring only the DAG structure, without explicitly inferring the parameters of the causal mechanisms.

In this paper, we introduce an extension of DAG-GFlowNet which we call Variational Bayes DAG-GFlowNet
(VBG), which infers the parameters of a linear Gaussian model between continuous random variables in the
DAG, along with the graph itself, using Variational Bayes. This lends itself well to active learning approaches
in causal modelling which require the mechanisms to be known (Scherrer et al., 2021; Agrawal et al., 2019;
Tigas et al., 2022; Toth et al., 2022). Since conducting interventions to gather data for causal modelling is
often very resource-heavy, active learning of causal structure is a promising direction of research. At this
point, we would like to draw the attention of the reader to a concurrent work, JSP-GFN (Deleu et al.,
2023) where the causal mechanisms are learned jointly with the causal graph using a GFlowNet, without
any modelling assumptions on the mechanisms. We address the pitfalls of other Bayesian causal structure
learning algorithms that model the mechanisms and the graphs. DiBS (Lorch et al., 2021) lacks the ability
to sample from the posterior in an unbounded manner once the model is trained, and acyclicity is not
guaranteed for the sampled graphs. Similarly, VCN (Annadani et al., 2021) does not guarantee acyclicity.
BCD-Nets (Cundy et al., 2021) does not allow for flexibility of model parametrization for the mechanisms.
Our method overcomes all these pitfalls and does comparatively well to these methods in our empirical
evaluation using a number of metrics. In addition, we believe that this novel approach of finding the causal
model using Variational Bayes has the potential to be applied to other Bayesian causal structure learning
algorithms that only model the graph, and expand their capabilities to also model the mechanisms.

2 Related work

2.1 Causal structure learning

This paper contributes to the large body of work on causal structure learning, and relates most closely
to score-based methods for causal discovery (Chickering, 2003). Score-based methods consist of two parts:
defining a score that determines how well a DAG fits the observed data, and a search algorithm to search over
the space of possible DAGs, to return the DAG with the highest score. This is in contrast to constraint based
methods such as (Spirtes et al., 1993) that find the DAG that satisfies all of the conditional independence
relations in the data. Examples of scores in score-based methods include the Bayesian Gaussian equivalent
(BGe) score (Geiger & Heckerman, 2013) for linear Gaussian models, and the Bayesian Dirichlet equivalent
(BDe) score (Chickering et al., 1995) for Dirichlet-multinomial models. The BGe score and the BDe score
represent different ways to compute the marginal likelihood of the data, depending on the assumptions of
the model. By using conjugate priors and likelihoods, the parameters of the mechanism can be marginalised
out in closed-form. There are also a number of hybrid methods that combine score-based methods and
constraint based methods such as (Tsamardinos et al., 2006) and more recently, GreedySP (Solus et al.,
2021) and GRaSP (Lam et al., 2022). A subclass of score-based methods provides the exact identification
of causal models from observational data using parametric assumptions (Hoyer et al., 2008; Shimizu et al.,
2006). The modelling assumptions of Shimizu et al. (2006) show that if the mechanisms are linear and
the noise is non-Gaussian, observational data is sufficient to identify the graph. Related to the work of
Shimizu et al. (2006) in Peters & Bühlmann (2013), it was shown that linear Gaussian models with the same
variance across nodes are identifiable using observational data alone. One of the more recent algorithms
that resulted in a series of papers demonstrating its applications is the NO-TEARS framework (Zheng et al.,
2018). In NO-TEARS, the score-based approach searching across discrete space with a hard constraint is
relaxed into a soft constraint by using a differentiable function h(W ), which expresses the “DAG-ness” of
a weighted adjacency graph W . The soft acylicity prior and its variants lead to the development of many
new causal structure learning algorithms using observational and interventional data, even with non-linear
causal mechanisms (Yu et al., 2019; Lachapelle et al., 2019; Ke et al., 2019; Brouillard et al., 2020).

2.2 Bayesian causal structure learning

Bayesian approaches to structure learning involve learning a distribution over the graph and parameters of
the mechanisms of causal models. However, computing the exact posterior from data requires calculating
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the evidence, P (D) =
∑

G

∫
θ

P (D | G, θ)P (G, θ)dθ, D being the data, G the DAG and θ the parameters of
the mechanism. This becomes quickly intractable as it involves enumerating over graphs and all possible
parameters. As a result, variational inference or MCMC techniques are often used to obtain an approximate
posterior over the graph and parameters. DiBS (Lorch et al., 2021) employs variational inference over
a latent variable that conditions the graph distribution to approximate the posterior, in addition to the
constraint proposed in (Zheng et al., 2018) as a soft prior, to perform marginal or joint Bayesian structure
learning in non-linear or linear Gaussian models. VCN (Annadani et al., 2021) has a similar setup, but infers
only the structure and attempts to capture a multimodal posterior by autoregressively predicting edges in
the graph. However, due to the soft DAG-ness prior in both these methods, samples from the posterior
approximation are not guaranteed to be valid DAGs. Similarly, Ke et al. (2022) define a distribution over
graphs in an autoregressive way, but do not enforce acyclicity. BCD-Nets (Cundy et al., 2021) parametrize
a distribution over DAGs as a distribution over upper-triangular weighted and permutation matrices, that
once combined together induces a distribution over weighted adjacency matrices. This method is guaranteed
to output only DAGs without the need for the soft DAG-ness constraint; however, it is only limited to linear
Gaussian models. Subramanian et al. (2022) extends the BCD-Nets (Cundy et al., 2021) framework to learn
a distribution over latent structural causal models from low-level data (e.g., images) under the assumption of
known interventions. Wang et al. (2022) uses sum-product networks that define a topological ordering and
then use variational inference to learn an approximate posterior. The structure MCMC algorithm (Madigan
& York, 1995) build a Markov chain over DAGs by adding or removing edges. One of the motivations for
learning a distribution over the causal model is that it lends well to active causal structure learning (Scherrer
et al., 2021; Agrawal et al., 2019; Tigas et al., 2022; Toth et al., 2022). By knowing more about what the
model is uncertain about, it becomes possible to choose the interventions that will result in the maximum
reduction in the uncertainty of the causal model.

3 Background

3.1 Causal modelling

We study causal models described by a triple (G, f, σ2), where G is the causal graph, f represents the
mechanisms between child-parent pairs, i.e., how a set of parent nodes influence a child node and σ2 is the
noise associated with each random variable in the graph. Assuming the Markov condition, the likelihood
can therefore be factorized according to the following DAG formulation:

P (X | G, θ) =
N∏

n=1

K∏
k=1

P (X(n)
k | PaG(X(n)

k ), θ), (1)

where K is the number of nodes in the graph, N is the number of independent samples from the causal
model, PaG(Xk) are the parents of Xk in the graph G, and θ represents the parameters of the cause-effect
mechanism, which we will call mechanism parameters. If we assume that the model has linear mechanisms
with Gaussian noise (often called a linear Gaussian model), then the mechanism parameters θ correspond
to a matrix of edge weights θik representing the strength of the connection between a parent Xi and a child
Xk, through the following functional relation:

Xk =
K∑

i=1
1(Xi ∈ PaG(Xk))θikXi+εk

with εk ∼ N (0, σ2
k).

(2)

It is well-known in causal modelling that a causal graph can in general only be identified up to its Markov
equivalence class (MEC) given just observational data (Verma & Pearl, 1990). By introducing appropriate
and enough interventional data, it is possible to narrow down the ambiguity to a single graph within a
MEC. Given a dataset of observations D, our goal in this paper is to model the joint posterior distribution
P (G, θ | D) over graph structures G and mechanism parameters θ. Note that in this method, we assume the
variances σ2 are the same across all nodes.
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3.2 Generative Flow Networks

Generative Flow Networks (GFlowNets; Bengio et al., 2021a) are generative models learning a policy capable
of modelling a distribution over objects constructed through a sequence of steps. A GFlowNet has a training
objective such that when the objective is globally minimized, it samples an object x with probability propor-
tional to a given reward function R(x). The generative policy stochastically makes a sequence of transitions,
each of which transforms a state s (in an RL sense) into another s′, with probability PF (s′ | s) starting at
a single source state s0, and such that the set of all possible states and transitions between them forms a
directed acyclic graph. The sequence of steps to construct an object is called a “trajectory”.

In addition to the structured state space, every transition s → s′ in a GFlowNet is associated with flow
functions Fϕ(s → s′) and Fϕ(s) on edges and states respectively, typically parametrized by neural networks.
The GFlowNet is trained in order to satisfy the following flow-matching conditions for all states s′:∑

s∈Pa(s′)

Fϕ(s → s′) =
∑

s′′∈Ch(s′)

Fϕ(s′ → s′′) + R(s′), (3)

where Pa(s′) and Ch(s′) are respectively the parents and children of s′, and R(s′) is non-zero only at the end
of a trajectory, when s′ = x is a fully-formed object. Intuitively, the LHS of equation 3 corresponds to the
total incoming flow into s′, and the RHS corresponds to the total outgoing flow from s′. If these conditions
are satisfied for all states s′, then an object x can be sampled with probability ∝ R(x) by following the
forward transition probability PF (s′ | s) ∝ Fϕ(s → s′) (Bengio et al., 2021a). It is worth noting that there
exist other conditions equivalent to equation 3 that also yield similar guarantees for sampling proportionally
to the reward function (Bengio et al., 2021b; Malkin et al., 2022; Madan et al., 2022). In particular, Deleu
et al. (2022) used an alternative condition introduced by Bengio et al. (2021b) and inspired by the detailed-
balance equations in the literature on Markov chains (see Section 3.3). In order to train the GFlowNet, it is
possible to turn the target conditions such as the one in equation 3 into a corresponding loss function such
that minimizing the loss makes the conditions satisfied, e.g.,

L(ϕ) = Eπ

(log
∑

s∈Pa(s′) Fϕ(s → s′)∑
s′′∈Ch(s′) Fϕ(s′ → s′′) + R(s′)

)2
 , (4)

where π is some (full-support) distribution over the states of the GFlowNet.

3.3 GFlowNets for causal structure learning

Deleu et al. (2022) introduced a Bayesian structure learning algorithm based on GFlowNets, called DAG-
GFlowNet, in order to approximate the (marginal) posterior over causal graphs P (G | D). In this framework,
a DAG is constructed by sequentially adding one edge at a time to the graph, starting from the fully
disconnected graph over K nodes, with a special action to indicate when the generation ends and the current
graph is a sample from the posterior approximation. A transition G → G′ here then corresponds to adding
one edge to G in order to obtain G′. Recall that a GFlowNet models a distribution proportional to the reward;
therefore, DAG-GFlowNet uses R(G) = P (D | G)P (G) as the reward function in order to approximate the
posterior distribution P (G | D) ∝ R(G) once the GFlowNet is trained.

In order to train the GFlowNet, Deleu et al. (2022) used an alternative characterization of a flow network,
different from the flow-matching conditions in equation 3. Instead of parametrizing the flows, they directly
parametrized the forward transition probability Pϕ(G′ | G) with a neural network. Since all the states
are valid samples from P (G | D) (i.e., valid DAGs), they showed that for any transition G → G′ in the
GFlowNet, the detailed balance conditions (Bengio et al., 2021b) can be written as

R(G′)PB(G | G′)Pϕ(sf | G) =
R(G)Pϕ(G′ | G)Pϕ(sf | G′),

(5)

where PB(G | G′) is a fixed distribution over the parents of G′ in the GFlowNet, and Pϕ(sf | G) is the
probability of selecting the terminating action to return G as a sample from the posterior approximation.
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Similar to Section 3.2, one can show that if the conditions in equation 5 are satisfied for every transition
G → G′, then the GFlowNet also induces a distribution over objects proportional to the reward (Bengio
et al., 2021a); in other words here, DAG-GFlowNet models the posterior distribution P (G | D). Moreover,
we can also turn those conditions into a loss function to train the parameters ϕ of the neural network, similar
to the loss function in equation 4.

Work concurrent to this paper is JSP-GFN (Deleu et al., 2023). JSP-GFN was an extension to the DAG-
GFlowNet paper, where non-linear mechanisms are learned as well as the causal graph using the GFlowNet.
As a result, the reward of the GFlowNet is a function of both the graph and the mechanism parameters.
In practice, what this means is that the GFlowNet consists of a hierarchical model that transitions from
state to state which are graphs, then given a graph, we transition to a particular value of the mechanisms
parameters. This hierarchical transition function makes it possible to learn the transition within the space
of graphs, then the space of parameters given the graph the benefit of JSP-GFN is that it is able to learn
non-linear mechanisms between nodes. Our method presented in this paper, VBG takes a different approach
of modelling the posterior distribution over the mechanisms and the graph, by having two separate modelling
strategies for the mechanisms and the graph, and to update each iteratively. Although the drawback of VBG
is that it is constrained only to learn linear mechanisms, in the experiments in this paper, where the data
generation process is indeed linear, we demonstrated better performance of VBG in comparison to JSP-GFN
for 20 and 50 node graphs.

4 Variational Bayes-DAG-GFlowNet

One of the main limitations of DAG-GFlowNet (Deleu et al., 2022) is that it only approximates the marginal
posterior distribution over graphs P (G | D), and requires explicit marginalization over the mechanism
parameters θ to compute the marginal likelihood P (D | G), and as a result of the marginalisation, the
mechanism parameters are never inferred. This limits the use of DAG-GFlowNet for downstream applications
of causal structure learning such as inferring the range of possible causal effects of interventions or active
intervention targetting.

In this work, we extend DAG-GFlowNet to model the posterior distribution P (G, θ | D). Allowing for
the quantification of uncertainty of mechanisms as well graphs. To approximate the posterior distribu-
tion P (G, θ | D), we use Variational Bayes in conjunction with the GFlowNet. We model this posterior
distribution using the following decomposition:

P (G, θ | D) ≈ qϕ(G)qλ(θ | G) = qϕ(G)
K∏

k=1
qλ(θk | G), (6)

where ϕ are the variational parameters of the distribution over graphs, λ are the parameters of the distribution
over mechanism parameters, and θk are the parameters of the mechanism corresponding to the variable Xk.
Using this factorization, it is possible to use Variational Bayes to alternatively update the distribution over
graphs qϕ(G), and the distribution over parameters qλ(θ | G). We can write the Evidence Lower-Bound
(ELBO) for this model as log P (D) ≥ ELBO(ϕ, λ), where

ELBO(ϕ, λ) = EG∼qϕ

[
Eθ∼qλ

[log P (D | θ, G)]
−KL

(
qλ(θ | G) ∥ P (θ | G)

)]
−KL

(
qϕ(G) ∥ P (G)

)
.

(7)

The derivation of the ELBO is available in A.1. Variational Bayes corresponds to coordinate ascent on
ELBO(ϕ, λ), alternatively maximizing it with respect to the parameters ϕ of the distribution over graphs,
and with respect to the parameters λ of the distribution over mechanism parameters. Inspired by Deleu
et al. (2022), we use a GFlowNet in order to model the distribution qϕ(G) (where ϕ are the parameters of
the GFlowNet). We call our method Variational Bayes-DAG-GFlowNet (VBG).
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4.1 Modelling the distribution over graphs with a GFlowNet

We show in A.2 that maximizing the ELBO with respect to the parameters ϕ is equivalent to finding a
distribution qϕ⋆(G) such that, for any DAG G

log qϕ⋆(G) =Eθ∼qλ

[
log P (D | θ, G)

]
(8)

−KL
(
qλ(θ | G) ∥ P (θ | G)

)
+ log P (G) + cst

where cst is a constant term independent of G. Equivalently, we can see that the optimal distribution qϕ⋆(G)
is defined up to a normalizing constant: this is precisely a setting where GFlowNets can be applied. Unlike in
Section 3.3 though, where the reward was given by R(G) = P (D | G)P (G), here we can train the parameters
ϕ of a GFlowNet with the reward function R̃(G) defined as

log R̃(G) = Eθ∼qλ

[
w log P (D | θ, G)

]
− KL

(
qλ(θ | G) ∥ P (θ | G)

)
+ log P (G)

(9)

in order to find qϕ⋆(G) that maximizes equation 7. We introduce a weighting parameter that weights the
likelihood term similar to what was done in Higgins et al. (2016). w set to 0.1 which we found works well for
all data sets that were tested in this paper. The weighting was found to be helpful to prevent the posterior
collapsing to a point estimate.

In equation 9, the distribution qλ(θ | G) corresponds to the current iteration of the distribution over
mechanism parameters, found by maximizing the ELBO with respect to λ at the previous iteration of
coordinate ascent. Note that we can recover the same reward function as in DAG-GFlowNet by setting
qλ(θ | G) ≡ P (θ | G). To find ϕ⋆, we can then minimize the following loss functions, based on the conditions
in equation 5

L(ϕ) = Eπ

(log R̃(G′)PB(G | G′)Pϕ(sf | G)
R̃(G)Pϕ(G′ | G)Pϕ(sf | G′)

)2
 , (10)

where π is a (full-support) distribution over transitions G → G′. The same transformer architecture as used in
Deleu et al. (2022) was used to parameterise both Pϕ(sf | G) and Pϕ(G′ | G). Furthermore, similar to Deleu
et al. (2022), we can efficiently compute the difference in log-rewards, the delta score, log R̃(G′) − log R̃(G),
necessary for the loss function in equation 10. The derivation of the delta score is given in A.3. Although
applied in a different context, our work relates to the EB-GFN algorithm (Zhang et al., 2022) where an
iterative procedure is used to update both a GFlowNet and the reward function (here, depending on qλ),
instead of having a fixed reward function.

4.2 Updating the distribution over mechanism parameters

Given the distribution over graphs qϕ(G), we want to find the parameters λ⋆ that maximize equation 7. To
do so, a general recipe would be to apply gradient ascent over λ in ELBO(ϕ, λ), either for a few steps or
until convergence (Hoffman et al., 2013). In some other cases though, we can obtain a closed form of the
optimal distribution qλ⋆(θ | G), such as in linear Gaussian models.

We present an example of the closed form update for a linear Gaussian model here for completeness. In the
case of a linear Gaussian model, we can parametrize the mechanism parameters as a K × K matrix of edges
weights, where θij represents the strength of the connection between a parent Xi and a child variable Xj ;
using this convention, θk in equation 6 corresponds to the kth column of this matrix of edge weights. We
place a Gaussian prior θk ∼ N (µ0, σ2

0IK) over the edge weights. The parameters λ of the distribution over
mechanism parameters correspond to a collection of {(µk, Σk)}K

k=1, where for a given causal graph G

qλ(θk | G) = N (Dkµk, DkΣkDk)
with

Dk = diag
(
{1(Xi ∈ PaG(Xk))}K

i=1
)
.

(11)

6



Under review as submission to TMLR

In other words, the edge weights θk are parametrized by a Gaussian distribution and are then masked based
on the parents of Xk in G. Note that the diagonal matrix Dk depends on the graph G, and therefore the
covariance matrix DkΣkDk is only positive semi-definite. We show in A.4 that given the distribution over
graphs qϕ(G), the optimal parameters µk and Σk maximizing equation 7 have the following closed-form:

Σ−1
k = 1

σ2
0

IK + 1
σ2EG∼qϕ

[
DkXT XDk

]
(12)

µk = Σk

[
1
σ2

0
µ0 + 1

σ2 XT
k XEG∼qϕ

[
Dk

]]
(13)

where X is the N × K design matrix of the data set D, Xk is its kth column, and σ2 is the variance the
Gaussian likelihood model, and σ2

0 is the variance of the prior of the mechanism parameters. We make an
assumption that the variance of each node is equal, which is also an assumption made in Lorch et al. (2021),
however this is not essential to the model, and the derivations can be adjusted to account for K different
variance parameters, one for each node. Note that while the true posterior distribution P (θk | G, D) is also
a Normal distribution under a linear Gaussian model, we are still making a variational assumption here by
having common parameters µk and Σk across graphs, and samples θk are then masked using Dk.

We include the pseudo-code for VBG below:

Algorithm 1: Finding the posterior distribution of DAGs and linear parameters
Data: A dataset D.
Result: A distribution over graphs qϕ(G) & a distribution qλ(θ | G) over mechanism parameters.
while number of iterations < max iterations do

while delta loss of GFlowNet > min delta loss do
Update the GFlowNet using R̃(G) according to equation 9

end
Sample graphs from qϕ, modelled with the GFlowNet
Calculate closed form update of µ & Σ according to equation 13 & equation 12, using sample graphs

end

4.3 Assumptions and limitations

A number of assumptions were made in order to model the posterior over DAGs and mechanism parameters.
Firstly, we assume causal sufficiency; there are no unobserved confounders in the data. Secondly, we assume
that the user has knowledge of the variance term in the likelihood model and it can be inputted in to
the algorithm. In addition, our work is limited to cases where it is sufficient to model the mechanisms
as multivariate Gaussians where the relation of parent-child nodes is linear. Finally, we assume that the
linear mechanism parameters are sufficiently large, so that the strength of the connections between nodes is
larger than the noise of the data, this is reflected in the experiments on synthetic data where the mechanism
parameters are chosen to be outside of the range close to zero as outlined in section 5.1.

5 Experiments

We compare our method to other Bayesian approaches to causal structure learning that are able to learn a
distribution over the graphs as well as infer the mechanisms between nodes. We examine the performance
of methods by comparing the learned graphs to the ground truth graph, as well as the estimated posterior
to the true posterior of graphs. Experiments were conducted on both synthetic Erdos-Renyi graphs and
scale-free graphs (Erdös & Rényi, 1959) as well as real data from protein signalling networks (Sachs et al.,
2005). Comparison of posteriors is only done for graphs with 5 nodes, where it is possible to enumerate all
possible DAGs. We find that our method, VBG does comparably well to other methods across metrics. All
results on scale-free graphs can be found on the appendix A.7.
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5.1 Synthetic data generation

Experiments were conducted on K = 5 node graphs with 5 total edges in expectation, K = 20 node graphs
with 40 total edges in expectation and K = 50 node graphs with 50 total edges in expectation. 20 different
graphs from different seeds were generated according to the Erdos-Renyi random graph model as well as
scale-free graphs (Erdös & Rényi, 1959). Results on scale-free graphs for 5 and 20 nodes can be found in
the appendix A.7. 100 samples of data were taken from each graph. The mechanisms between parent and
child nodes were linear Gaussian, with the edge weights sampled uniformly in {−2, −0.5} ∪ {0.5, 2.0} as
done in Cundy et al. (2021). Given the ground truth graph, ancestral sampling was used with homogeneous
variance across nodes of σ2 = 0.1. Note that linear Gaussian models with homogeneous noise are provably
identifiable using just observational data (Peters & Bühlmann, 2013) as a result, the uncertainty represented
by the posterior in these results corresponds to uncertainty as a result of lack of data, not due multiple
graphs being in the same Markov equivalence classes.

5.2 Baselines

We compare VBG to other methods that infer both the graph and the mechanisms. First, some recent
gradient-based posterior inference methods, DiBS (Lorch et al., 2021) and BCD Nets (Cundy et al., 2021).
In addition, we also compare against two MCMC graph finding methods Metropolis-Hastings MCMC and
Metropolis-within-Gibbs with adjustments to find the linear Gaussian parameters as introduced in (Lorch
et al., 2021), these are referred to as Gibbs and MH in the figures. We also compare to GES (Chickering,
2003) and the PC algorithm (Spirtes et al., 2000) using DAG bootstrap (Friedman et al., 1999) to obtain a
distribution over graphs and parameters. Finally, we also compare VBG to other GFlowNet based methods,
JSP-GFN (Deleu et al., 2023), which finds the causal mechanisms, as well as DAG-GFlowNet (Deleu et al.,
2022). However since DAG-GFlowNet only finds the distribution over graphs and not mechanisms, we report
the comparison of results in the appendix A.5.1.

For each metric, when calculating the expected value over graphs or parameters, 1, 000 samples each from
the posterior over parameters and graphs are used. Results were calculated across 20 different graphs for
the simulated data, and 20 different model seeds for the Sachs dataset. All box plots correspond to the
median, 25th and 75th percentiles. For all the methods except BCD-Nets, the variance of the likelihood of
the model for all nodes was set to the variance used to generate the data. For BCD-Nets the variance that
is learned from the model is used to calculate the negative log-likelihood and the comparison to the true
posterior. A uniform prior was used for all Bayesian methods, except for experiments with DiBS on graphs
larger than 5 nodes, where an Erdos-Renyi prior is used. This is because DiBS requires sampling from the
prior distribution of graphs for inference, and this is not possible with a uniform prior with more than 5
nodes.

5.3 Comparing the learned posterior to the ground truth posterior

We examine three features of graphs sampled from the posterior which we believe best summarises the
distribution of graph structures. These are edge, path and Markov features as done in Friedman & Koller
(2000), these can be seen in Figure 1. Edge features compare the existence of edges in graphs in the learned
posterior and the true posterior, in summary it reflects the distribution of graphs at the most fine-grained
scale compared to the other two metrics. Path features tell us about a longer-range relationship between
nodes in the graph, looking at paths that exist between pairs of nodes through edges. Markov features
compare the Markov blanket of each node in the graph, and tell us about conditional relationships between
them. Note that these metrics only depend on the posterior over graphs and not parameters.
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Edge Path Markov

Figure 1: MSE of Edge, path and Markov features of the true posterior and the estimated posterior for 5
node Erdos-Renyi graphs (lower the better).

VBG does consistently well across all three metrics compared to baselines. However JSP-GFN and BCD-Nets
outperform all other methods on these results including VBG.

5.4 Comparing the learned posterior to the ground truth graph

We look at metrics often quoted for pairwise comparison of graph structures to compare between the learned
posterior and the ground truth graph for 5 node, 20 node and 50 node Erdos-Renyi graphs. Expected
structural hamming distance (E-SHD) represents the number of edge insertions deletions or flips in order
to change the estimated graph to the ground truth graph, the lower the better, the results can be seen in
Figure 2. Not this is the (E-SHD) between estimated graphs and the ground truth DAG, not the CPDAG.
Area under the ROC graph (AUROC; Husmeier, 2003) reflects the number of true positive edges and false
positive edges predicted from the algorithm, the higher the better, which can be seen in Figure 3. These
two metrics are more suited to maximum-likelihood estimates of graphs since they only compare against a
single ground truth graph, but we include them nonetheless since they are also reported by other similar
works. To assess the quality of the estimates of the mechanism parameters, we look at mean squared error
of the mechanism parameters compared to the true graph in Figure 4. To assess both the quality of the
learned mechanism parameters as well as the learned graph in we look at negative log-likelihood of held-out
data given the learned posterior of graphs and mechanisms in Figure 5. Results for the Metropolis-Hastings
algorithm are omitted from the figures as it did not perform as well as the other methods for mean squared
error and negative log-likelihood, these results can be found in A.6.
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5 nodes 20 nodes 50 nodes

Figure 2: E-SHD (lower the better) inferring Erdos Renyi graphs with differing number of nodes. Box plots
correspond to the median and 25th and 75th percentiles.

5 nodes 20 nodes 50 nodes

Figure 3: AUROC (higher the better) inferring Erdos Renyi graphs with differing number of nodes. Box
plots correspond to the median and 25th and 75th percentiles.

5 nodes 20 nodes 50 nodes

Figure 4: MSE θ (lower the better) inferring Erdos Renyi graphs with differing number of nodes. Box plots
correspond to the median and 25th and 75th percentiles.
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5 nodes 20 nodes 50 nodes

Figure 5: Negative log-likelihood of held-out data for Erdos-Renyi graphs with differing number of nodes
(lower the better). Metropolis-Hasting (MH) results had extremely large values so were omitted here but
can be seen in A.6. Results are averaged over 20 graphs

VBG performs well across metrics for 5-node graphs and 20-node graphs but does not perform as well
compared to other benchmarks on 50-node graphs. VBG outperforms JSP-GFN across metrics for 20 node
graphs. JSP-GFN performs well for 5 node graphs across all metrics but its performance is not maintained
for 20 and 50 node graphs. Note that there is a difference between the graphs generated in the paper
for JSP-GFN Deleu et al. (2023), where the mechanism parameters are sampled from a standard normal
distribution, whereas in this work, the mechanisms parameters are sampled from {−2, −0.5} ∪ {0.5, 2.0}
which more closes matches graphs generated in Cundy et al. (2021) and Lorch et al. (2021). We speculate
that this resulted in larger magnitude of the raw values of the data, which lead to the instability of training
JSP-GFN for larger graphs. BS-GES performs the best in terms of negative log-likelihood, achieving the
lowest across all number of nodes.

Overall, VBG is competitive against baseline methods across these metrics but does not outperform baseline
methods. We speculate that approximations which were necessary to be made in the development of the
algorithm lead to biased estimates of the posteriors for VBG. The approximate posterior over parameters is
learned jointly for all graphs sampled from the posterior, and should in practice, be learned for each graph.
As a result, the calculation of the reward function, which is used to train the GFlowNet, which depends on
the mechanisms parameters where also biased. Leading to biased estimates of the posteriors for both the
graphs and the mechanisms.

5.5 Experiments on protein-signalling dataset

We performed experiments on the protein-signalling dataset (Sachs et al., 2005) consisting of observations
of 11 proteins. We use a subset of this dataset consisting of 854 samples which are available on the bnlearn
R-package (Scutari & Denis, 2021). AUROC curve and E-SHD for the ground truth graph and the inferred
graphs can be seen in Figure 6. VBG is competitive against baselines but does not outperform them.

6 Conclusion

We propose a method to model the posterior distribution over DAGs and linear Gaussian mechanisms
between random variables using GFlowNets and Variational Bayes we call Variational Bayes DAG-GFlowNet
(VBG). We found that the approximate posterior inferred using VBG is able to model well the true posterior
when inspecting 5-node graphs according to the metrics we inspected. VBG is able to infer the ground truth
graph for 5 node and 20 node graphs with mixed results for 50 node graphs compared to other baseline
methods.
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AUROC E-SHD

Figure 6: Sachs dataset. Seeds are over 20 model initialisations. Results also containing DAG-GFlowNet
can be found in the appendix A.5.2

We believe that VBG offers something new to the toolbox for Bayesian causal structure learning in several
ways. First, since VBG returns DAGs at every step of the training iteration, it lends itself well to using
Variational Bayes to learn aspects of the causal model and the graph in this alternating step-wise procedure.
Other existing Bayesian causal structure learning algorithms (Lorch et al., 2021; Annadani et al., 2021) rely
on a soft acyclicity prior (Zheng et al., 2018) that does not guarantee sampling of DAGs, and often return
a large proportion of cyclic graphs at the start of training. This may make these methods not amenable to
iterative modelling and updating of graphs and other aspects of the causal model. For example the VBG
setup could be extended to not just learning aspects of the causal model, but also to more fine-grained
aspects of causal modeling such as inferring latent variables, or conversely for higher-level objects which are
functions of the causal model as was suggested in Toth et al. (2022). Once VBG is trained, there is no
upper limit on the number of samples that can be sampled from the posterior. This is in contrast to DiBS
(Lorch et al., 2021), where the number of samples of the posterior must be pre-specified before training the
model. In this paper, a linear Gaussian mechanism is assumed, however the assumption over the mechanisms
is flexible for VBG as long as the delta score can be calculated from the likelihood of the model. This is
in contrast to BCD-Nets which relies on a Gaussian linear mechanisms. Although JSP-GFN (Deleu et al.,
2023) overcomes this by using neural networks to parameterise mechanism and therefore is not bound to
this assumption, we show empirically that JSP-GFN fails to successfully infer the distribution over larger
graphs using our simulated Erdos-Renyi graphs.

Going forward, we would like to do active intervention targeting using the uncertainty quantification of VBG
(Scherrer et al., 2021; Agrawal et al., 2019; Tigas et al., 2022; Toth et al., 2022).
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