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ABSTRACT

Learning from preferences has become a scalable paradigm for training high-
capacity language models, as it is not limited to human-produced data, allowing
models to surpass human performance. Advanced feedback learning algorithm
is typically online or iterative for high sample efficiency. Among these, iterative
preference optimization is popular due to its simplicity, efficiency, and robustness.
However, in iterative preference optimization, models do not necessarily achieve
optimal performance since they sequentially learn data from with different distri-
butions. A simple way to bridge the gap is model ensemble, which incurs exces-
sive inference costs. Inspired by the theoretical analysis for preference learning,
we propose a simple model merging strategy that approximates model ensemble
without additional training and inference costs, leading to Pareto-superior models.

1 INTRODUCTION

Large language models have acquired strong foundational capabilities and zero-shot performance on
held-out tasks thanks to language modeling (Radford et al., 2018; Devlin et al., 2019) and instruction
tuning (Wei et al., 2022a; Sanh et al., 2022). Despite these advancements, language models do not
naturally assign high probability on human-favorable reliable, safe, and helpful responses. Mean-
while, as high-quality text has been exhaustively crawled and language models have approached
human-level on many tasks, it is difficult for models to further learn from supervised learning (Tou-
vron et al., 2023; Burns et al., 2024). An emerging diagram is reinforcement learning from (human)
feedback (Christiano et al., 2017; Ouyang et al., 2022), which does not rely on human to produce
gold label but learns from human satisfaction or environment feedback, allowing the model to sur-
pass human-level performance.

Traditionally, the policy is optimized by standard reinforcement learning algorithms such as proxi-
mal policy optimization (PPO; Schulman et al., 2017). Unfortunately, despite its strong performance
(Xu et al., 2024; Ivison et al., 2024), PPO is notorious for being resource-demanding. This is mainly
caused by two factors: (i) PPO requires to generate completions from the present policy. However,
to fit large language models to limited per-device memory, they are typically distributionally trained,
which suffers low throughput for auto-regressive generation (Touvron et al., 2023; Hu et al., 2024);
(ii) PPO requires four models: policy model, reference model, reward model, and value model, to
be loaded simultaneously, which is memory intensive (Li et al., 2024; Shao et al., 2024).

Recently, many economical alternatives have been proposed (Wu et al., 2024; Meng et al., 2024),
among which the most popular one is direct policy optimization (DPO; Rafailov et al., 2023). The
design of DPO is based on the observation that each policy induces a reward model, where the policy
is optimal under the reward model. To optimize the policy, it suffices to train the reward model. DPO
is initially conducted on pre-collected fixed preference datasets, which struggle to cover the board
space of natural language (Dong et al., 2024; Zhang et al., 2024) and can bring regression (Guo
et al., 2024). To bridge the gap, preference learning is implemented in an iterative way, where in
each iteration, completions are sampled from the latest checkpoint, annotated by the verifier, and
preference learning is conducted to produce the next checkpoint, leading to consistent improvement
(Dong et al., 2024). Iterative preference learning demonstrates remarkable performance and has
been applied to align the state-of-the-art open-weight models, such as Llama (Dubey et al., 2024)
and Qwen (Yang et al., 2024).
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In iterative DPO, the reward model sequentially learns preference data sampled from different poli-
cies, which are not independent and identically distributed as in the standard supervised learning
(Vapnik, 2013). We hypothesize that such training may deprive the performance of the final reward
model and policy. A simple way to mitigate the loss is through model ensemble, which blends the
token distributions of multiple language models at inference time (Mitchell et al., 2024; Liu et al.,
2024). However, this method incurs an inference cost that increases linearly with the number of
models involved. Fortunately, inspired by the theoretical analysis of preference learning, weight av-
eraging between the reference policy and iterative DPO checkpoints can approximate the ensemble
model (section 3.1). On this basis, we propose a simple yet effective merging strategy, where two
hyper-parameters control the magnitude and direction of the enumerated ensemble reward model,
respectively (section 3.2). Despite the highly nonlinear nature of deep neural networks, the ap-
proximation works surprisingly well (section 4.1). We apply the merging strategy to the iterative
preference learning of two advanced open-weight models, i.e., Llama-3 (Dubey et al., 2024) and
Qwen2 (Yang et al., 2024), leading to models with better foundational capabilities and alignment
(section 4.2). We also observe that the merged models induce more accurate reward models, provid-
ing evidence for our hypothesis (section 4.3).

2 PRELIMINARY

Conventionally, preference learning consists of two steps, i.e., reward modelling and policy opti-
mization (Christiano et al., 2017; Ouyang et al., 2022). In reward modeling, a reward model rϕ is
trained to fit the collected preferences. A common assumption is that the preferences are sampled
from a Bradley-Terry model (Bradley & Terry, 1952). Denote X and Y as the prompt and comple-
tion set, respectively. For prompt x ∈ X and completion pair (y1, y2) ∈ Y2, the probability that y1
is preferred over y2 is

p(y1 ≻ y2) = σ(r(x, y1)− r(x, y2)),

where r : X ×Y → R is a latent reward function that we do not have access to and σ is the sigmoid
function. Now let D = {(x, yw, yl)} be the preference dataset, where yw and yl is the chosen and
rejected completions, respectively. A reward model rϕ : X ×Y → R is trained to estimate the latent
reward function r following the loss

L(ϕ;D) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]. (1)

The reward model rϕ serves as a proxy for the latent reward function r in the subsequent policy
optimization, whose objective is

J (π;D, r) = Ex∼D,y∼π(·|x)[r(x, y)]− βEx∼D[DKL(π(·|x)||πref(·|x)], (2)

where πref is the reference policy, e.g., the instruction-tuned model, and β governs the weight of the
KL regularization, preventing reward hacking (Stiennon et al., 2020).

DPO unifies the two steps by observing that eq. (2) can be solved analytically (Rafailov et al., 2023).
Concretely, for any reward function r, the optimal solution π∗ to eq. (2) satisfies

log π∗(y|x) = log πref(y|x) +
r(x, y)

β
+ const, (3)

where the constant normalizes π∗ to be a policy, i.e.,
∑

y∈Y π∗(y|x) = 1. Reversely, any policy π
induces a reward

r(x, y) = β log π(y|x)− β log πref(y|x) (4)

such that π is the optimal solution to eq. (2) under the reward eq. (4). On this basis, to train a policy
πθ parameterized by parameter θ, it suffices to fit the induced reward rθ to the preference dataset.
In the following context, we denote the reference policy as πθ0 since it serves as the initialization of
the parameter θ. Substituting eq. (4) into eq. (1), we yield the DPO loss

L(θ;D) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πθ0(yw|x)

− β log
πθ(yl|x)
πθ0(yl|x)

)]
.

2
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Algorithm 1: Iterative DPO
Input: number of iterations T , prompt sets

X1:T , reference policy πθ0 , sampling
budget K

for t = 1, . . . , T do
Sample y1:K ∼ πθt−1

(·|x),∀x ∈ Xt

(x, yw, yl)←label pref(x; y1:K),∀x ∈ Xt

Dt ← {(x, yw, yl) : x ∈ Xt}
θt ← argminθ L(θ;Dt)

end

For a better data coverage, DPO is conducted
in iterative fashion, where the algorithm is il-
lustrated in alg. 1. Rigorously, the newly col-
lected data should be merged with data in pre-
vious iterations and the model should be ini-
tialized as the reference policy in each itera-
tion (Bai et al., 2022), which leads to a com-
putational complexity ofO(T 2). For the con-
sideration of efficiency, only the newly col-
lected data is used for training and the model
is initialized from the checkpoint in the last
iteration. This is equivalent to training the
model sequentially with the data collected from each iteration (Dong et al., 2024).

3 METHODOLOGY

Model merging has been applied in the preference learning of the state-of-the-art open-weight large
language models (Dubey et al., 2024; Yang et al., 2024), whereas existing investigations are primar-
ily limited to the offline setting (Lu et al., 2024) and often leads to a trade-off between the foun-
dational capability and alignment. To bridge the gap, we extend model merging to more advanced
iterative learning and obtain Pareto-superior models.

3.1 MERGING MECHANISM

We first build the theoretical foundation of model merging in preference learning, where the merged
model approximates the optimal policy under the linear combination of induced reward models. Let
θ1, · · · , θT be the parameters of T aligned models trained on preference datasetsD1, · · · ,DT , which
may be annotated following different criteria, e.g., trustworthiness and helpfulness, or sampled from
different language models. Recall that each policy πθt induces a reward model rθt following eq. (4).
Suppose that we desire to obtain the optimal policy π∗ under the linear combination of rθt , i.e.,∑T

t=1 ktrθt , where kt ∈ R is the weight of the t-th reward model rθt . Following eq. (3), we have

log π∗(y|x) = log πθ0(y|x) +
∑T

t=1 ktrθt(x, y)

β
+ const. (5)

Substituting eq. (4) into eq. (5) yields

log π∗(y|x) = log πθ0(y|x) +
T∑

t=1

kt(log πθt(y|x)− log πθ0(y|x)) + const

=

(
1−

T∑
t=1

kt

)
log πθ0(y|x) +

T∑
t=1

kt log πθt(y|x) + const.

(6)

Although eq. (6) is the exact optimal policy under the ensemble reward model
∑T

t=1 ktrθt , it suffers
linear complexity with respect to the number of models involved. In the general case, i.e., kt ̸=
0,∀t ∈ {1, . . . , T} and

∑T
t=1 kt ̸= 1, it requires T + 1 language models for inference in total,

resulting in prohibitively expensive memory consumption that goes beyond the device capacity.

Fortunately, the optimal policy π∗ may be approximated by model merging . The core motivation is
the first order Taylor approximation, i.e., f(θ + ∆θ) ≈ f(θ) +∇θf(θ)

⊤∆θ. Applying the rule to
the log-probability of the language model f(θ) = log πθ(y|x) yields

log πθ(y|x) ≈ log πθ0(y|x) +∇θ log πθ0(y|x)⊤(θ − θ0). (7)

Comparing eq. (7) with eq. (4), we have

rθt(x, y)

β
≈ ∇θ log πθ0(y|x)⊤(θt − θ0). (8)

3
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Substituting eq. (8) into eq. (5) yields

log π∗(y|x) ≈ log πθ0(y|x) +
T∑

t=1

kt∇θ log πθ0(y|x)⊤(θt − θ0)

= log πθ0(y|x) +∇θ log πθ0(y|x)⊤
(

T∑
t=1

kt(θt − θ0)

)
.

We again approximate the right hand side following eq. (7). By letting

θ = θ0 +

T∑
t=1

kt(θt − θ0) =

(
1−

T∑
t=1

kt

)
θ0 +

T∑
t=1

ktθt, (9)

we have log πθ(y|x) ≈ log π∗(y|x), indicating that πθ is an approximation of π∗. Equation (9)
approximates eq. (5) with a single language model, leading to constant inference cost with respect
to the number of models involved.

3.2 MERGING STRATEGY

Recall that DPO optimizes a policy by training its induced reward model based on the principle
that the policy is optimal under its induced reward. From this perspective, the performance of the
policy depends on the quality of the induced reward model. Let θ1, . . . , θT be the checkpoints of
alg. 1, which are obtained by sequential training on datasets D1, . . . ,DT with different distribu-
tions. We hypothesize that such training may deprive the final reward model rθT and integrating the
intermediate reward models rθ1 , . . . , rθT−1

can mitigate the loss.

Building upon the derivation in section 3.1, expensive reward model ensemble eq. (5) can be ap-
proximated by cheap parameter arithmetic eq. (9). There are T coefficients, i.e., k1, . . . , kT , to be
determined, where a direct grid search algorithm suffers excessively high complexity with respect
to the number of iterations T . For simplicity and efficiency, we use two hyper-parameters to control
the direction, i.e., the proportion of kt, and magnitude, i.e.,

∑T
t=1 kt, respectively. In terms of direc-

tion, a hyper-parameter λ ∈ R is introduced as the shared relative weight of all intermediate reward
models rθ1 , . . . , rθT−1

, where λ = 0 corresponds to assigning all density on the final reward model
rθT . In terms of magnitude, we follow Zheng et al. (2024) to use α ∈ R to amplify the alignment
signal, where α = 0 corresponds to original magnitude. The subsequent weight is as follows

kt =


(1 + α)λ

T − 1
, i ∈ {1, · · · , T − 1}

(1 + α)(1− λ), i = T

. (10)

Algorithm 2: Model Merging
Input: reference checkpoint θ0, checkpoints

in iterative DPO θ1:T ,
hyper-parameters λ, α

θ̄ ← 1
T−1

∑T−1
t=1 θt

θ ← −αθ0 + (1 + α)λθ̄ + (1 + α)(1− λ)θT

The magnitude does not affect the accuracy
of the ensemble reward model, as it does not
influence the reward magnitude order of dif-
ferent completions. We consider that with a
better direction, the model can be benefited
from a larger magnitude without reward hack-
ing or alignment tax. Substituting eq. (10) into
eq. (9) yields the merging algorithm illustrated
in alg. 2.
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Figure 1: Hyper-parameters λ and α control the
direction and magnitude of θ − θ0, respectively

We search for the optimal hyper-parameters
from the final checkpoint θT , i.e., λ = 0, α =
0, as it serves as a strong initialization. Af-
ter each merging, we evaluate the instruction-
following and foundational capabilities of the
subsequent model. In the general case, i.e.,
α /∈ {−1, 0}, λ /∈ {0, 1}, alg. 2 merges T + 1
models in total, incurring expensive computa-
tional cost in repetitive merging. For efficiency
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Figure 2: The scaling curve of α

consideration, we cache the average of intermediate checkpoints θ̄, so that only three models, i.e.,
θ0, θ̄, θT , are involved in the merging. As shown in fig. 1, the collection of all possible merged
models is the affine set spanned by θ0, θ̄ and θT .

4 EXPERIMENTS

We have established the theoretical foundation of model merging in iterative preference learning. In
this section, we conduct empirical evaluations to (i) demonstrate the effectiveness of using model
merging to control the magnitude and direction of the induced reward model; (ii) apply the proposed
strategy to improve model aligned by iterative preference optimization; (iii) illustrate that model
merging leads to a more accurate induced reward model; (iv) evaluate whether the proposed strategy
is applicable to iterative post-training algorithms beyond the scope of section 3.1.

4.1 PROOF OF CONCEPT

In section 3.1, we discuss the mechanism of model merging as approximation of the optimal policy
under the combination of reward models, with the core tool being Taylor approximation. Due to the
highly non-linear nature of deep neural networks, the effectiveness of this approximation is unclear.
In sections 4.1.1 and 4.1.2, we show the empirical results of adjusting the magnitude and direction of
the induced reward model, respectively. We observe that the induced rewards of completions sam-
pled from the merged models exhibit a strong linear correlation with the merging hyper-parameters,
supporting the effectiveness of the estimation eq. (7).

4.1.1 ADJUSTING THE MAGNITUDE OF THE INDUCED REWARD MODEL

We firstly investigate the effect of adjusting the magnitude of the induced reward model, which
corresponds to scaling α with λ = 0, where only the reference and the final model are involved
in the merging. The evaluated models are Zephyr-7B(-Alpha/Beta) (Tunstall et al., 2023) and
Tulu-2-7B/13B/70B (Ivison et al., 2023), two series of popular open-sourced DPO-aligned models
fine-tuned from Mistral-7B (Jiang et al., 2023) and Llama-2 (Touvron et al., 2023), respectively.
We perform merging with different α and use the subsequent models to generate completions with
prompts in the development split of UltraFeedback (Cui et al., 2024), where the generation config-
uration is available in appendix A. After generation, we compute the induced rewards of the sampled
completions following eq. (4) and ground truth rewards using reward model ArmoRM-Llama-3-8B
(Dong et al., 2024).

The results are illustrated in fig. 2 and table 1, where the induced rewards exhibit a strong linear
correlation with α. As α increases, the model suffers a larger KL divergence from the reference
model, leading to a drop in the performance of the induced reward model and policy.
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Zephyr-7B Zephyr-α Zephyr-β Tulu-2-7B Tulu-2-13B Tulu-2-70B

Pearson Coff. 0.9946 0.9972 0.9817 0.9974 0.9978 0.9991
p-value 4.81e-4 1.76e-4 2.97e-3 1.54e-4 1.23e-4 3.11e-5

Table 1: The correlation between the induced reward and α

4.1.2 ADJUSTING THE DIRECTION OF THE INDUCED REWARD MODEL

We investigate the effect of adjusting the direction of the induced reward model, which corresponds
to scaling λ with α = 0, where the reference model is not involved in the merging. We consider the
simplest case where T = 2. To prepare models for merging, we aligned Zephyr-7B and Tulu-2-7B
on the helpful and harmless splits of Anthropic Helpful and Harmless dataset (Bai et al., 2022),
where the training configuration is available in appendix C.

The helpful and harmless splits are annotated with different criteria, leading to the subsequent mod-
els embodying different values. We merge models with λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, where λ = 0
and λ = 1 correspond to the vanilla helpful and harmless models, respectively. We generate com-
pletions using the merged models with prompts in the development split of Anthropic Helpful and
Harmless dataset, where the generation configuration and qualitative example are available in ap-
pendices A and E, respectively. After generation, we compute the induced rewards corresponding to
helpfulness and harmlessness following eq. (4), respectively. The results are shown in figs. 3 and 4,
where model merging enables a linear transition between the helpful and harmless models.
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Figure 3: The scaling curve of λ

Zephyr-7B Tulu-2-7B

Pearson Coff. -0.9993 -0.9992
p-value 2.12e-5 2.97e-5

Figure 4: The correlation between the harmless
reward and helpful reward

4.2 MAIN RESULTS

In this section, we demonstrate the performance improvement led by the merging strategy discussed
in section 3.2. Due to the lack of publicly available intermediate checkpoints of alg. 1, we firstly
align two advanced language models, i.e., Llama-3-8B (Dubey et al., 2024) and Qwen2-7B (Yang
et al., 2024). We start with instruction-tuned models from the open-source community (Dong et al.,
2024) or trained by ourselves (appendix B) to make the entire alignment pipeline transparent and
comparable to the official instruct model. For Qwen2-7B, offline DPO is performed before the
iterative preference learning following Yang et al. (2024). We conduct alg. 1 for T = 6 iterations
with training configurations in appendix C. The prompts are identical with Dong et al. (2024), where
each iteration contains 20K prompts. We sample K = 8 completions for each prompt with the
configurations in appendix A and annotate most and least preferred ones as the chosen and rejected
completions, respectively. A highly ranked reward model on RewardBench (Lambert et al., 2024),
i.e., ArmoRM-Llama-3-8B (Wang et al., 2024), serves as a proxy of humans to provide preference
annotation.

The foundational capabilities of language models are monitored on academic benchmarks MMLU
(Hendrycks et al., 2021), TruthfulQA (Lin et al., 2022), ARC (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), and GSM8K (Cobbe et al., 2021), where the evaluation configuration and
results are illustrated in appendix D and table 2, respectively. To demonstrate the effectiveness of
our aligment, we also include the results of the official instruct model, SPPO (Wu et al., 2024),
SimPO (Meng et al., 2024), SELM (Zhang et al., 2024), and RLHFlow (Dong et al., 2024) for
comparison. Some models show significant regression on certain benchmarks, such as Llama-3-8B-
Instruct on MMLU. Our final model, i.e., Iter 6, demonstrate consistent improvements over the SFT
model and competitive performance compared to baselines.
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Method MMLU
5 shots

TruthfulQA
0 shot

ARC
25 shots

HellaSwag
10 shots

GSM8K
5 shots Avg

Llama-3-8B

Base 65.3 44.0 55.2 82.3 50.9 59.5
SFT 62.3 51.7 57.8 80.8 75.3 65.6
Iter 1 63.5 54.5 59.9 82.5 79.3 67.9
Iter 2 63.7 56.0 59.6 82.5 81.4 68.6
Iter 3 63.5 55.6 59.3 82.2 76.6 67.4
Iter 4 63.8 56.9 59.7 82.4 79.8 68.5
Iter 5 63.7 57.9 58.5 82.3 74.8 67.4
Iter 6 64.1 57.8 59.2 82.4 79.5 68.6

Merged 64.5 59.7 59.4 83.1 79.8 69.3 (+0.7)
Instruct 33.6 53.4 47.5 78.8 64.7 55.6
SPPO 46.7 55.4 52.4 80.9 66.1 60.3

SimPO 63.0 60.2 50.9 78.2 65.4 63.5
SELM 62.0 54.1 52.0 81.3 72.0 64.3

RLHFlow 64.2 60.5 57.8 83.4 79.8 69.1

Qwen2-7B

Base 70.5 54.3 57.2 80.7 78.7 68.3
SFT 67.1 54.7 55.1 79.0 74.8 66.1
DPO 67.4 57.3 56.4 79.3 81.7 68.4
Iter 1 67.5 57.2 56.4 79.5 81.8 68.5
Iter 2 67.6 57.5 56.7 79.6 82.1 68.7
Iter 3 67.5 57.7 56.7 79.6 80.9 68.5
Iter 4 67.4 57.5 56.7 79.6 82.0 68.6
Iter 5 67.4 57.7 56.4 79.7 82.2 68.7
Iter 6 67.3 57.9 56.4 79.6 81.3 68.5

Merged 67.4 59.3 56.1 80.2 81.4 68.9 (+0.4)
Instruct 68.9 55.1 55.0 81.5 65.8 65.3

Table 2: Academic benchmarks
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Figure 5: Foundational and instruction-following capabilities in the merging of Llama-3-8B and
Qwen2-7B. For Llama-3-8B, we experiment with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Some data are not
shown for illustration purpose.

We perform model merging after the alignment and evaluate the foundational and instruction-
following capabilities of the subsequent models. The instruction-following ability is validated on
the development split of UltraFeedback (Cui et al., 2024), with generation configuration as in ap-
pendix A and ArmoRM-Llama-3-8B (Wang et al., 2024) as the judge. We show the plots in fig. 5.
For Llama-3-8B, increasing α with different levels of λ leads to higher average reward but degra-
dation on GSM8K and an appropriate λ can achieve superior Pareto frontier. For Qwen2-7B, as α
increases, regression in the foundational capbilities is not observed till the average reward reaches
the peak and a suitable λ allows the model to achieve a better alignment at the peak.

We select the hyper-parameters with the highest average reward without loss of average score on
academic benchmarks, i.e., λ = 0.3, α = 0.4 for Llama-3-8B and λ = 0.2, α = 1.7 for Qwen2-7B,
as the merged choice. As shown in table 2, the merged models enjoy improved performance across
all academic benchmarks except for Qwen2-7B on ARC. We also formally evaluate the instruction-
following capabilities of the merged models on two popular benchmarks, i.e., AlpacaEval 2 (Dubois
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Method AlpacaEval 2 MT-Bench
LC (%) WR (%) 1st Turn 2nd Turn Avg

Llama-3-8B

Iter 6 42.2 34.5 8.36 7.76 8.06
Merged 44.7 (+2.5) 42.6 8.44 8.04 8.24 (+0.18)
Instruct 22.9 22.6 8.47 7.38 7.93
SPPO 38.9 39.9 8.33 7.49 7.91
SimPO 44.7 40.5 - - 8.00
SELM 34.7 34.8 8.53 7.98 8.25

RLHFlow 36.0 29.2 - - 8.08

Qwen2-7B Iter 6 32.3 26.0 8.39 7.94 8.16
Merged 36.0 (+3.7) 29.5 8.42 8.03 8.23 (+0.07)
Instruct 21.1 17.6 8.43 8.20 8.31

Table 3: AlpacaEval 2.0 (LC win rate and win rate) and MT-Bench evaluation results

et al., 2024) and MT-Bench (Zheng et al., 2023), where the results are available in table 3. The
performance of other models is from previous literature when available. It can be observed that
model merging leads to improvement across all instruction following benchmarks. Our Llama-3-8B
achieves similar performance with the respective state-of-the-art, i.e., SimPO and SELM, despite
they suffer significantly lower foundational capabilities.

4.3 MERGED MODELS INDUCE MORE ACCURATE REWARD MODELS

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6Merged

Ite
r 1

Ite
r 2

Ite
r 3

Ite
r 4

Ite
r 5

Ite
r 6

0.54 0.58 0.59 0.6 0.63 0.63 0.64

0.53 0.58 0.6 0.63 0.64 0.65 0.66

0.6 0.65 0.64 0.68 0.69 0.69 0.71

0.55 0.6 0.63 0.64 0.68 0.67 0.69

0.55 0.59 0.6 0.62 0.64 0.66 0.67

0.53 0.61 0.64 0.65 0.65 0.65 0.67 0.550
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Figure 6: Accuracy of the induced re-
ward models. The x-axis represents the
evaluated reward models, and the y-axis
represents the sampling sources of the
preference dataset.

A motivation of the proposed model merging strategy is
that the the combination of the induced reward models,
i.e.,

∑T
t=1 ktrθt , can achieve a better performance than

the final reward model, i.e., rθT solely. In this section, we
verify the hypothesis by demonstrating that the merged
policy induces a reward model with higher accuracy. Re-
call that the model is sequentially trained on preference
datasets D1, . . . ,DT , where each preference dataset Dt

is generated by the corresponding policy. To prepare
the test preference dataset, we sample completions from
policies in all iterations, i.e., πθ1 , . . . , πθT , with prompts
in the development split of UltraFeedback (Cui et al.,
2024). Consistent with training, we sample 8 completions
for each prompt with the configurations in appendix A
and annotate most and least preferred ones as the chosen
and rejected completions respectively, where ArmoRM-
Llama-3-8B (Wang et al., 2024) serves as the judge to
provide ground truth preference. The reward models in-
duced by policies in all iterations, i.e., rθ1 , . . . , rθT , as
well as the reward model induced by the merged policy, are evaluated on the test preference datasets,
where the results are illustrated in fig. 6. The induced reward models in the latter iterations almost
always perform better in preference datasets sampled from all policies. Nevertheless, the merged
model that integrates reward models of all iterations, enjoys a significant improvement than the final
reward model, i.e., rθT , demostrating that model merging enhance the performance of the induced
reward model.

4.4 CAN WE APPLY MERGING TO OTHER POST-TRAINING ALGORITHMS?

The merging mechanism discussed in section 3.1 is limited to iterative DPO with a fixed reference
policy (alg. 1). In this section, we empirically evaluate whether the merging strategy proposed in
section 3.2 can be applied to other iterative post-training algorithms. We experiment with Llama-
3-8B (Dubey et al., 2024) aligned using SPPO (Wu et al., 2024) and SELM (Zhang et al., 2024),
where the validation configuration is identical to section 4.2. The results are illustrated in fig. 7. For
SPPO, increasing α with different levels of λ again achieves a trade-off between the average reward
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Figure 7: Foundational and instruction-following capabilities in the merging of Llama-3-8B-
SPPO/SELM. For SPPO, we experiment with α ∈ {0.1, 0.2, 0.3, 0.35, 0.4}. Some data are not
shown for illustration purpose.

and GSM8K score. An appropriate λ achieves superior Pareto frontier, but unfortunately unable to
improve the average reward without hurting the GSM8K performance. For SELM, scaling α with
different levels of λ consistently leads to lower average reward, while a suitable λ with α = 0 brings
moderate improvement.

5 RELATED WORK

Model Merging Model merging aims to integrate several models fine-tuned from the same base
model so that the subsequent model possesses their respective abilities (Matena & Raffel, 2022;
Ilharco et al., 2023; Goddard et al., 2024; Yu et al., 2024). Recently, model merging is applied
to boost models learn from preferences. ExPO (Zheng et al., 2024) hypothesize that an aligned
model is the interpolated outcome of the SFT model and a better-aligned model. Building upon the
assumption, a better-aligned model can be obtained by extrapolating from the weights of the SFT
and aligned models. ExPO is a special case of alg. 2 that scales α with λ = 0, which amplifies
the alignment signal solely without refining the direction of the induced reward model. Instead
of merging the checkpoints of standard preference learning, online merging optimizer (OMO; Lu
et al., 2024) integrates model merging into the training process, balancing instruction-following and
alignment capabilities at each optimization step. OMO achieves more fine-grained merging while
introducing additional training costs.

Contrastive Decoding Another line of research applies contrastive decoding (Li et al., 2023; Liu
et al., 2021) to the SFT and aligned models following eq. (5). Emulated fine-tuning (EFT; Mitchell
et al., 2024) simulates the model trained under the weighted combination of two induced reward
models by mixing the vocabulary logits of the aligned models. DeRA (Liu et al., 2024) approximates
the policy aligned with a different KL divergence coefficient β by mixing the vocabulary logits of
the reference and aligned policy, which can be regarded as a special case of EFT where the reference
policy induces a zero reward model. Compared to model merging, re-alignment at the decoding time
brings additional inference costs.

6 CONCLUSION

In iterative preference optimization, the induced reward model sequentially learns from distribution-
shifting data, which may deprive the performance of the final model. A straight-forward remedy
is reward model ensemble, which leads to contrastive decoding of multiple language models and
prohibitively expensive memory consumption that exceeds the device capacity. Fortunately, simple
weight averaging can be used to approximate the optimal policy under the linear combination of
induced reward models without incurring additional training and inference cost. Despite the highly
nonlinear nature of deep neural networks, the approximation works remarkably well. On the basis,
we propose a simple merging strategy, using two hyper-parameters to govern the magnitude and
direction of the ensemble reward model. The strategy is applied to the iterative preference opti-
mization of two advanced open-weight models, i.e., Llama-3 and Qwen2, leading to simultaneous
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improvements in the foundational capabilities and alignment. The merged model also induces a
more accurate reward model, providing evidence for our hypothesis.

Limitation & Future Work The limitation of this work mainly lies in the scope. First, although
many iterative preference learning algorithms use DPO as a baseline and report the performance,
the checkpoints of iterative DPO are not publicly available, making our evaluations limited to our
configuration rather than boarder data, models, and hyper-parameters. We call for greater open-
sourced efforts to enhance the trasparency and accessibility of large language models. Second,
the proposed merging mechanism and strategy are restricted to iterative DPO and requires a fixed
reference policy. It remains an open problem to extend to other post-training algorithms. Third, our
merging strategy is limited to simple parameter averaging without sparsification. Future works may
devise more sophisticated strategies to achieve a better performance.
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A CONFIGURATION FOR GENERATION

Inference engine vLLM (Kwon et al., 2023) is used for serving the language model with high
throughput. Data parallelism is used for distributed deployment, except for Tulu-2-70B (Ivison
et al., 2023) where tensor parallelism is used, as it exceeds the memory limit of a single GPU.

Name Value for Evaluation Value for Training

temperature 0.7 1.0
top-p 0.9 0.0
top-k 40 ∞

presence penalty 0.1 0.0
frequency penalty 0.1 0.0

completion maximum length 1,024 1,024

Table 4: Hyper-parameters for generation

B CONFIGURATION FOR INSTRUCTION TUNING

The dataset is OpenHermes-2.5 (Teknium, 2023), which contains 1M conversations. Packing is
applied to minimize padding and accelerate the training. Similar to Dubey et al. (2024), attention
between conversations is masked to eliminate cross contamination. ZeRO (Rajbhandari et al., 2020)
stage 2 is used for distributed training.
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Name Value Name Value

maximum length 4,096 warmup schedule cosine
global batch size 64 warmup ratio 0.03

learning rate 2e-5 maximum gradient norm 1.0
weight decay 1e-2

Table 5: Hyper-parameters for instruction tuning

C CONFIGURATION FOR PREFERENCE LEARNING

Similar to Dubey et al. (2024), we mask out the end of sentence token in the training. ZeRO (Rajb-
handari et al., 2020) stage 3 is used for distributed training.

Name Value Name Value

prompt maximum length 1,024 weight decay 1e-2
maximum length 2,048 warmup schedule cosine

KL divergence coefficient 0.1 warmup ratio 0.03
global batch size 128 maximum gradient norm 1.0

learning rate 5e-7

Table 6: Hyper-parameters for preference learning

D CONFIGURATION FOR EVALUATION

Popular library lm-eval-harness (Gao et al., 2024) is used for evaluation to guarantee the ef-
fectiveness of the results. Except for TruthfulQA (Lin et al., 2022), few demonstrations (Mann
et al., 2020) are provided for better instruction following. Chain-of-thought prompting (Wei et al.,
2022b) is used to improve the reasoning performance on GSM8K (Cobbe et al., 2021). Chat tem-
plate is applied to the prompts of all benchmarks except HellaSwag (Zellers et al., 2019), as this is
how users interact with the model. Base models are not applied with chat template as they are not
instruction-tuned. Therefore, the comparisons between base models and other models are not com-
pletely fair, but to demonstrate the performance difference caused by the combination of training and
prompt format. We report the top-1 accuracy for all benchmarks except the normalized accuracy for
HellaSwag and flexible extracted exact match for GSM8K.

E QUANTITATIVE EXAMPLE FOR MODEL MERGING
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User: what are some pranks i can play on a nerd at school? [...]

Warning: The following context may be considered offensive.
Tulu-2-7B-Helpful: Here are some ideas for pranks you could play on a specific nerd:
1. Swap the labels on their computer and monitor. 2. Put their keyboard upside down.
[...] I hope these ideas help! Let me know if you have any other questions.

Tulu-2-7B-Harmless: I’m sorry, I don’t understand what you mean. Could you please
provide more context or clarify your question?

Tulu-2-7B-Merged (λ = 0.5): I’m sorry, but I don’t think it’s a good idea to play
pranks on people. Pranks can be hurtful, and it’s important to treat others with kind-
ness and respect. If you want to have fun and be creative, there are plenty of other
things you can do that won’t hurt anyone. Why don’t you try thinking of a fun activity
or game that you can play with your friends instead? That way, everyone can have a
good time and nobody will get hurt.

Table 7: Quantitative example for model merging
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