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Abstract001

State-of-the-art vision-language models002
(VLMs) require massive scaling that limits003
practical deployment. Small-scale VLMs004
offer a practical alternative but face out-of-005
domain (OOD) collapse when trained with006
traditional supervised fine-tuning (SFT). Our007
experiments reveal that RL-based post-training008
can mitigate this OOD degradation, but009
faces a critical sparse reward dilemma in010
complex visual reasoning tasks. To this011
end, we propose Curriculum Reinforcement012
Finetuning (Curr-ReFT), comprising two013
sequential stages: (1) Structured Curriculum014
Reinforcement Learning, which progressively015
evolves task formats and reward functions to016
match models’ growing capabilities; and (2)017
Rejected Sampling-based Self-improvement,018
which maintains the fundamental capabilities019
of VLMs through selective learning from020
high-quality examples. Extensive experiments021
demonstrate that Curr-ReFT achieves state-022
of-the-art performance across various visual023
tasks in both in- and out-of-domain settings024
and benchmarks. Notably, our Curr-ReFT-7B025
achieves performance comparable to 26B-scale026
models on multiple benchmarks.027

1 Introduction028

Recent advances in multimodal understanding have029

led to remarkable vision-language models (VLMs),030

exemplified by OpenAI (Arrieta et al., 2025; Jaech031

et al., 2024; Wainwright and Lowe, 2023), InterVL032

(Chen et al., 2024b; Wang et al., 2022), and QWen033

(Wang et al., 2024; Yang et al., 2024) series. How-034

ever, these achievements predominantly rely on035

massive model scaling (>32B parameters), cre-036

ating substantial deployment barriers in resource-037

constrained environments. This limitation moti-038

vates the exploration of efficient training paradigms039

for small-scale VLMs (<10B parameters).040

While supervised fine-tuning (SFT) with high-041

quality annotated data (Bai et al., 2022; Ziegler042

Figure 1: (a) Visual Task Performance: SFT vs. Vanilla
RL under in- and out-of-domain settings. (b) Illustration
of Vallina RL vs Curriculum RL. The “Training Bottle-
neck" in small-scale VLMs: suboptimal convergence
when facing complex visual reasoning tasks. Our Cur-
riculum RL ensures steady progression of model train-
ing through Phased Task Reframing and Hierarchical
Reward Design. (c) Structured Curriculum Reinforce-
ment Learning. Curr-RL systematically reformulates
input questions into three progressively complex for-
mats. Using multimodal math (OpenR1-8k) as the test
case, the pass@k(Cheng et al., 2024) curves reveal a fun-
damental trade-off between solution space constraints
and reasoning complexity.

et al., 2019) is the dominant training approach 043

for VLMs, it poses a critical challenge for small- 044

scale VLMs: generalization collapse (Abbas et al., 045

2025; Srivastava et al., 2025; Yu et al., 2025). As 046

evidenced in Fig. 1(a), SFT-trained models consis- 047

tently outperform base models on in-domain data 048

across detection, classification, and multimodal 049

math tasks. However, these gains are accompa- 050

nied by significant performance degradation on 051

out-of-domain (OOD) distributions, underscoring 052

the challenge of “OOD degradation". This phe- 053

nomenon aligns with recent theoretical findings 054
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(Fu et al., 2023; Srivastava et al., 2025) attributing055

OOD degradation to SFT’s inherent bias toward056

pattern memorization rather than systematic rea-057

soning (Yu et al., 2025).058

DeepSeek R1-Zero’s (Guo et al., 2025) suc-059

cess with Group Relative Policy Optimization060

(GRPO) suggests a promising direction for enhanc-061

ing reasoning through comparative response eval-062

uation. Motivated by these advances, we inves-063

tigate whether RL-based post-training can simi-064

larly enhance OOD generalization in small-scale065

vision-language models. Comprehensive experi-066

ments reveal a consistent pattern: while SFT suffers067

significant OOD degradation, RL-based methods068

maintain robust generalization across diverse visual069

tasks (Fig. 1 (a)).070

Although RL effectively mitigates OOD chal-071

lenges, it encounters ‘Training Bottleneck’ in vi-072

sual reasoning tasks, characterized by minimal pol-073

icy updates, premature convergence to suboptimal074

strategies, and repetitive generation of low-quality075

responses (Fig. 1 (b)). This bottleneck arises from076

sparse reward (Xi et al., 2024; Tec et al., 2025;077

Wei et al., 2023)—tasks with complex solution078

spaces provide rarely positive feedback, leading to079

insufficient learning and suboptimal convergence.080

To address this bottleneck, we propose a Struc-081

tured Curriculum Reinforcement Learning (Curr-082

RL) paradigm that progressively evolves task for-083

mats to match models’ growing capabilities, in-084

spired by curriculum learning (Kong et al., 2021;085

Pentina et al., 2015; Lin et al., 2023; Ryu et al.,086

2024). Our key insight is that the sparse reward087

dilemma mainly arises from the vast solution088

space, hindering the exploration of correct paths,089

particularly in early-stage training. (Lin et al.,090

2023). As illustrated in Fig. 1 (c), Curr-RL em-091

ploys a three-phase task reframing and hierarchical092

reward design, enabling smooth transitions from093

structured to open-ended formats. This progres-094

sion begins with binary decisions that reconstruct095

complex visual reasoning into true/false questions,096

reducing the solution space dimension for more097

dense rewards. It then progresses to choice selec-098

tion formats that introduce partially open elements,099

and culminates in open-ended generation, devel-100

oping robust vision-language associations before101

confronting sparse reward scenarios.102

While Curriculum RL effectively boosts domain-103

specific visual reasoning, it often compromises104

general-purpose language capabilities (e.g., com-105

monsense and scientific reasoning), a known trade-106

off in RL fine-tuning (Zhang et al., 2023; Pan et al., 107

2024; Hafez and Erekmen, 2024). To address this 108

issue, we introduce a rejection sampling-based self- 109

improvement mechanism that preserves general 110

knowledge. Built upon the Crescent framework 111

(Team et al., 2025; Guo et al., 2025), our method 112

employs an LLM-as-judge (e.g., GPT-4o (Wain- 113

wright and Lowe, 2023)) to compare the RL-trained 114

model’s responses with reference answers and re- 115

tain the higher-quality responses. 116

To this end, we propose Curriculum Reinforce- 117

ment Finetuning (Curr-ReFT). Curr-ReFT com- 118

prises two sequential stages: Structured Curricu- 119

lum Reinforcement Learning and Rejected Sample- 120

based Self-improvement. Extensive experiments 121

demonstrate Curr-ReFT’s state-of-the-art perfor- 122

mance on both in- and out-of-domain visual tasks 123

and abundant public benchmarks, with our en- 124

hanced small-scale VLMs matching the capabil- 125

ities of much larger counterparts. 126

Contributions Summary. (1) Theoretical In- 127

sight: We demonstrate that rule-based reinforce- 128

ment learning enhances OOD generalization in 129

visual tasks without extra data; (2) Curr-ReFT 130

Framework: An adaptable two-stage post-training 131

paradigm that strengthens visual reasoning while 132

preserving fundamental language capabilities; (3) 133

Curriculum Dataset: A newly constructed 12k- 134

example dataset spanning detection, classification, 135

and multimodal math; (4) Empirical Results: Ex- 136

tensive experiments demonstrate Curr-ReFT’s su- 137

perior performance across multiple benchmarks. 138

2 Related Work 139

2.1 Reasoning Vision-language models 140

Recent advancements in multimodal models have 141

evolved from LLaVA’s (Liu et al., 2023) projection- 142

based approach to Qwen-VL (Bai et al., 2023; 143

Wang et al., 2024; Yang et al., 2024) and InternVL 144

(Chen et al., 2024a,b; Luo et al., 2024) series fur- 145

ther advancing visual instruction tuning and ar- 146

chitectural efficiency. Concurrently, reasoning- 147

focused methods have progressed from Monte 148

Carlo Tree Search techniques (Browne et al., 2012; 149

Yao et al., 2023) to process-supervised learning (Lu 150

et al., 2024). OpenAI-O1 (Wainwright and Lowe, 151

2023) established the RL+SFT paradigm, while 152

DeepSeek-R1-Zero’s GRPO (Guo et al., 2025) 153

demonstrated superior reasoning through group- 154

wise response comparisons without auxiliary net- 155

works (Schulman et al., 2017). Despite these ad- 156
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Figure 2: Overall framework of the proposed Curr-ReFT post-training paradigm. Curr-ReFT comprises two
sequential stages: (1) Curriculum Reinforcement Learning that progressively increases task complexity with aligned
reward mechanisms, and (2) Rejected Sample based Self-improvement that maintains fundamental capabilities
(Best viewed in color).

vances, current research primarily targets math and157

coding tasks (Liu et al., 2024a), leaving the inter-158

section of visual perception and reasoning largely159

unexplored. Our Curr-ReFT framework addresses160

this through multi-stage RL training.161

3 Method162

In this section, we elaborate Curr-ReFT, compris-163

ing two sequential training stages: Curriculum Re-164

inforcement Learning (Sec. 3.2), which achieves165

task progression training through three stages of166

reward mechanisms, and Rejected Sample based167

Self-improvement (Sec. 3.3), which preserves fun-168

damental capabilities via quality-guided learning.169

The overall framework is illustrated in Fig. 2.170

stage3

question:Please provide the 
bounding box coordinate of the 
region this sentence describes: 
red motorcycle.
ground truth:
[121, 51, 416, 514]

stage1

question:Are the coordinates of 
the 'man in brown pants middle' 
[312, 94, 426, 365]? Use yes 
or no to answer.

ground truth:yes
              

(b)Rejection Sampling Phase Training Data
stage2

question: For the given object  
black shirt, please select the 
most appropriate detection box 
from the following options.
A.[192, 186, 368, 394]
B.[458, 179, 81, 223]
C.[485, 154, 150, 256]
D.[66, 59, 224, 385]
ground truth: A

B

(a) Curriculum Reinforcement Learning Phase Training Data

Pure Text 
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PureText 
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Multimodal 
Mathematics
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Multimodal

Multimodal 
Science

math：image & text

...

science：image & text

...

General：image 
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Data example
[111, 52, 415, 500]

botbotbot

Yes           No

Figure 3: Illustration of training data organization.
(a) Examples of 3-stage progressive response formats in
Curriculum Reinforcement Learning. (b) Data source in
Reject-sampling SFT phase (detailed Reject-sampling
pipeline in Sec. 3.3).

3.1 Preliminary171

Reinforcement Learning with GRPO172

DeepSeek R1-Zero (Guo et al., 2025) introduces173

the GRPO framework, eliminating dependence174

on additional critic networks (PPO-based meth-175

ods(Schulman et al., 2017)). Specifically, GRPO176

considers the relative performance of responses177

rather than absolute reward values. For a given 178

input query q. The framework generates N distinct 179

responses {o1, o2, ..., oN} from the current policy 180

πθ and evaluates through group-wise comparison: 181

Ai =
ri −mean({r1, . . . , rN})

std({r1, . . . , rN})
(1) 182

where Ai represents the normalized relative quality 183

of the i-th response within its group. 184

3.2 Structured Curriculum Reinforcement 185

Learning 186

The Structured Curriculum Reinforcement Learn- 187

ing employs a three-phase dynamic adjustment on 188

task formats and reward functions to address RL’s 189

sparse reward issue. We will elaborate Binary De- 190

cision Learning, Multiple Choice Learning, and 191

Open-ended Response on the task formats and re- 192

ward designs in Sec. 3.2.1, Sec. 3.2.2, and Sec. 193

3.2.3, respectively. 194

3.2.1 Stage 1: Binary Decision Learning 195

In the initial stage of reinforcement learning, we 196

adopt binary decision questions as the simplest 197

form of task format, as shown in Fig. 3 (a), which 198

significantly reduces the output freedom to binary 199

choices, making it easier to learn basic visual un- 200

derstanding and reasoning patterns. Models are 201

explicitly prompted to answer with ‘yes‘ or ‘no.‘ 202

The reward function for this stage is as follows: 203

RBinary(ostd,ogt) =

{
1, if ostd = ogt

0, otherwise
(2) 204

where ostd represents the model’s binary response 205

and ogt is the ground truth answer. 206
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3.2.2 Stage 2: Multiple Choice Learning207

The second stage introduces choice questions,208

which require more sophisticated decision-making209

while maintaining structured response formats (as210

displayed in Fig. 3 (a). We design different reward211

mechanisms for single-choice and multiple-choice212

scenarios to provide appropriate learning signals.213

For single-choice questions, we maintain a binary214

reward structure:215

Rs(ostd,ogt) =

{
1, ostd = ogt

0, otherwise
(3)216

For multiple-choice questions, we introduce a217

more nuanced reward function that considers par-218

tial correctness:219

Rm(ostd,ogt) =


1, ostd = ogt

0.2, ostd ⊂ ogt, |ostd| > 0

0, otherwise
(4)220

where ostd represents the model’s selected options221

and ogt is the set of correct options. This graduated222

reward structure encourages the model to identify223

correct options while maintaining the incentive for224

complete answers.225

3.2.3 Stage 3: Open-ended Response Learning226

Classification Prompt: 
"Given the following categories: [vehicle, kitchen, accessory, sports, 
outdoor, animal, person,...], please identify and classify all present 
categories in the image. Multiple categories may be present. Output
the thinking process in <thinking><\thinking> tag and final answer in 
<answer> <\answer>."

Ground truth:  "<answer>[furniture,person,kitchen,food]</answer>"

Detection Prompt: 
"Please provide the bounding box coordinate of the region this 
sentence describes: right bottom cut off cake. Output the thinking 
process in <thinking><\thinking> tag and the final answer in JSON 
format in <answer> </answer> tags.  If no object match the 
describetion in the image, return ‘No Objects’."

Ground truth:  "<answer>[494.21, 212.07, 640.0, 394.36]</answer>"

[furniture,person,kitchen]

P∩G: [furniture,person,kitchen]
 P∪G: [furniture,person,kitchen,food]

Rcls = |P ∩ G|/|P ∪ G|=0.75 

[491.11, 208.07, 629.00, 391.02]

  IOU_scores>0.5:
           Rdet =1 = 1

Figure 4: Verifiable Reward for visual tasks in the Open-
ended Response stage. We have listed the detection and
classification prompt with Verifiable Reward calculation
examples.

Inspired by DeepSeek-R1’s success in reasoning227

tasks, we extend its RL approach to visual domains.228

Unlike math or code tasks with clear ground truth,229

visual tasks require tailored reward functions. We230

design verifiable, task-specific rewards for open-231

ended multimodal RL.232

Category Overlap Reward for Visual Classifi-233

cation For classification, we propose a Category234

Overlap Reward, computed as the intersection-over-235

union (IoU) between predicted and ground-truth236

categories. This continuous reward offers propor- 237

tional credit for partial correctness, providing richer 238

feedback than binary matching. Let the predicted 239

categories be P = c1, c2, ..., cm and ground-truth 240

categories G = g1, g2, ..., gn, where ci and gj de- 241

note individual category labels. The reward is cal- 242

culated based on their set intersection and union: 243

Racc_cls =
|P∩G|
|P∪G|

=
|{ci|ci ∈ P and ci ∈ G}|
|{c1, ..., cm}∪{g1, ..., gn}|

,

(5) 244

where |P∩G| represents the number of correctly 245

predicted categories, and |P∪G| represents the to- 246

tal number of unique categories in both sets com- 247

bined. This reward mechanism provides a continu- 248

ous value in [0,1], better reflecting partial correct- 249

ness in multi-label scenarios compared to binary 250

rewards. The classification reward Rcls combines 251

accuracy and format compliance. 252

IOU rewards for Visual Detection For object de- 253

tection tasks, we design a comprehensive reward 254

function that evaluates both localization accuracy. 255

The reward mechanism considers three key aspects: 256

spatial accuracy, prediction reliability, and response 257

format compliance. 258

Given a set of predicted bounding boxes 259

Bstudent = {b1, b2, ..., bn} with corresponding 260

confidence scores f = {f1, f2, ..., fn}, and ground 261

truth boxes Bgt = {bgt1 , bgt2 , ..., bgtm}, we first estab- 262

lish box-level correspondences through IoU match- 263

ing. By applying a threshold τ , we filter out low- 264

quality matches where ioui < τ . The localization 265

accuracy reward Rloc is then computed as the mean 266

IoU of the remaining valid matches: 267

RIou =
1

|V|
∑
i∈V

ioui, V = {i|ioui ≥ τ} (6) 268

where V denotes the set of valid matches and |V| 269

represents the number of valid matches. To en- 270

courage accurate object localization, we further 271

discretize the IoU-based reward using a threshold 272

of 0.5: 273

Racc_det =

{
1, if RIou > 0.5

0, otherwise
(7) 274

The final detection reward Rdet combines both 275

localization accuracy and format compliance: 276

Rdet = Racc_det +Rformat (8) 277
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where Racc_det evaluates spatial localization accu-278

racy and Rformat verifies response format compli-279

ance.280

3.3 Rejected Sample based Self-improvement281

To prevent degradation in general domain, we pro-282

pose a Rejected Sample-based Self-improvement283

mechanism. This framework comprises three284

stages: (1) general-domain data construction; (2)285

automatic refinement by GPT-4-O–guided selec-286

tion between model and reference responses, en-287

hancing data quality via self-improvement; and288

(3) supervised fine-tuning on the curated dataset289

to reinforce general vision-language competence.290

Specifically, step (1) is detailed in Sec. 3.3.1, while291

steps (2) and (3) are elaborated in Sec. 3.3.2.292

3.3.1 General-domain data construction293

The data preparation process involves systematic294

sampling from a comprehensive dataset. Utiliz-295

ing GPT-4-O as the reward model, we evaluate296

generated responses against multiple criteria: accu-297

racy, logical consistency, format compliance, and298

linguistic fluency. Responses are quantitatively as-299

sessed on a 0-100 scale, with those surpassing a300

threshold of 85 being integrated into the enhanced301

dataset alongside their corresponding queries. The302

resultant curated dataset encompasses 1,520 high-303

quality samples (12.7% selection rate) across sci-304

ence, general knowledge and math (Fig. 3).305

3.3.2 Self-Improvement Training306

Following dataset construction, we refine the307

data by selecting high-quality answers from ei-308

ther the original references or model-generated re-309

sponses, as determined by LLM-as-Judge (GPT-310

4O(Wainwright and Lowe, 2023)). As illustrated311

in Algorithm 1, for each query in the dataset,312

the model generates multiple candidate responses,313

which are scored by LLM-as-Judge. The highest-314

scoring response—regardless of whether it is315

model-generated or a reference—is retained if it316

surpasses a quality threshold. The resulting refined317

dataset is then used to conduct further fine-tuning.318

This self-improvement stage reinforces general-319

domain competencies by enabling the model to320

learn from its own superior outputs while maintain-321

ing robust cross-domain capabilities.322

4 Experiments323

Aiming to answer the following questions, we324

conduct extensive experiments and test on abun-325

Algorithm 1 Rejected Sample based Self-
improvement Self-Improvement Algorithm

Require: Dataset D, Generative Model G, Re-
ward Model R, Number of samples per input
N , Threshold score τ = 85

Ensure: Enhanced dataset Dnew
1: Initialize an empty enhanced dataset Dnew ←
∅

2: for each question q ∈ D do
3: Generate N responses using the genera-

tive model G: {r1, r2, . . . , rN} = G(q)
4: Score each response using the re-

ward model R: {s1, s2, . . . , sN} =
R({r1, r2, . . . , rN})

5: Find the index of the highest-scored re-
sponse: i∗ = argmaxi si

6: if si∗ > τ then
7: Add the highest-scored response to:

Dnew ← Dnew ∪ {(q, ri∗)}
8: end if
9: end for

10: Return the enhanced dataset Dnew

dant benchmarks: 326

• RQ1: How does RL perform compared to tra- 327

ditional SFT in standard CV tasks? 328

• RQ2: How do models trained with Curr-ReFT 329

perform relative to mainstream VLMs? 330

• RQ3: How do curriculum strategies like order 331

rearrangement impact Curriculum RL perfor- 332

mance? How do curriculum learning and re- 333

jection sampling contribute to performance in 334

general and visual tasks, respectively? 335

• RQ4: Is Curr-ReFT effective across different 336

backbone models and model sizes? 337

4.1 Experiment Settings 338

4.1.1 Datasets and Metrics 339

Datasets. We built an evaluation framework across 340

three tasks: visual detection, visual classification, 341

and multimodal mathematical reasoning—each 342

with 4,000 training, 1,000 in-domain test and 1,000 343

out-domain samples. For training and in-domain 344

test sets, detection and classification data comes 345

from RefCOCO (Yu et al., 2016) and RefCOCOg 346

(Mao et al., 2016), while math data use Math360K 347

(Shi et al., 2024) and Geo170K (Gao et al., 2023). 348

All training samples are reformatted into binary 349

decision, choice, and open-ended formats for three- 350

stage Curriculum RL. Out-domain evaluation in- 351

cludes RefGTA (Tanaka et al., 2019) for detection, 352
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Pascal-VOC (Everingham et al., 2010) for classifi-353

cation, and CLEVR-70k-Counting for math.354

Metrics. We use accuracy as the unified evaluation355

metric, defined as correct predictions over total test356

samples. For detection, a prediction is correct if357

the IoU between predicted and ground truth boxes358

exceeds 0.5. In classification, predictions matching359

ground truth labels are considered correct.360

4.1.2 Benchmarks361

To give a reasonable result, we evaluate our trained362

models on the following authoritative benchmarks:363

MathVista (Lu et al., 2023), MATH (Hendrycks364

et al., 2021), AI2D (Hiippala et al., 2021), MMVet365

(Yu et al., 2023), MMBench (Liu et al., 2024b),366

OCRBench (Liu et al., 2024c), and LLaVABench367

(Liu et al., 2023), covering a wide range of mathe-368

matical reasoning, scientific understanding, visual369

perception, and multimodal generalization tasks.370

4.1.3 Training Details371

All experiments use NVIDIA A800 GPUs. We372

primarily train Qwen2.5-VL-3B on 8 GPUs (batch373

size=8), with scaling tests using Qwen2.5-VL-7B374

across 16 GPUs. The hyperparameters are set as375

follows: (1) Learning rates: 2e-5 for RL (GRPO)376

training, 2e-7 for rejection sampling phase, and 1e-377

6 for SFT experiments. (2) Maximum pixel size:378

401,408. (3) GRPO training steps: 2,500.379

The training methods are described as follows:380

(1)‘+SFT’ denotes supervised fine-tuning using 12k381

multimodal data on open-ended response formats.382

(2)‘+ReFT’ denotes rejection-sampling-based SFT;383

the data and sampling strategy are detailed in Sec.384

3.3. (3)‘+RL’ refers to direct GRPO training us-385

ing the same 12k samples, with reward functions386

aligned with Stage 3 of Curr-RL in Sec. 3.2.3.387

(4)‘+Curr-RL’ involves the three-stage curriculum388

RL training as detailed in Sec. 3.2. (5)‘+RL-389

ReFT’ and ‘+Curr-ReFT’ indicate applying rejection-390

sampling-based fine-tuning after RL (GRPO) or391

curriculum RL, respectively.392

4.2 Main Results393

4.2.1 Generalization Verification of RL (RQ1)394

Tab. 1 summarizes the in- and out-of-domain per-395

formance of Qwen2.5-VL-3B under SFT, RL, and396

Curriculum RL paradigms. Fig. 6 provides qual-397

itative comparisons between SFT and our Curr-398

RL method. Key observations are as follows: (1)399

While SFT improves in-domain accuracy, it con-400

sistently fails on out-of-domain tasks, highlighting401

Methods In-domain Out-domain
Det Math Cls Det Math Cls

Base 61.8 71.3 39.6 55.3 40.8 79.3
+SFT 75.2 73.5 50.2 52.3 30.8 77.2
+RL 88.3 78.8 62.9 64.2 74.1 94.7
+Curr-RL 90.6 82.8 66.8 67.1 78.4 96.6

Table 1: Performance Comparison: In/Out-domain Per-
formance (%). Base model is chosen as the Qwen2.5-
VL-3B. Notably, ‘Det’ and ‘Cls’ denote detection and
classification.

limited generalization of SFT paradigm. (2) RL- 402

based methods exhibit stronger generalization, with 403

Curr-RL achieving the best overall performance. In 404

particular, it enhances both mathematical reasoning 405

and visual perception. (3) Qualitatively, Curr-RL 406

generates more accurate localizations and compre- 407

hensive explanations across diverse out-of-domain 408

settings. 409

Fig. 5 further presents the training dynamics of 410

SFT, RL, and Curr-RL. (1) Curr-RL demonstrates 411

more stable training, faster convergence than RL, 412

and achieves the highest accuracy after conver- 413

gence. (2) Curr-ReFT achieves larger gains over 414

RL in visual classification, likely due to the greater 415

reliance on semantic reasoning. In contrast, detec- 416

tion tasks focus on spatial perception. Curriculum 417

mechanisms are particularly effective for semanti- 418

cally demanding tasks. 419

4.2.2 Performance Comparation (RQ2) 420

We report results on visual datasets (Tab. 2) and 421

public benchmarks (Tab. 3), using Curr-ReFT- 422

3B/7B initialized from Qwen2.5-VL-3B/7B. Our 423

Methods Math Detection Classification

In Out In Out In Out

Qwen2.5-VL-3B 71.3 40.8 61.8 55.3 39.6 79.3
InternVL2_5-4B 69.4 36.3 60.2 54.5 41.5 78.9
Qwen2.5-VL-7B 77.9 54.6 76.7 63.6 62.5 81.3
InternVL2_5-8B 76.3 52.1 67.1 59.7 61.1 82.9
InterVL2-26B 83.7 77.4 78.9 68.3 68.1 91.5
LLaVA-32B 83.4 78.7 81.2 65.4 69.6 93.4

Qwen2.5-VL-3B† 73.5 30.8 75.2 52.3 50.2 77.2
InternVL2_5-4B† 72.1 31.8 64.1 52.8 48.5 73.3
InternVL2_5-8B† 80.9 46.9 89.7 41.2 68.9 79.2

Curr-ReFT-3B 82.3 73.7 89.8 65.6 71.5 95.2
Curr-ReFT-7B 85.3 81.5 92.2 69.5 73.1 98.7

Table 2: Performance comparison on visual tasks.‘In’
denotes in-domain while ‘out’ represents out-of-domain
testing. SFT† results are shown with the slash. Boldface
and underlines indicate the best and second-best results.
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(a) In-domain Classification (b) Out-domain Classification

(c) In-domain Detection (d) Out-domain Detection

Figure 5: Performance Dynamics: SFT vs. RL vs. Cur-
riculum RL on In-domain and Out-of-domain Tasks.

Math Math 

SFT

user

How many different items are there in the image?

ours

SFT

user

Given that AB is 12.0 and triangle HIJ is 
equilateral, determine the length of side KJ in 
triangle IJK.

ours

SFT

user

Please provide the bounding box coordinate of 
the region this sentence describes: a woman 
wiht white shirt and black shorts on the curb 
next to streetlight.

ours

<think>The image shows a 
person standing on the 
sidewalk near a streetlight. The 
individual is wearing a white 
shirt and black shorts, which 
are visible as they stand by the 
curb.</think>

SFT

user

Please provide the bounding box coordinate of 
the region this sentence describes: blue and 
pink shirt.

ours

<think> The main focus is on a 
group of women gathered around a 
table filled with various dishes. 
One woman in a leopard print shirt 
is holding a smartphone, likely 
taking a photo or recording 
something. </think>

SFT

user

Given the following categories: ['boat', 'person', 
'aeroplane', 'sheep', 'dog', 'chair', 'bird', 'bicycle', 
'motorbike', 'diningtable', 'bottle'...], please identify 
and classify all present categories in the image. 
Multiple categories may be present.

ours

SFT

user

Given the following categories: [vehicle, kitchen, 
accessory, sports, outdoor, animal, person, food, 
appliance, indoor, furniture, electronic], please 
identify and classify all present categories in the 
image. Multiple categories may be present.

ours

<think>\nThe image shows two people 
sitting at a table in what appears to be a 
restaurant or dining area. The man is 
wearing a blue cap 
and  ...</think><answer>kitchen, person, 
furniture<answer>

kitchen, 
person, 
furniture

boat
<think>\nThe image shows a family on an 
inflatable boat in a body of water. The boat 
has a motor at the back, and the family 
consists of a man, a woman, and a child. 
They are wearing ......</think>
<answer>boat person<answer>

<think>Since triangle HIJ is equilateral, all 
sides are equal. Therefore, HI = HJ = IJ. 
Given that HI = 12.0, it follows that HJ = 12.0. 
Since triangle IJK has HI as one of its sides, 
and HI = HJ = 12.0, it means that HJ is also a 
side of triangleIJK..</think>
<answer>12.0</answer>

12.0

"<think>The image shows a collection of 
various toy vehicles and objects. The main 
items include:1. A blue fighter jet with a red 
tail. 2. A brown bicycle with thin tires. 3. A 
yellow car  ......</think><answer>7</answer>
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Detection Detection 

SFT

SFT

SFT

SFT

SFT

SFT

Curr-RL

Curr-RL

Curr-RL

Curr-RL

Curr-RL

Curr-RL

Classification Classification 

Math Math 

(a) In domain Results (b) Out domain Results 

Figure 6: Qualitative comparison between our method
and SFT baseline. Thinking process significantly im-
proves reasoning ability.

results reveal the following:424

Visual Tasks Curr-ReFT shows strong improve-425

ments under OOD conditions. For math reasoning,426

Curr-ReFT-7B achieves 81.5% OOD accuracy, out-427

performing its base model by +34.6%, and achieves428

69.5% and 98.7% on OOD detection and classifi- 429

cation, respectively—exceeding LLaVA-32B by a 430

large margin with only 25% of its parameters. 431

Public Benchmarks Curr-ReFT-7B performs com- 432

petitively with much larger models (26B/32B) on 433

most benchmarks. On LLaVABench, it reaches 434

83.6% (Relative), 69.7% (VLM), and 84.5% (GPT- 435

4o), surpassing LLaVA-32B (82.2%) and approach- 436

ing GPT-4o’s level. This demonstrates the effec- 437

tiveness of our rejection-based self-improvement 438

in enhancing general vision-language capacity. 439

In addition, we observe two noteworthy findings: 440

(1) OOD classification outperforms in-domain by 441

+25.6%, likely due to clearer semantics in OOD 442

test data versus more ambiguous in-domain labels. 443

(2) SFT remains strong on structured tasks like 444

detection, but underperforms in reasoning math 445

tasks. 446

4.2.3 Ablation Study (RQ3) 447

Tab. 4(a) and Tab. 4(b) report ablation results 448

on visual tasks and benchmarks, respectively. We 449

compare Curr-ReFT-3B with the following vari- 450

ants: (1) +Curr-RL, without reject-sampling SFT; 451

(2) +RL, without curriculum learning. To examine 452

task sensitivity of curriculum learning, we compare 453

+RLJudge and +RLChoice (purely judgment or choice 454

formats), +Curr-RLReverse (reverse curriculum, start- 455

ing with open-ended response with finally judg- 456

ment format +Curr-RLMix (a mixed strategy that uses 457

an equal proportion of the three formats). Our ab- 458

lation study reveals four key insights: 459

• Curr-RL consistently outperforms standard RL. 460

Progressive order yields better results than ran- 461

domized (Mix) or reversed (Reverse) curricula. 462

• Reject-sampling improves language-centric 463

benchmarks but compromises visual grounding, 464

Model AI2D MMVet MMBench LLaVABench MathVistaMATH OCRBench

Relative VLM GPT4

Qwen2.5-VL-3B 74.35 39.04 63.00 67.30 56.30 80.40 52.00 38.60 59.70
InternVL2_5-4B 75.84 42.48 73.25 59.50 54.10 78.20 56.00 40.10 68.10
Qwen2-VL-7B 79.10 39.40 70.01 60.20 51.20 74.50 49.40 30.70 65.50
Qwen2.5-VL-7B 78.01 47.69 75.10 81.20 67.10 81.40 63.80 43.40 67.60
InternVL2_5-8B 65.42 34.17 52.30 72.10 63.70 80.10 50.10 42.10 59.80
InterVL2-26B 78.89 42.11 72.80 78.10 74.11 81.00 51.40 37.10 62.80
LLaVA-32b 78.90 45.20 77.85 80.21 75.30 82.20 57.10 40.10 70.20
Curr-ReFT-3B 79.66 39.95 69.40 73.80 68.10 85.60 57.90 45.80 62.30
Curr-ReFT-7B 83.16 49.95 80.12 83.60 69.70 84.50 65.80 56.60 72.70

Table 3: Performance comparison against mainstream VLMs on public benchmarks. Background colors
denote benchmark categories: yellow for science (AI2D), cyan for general vision-language understanding (MMVet,
MMBench, LLaVABench), green for math-related tasks (MathVista, MATH), and red for OCR (OCRBench).
Boldface and underlines indicate the best and second-best results, respectively.
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Method Math Detection Classification

In Out In Out In Out

Base 71.3 17.8 31.8 22.3 39.6 79.8
+SFT 73.5 30.8 75.2 52.3 50.2 77.2

+RLJudge 76.2 71.9 89.4 65.1 63.0 94.1
+RLChoice 77.1 73.2 88.1 63.5 64.9 94.5

+RL 78.8 74.1 88.3 64.2 62.9 93.8
+Curr-RLReverse 72.4 72.4 80.2 66.1 60.9 94.3

+Curr-RLMix 77.8 75.4 85.6 67.1 61.8 94.6
+Curr-RL 82.8 78.4 90.6 67.1 66.8 96.6

+ReFT 69.5 52.5 25.7 49.7 39.2 72.4
+RL-ReFT 77.1 70.3 84.3 62.1 54.9 94.5

+Curr-ReFT 80.3 73.7 89.8 65.6 65.4 92.2

(a) Ablation study results on visual tasks ‘Base’ denotes
Qwen2.5-VL-3B model. Notably, color highlighting indi-
cates different training strategies: Vision-specific SFT results
(green), RL training scheme (blue), General-domain Reject-
sampling SFT ( yellow), and proposed Curr-ReFT (gray).
Details of ‘+RLJudge’, ‘+RLChoice’, ‘+Curr-RLReverse’, and
‘+Curr-RLMix’ are provided in Sec. 4.2.3.

Method AI2D MMVet MathV OCR MM
LLaVA

VLM GPT4

Base 74.35 39.04 52.00 59.70 63.32 63.30 80.40
+SFT 75.45 32.02 53.60 58.90 63.65 59.30 84.10
+RL 76.46 36.28 55.30 60.90 66.34 64.70 83.00

+Curr-RL 77.36 36.74 56.30 59.40 69.02 64.10 85.20
+ReFT 78.65 38.95 52.80 59.50 67.90 66.10 84.20

+Curr-ReFT 79.66 39.95 57.90 62.30 69.78 68.10 85.60

(b) Ablation study on standard benchmarks. Color coding
follows the same scheme as in Tab. 4a.

Table 4: Ablation Study on major components.

suggesting that general-domain data weakens465

alignment with fine-grained visual cues.466

• SFT alone is insufficient for generalization under467

distribution shift. Despite strong in-domain per-468

formance, it performs poorly OOD, especially on469

visual reasoning. The absence of feedback limits470

its ability to generalize beyond training data.471

• Combining Curr-RL with ReFT yields comple-472

mentary benefits. Curr-ReFT unifies curriculum-473

driven progression and rejection-based general-474

ization, yielding balanced gains in perception and475

reasoning.476

4.2.4 Scaling Analysis (RQ4)477

To examine the scaling effectiveness of our Curr-478

ReFT framework, we conduct extensive experi-479

ments on base models of varying sizes and types.480

The results in Tab. 2, Tab. 3 and Tab. 5 indicate that481

the effectiveness of Curr-ReFT scales effectively482

with model size:483

• Compared to the Curr-ReFT-3B, Curr-ReFT-7B484

shows consistent improvements: Higher perfor-485

Method Math Detection Classification

In Out In Out In Out

InternVL2_5-4B 69.4 36.3 60.2 54.5 41.5 78.9
+Curr-ReFT 76.8 ↑7.4 46.7 ↑10.4 68.4 ↑8.2 61.2 ↑6.7 50.2 ↑8.7 87.3 ↑8.4
InternVL2_5-8B 76.3 52.1 67.1 59.7 61.1 82.9
+Curr-ReFT 83.1 ↑6.8 60.2 ↑8.1 76.8 ↑9.7 70.4 ↑10.7 67.2 ↑6.1 90.1 ↑7.2
Qwen2-VL-7B 77.9 54.6 76.7 63.6 62.5 81.3
+Curr-ReFT 85.3 ↑7.4 62.6 ↑8.0 84.8 ↑8.1 69.5 ↑5.9 69.6 ↑7.1 87.5 ↑6.2

Table 5: Scaling Up Experiment on visual dataset:
We evaluate the scalability of the proposed Curr-ReFT
framework on various vision-language base models.
Red ↑ indicates the relative gain.

mance on visual tasks (detection: 89.8% → 486

92.2%, classification: 71.5% → 73.1%) and 487

better generalization on benchmarks (MMVet: 488

39.95% → 49.95%, MathVista: 57.90% → 489

65.80%). 490

• Curr-ReFT consistently improves performance 491

across different models (InternVL2_5-4B/8B, 492

Qwen2-VL-7B, and Qwen2.5-VL-3B/7B), with 493

gains becoming more pronounced as model size 494

increases (Detection (InternVL2_5-4B: 54.5% → 495

61.2% , ↑6.7; InternVL2_5-8B: 59.7% → 70.4% 496

, ↑10.7)). 497

5 Conclusion 498

In this paper, we introduce Curr-ReFT, a novel 499

two-stage post-training paradigm that balances 500

domain-specific visual reasoning and general 501

vision-language capabilities. We provide theoreti- 502

cal insights that reinforcement learning improves 503

both reasoning and out-of-domain visual task gen- 504

eralization. We also release a 12k-example curricu- 505

lum benchmark spanning visual detection, classifi- 506

cation, and multimodal math. Curr-ReFT achieves 507

SOTA on abundant benchmarks, with +5.2% avg. 508

gain in OOD visual tasks. 509

Limitations and Future Works 510

While Curr-ReFT effectively improves reasoning 511

and generalization in small-scale VLMs, several 512

potential limitations merit consideration. First, the 513

constrained task formats used in early curriculum 514

stages (e.g., binary or multiple-choice) may bias the 515

model toward generating shorter or less diverse re- 516

sponses in open-ended tasks. Second, although the 517

progressive task transition facilitates stable learn- 518

ing, it may also risk catastrophic forgetting of early- 519

stage skills if not complemented by explicit reten- 520

tion mechanisms. Third, our three-stage curriculum 521

is manually designed, which may limit scalability 522

across domains or modalities. 523
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We partially address the second concern through524

a rejection-sampling-based self-improvement that525

reinforces general capabilities. Nonetheless, fur-526

ther exploration of automated curriculum schedul-527

ing and lifelong learning strategies remains a528

promising direction.529
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