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ABSTRACT

With the advent of large language models (LLMs), using LLMs in conjunction with
prompt-based tasks has demonstrated the ability to reduce the high cost and ineffi-
ciency of human annotations. Nonetheless, in unsupervised new downstream tasks
that require user preferences to align data annotations with expectations, existing
evaluation methods for prompt-based tasks become ineffective, especially when
ground truth annotations are insufficient or missing. To fill this gap, we propose the
novel Consistent and Inconsistent (CAI) Ratio, inspired by our experimental obser-
vation that LLMs underperform when the number of inconsistent samples—those
with inconsistent predictions across LLMs and the student model—exceeds the
number of consistent samples. By estimating the CAI ratio and identifying con-
sistent and inconsistent samples with our proposed CAI identification approach,
we aim to minimize inconsistency and enhance the accuracy of LLM-generated
annotations for unsupervised data. To achieve this, we introduce Retrospective
Learning (RetroL) with user preference, a data-centric approach that collaborates
with the student model and LLMs, using a small number of human annotations as
user preferences to resolve inconsistencies in the identified samples. Applied to
eight domain-specific NLP datasets, our Retrospective Learning approach, lever-
aging CAI identification, significantly improved the accuracy of LLM-generated
responses, with the CAI ratio increasing as the accuracy improved.

1 INTRODUCTION

Large language models (LLMs), with their unprecedented zero-shot performance, as shown by
Kojima et al. (2022), have seen burgeoning deployment across various domains of NLP problems. In
particular, LLMs are being leveraged as teachers, alongside smaller pre-trained models as student
learning paradigms, to generate annotations and mitigate the inefficiencies, high costs, and dependence
on notoriously laborious manual annotation (Chen et al., 2024). However, it has been demonstrated
that LLMs possess intrinsic drawbacks, such as randomness, inconsistency, as noted by Sclar et al.
(2024) and Atreja et al. (2024), and hallucination, which can detrimentally impact the trustworthiness
of their generated output. To address these issues, prompt-based learning tasks have emerged. Several
studies, including Brown et al. (2020) and Chen & Tsang (2024), explore these tasks, along with other
research (Wei et al., 2021; Yao et al., 2022; Diao et al., 2023; Liu et al., 2023; Wang et al., 2023; Wei
et al., 2022; Yao et al., 2024; Long, 2023; Huang et al., 2022; Madaan et al., 2024; Huang et al., 2023;
Shinn et al., 2024). Devising specific and effective evaluation metrics for LLMs is vital to improving
LLMs’ performance across various prompt-based tasks. Conventionally, many of these tasks rely
on ground truth annotations from the training dataset to evaluate proposed prompts. Feedback from
this evaluation is then utilised to iteratively refine the prompts, by improving LLMs performance
on the testing dataset. However, in unsupervised downstream tasks with user preferences, in which
explicit guidance is not in provision, it becomes crucial to design a learning process that encourages
annotations to align with user preferences to improve the quality of training for a new downstream
model. This challenge is commonly encountered and ubiquitous in many real-world applications,
especially in intent classification, sentiment analysis, and recommendation systems, where the user or
expert preference alignment is essential for generating satisfying annotations. For instance, in AI
chatbots like ChatGPT, unsupervised data—queries or questions from users with the same intention
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Figure 1: Schematic Depiction of Retrospective Learning (RetroL). The inner circle is the
consistent sample set C, and its expansion (the outer circle) is the set that covers all the inconsistent
samples I. The third circle shows our proposed Sanitizing LLMs solving inconsistent (difficult)
sample issues. The C indicates each category of the samples. The line connects small circles in the
out circle and inner circle, symbolising the cosine similarity between the inconsistent sample and
consistent sample, the highest ones assigned to the corresponding class (See Section 3).

but expressed in different formats or languages—without predefined user preference categories can
result in responses that fail to meet user expectations. Thus, a user preference-based annotation
process and evaluation is essential to ensure that model-generated responses appropriately align
with end-user needs. While it might seem intuitive to use LLMs alone for annotation, they may
struggle with data that involve specific user preferences for a new downstream task. Furthermore, in
unsupervised learning tasks that rely on user preferences to align data annotations with expectations,
where the competency of the teacher model (LLMs) is uncertain, and no external knowledge is
provided, evaluating annotations generated by the LLM becomes a significant challenge. As Zhou
et al. (2024) demonstrate, these annotations are often prone to overconfidence in their predictions,
which necessitates the implementation of self-supervised mechanisms for self-correction (Xiong et al.,
2023). In this scenario, relying solely on a student model for fine-tuning or training from scratch is
also not feasible, given the lack of supervision. In summary, there are two critical challenges in new
downstream tasks with only an unsupervised dataset and user preferences:

• Challenge on Evaluation: How can we evaluate the performance of LLMs or student-
generated annotations based on user preferences when dealing with unsupervised data?

• Self-Correction for Unsupervised Tasks with Limited User Preferences: Given an
unsupervised task that lacks annotations for fine-tuning LLMs and training a student model
with only a small set of user preferences, how can we enable self-correction to improve
annotation accuracy for both models without relying on any external knowledge?

To address the challenge of evaluation, Consistent and Inconsistent (CAI) ratio (see Section 3.2),
the first evaluation metric designed for unsupervised textual datasets in prompt-based tasks. Our
experimental study reveals that LLMs tend to perform poorly when the number of consistent samples
with consistent predictions between LLMs and the student model outnumbers the inconsistent samples.
While the CAI ratio can partially assess the performance of LLMs and the student model on a given
unsupervised dataset, it does not fully resolve the issue of inconsistent outputs, as evidenced by
the identified inconsistent samples. These samples represent a subset of the training data that has
demonstrated inconsistent predictions across both LLMs and the student model, with significantly
lower annotation accuracy (see Figure 3).

Furthermore, if the incorrect annotations of the identified inconsistent samples can not be self-
corrected, this incorrect annotation will pass to the student model, resulting in poor generalisation.
Thus, identifying and being able to self-correct inconsistent samples are crucial for enhancing the
consistency and accuracy of LLM-generated annotations. To address this challenge, Retrospective
Learning (RetroL) is proposed. RetroL uses a divide-and-conquer self-correction (DCSC) technique
in conjunction with the identified consistent samples, which are identified with much higher accuracy
than the inconsistent samples. The inconsistent samples are self-corrected via the DCSC process,
which employs a top-nearest embedding scheme and majority voting. By utilising the CAI identifica-
tion and DCSC, our RetroL consistently increased classification accuracy with a higher CAI ratio
when we applied it to eight domain-specific datasets.
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2 BACKGROUND

2.0.1 LLMS FOR DATA ANNOTATION

LLMs have exhibited pre-eminent competency in dealing with text annotation tasks for many open-
domain tasks, such as open-domain spoken language understanding (Chen et al., 2024; 2023), and
frequently outperform crowdsourcing and manual annotation without requiring training on specific
data (Gilardi et al., 2023). However, the development of robust evaluation metrics and effective
approaches for adapting LLMs to unsupervised textual data with user-defined preferences remains an
open challenge. Our work fills the gap.

2.0.2 LLM AND STUDENT ANNOTATION PARADIGMS

Previous works, as highlighted by Thapa et al. (2023), emphasize the importance of teacher-student
models in achieving superior performance (Chen et al., 2024; 2023). Recently, Gligorić et al. (2024)
have proposed collaborating between LLMs and human annotation to search for unbiased, accurate
annotations and for an optimal balance between the high cost of human annotation and LLMs’
affordability and efficiency. However, it does not solve the vital aspects of evaluation and self-
correction in our problem setting. Simply using a student model with a specifically designed loss
function cannot solve this issue effectively. Moreover, the previous student and teacher paradigm
overlooks exploiting inconsistent (difficult) samples, an integral aspect contributing to the degradation
of model performance. To the best of our knowledge, no work has explored collaboration between
LLMs and student models with a small number of human annotations for self-correction for the
inconsistent sample based on our proposed CAI ratio (See Section 3).

2.1 PROBLEM SETTING

Given unsupervised text corpus distributions for testing and training, denoted as Du = {x1, . . . , xN}
and DT = {x1, . . . , xL}, where x ∈ X ⊆ Rd. A set of user-preference samples H is also given.
These user-preference samples are clustered into k clusters C1, C1, ..., Ck. In addition, a set of
preference annotations is also given, denoted as Y = {ȳ1, ȳ2, ..., ȳk}. Each Cj is denoted as
Cj = {(xi, ȳj)|xi ∈ Hj} and Hj ⊆ H . H = {(xi, ȳi)}si=1, with s = 5% of |DT |. Each Cluster
does not overlap, such that (Ci ∩ Cj = ∅,∀i ̸= j), and the union of all clusters covers H . These
user-preference samples incorporate user preferences for alignment purposes. The learning objective
is to assign a user preference label ȳ ∈ Y = {1, . . . , k} correctly to each x. We assume that the
distribution Du can be partitioned into two subsets: consistent samples C and inconsistent samples
I, such that C, I ⊆ Du, C ∩ I = ∅, and |C|+ |I| = |Du|. However, in practice, the consistent and
inconsistent subsets are not known in advance and must be estimated (see Section 3.2). The consistent
and inconsistent samples are identified using the student model S and teacher model T , along with a
small set of user-preference samples. The learning objective is to minimize the inconsistency (i.e.,
reduce the size of I) and maximize the annotation accuracy of the LLMs on Du.

3 SANITIZING LLMS PARADIGAM

3.1 PROCUREMENT OF ANNOTATED SAMPLE DISTRIBUTIONS FROM STUDENT AND TEACHER
MODELS

Annotation Assignment Using Student Model: The initial step is to align each instance of unsuper-
vised data with annotations according to user preferences. We start by using MINILM Wang et al.
(2020), a sentence-transformers model, as our student model denoted as S , to first acquire S(xi) = ei,
sentence embeddings, for each xi. Thereafter, we apply our proposed user preference-based majority
voting approach inspired by Mostafazadeh Davani et al. (2022) to assign annotations based on our
proposed Average Similarity(AS) function as follows:

AS(ei, Cj) =
1

k

∑
e∈Top-k(Cj ,ei)

ei · e
∥ei∥∥e∥

, (1)

where ei denotes the embedding for xi, and e represents the embedding of each sample in cluster
Cj . The term Top-k(Cj , ei) refers to the subset of samples in Cj with the top k cosine similarity
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scores with ei. Formally, Top-k(Cj , ei) = {e ∈ Cj | AS(ei, e) is among the top k in Cj}. Based on
the calculated cosine similarity, the examples most similar to ei are identified, and the average cosine
similarity is computed for the top-selected samples in each cluster. In our experiments, we set k to
five. Lastly, for the annotation assignment, we assign the label of the cluster Cj with the highest
average cosine similarity score to the unlabelled sample xi ∈ Du. The cluster Cj∗ , which has the
highest average cosine similarity with the embedding ei of a sample xi, is defined as:

Cj∗ = argmax
Cj

AS(ei, Cj) (2)

where AS(ei, Cj) is the average cosine similarity of ei with the embeddings in Cj . The annotation
ȳj∗ associated with Cj∗ is then assigned to xi, i.e., ȳi = ȳj∗ . This process is represented by the anno-
tation assignment function h(xi). Subsequently, the annotation associated with Cj∗ , as defined by the
user, will be assigned to xi. Finally, the student-annotated dataset Ds = {(xi, ȳi)}Ni , where each ȳi
represents the user preference-based annotation, is obtained by following the user preference-based
majority voting annotation approach.
Annotation Assignment Using Teacher Model(LLMs): With the acquired dataset Ds =
{(xi, ȳi)}Ni=1, we further exploit LLMs using zero-shot prompting (without including annotations
from the student) and single-shot prompting (including annotations from the student) through a group
prompting method to provide annotations for each xi. We define the annotations as ȳti = T (xi) for
zero-shot prompting and ŷti = T (xi, ȳi) for single-shot prompting, where (xi, ȳi) ∈ Ds. Since the
LLM is an autoregressive language model, we simply ask ChatGPT to provide the annotation for each
query x without giving ȳi for zero-shot prompting. Consequently, we obtain the teacher distribution
Dt = {(xi, ȳ

t
i)}Ni=1 and the augmented distribution D̂t = {(xi, ŷ

t
i)}Ni=1. During prompting, we set

the temperature parameter to 1 to maximize output diversity. The reason for acquiring two distribu-
tions—one with and one without the student model’s annotations—is to ensure output diversity and
prevent performance collapse when the LLMs exhibit limited competence in the task. Additionally,
providing step-by-step explanations has been shown to enhance LLM performance (Wei et al., 2022).

3.2 CONSISTENT INCONSISTENT AND INCONSISTENT SAMPLE IDENTIFICATION AND RATIO

3.2.1 CONSISTENT AND INCONSISTENT (CAI) IDENTIFICATION FOR UNSUPERVISED
DATASETS

After we have acquired Ds = {(xi, ȳi)}Ni=1, Dt = {(xi, ȳ
t
i)}Ni=1, and D̂t = {(xi, ŷ

t
i)}Ni=1, the first

challenge still remains unresolved: assessing the annotations generated by LLMs or assigned by the
student model due to the unavailability of ground truth annotations. To address this problem, we pro-
pose the Consistent and Inconsistent Sample (CAI) Identification and Ratio. The CAI identification
aims to identify the consistent and inconsistent samples among Ds, Dt, and D̂t, specifically focusing
on samples with consistent annotations across the student and teacher distributions. More precisely,
the CAI identification utilizes annotations from the teacher model LLMs T and the pre-trained
sentence embedder as a student model S. Samples with the same predictions from both the student
and teacher models are defined as consistent samples; otherwise, they are inconsistent samples. For
each x ∈ Du, the annotation assignment process is represented by the function h, which assigns an
output label for the student model. Specifically, the label assigned by the student model is given by
ȳS = h(x) where, for a sample xi, the function assigns the label of the cluster with the highest average
cosine similarity: ȳS = h(xi) = ȳj∗ . For each x ∈ Du, the teacher model T generates a annotation:
ȳT = T (x; t), and ŷT = T (x, ȳ; t), where t denotes the temperature parameter controlling diversity.
Consistency Check: If ȳS = ȳT = ŷT , then x ∈ C (consistent samples). If ȳS ̸= ȳT ̸= ŷT ,
then x ∈ I (inconsistent samples). We have also provided a pseudo-algorithm table as follows:

Algorithm 1: Consistent and Inconsistent Sample Identification
Input: DatasetDu = {x1, x2, . . . , xn}, Teacher Model T , Student Model for annotation assignment h
Output: Consistent Samples C, Inconsistent Samples I
Initialize(C ← ∅, I ← ∅);
for each xi ∈ D do
T (xi)→ ȳT , T (xi, ȳi)→ ŷT , h(xi)→ ȳS ;
if ȳT == ȳS == ŷT then
C ← C ∪ {xi} // Consistent

else
I ← I ∪ {xi} // Inconsistent

return C, I;
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(a) (b)

Figure 2: The above analysis shows the correlation between LLM annotation accuracy and the
Consistent and Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance
of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Student Model) and (LLMs
4.0 Mini and Student Model) across the datasets CLINC, Massive Scenario, MTOP Intent, Stack
Exchange, and Banking77. Using these data, we calculated the Pearson correlation coefficients
between the LLM annotation accuracies and CAI ratios and computed the associated P-values to
determine the statistical significance of the observed correlations.

Nonetheless, the identification of consistent and inconsistent samples still cannot tell us about the
quality of annotations generated and assigned by the LLMs and the student model.

3.2.2 CONSISTENT AND INCONSISTENT (CAI) RATIO FOR UNSUPERVISED DATASETS

Given the identification of consistent and inconsistent samples through our CAI identification process,
we propose the Consistent and Inconsistent (CAI) ratio to evaluate LLM-generated annotations on
unsupervised data with user preferences. Additionally, the CAI ratio measures the confidence of the
LLM-generated outputs—in this case, the annotations. We define the size of the consistent sample
set as NC and the size of the inconsistent sample set as NIC . The CAI ratio is defined as follows:

CAI Ratio =
NC

NIC
(3)

From our observations: When the CAI Ratio > 1 (i.e., NC > NIC), the LLM-generated annota-
tions are more certain and consistent, demonstrating higher confidence in the model’s predictions.
Conversely, when the CAI Ratio < 1 (i.e., NC < NIC), it reflects less certainty and consistency,
suggesting the need to adjust the prompting approach or switch to a different student model for the
given unsupervised dataset. Furthermore, if the CAI ratio is too low, indicating that NIC greatly
outnumbers NC , prior knowledge or additional human annotations are necessary to improve annota-
tion accuracy. Overall, a CAI Ratio > 1 indicates that the LLM is more confident in its predictions,
whereas a CAI Ratio < 1 shows that the model is less confident in its predictions.

3.2.3 LAW OF CONSISTENCY

We have defined the phenomenon of the higher CAI ratio showing higher LLM annotation accuracy as
the Law of Consistency, stating that if both the LLM model and student model are optimal hypotheses
which are T ∗ and S∗ for the given dataset Du, the number of identified consistent samples should
outnumber the identified inconsistent samples as number of sample reach to a infinite large. We have
conducted significance testing to justify our findings that the CAI ratio can serve as an indicator of
LLM performance under unsupervised data with user preferences. Additionally, Figures 2(a) and
2(b) demonstrate a strong positive correlation between a higher CAI ratio and higher LLM annotation
accuracy, with R2 = 0.647 and R2 = 0.824, respectively.

3.3 RETROSPECTIVE LEARNING (RETROL) FOR SELF-CORRECTION OF INCONSISTENT
SAMPLES (DCSC)

RetroL consists of two key components: Divide-and-Conquer Self-correction and Majority Voting
via the Top-Nearest Embedding Scheme. These approaches work collaboratively to achieve self-
correction of the inconsistent samples.
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Figure 3: Divide-and-conquer self-correction for the Inconsistent samples. Using CAI identifica-
tion, we first identify the consistent and inconsistent samples, denoted Du = I ∪ C. Subsequently,
we apply the DCSC process to refine further inconsistency of the identified inconsistent sample where
II ∈ I .(See Section 3.3).

3.3.1 DIVIDE-AND-CONQUER SELF-CORRECTION

Given the identified consistent samples (C), inconsistent samples (I) determined through CAI
identification, and user preference samples, the next challenge we address is resolving the self-
correction of identified inconsistent samples from Ds, Dt, and D̂t. Our proposed Divide-and-Conquer
Self-Correction (DCSC) approach effectively addresses this challenge. We begin by leveraging the
consistent samples (C) and the inconsistent samples (I), further dividing I into two categories using
CAI identification: CI (consistency of identified inconsistent samples) and II (inconsistency of
identified inconsistent samples). The DCSC process consists of two rounds of self-correction (see
Figure 2). In the first round of identification and self-correction, we aim to refine the identified
inconsistent samples (I) using the consistent samples (C) and the user preference samples (H). This
process results in self-corrected inconsistent samples through majority voting based on the top-nearest
embedding scheme (MV-VTES). Once this correction is completed, we reapply CAI identification
to the self-corrected inconsistent samples and remaining inconsistent samples. This second step
identifies II samples for further self-correction, incorporating user preference samples (H) and
consistent samples (C). This second round completes our Divide-and-Conquer Self-Correction
(DCSC) paradigm.

3.3.2 MAJORITY VOTING VIA TOP-NEAREST EMBEDDING SCHEME (MV-VTES)

The self-correction of inconsistent samples and inconsistency of inconsistent samples is realised
by applying an MV-VTES, which includes selecting the most semantic similar example from the
identified consistent samples and user-preference samples for each inconsistent sample. Choose
example (atop, ltop) as an positive example from D(A,L)e , based on highest cosine similarity score
with x to be fed into Gt(x, atop, ltop). Given an query which is denoted as x, our goal is to find the
positive example {atop,ltop} in D(A,L)e that has the highest cosine similarity score with x.

{(ai, ȳi)}Ki=1 = arg top-K
(ai,li)∈D(A,L)e

(
S(ai) · S(x)

∥S(ai)∥∥S(x)∥

)
(4)

given the selected top-k positive samples, the final annotation is assigned with majority voting and
averaging. Basically, the annotations in {ai, ȳi}, which occurs the most frequently, will be voted
as the final prediction. Let ȳi denote the annotation associated with ai in the top-K samples. For
each x ∈ I , there is a corresponding {(ai, ȳi)}Ki=1 applying our self-reflection search algorithm. For
the top-k selected samples for xi, there will be a set of possible annotations A = {a1, a2, . . . , ak}
corresponding to each top-k selected sample. For the given set A, we compute the frequency na ,
denote as na =

∑K
i=1 1{ȳi=a}, of each annotation a ∈ A and assign the annotation of A with the

highest frequency as the final annotation ŷ for x. The formula is defined as follows:

ŷ = argmax
a∈A

na (5)

The cosine similarity score measures the semantic embedding similarity between the Query xi and
Sample a. The selected Sample with the highest cosine similarity score is considered a positive
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sample. Unlike traditional data-centric methods, our philosophy is to use the extracted information
to correct inconsistent samples. Traditional approaches, such as data pruning (Yang et al., 2022;
Liu et al., 2020) or noisy-teacher and student distillation (Chen et al., 2024), focus on extracting
only the most correct or informative data. We believe all representative samples (consistency and
inconsistency) should be considered to train a more robust and generalizable model. Frequently,
the inconsistent samples hinder model performance and annotation accuracy the most. Higher-
quality annotation and improved model performance cannot be acquired without correcting incorrect
annotations among these inconsistent samples.

4 EXPERIMENTS

4.0.1 BASELINES

Using Only Student: We utilise a student model using user preference samples to assign initial
annotation for unsupervised data with our proposed preference-based annotation scheme. Applying
a pre-trained student model to annotate unsupervised data according to user preferences is a cost-
effective approach compared to crowd-sourcing or even LLMs.

Using Only LLMs: As our second baseline, we use LLMs (ChatGPT 3.5 and ChatGPT 4o mini)
in a zero-shot setting. The categories defined by user preferences are provided during prompting. The
application of LLMs for unsupervised textual data is considered affordable, but it might be unreliable
if the generated outputs are incorrect or inconsistent.

Student (Our) and LLMs (ChatGPT 4o Mini and ChatGPT 3.5): We use the Student model
with our proposed hint-based majority voting approach to assign annotation for each unsupervised
data. Then, we use it as a demonstration to help LLMs to generate annotation.

A Consistent Sample of Student and Teacher Knowledge Distillation: A special case of our
methodology is the distillation of student-teacher knowledge using consistent samples. In order
to enhance downstream model generalisation, we systematically identify inconsistent samples and
exclude them from the training process of pretrained BERT as the student model. This is comparable
to our retrospective learning approach; rather than reconfiguring the student model, we implement
self-correction and reassign annotations to the inconsistent samples.

Clustering Approach: Our proposed Majority Voting via the Top-Nearest Embedding Scheme
is a new clustering method for unsupervised data annotation. Therefore, we include Zhang et al.
(2023) as one of our baselines, which is the state-of-the-art (SOTA) in current clustering methods, for
comparison.

Self-Refine & Reflexion Prompting Methods: We have added two methods as baselines: Self-
Refine and Reflexion. Self-refine is designed to improve initial output through iterative rounds of
self-correction (Madaan et al., 2024). Reflexion aims to achieve self-correction through LLMs’ own
evaluations and incorporates feedback from internal or external tools (Shinn et al., 2024). Both
techniques largely depend on the LLMs’ ability to effectively generate accurate annotations. (Further
details can be found in Appendix A.4)

4.1 EVALUATION METRICS

The evaluation of our method and baselines is based on two metrics: Annotation Accuracy and the
CAI ratio evaluation (change from the initial CAI ratio to the after CAI ratio). The first metric
assesses the accuracy to evaluate the effectiveness of our method. The second metric evaluates
whether the size of inconsistent samples has decreased and consistent samples have increased after
applying retrospective learning.

4.2 DATASET

In this paper, we evaluate a wide range of open-source textual datasets. These include Bank77,
CLINC (Intent), MTOP (Intent), Massive (Intent), StackExchange and Reddit (Topic) (Geigle et al.,
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Task Name #clusters #data(small) #data(large)

Intent

Bank77 77 3,080 10,003
CLINC(I) 150 4,500 15,000
MTOP(I) 102 4,386 15,638

Massive(I) 59 2,974 11,510

Type
FewRel 64 4,480 40,320

Topic
StackEx 121 4,156 50,000
Reddit 50 3,217 50,000

Domain Massive Scenario 18 2,974 11,514

Table 1: Dataset Summary

2021), and Few Rel Nat (Type). We also utilize the Massive Intent dataset with some modifications,
following the approach in (Zhang et al., 2023). Since we are working in an unsupervised textual data
setting, we directly use the small-scale version of each dataset for testing. Intent discovery (Zhang
et al., 2021; 2022) explores unknown intents in unsupervised utterance datasets. Bank77 (Casanueva
et al., 2020) is a banking dataset that focuses on fine-grained intent classification within a single
domain. CLINC (I), Massive (I), and MTOP (I) are intent-based datasets where "I" refers to intent
(Larson et al., 2019; FitzGerald et al., 2022; Li et al., 2020). Each dataset is available in small-scale
and large-scale versions; we use i.i.d. user preference samples from the large-scale versions.

4.3 EXPERIMENTAL RESULT

4.3.1 EXPERIMENTAL ANALYSIS

Chatgpt 3.5-Turbo: Based on the experimental results from Table 2 and Table 3, we have two key
findings. First, our method (RetroL) outperformed on three datasets: CLINC (+4.17%), Massive
Scenario (+0.88%), and Bank77 (+2.99%). For the MTOP Intent and StackExchange datasets,
our method (RetroL) outperformed the Only Student baseline by +16% on MTOP and +9.18% on
StackExchange. It also improved over the Only LLMs (ChatGPT 3.5) baseline by +4.11% on MTOP
and +11.35% on StackExchange, showing that our method can achieve greater improvements over
each model. Additionally, the student-teacher knowledge distillation (KD) with consistent samples
achieved the highest annotation accuracy on the MTOP Intent dataset. Chatgpt 4o-mini: Based
on the experimental results from table 2 and table 3, there are two aspects of findings first is that
RetroL (Our) has outperformed all baseline methods on three datasets, which are Clinc(+2.7%),
Massive Scenario (+0.58%), and Bank77(+7.06%). The student-teacher knowledge distillation (KD)
with consistent samples achieved the highest annotation accuracy on the MTOP Intent dataset. In
practice, Retrospective Learning and student-teacher knowledge distillation with consistent samples
can be used interchangeably for improved annotation accuracy. On the Llama 8B Instruct model
Touvron et al. (2023), our proposed RetroL has outperformed all baselines, demonstrating a significant
improvement in accuracy and CAI scores. Notably, despite the relatively poor accuracy of the Llama
8B model, our method shows remarkable robustness by consistently outperforming both the Llama
8B model and student models. This highlights the adaptability and reliability of our approach.

4.4 CAI RATIO EVALUATION

The following table (Figure 4) shows the changes in the number of consistent and inconsistent samples
identified before and after applying our proposed retrospective learning approach. For Banking77
(1.45 ⇒ 4.99), CLINC (1.44 ⇒ 5.74), Massive_Scenario (1.38 ⇒ 4.88), MTOP_INTENT (0.67 ⇒
1.65), and StackExchange (0.40 ⇒ 0.86), highlighting the significant improvement in the CAI ratio
resulting from improvement of corresponding annotation accuracy across datasets. Table 5 in the
appendix illustrates the improvements in both the CAI ratio and accuracy after applying our proposed
retrospective learning approach. For Banking77, the CAI ratio improved from 1.35 to 4.03, with an
accuracy increase from 65.12% to 82.45%. Similarly, for CLINC, the CAI ratio rose from 1.99 to
5.20, and accuracy improved from 81.44% to 87.93%. For the Massive Scenario dataset, the CAI
ratio increased from 1.38 to 4.65, with accuracy going from 66.83% to 80.18%. However, for the
MTOP Intent dataset, although the CAI ratio increased from 0.72 to 1.66, the annotation accuracy of
LLMs performed worse than Only LLMs (ChatGPT 4o Mini), dropping from 75.03% to 67.10%.
Similarly, for StackExchange, while the CAI ratio increased from 0.30 to 0.66, the accuracy of Only
LLMs (51.90%) outperformed the annotation accuracy of our RetroL approach, which was 45.22%.
The explanation for this is that, by examining the other datasets, we can observe that only when the
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Datasets Only
Student
Model
(Our)

Only LLMs
(ChatGPT
3.5)

Student (Our)
& LLM (Chat-
GPT 3.5)

Clustering
Based
Method
(Zhang
et al., 2023)

Student
&
Teacher
KD
(Our)

Retrospective
Learning
(Our)(%)

CAI Ratio
& (Before &
After)

Clinc 79.01 66.58 76.82 78.58 81.32 85.49 1.55
Std Dev ±1.08 ±3.36 ±1.51 ±0.41 ±0.46 ±0.19 5.50
Massive_Scenario 75.55 60.89 70.23 60.85 69.25 76.43 1.39
Std Dev ±1.76 ±0.62 ±1.64 ±4.33 ±0.03 ±2.47 4.72
Mtop Intent 52.49 64.95 55.12 37.22 79.57 69.06 0.68
Std Dev ±2.52 ±0.21 ±3.08 ±1.18 ±0.42 ±1.10 1.78
StackExchange 32.27 30.10 30.92 47.75 29.76 41.45 0.40
Std Dev ±0.65 ±0.10 ±2.21 ±1.24 ±0.19 ±2.56 0.85
Banking77 73.93 60.29 73.15 71.20 70.11 76.92 1.46
Std Dev ±0.81 ±1.33 ±1.70 ±1.59 ±0.12 ±0.02 4.91
Reddit 51.73 51.12 51.64 57.02 43.90 58.77 0.50
Std Dev ±0.62 ±1.27 ±0.18 ±1.59 ±1.59 ±0.29 1.40
Few Rel Nat 35.35 32.87 37.37 51.22 49.24 44.88 0.28
Std Dev ±0.016 ±1.72 ±0.13 ±1.43 ±0.63 ±0.05 0.89
Massive_Intent 61.80 71.52 64.54 60.69 73.41 71.72 1.62
Std Dev ±1.04 ±0.95 ±0.024 ±0.024 ±1.843 ±0.40 2.81

Table 2: Chatgpt-3.5 Turbo (Closed-source LLMs):"Before Correction" means before applying
our Retrospective Learning. The highest accuracy for each dataset is highlighted

Datasets Only
Student
Model
(Our)

Only LLMs
(Chatgpt-4o
mini)

Student
(Our) &LLM
(Chatgpt-4o
mini)

Clustering
Based
Method
(Zhang
et al., 2023)

Student
&
Teacher
KD
(Our)

Retrospective
Learning
(Our)(%)

CAI Ratio
& (Before
& After)

Clinc 79.01 81.44 78.58 78.58 85.23 87.93 2.06
Std Dev ± 1.08 ± 0.44 ± 1.35 ± 0.41 ±0.98 ± 0.53 5.20
Massive_Scenario 75.55 66.83 77.62 60.85 79.60 80.18 1.37
Std Dev ± 1.76 ± 1.31 ± 0.74 ± 4.33 ±0.85 ± 0.45 4.65
Mtop Intent 52.49 75.03 57.01 37.22 80.16 67.10 0.74
Std Dev ± 2.52 ± 1.35 ± 0.37 ± 1.18 ± 0.85 ± 0.32 1.66
StackExchange 32.27 51.90 45.49 47.75 35.63 45.22 0.31
Std Dev ± 0.65 ± 0.75 ± 0.94 ± 1.24 ± 0.51 ± 0.15 0.66
Banking77 73.93 65.12 75.39 71.20 73.56 82.45 1.36
Std Dev ± 1.56 ± 0.30 ± 0.32 ± 1.59 ± 0.20 ± 0.48 4.03
Reddit 51.73 53.25 57.40 57.02 44.47 60.94 0.51
Std Dev ± 0.62 ± 0.35 ± 1.96 ± 1.59 ± 0.69 ± 0.11 1.90
Few Rel Nat 35.35 37.11 38.87 51.22 49.53 44.94 0.26
Std Dev ± 0.016 ± 0.03 ± 1.88 ± 1.43 ± 0.35 ± 0.02 0.9
Massive_Intent 61.80 66.02 76.93 60.69 78.93 72.49 1.47
Std Dev ± 1.04 ± 0.35 ± 1.05 ± 0.024 ± 0.50 ± 0.40 3.3

Table 3: Chatgpt-4o mini (Closed-source LLMs): "Before Correction" means before applying our
Retrospective Learning. The highest accuracy for each dataset is highlighted.

Datasets Only Student
Model (Our)

Only LLMs
(Llama-8B-
Instruct)

Student (Our) &
LLM (Llama-8B-
Instruct)

Student &
Teacher KD
(Our)

Retrospective
Learning
(Our)(%)

CAI Ratio &
(Before & Af-
ter)

Clinc 79.01 ±1.08 32.49 ±6.73 69.40 ±7.28 63.41 ±3.19 82.43±0.20 0.56⇒4.43
Massive_Scenario 75.55 ±1.76 43.52 ±1.85 66.74 ±0.98 70.06±1.12 78.13 ±0.74 0.67⇒4.88
Mtop Intent 52.49 ±2.52 34.17 ±6.70 48.23 ±0.25 66.39 ±0.70 63.39 ±1.47 0.35⇒1.46
StackExchange 32.27 ±0.65 11.02 ±2.78 26.26 ±2.16 16.03 ±0.13 38.88 ±0.27 0.23⇒0.53
Banking77 73.93 ±1.56 33.06 ±1.92 69.66 ±1.74 64.29 ±1.24 77.71 ±0.25 0.68⇒4.20
Reddit 51.73 ±0.62 36.31 ±0.97 46.00 ±2.51 40.29±0.55 58.81 ±0.28 0.33⇒1.58
Few Rel Nat 35.35 ±0.016 14.25 ±0.36 30.07 ±4.45 31.80±0.34 42.92 ±0.06 0.13⇒0.85
Massive_Intent 61.80 ±1.04 45.41 ±0.06 56.03 ±0.08 67.49 ±0.10 67.75 ±0.43 0.73⇒2.87

Table 4: Meta-Llama 3-8B Instruct (Open-Source Light-Weight LLMs):"Before Correction"
means before applying our Retrospective Learning. The highest accuracy for each dataset is high-
lighted

CAI ratio increases by a large margin can we confidently claim there is a significant improvement.
However, if the CAI ratio improvement is very small, as in the case of StackExchange (an increase of
only 0.36), this suggests that either the student model chosen or the prompt given to the LLMs was
not optimal. Therefore, while the CAI ratio remains a good indicator, the improvement from the CAI
ratio must be sufficiently large to reliably indicate improved performance.

4.4.1 STATISTICAL TEST FOR THE CORRELATION BETWEEN CAI SCORES AND AVERAGE
LLM ACCURACY

We performed a Pearson correlation analysis to examine the relationship between CAI ratios and
average LLM accuracy after implementing our suggested approach. Our objective was to investigate
the possibility of a relationship between higher LLM annotation accuracy and larger CAI ratios. The
null hypothesis in test asserts that there is no meaningful positive correlation between CAI scores
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(a) Banking77 (b) CLINC (c) Massive Scenario (d) MTOP (e) StackExchange

(f) Banking77 (g) CLINC (h) Massive Scenario (i) MTOP (j) StackExchange

Figure 4: Performance comparison based on LLMs (Chatgpt 3.5) and student model (MINILM Wang et al.
(2020)) across 5 different datasets. The first row presents the CAI ratio before applying our sanitizing LLMs for
the Student+LLMs (Chatgpt 3.5) baseline, while the second row shows the results after applying our proposed
sanitizing LLMs, demonstrating a significant reduction in the number of inconsistent samples. (More Details are
in the appendix A2 and A8.)

and LLMs annotation accuracy, while the alternative hypothesis postulates a substantial positive
correlation. The following tables display the statistics. There was a strong positive correlation
between the CAI ratio and the LLM accuracy, with a p-value of about 0.005 and 0.00035. The
value of r was about 0.805, and the value of r was about 0.903. This implies that the correlation is
statistically significant, further suggesting that higher CAI ratios are associated with higher Average
LLM Accuracy. Full details of the analysis are provided in Appendix A.2.

Metric Pearson Correlation p-value
CAI Ratio vs. Annotation Accuracy (Before RetroL (Our)) 0.805 0.005
CAI Ratio vs. Annotation Accuracy (After RetroL (Our)) 0.903 0.00035

Table 5: Pearson Correlation Between CAI Ratio and Annotation Accuracy (Before and After RetroL
(Our)

5 DISCUSSION

This paper proposes a retrospective learning framework to address two critical challenges in unsuper-
vised data tasks involving user preferences: evaluation and self-correction. To tackle the evaluation
challenge, we introduce consistent and inconsistent (CAI) identification along with the consistent and
inconsistent (CAI) ratio, an effective evaluation metric for unsupervised data with user preferences.
Building on this CAI identification and ratio, we propose a Divide-and-Conquer Self-Correction
paradigm that leverages consistent samples to iteratively self-correct identified inconsistent sam-
ples. Our approach addresses the self-correction challenge by achieving higher annotation quality
compared to teacher and student models, without relying on external knowledge.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 CLUSTERING OPERATIONS IN RETROSPECTIVE LEARNING

Algorithm 2: Clustering Operations in Retrospective Learning
Input: Pre-trained student model S, Annotated set H = x1, x2, . . . , xs, Unlabelled dataset Du, Number

of clusters k
Output: Student-annotated dataset Ds

Extract Embeddings
for each xi ∈ H do

Compute embedding: ei = S(xi);
Cluster User-Preference Samples
Partition H into k clusters C1, C2, . . . , Ck using label set Y such that: Assign Annotations to Unlabelled

Data
for each xi ∈ Du do

for each xi ∈ Du do
Compute embedding: ei = S(xi); for each cluster Cj do

Compute Average Similarity (AS):
Assign label of cluster Cj∗ with highest AS to xi: ȳi = ȳj∗ ;

Construct Annotated Dataset return Ds;

The clustering operation is performed using the semantic similarity score (6) and majority voting
based on the top-nearest embedding scheme (4). This process plays a critical role in our retrospective
learning framework, as it aligns annotations with user-defined preferences. By assigning annotations
in this manner, the CAI (Consistent Annotation Identification) method is employed to self-correct
identified inconsistent samples through the divide-and-conquer self-correction (DCSC) process,
an iterative self-correction mechanism. Our approach supports user-defined preferences and is
applicable to a wide range of large NLP datasets. It achieves this by self-correcting annotations in
identified inconsistent samples, a process that is particularly crucial for unsupervised learning tasks
incorporating user preferences.

A.1.1 EXTRACTING EMBEDDING FROM STUDENT MODEL

The semantic features of text inputs are obtained by exploiting a pre trained student model (MiniLM)
for generating dense vector representations. Given a sample xi which is fed into an embedding
function of the student model S(xi) to compute an embedding ei.

A.1.2 USER-PREFERENCE SAMPLE CLUSTERING

A small size of annotated set of user-preference samples H = {x1, ..., xs} is provided. It is partitioned
into k clusters, and each cluster is defined as C1, C2, ..., Ck using a predefined label yjY reflecting
the preference of user annotation. Moreover, each cluster does not overlap with other clusters such
that (Ci ∩ Cj = ∅,∀i ̸= j), and

⋃k
i=1 Ci = H .

A.1.3 ANNOTATION ASSIGNMENT FOR UNLABELLED DATA USING STUDENT MODEL

For every unlabelled sample xi ∈ Du, we will acquire feature embedding ei = S(xx) to compute
the semantic similarity to samples in each cluster Cj using Average Similarity which is defined as
follows:

AS(ei, Cj) =
1

k

∑
e∈Top-k(Cj ,ei)

ei · e
∥ei∥∥e∥

, (6)

where ei is the embedding for xi and e represents the embedding of each sample in each cluster
Cj . where Top-k(Cj , ei) represents the subset with top k embedding cosine similarity score from
Cj . Top-k(Cj , ei) = {e ∈ Cj | AS(ei, e) is among the top k in Cj}. Based on the calculated cosine
similarity, examples which are most similar to the ei and calculated average cosine similarity for the
top selected sample for each cluster. In our experiment, we set the k to five. Lastly, for the annotation
process, we assign the label of the cluster Cj with the highest average cosine similarity score to
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the unlabelled sample xi. The cluster Cj∗ , which has the highest average cosine similarity with the
embedding ei of a sample xi, is defined as:

Cj∗ = argmax
Cj

AS(ei, Cj)

where AS(ei, Cj) is the average cosine similarity of ei with the embeddings in Cj . The annotation
ȳj∗ associated with Cj∗ is then assigned to xi, i.e., ȳi = ȳj∗ . This process is represented by the
annotation assignment function h(xi). The final student-annotated dataset is:

Ds = {(xi, ȳi)}Ni=1

where each ȳi represents the user preference-based annotation for the corresponding sample xi.

A.1.4 ANNOTATION ASSIGNMENT FOR UNLABELLED DATA USING TEACHER MODEL
(LLMS)

With the acquired dataset Ds = {(xi, ȳi)}Ni=1, we further exploit LLMs using zero-shot prompting
(without including annotations from the student) and single-shot prompting (including annotations
from the student) through a group prompting method to provide annotations for each xi. We
define the annotations as ȳti = T (xi) for zero-shot prompting and ŷti = T (xi, ȳi) for single-shot
prompting, where (xi, ȳi) ∈ Ds. Since the LLM is an autoregressive language model, we simply
ask ChatGPT to provide the annotation for each query x without giving ȳi for zero-shot prompting.
Consequently, we obtain the teacher distribution Dt = {(xi, ȳ

t
i)}Ni=1 and the augmented distribution

D̂t = {(xi, ŷ
t
i)}Ni=1. During prompting, we set the temperature parameter to 1 to maximize output

diversity. The reason for acquiring two distributions—one with and one without the student model’s
annotations—is to ensure output diversity and prevent performance collapse when the LLMs exhibit
limited competence in the task. Additionally, providing step-by-step explanations has been shown to
enhance LLM performance Wei et al. (2022).

A.1.5 IDENTIFICATION OF CONSISTENT AND INCONSISTENT SAMPLES

Given an unsupervised dataset we do not have access to ground truth annotation for assessment of
acquired annotation quality. Therefore, we propose the CAI ratio, a novel metric for unsupervised
tasks with user preference to evaluate the performance of LLMs and student models on the given task.
In addition, the annotation assigned is not perfect and consists of annotation corruption. To address
the potential annotation corruption, we propose consistent and inconsistent identification methods.
We have discussed the details of the CAI ratio and CAI identification in section 3.2 of the main paper.

A.1.6 MAJORITY VOTING VIA TOP-NEAREST EMBEDDING SCHEME (MV-VTES)

To correct the misaligned annotation of the inconsistent samples, MV-VTES is proposed. The key idea
is to exploit the identified consistent sample and user-preference sample to self-correct the incorrectly
assigned annotation on the inconsistent samples. This is based on our observation that the identified
consistent sample and inconsistent sample that, we observe consistent sample has much higher
accuracy than the inconsistent sample. For more details, please see section 3.3, RETROSPECTIVE
LEARNING (REL) FOR SELF-CORRECTION OF INCONSISTENT SAMPLES (DCSC), on the
main page.
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A.1.7 DIVIDE-AND-CONQUER SELF-CORRECTION (DCSC) APPROACH

Algorithm 3: Divide-and-Conquer Self-Correction (DCSC) Approach
Result: Self-corrected inconsistent samples
Input: Consistent samples C, Inconsistent samples I , Embedding function H , User-preference

samples;
Divide Inconsistent Samples;
Divide I into two categories using CAI identification:

1. CI: Consistent identified inconsistent samples
2. II: Inconsistent identified inconsistent samples

Round 1: Identification and Self-Correction;
for each sample in CI do

Identify the top-nearest embeddings using H;
Select the most semantically similar examples from C;
Apply Majority Voting via Top-Nearest Embedding Scheme (MV-VTES) to self-correct the
sample;

end
Round 2: Re-identification and Further Self-Correction;
Apply CAI identification again to the self-corrected samples to update CI and II;
for each sample in updated II do

Incorporate user-preference samples and C;
Identify top-nearest embeddings using H;
Select the most semantically similar examples from C and user-preference samples;
Apply MV-VTES to self-correct the sample;

end
Output: Updated and self-corrected inconsistent samples;

A.2 CAI SCORES AND LLMS ACCURACY

Dataset CAI Before Accuracy Before (%) CAI After Accuracy After (%)
Banking77 1.460 73.93 4.905 76.92
Clinc 1.545 79.01 5.500 85.49
Massive Scenario 1.390 75.55 4.720 76.43
MTOP Intent 0.675 52.49 1.775 69.06
Stack Exchange 0.400 32.27 0.845 41.45

Table 6: Performance Metrics for ChatGPT 3.5 Before and After Applying Our Method

Dataset CAI Before Accuracy Before (%) CAI After Accuracy After (%)
Banking77 1.350 65.12 4.030 82.45
Clinc 1.995 81.44 5.195 87.93
Massive Scenario 1.375 66.83 4.645 80.18
MTOP Intent 0.720 75.03 1.655 67.10
Stack Exchange 0.300 51.90 0.660 45.22

Table 7: Performance Metrics for ChatGPT 4o Mini Before and After Applying Our Method

A.2.1 STATISTICAL INFERENCE

We have conducted a two-tailed hypothesis test based on the CAI ratio before, LLMs accuracy before
and CAI ratio after, and LLMs accuracy after from Table 4 and Table 5. The test is to prove that
there is a strong positive relationship between high CAI scores and high LLMs annotation accuracy.
We have performed a Pearson correlation, the correlation coefficient r is calculated as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
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Table 8: Performance Comparison of ChatGPT 3.5 and ChatGPT 4o Mini on additional Datasets

Dataset ChatGPT 3.5 ChatGPT 4o Mini
CAI (Before) Accuracy (Before) CAI (After) Accuracy (After)

Reddit 0.50 51.54 0.43 51.49
Go Emotion 0.12 21.94 0.13 31.84
Few Rel Nat 0.28 37.37 0.26 32.87
Few Nerd Nat 0.43 32.63 0.32 46.74
Massive Intent 1.63 64.54 1.47 71.52

Reddit (After) 1.8 60.94 0.74 60.94
Go Emotion (After) 0.32 25.69 0.31 23.56
Few Rel Nat (After) 0.88 44.56 0.9 44.94
Few Nerd Nat (After) 0.92 33.74 0.9 34.11
Massive Intent (After) 3.27 71.72 2.79 72.49

where xi symbolises the CAI ratios. yi denotes the LLM annotation accuracies. x̄ and ȳ are the
average mean of xi and yi, accordingly. n is the number of samples we have used for evaluation. To
assess the statistical significance, we use a hypothesis test for the correlation coefficient, calculating a
t-statistic (Schober et al., 2018):

t = r

√
n− 2

1− r2

The P-value is then calculated from the t-distribution with n− 2 degrees of freedom.

Metric Pearson Correlation p-value
Before 0.805 0.005
After 0.903 0.00035

Table 9: Pearson Correlation Results for CAI and Accuracy (Before and After)

Table 10: Pearson Correlation Results for CAI and Accuracy for additional datasets on ChatGPT 3.5
Turbo and ChatGPT 4o mini

Metric Pearson Correlation P-value
Before 0.8742509926234142 0.0009373655969838773
After 0.8520502618079272 0.0017465070325696618

Table 11: Pearson Correlation Results for CAI and Accuracy (Before and After) on Meta-Llama-3-
8B-instruct

Metric Pearson Correlation P-value
Before 0.8118066946938405 0.014399601133794526
After 0.9180808900843687 0.001291289343334756

A.2.2 BEFORE APPLYING THE METHOD:

The Pearson correlation coefficient is 0.805, indicating a strong positive linear relationship between
CAI and Accuracy. The p-value is 0.005, which is statistically significant (below the typical threshold
of 0.05). This implies that the positive correlation between the CAI ratio and Accuracy before and
after applying our method is not a random event, and higher CAI scores are associated with higher
Accuracy. The p-value is 0.0009373655969838773, which is statistically significant (below the
typical threshold of 0.05) for the additional datasets. The p-value is 0.014399601133794526, which
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is statistically significant (below the typical threshold of 0.05) for Meta-Llama-3-8B-instruct on all
datasets.

A.2.3 AFTER APPLYING THE METHOD:

The Pearson correlation coefficient is 0.903, showing an even stronger positive correlation between
CAI and Accuracy after applying the method. A larger CAI ratio and higher annotation produced by
LLMs are extremely statistically significant, according to the p-value of 0.00035. This implies that
the relationship between CAI and Accuracy is even more evident after using the approach, showing
a more linear relationship where increases in CAI are more directly correlated with increases in
Accuracy. In both stages (Before and After applying the method), the results display statistically
significant correlations (p < 0.05), showing strong positive relationships between CAI scores and LLM
accuracy. Tables 9, 10, and 11 show that all the P-values of the Pearson correlation are statistically
significant.

Metric Before After Source
Slope 22.337 7.603 Regression
Intercept 40.317 45.280 Regression
R-value 0.805 0.908 Pearson Correlation
R-squared (from Pearson) 0.647 0.824 Pearson Correlation
R-squared (from Regression) 0.647 0.824 Regression
P-value 0.00501 0.00029 Regression
Standard Error 5.830 1.244 Regression

Table 12: Comparison of R-squared Values from Pearson Correlation and Linear Regression Before
and After Applying the Method. Note: R2 emphasis on variation of LLMs annotation accuracy
is explained by CAI ratio. The Pearson correlation shows the strength of the linear correlation.
Therefore, on the main page, we have shown the R2.

A.2.4 WHY TEACHER-STUDENT COLLABORATION IS ESSENTIAL FOR RETROSPECTIVE
LEARNING

In unsupervised learning tasks that rely on user preferences to align data annotations with expecta-
tions—where the competency of the teacher model (LLMs) is uncertain and no external knowledge is
available, the key challenge lies in evaluating the LLMs generated annotation and enabling mecha-
nisms for self-correction. To address this, we propose a novel approach termed retrospective learning,
a self-supervised framework designed to facilitate self-correction and self-assessment of annotations
generated by large language models (LLMs).

Our methodology leverages a student model to collaborate with a teacher model of uncertain compe-
tency. By introducing the consistent and inconsistent (CAI) ratio , we quantify and identify consistent
and inconsistent samples, thereby enhancing the performance of both the student and teacher models
through iterative refinement.

To further demonstrate the efficacy of our approach, we conducted experiments utilizing the Meta-8B
Instruct lightweight LLM as a low-competency noisy teacher. This setup, in conjunction with the
student model, underscores the robustness of our framework and highlights the pivotal role of the
student model in effectively managing scenarios involving noisy teachers. Given an unsupervised
learning task we do not know how competent the teacher deployed to the particular learning task,
and there is no external knowledge. How can we evaluate and enable the self-correction for the
unsupervised dataset? To tackle this problem, we proposed retrospective learning, which is a self-
supervised strategy which allows us to self-correct and self-evaluate the LLMs generated annotation.
To achieve this, we introduce the student model to collaborate with an unknown competency of a
teacher model to acquire a CAI ratio and identify the consistent and inconsistent samples to improve
the performance of students and teachers.

A.2.5 THE ROLE OF STUDENT MODEL IN RETROSPECTIVE LEARNING

The inclusion of the student model is essential as it provides a safeguard against underperformance by
the LLM. Additionally, the student model serves as a reference point for "course tracking," meaning
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that it allows us to monitor and guide the annotation process by comparing the student model’s output
with the teacher model’s output. This approach is particularly evident in our experiments where
the Meta-8B Instruct model, acting as a low-competency "noisy teacher," demonstrated suboptimal
performance on most of the eight datasets, as indicated by its low CAI scores. The student model
addresses this issue by collaborating with the teacher model to iteratively refine annotations. This
process ensures the framework’s robustness, even when the teacher model lacks competency in
specific tasks. We justify the necessity of the student model through experimental analysis (see
Section 4.3.1 and Table 4). These results show that our proposed Retrospective Learning (ReL)
framework consistently outperforms baseline methods, even when paired with low-competency
teacher models such as the Llama 8B Instruct model (Touvron et al., 2023). This demonstrates the
resilience of ReL and the critical role of the student model in enhancing performance across diverse
LLM configurations. Moreover, recent studies (Zhou et al., 2024; Xiong et al., 2023) highlight the
inherent challenges of relying solely on LLMs, particularly their tendencies toward overconfidence
and reluctance to express uncertainty. These findings further validate the inclusion of a student model
to mitigate such limitations.

A.3 ADDITIONAL EXPERIMENTS TO SUPPORT OUR ARGUMENT

In this section (see Table 13 and Table 14), we evaluate an additional three open-source NLP datasets
on ChatGPT-3.5 and ChatGPT-4 Mini, alongside five datasets—Bank77, CLINC (Intent), MTOP
(Intent), Massive (Intent), and StackExchange—as well as Reddit (Topic), Few Rel Nat (Type), and
Massive Intent (Intent) using Meta-Llama 8B-Instruct. Some modifications were made following
(Zhang et al., 2023) to align with the experimental setup.

A.3.1 EXPERIMENTAL STUDIES ON META-8B INSTRUCT USING RETROSPECTIVE LEARNING

We also conducted an experiment using meta-8B instruct as a "noisy teacher." This model is smaller
and less competent than ChatGPT, but we used it with the same student model. This experiment
(See Table 14) illustrates the effectiveness of our method and highlights the importance of the
student model, even when learning from a much smaller, larger language model. Our proposed
Retrospective Learning (RetroL) demonstrates consistent improvement over "Only Student" across
all datasets, with the highest improvement observed for StackExchange (+6.61%). Additionally,
RetroL outperforms "Only LLMs" across all datasets, highlighting its robustness and effectiveness,
particularly in scenarios where the LLM exhibits low competency.

Datasets Only Student
Model (Our)

Only LLMs
(Llama-8B-
Instruct)

Student (Our) &
LLM (Llama-8B-
Instruct)

Student &
Teacher KD
(Our)

Retrospective
Learning
(Our)(%)

CAI Ratio &
(Before & Af-
ter)

Clinc 79.01 ±1.08 32.49 ±6.73 69.40 ±7.28 63.41 ±3.19 82.43±0.20 0.56⇒4.43
Massive_Scenario 75.55 ±1.76 43.52 ±1.85 66.74 ±0.98 70.06±1.12 78.13 ±0.74 0.67⇒4.88
Mtop Intent 52.49 ±2.52 34.17 ±6.70 48.23 ±0.25 66.39 ±0.70 63.39 ±1.47 0.35⇒1.46
StackExchange 32.27 ±0.65 11.02 ±2.78 26.26 ±2.16 16.03 ±0.13 38.88 ±0.27 0.23⇒0.53
Banking77 73.93 ±1.56 33.06 ±1.92 69.66 ±1.74 64.29 ±1.24 77.71 ±0.25 0.68⇒4.20
Reddit 51.73 ±0.62 36.31 ±0.97 46.00 ±2.51 40.29±0.55 58.81 ±0.28 0.33⇒1.58
Few Rel Nat 35.35 ±0.016 14.25 ±0.36 30.07 ±4.45 31.80±0.34 42.92 ±0.06 0.13⇒0.85
Massive_Intent 61.80 ±1.04 45.41 ±0.06 56.03 ±0.08 67.49 ±0.10 67.75 ±0.43 0.73⇒2.87

Table 13: Meta-Llama 3-8B Instruct (Open-Source Light-Weight LLMs): Annotation Accuracy
comparison in percentages with standard deviations across different datasets for the Student Model,
LLMs without annotations from the student model, and LLMs with annotations from the student
model. The highest accuracy for each dataset is highlighted.
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Datasets Only Student Model
(Our)

Only LLMs (Llama-
8B-Instruct)

Retrospective
Learning (Our) (%)

Improvement Over
Only Student (%)

Improvement Over
Only LLMs (%)

Clinc 79.01 ±1.08 32.49 ±6.73 82.43 ±0.20 +3.42 +49.94
Massive_Scenario 75.55 ±1.76 43.52 ±1.85 78.13 ±0.74 +2.58 +34.61
Mtop Intent 52.49 ±2.52 34.17 ±6.70 63.39 ±1.47 +10.90 +29.22
StackExchange 32.27 ±0.65 11.02 ±2.78 38.88 ±0.27 +6.61 +27.86
Banking77 73.93 ±1.56 33.06 ±1.92 77.71 ±0.25 +3.78 +44.65
Reddit 51.73 ±0.62 36.31 ±0.97 58.81 ±0.28 +7.08 +22.50
Few Rel Nat 35.35 ±0.016 14.25 ±0.36 42.92 ±0.06 +7.57 +28.67
Massive_Intent 61.80 ±1.04 45.41 ±0.06 67.75 ±0.43 +5.95 +22.34

Table 14: Performance Comparison of Retrospective Learning (RetroL): The table shows
the performance of Retrospective Learning compared to "Only Student" and "Only LLMs," with
improvements highlighted.

(a: Chatgpt3.5 Turbo and ChatGPT 4o mini) (b:Chatgpt3.5 Turbo and ChatGPT 4o mini)

Figure 5: The above analysis shows the correlation between LLM annotation accuracy and the
Consistent and Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance
of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Student Model) and (LLMs
4.0 Mini and Student Model) across the datasets reddit, few rel nat and massive intent. Using these
data, we calculated the Pearson correlation coefficients between the LLM annotation accuracies and
CAI ratios and computed the associated P-values (P value for After: 0.03643843400972288) and
(P value for Before: 0.014021729786979444) to determine the statistical significance of the observed
correlations.

A.4 COMPARISON OF OUR METHOD WITH LLMS USING PROMPTING TECHNIQUES FOR
SELF-CORRECTION

Metric ChatGPT-4o mini ChatGPT-4o mini ChatGPT-4o mini ChatGPT-4o mini ChatGPT-4o mini
Dataset StackExchange Clinc Banking77 Mote Massive(D)

FeedbackShinn et al. (2024) 51.72% ± 0.27% 79.34% ± 0.49% 64.81% ± 1.33% 71.93% ± 0.02% 71.35% ± 0.29%
CorrectionPaul et al. (2023) 47.55% ± 0.34% 81.85% ± 0.63% 65.58% ± 1.23% 73.57% ± 0.47% 70.84% ± 0.05%

Retrospective Learning 45.22% ± 0.15% 87.93% ± 0.53% 82.45% ± 0.48% 67.10% ± 0.32% 80.18% ± 0.45%

Metric ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5
Dataset StackExchange Clinc Banking77 Mote Massive(D)

FeedbackShinn et al. (2024) 48.46% ± 0.00% 71.63% ± 1.24% 53.90% ± 2.94% 71.88% ± 0.59% 63.55% ± 0.02%
CorrectionPaul et al. (2023) 51.81% ± 0.04% 65.06% ± 0.83% 55.94% ± 0.32% 68.24% ± 0.09% 62.81% ± 0.07%

Retrospective Learning 41.45% ± 2.56% 85.49% ± 0.19% 76.92% ± 0.02% 69.06% ± 1.10% 76.43% ± 2.47%

Table 15: The table shows the accuracy results for our methods and LLMs prompting-based baselines
evaluated using ChatGPT 3.5 and ChatGPT 4o-o-mini on different datasets.

In this section (See Table 12), we add Self-Refine, a method designed to improve initial output
through iterative rounds of self-correction (Madaan et al., 2024), and Reflexion Shinn et al. (2024),
aims to achieve self-correction through LLMs’ own evaluations and incorporates feedback from
internal or external tools as our additional baselines. Both techniques largely depend on the LLMs its
own in handling the corresponding task. These two additional baselines are added to demonstrate that
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(a: Llama-8B-Instruct) (b:Llama-8B-Instruct)

Figure 6: The above analysis shows the correlation between LLM annotation accuracy and the
Consistent and Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance
of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Student Model) and
(LLMs 4.0 Mini and Student Model) across the datasets CLINC, Massive Scenario, MTOP Intent,
Stack Exchange, and Banking77, Reddit, Few Rel Nat, Massive_Intent. Using these data, we
calculated the Pearson correlation coefficients between the LLM annotation accuracies and CAI ratios
and computed the associated P-values (P value for After: 0.014399601133794529) and (P value
for Before: 0.0012912893433347605) to determine the statistical significance of the observed
correlations.

our retrospective learning which collaborates between a student model and a teacher can outperform
LLMs in self-correction for unsupervised datasets with user preferences.

A.5 INVERSE CONSISTENT (IC) RATIO

The number of samples per class required for human annotation based on user preferences is
determined by our Inverse Consistent (IC) ratio (7). For user-preference samples. The n denotes
the total size of the the consistent sample where M = n, and k be the number of classes. The
parameter p represents the proportion of samples to be selected and is set to 5% (i.e., p = 0.05). In
our experiment, we do not use all identified consistent samples. The proportion of consistent samples
used for self-correction is determined by the IC ratio. Let nc be the number of consistent samples, so
M = nc represents the size of the consistent sample selection. If the CAI ratio is greater than 0.5
(i.e., the number of consistent samples exceeds inconsistent ones), the value of p will be reduced to
use fewer consistent samples. If the CAI ratio is less than 0.4, p is set to 1 (i.e., 100%) since more
consistent samples are needed for self-correction. The formula for the Inverse Consistent (IC) ratio
is defined as follows:

IC =

(
M × p

k

)
. (7)

A.6 EXPERIMENTAL DETAILS

The top-k selection and proportions of consistent and user-preference samples are as follows. For
CLINC and Massive Scenario, ‘top-k‘ is set to 5, with ‘proportion‘ at 0.2. For MTOP Intent,
‘proportion‘ is set to 1, and ‘top-k‘ is updated to 15 after printing the current value. In StackExchange,
‘top-k‘ is set to 5 and ‘proportion‘ to 1, while in Banking77, ‘top-k‘ is set to 3 and ‘proportion‘ is
0.2. In massive intent, ‘top-k‘ is 20 and ‘proportion‘ is 0.5), proportion=0.2, and few real nat has
top-k=30, and proportion is 1. In ’reddit’, ‘top-k‘ is set to 7, and the proportion is 0.2. All tests are
done with two random seeds with temperature parameters (0.5 and 1) for user preference samples,
student model-assigned annotation, and LLMs with and without student annotations.
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A.7 THE PROMPTING FORMAT AND INSTRUCTION USED FOR CHATGPT 3.5 AND 4O MINI

A.7.1 PROMPT INSTRUCTION:

def Prompt(prompts,student_labels,intention_set,temperatures,formats):
1. Initialize an empty list combination.
2. For each pair of prompt and student_labels from prompts and student_labels
lists:
a. Construct prompt1 as "For the sentence: "{prompt}".
b. Append prompt1 to combination.
3. Initialize a response string respon.
4. Append the following to respon:
a. A message ensuring the number of responses corresponds to the length of prompts.
b. A request to identify the intentions for each sentence based on intention_set.
c. Instructions for response formatting using formats.
d. A message to ensure the total responses are as expected from ChatGPT.
5. Use openai.ChatCompletion.create() to send the respon string, along with
temperature and token limits, to the model.
6. Return the model’s response as the final output.
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A.8 COMPARISON OF CAI RATIOS BEFORE AND AFTER APPLYING RETROSPECTIVE
LEARNING

(a) Banking77 (b) CLINC (c) Massive Scenario (d) MTOP (e) StackExchange

(f) Banking77 (g) CLINC (h) Massive Scenario (i) MTOP (j) StackExchange

Figure 7: Performance comparison based on LLMs (Chatgpt 3.5) and student model (MINILM (Wang et al., 2020)) across 5 different
datasets. The first row presents the CAI ratio before applying our sanitizing LLMs for the Student+LLMs (Chatgpt 3.5) baseline, while the
second row shows the results after applying our proposed sanitizing LLMs, demonstrating a significant reduction in the number of inconsistent
samples.

(a) Banking77 (b) CLINC (c) Massive Scenario (d) MTOP (e) StackExchange

(f) Banking77 (g) CLINC (h) Massive Scenario (i) MTOP (j) StackExchange

Figure 8: Performance comparison based on LLMs (Chatgpt 4o mini with temperature 1) and student model (MINILM (Wang et al., 2020))
across 5 different datasets. The first row presents the CAI ratio before applying our sanitizing LLMs for the Student+LLMs (Chatgpt 3.5)
baseline, while the second row shows the results after applying our proposed sanitizing LLMs, demonstrating a significant reduction in the
number of inconsistent samples.
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(a) Banking77 (b) CLINC (c) Massive Scenario (d) MTOP (e) StackExchange

(f) Banking77 (g) CLINC (h) Massive Scenario (i) MTOP (j) StackExchange

Figure 9: Performance comparison based on LLMs (Chatgpt 4o mini with temperature 0.5) and student model (MINILM (Wang et al.,
2020)) across 5 different datasets. The first row presents the CAI ratio before applying our sanitizing LLMs for the Student+LLMs (Chatgpt
3.5) baseline, while the second row shows the results after applying our proposed sanitizing LLMs, demonstrating a significant reduction in the
number of inconsistent samples.
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