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Abstract

State-of-the-art  vision-language  models
(VLMs) require massive scaling that limits
practical deployment. Small-scale VLMs
offer a practical alternative but face out-of-
domain (OOD) collapse when trained with
traditional supervised fine-tuning (SFT). Our
experiments reveal that RL-based post-training
can mitigate this OOD degradation, but
faces a critical sparse reward dilemma in
complex visual reasoning tasks. To this
end, we propose Curriculum Reinforcement
Finetuning (Curr-ReFT), comprising two
sequential stages: (1) Structured Curriculum
Reinforcement Learning, which progressively
evolves task formats and reward functions to
match models’ growing capabilities; and (2)
Rejected Sampling-based Self-improvement,
which maintains the fundamental capabilities
of VLMs through selective learning from
high-quality examples. Extensive experiments
demonstrate that Curr-ReFT achieves state-
of-the-art performance across various visual
tasks in both in- and out-of-domain settings
and benchmarks. Notably, our Curr-ReFT-7B
achieves performance comparable to 26B-scale
models on multiple benchmarks.

1 Introduction

Recent advances in multimodal understanding have
led to remarkable vision-language models (VLMs),
exemplified by OpenAl (Arrieta et al., 2025; Jaech
et al., 2024; Wainwright and Lowe, 2023), InterVL
(Chen et al., 2024b; Wang et al., 2022), and QWen
(Wang et al., 2024; Yang et al., 2024) series. How-
ever, these achievements predominantly rely on
massive model scaling (>32B parameters), cre-
ating substantial deployment barriers in resource-
constrained environments. This limitation moti-
vates the exploration of efficient training paradigms
for small-scale VLMs (< 10B parameters).

While supervised fine-tuning (SFT) with high-
quality annotated data (Bai et al., 2022; Ziegler
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Figure 1: (a) Visual Task Performance: SFT vs. Vanilla
RL under in- and out-of-domain settings. (b) Illustration
of Vallina RL vs Curriculum RL. The “Training Bottle-
neck" in small-scale VLMs: suboptimal convergence
when facing complex visual reasoning tasks. Our Cur-
riculum RL ensures steady progression of model train-
ing through Phased Task Reframing and Hierarchical
Reward Design. (c¢) Structured Curriculum Reinforce-
ment Learning. Curr-RL systematically reformulates
input questions into three progressively complex for-
mats. Using multimodal math (OpenR1-8k) as the test
case, the pass@k(Cheng et al., 2024) curves reveal a fun-
damental trade-off between solution space constraints
and reasoning complexity.

et al., 2019) is the dominant training approach
for VLM, it poses a critical challenge for small-
scale VLMs: generalization collapse (Abbas et al.,
2025; Srivastava et al., 2025; Yu et al., 2025). As
evidenced in Fig. 1(a), SFI-trained models consis-
tently outperform base models on in-domain data
across detection, classification, and multimodal
math tasks. However, these gains are accompa-
nied by significant performance degradation on
out-of-domain (OOD) distributions, underscoring
the challenge of “OOD degradation". This phe-
nomenon aligns with recent theoretical findings



(Fu et al., 2023; Srivastava et al., 2025) attributing
OOD degradation to SFT’s inherent bias toward
pattern memorization rather than systematic rea-
soning (Yu et al., 2025).

DeepSeek R1-Zero’s (Guo et al., 2025) suc-
cess with Group Relative Policy Optimization
(GRPO) suggests a promising direction for enhanc-
ing reasoning through comparative response eval-
uation. Motivated by these advances, we inves-
tigate whether RL-based post-training can simi-
larly enhance OOD generalization in small-scale
vision-language models. Comprehensive experi-
ments reveal a consistent pattern: while SFT suffers
significant OOD degradation, RL-based methods
maintain robust generalization across diverse visual
tasks (Fig. 1 (a)).

Although RL effectively mitigates OOD chal-
lenges, it encounters ‘Training Bottleneck’ in vi-
sual reasoning tasks, characterized by minimal pol-
icy updates, premature convergence to suboptimal
strategies, and repetitive generation of low-quality
responses (Fig. 1 (b)). This bottleneck arises from
sparse reward (Xi et al., 2024; Tec et al., 2025;
Wei et al., 2023)—tasks with complex solution
spaces provide rarely positive feedback, leading to
insufficient learning and suboptimal convergence.

To address this bottleneck, we propose a Struc-
tured Curriculum Reinforcement Learning (Curr-
RL) paradigm that progressively evolves task for-
mats to match models’ growing capabilities, in-
spired by curriculum learning (Kong et al., 2021;
Pentina et al., 2015; Lin et al., 2023; Ryu et al.,
2024). Our key insight is that the sparse reward
dilemma mainly arises from the vast solution
space, hindering the exploration of correct paths,
particularly in early-stage training. (Lin et al.,
2023). As illustrated in Fig. 1 (¢), Curr-RL em-
ploys a three-phase task reframing and hierarchical
reward design, enabling smooth transitions from
structured to open-ended formats. This progres-
sion begins with binary decisions that reconstruct
complex visual reasoning into true/false questions,
reducing the solution space dimension for more
dense rewards. It then progresses to choice selec-
tion formats that introduce partially open elements,
and culminates in open-ended generation, devel-
oping robust vision-language associations before
confronting sparse reward scenarios.

While Curriculum RL effectively boosts domain-
specific visual reasoning, it often compromises
general-purpose language capabilities (e.g., com-
monsense and scientific reasoning), a known trade-

off in RL fine-tuning (Zhang et al., 2023; Pan et al.,
2024; Hafez and Erekmen, 2024). To address this
issue, we introduce a rejection sampling-based self-
improvement mechanism that preserves general
knowledge. Built upon the Crescent framework
(Team et al., 2025; Guo et al., 2025), our method
employs an LL.M-as-judge (e.g., GPT-40 (Wain-
wright and Lowe, 2023)) to compare the RL-trained
model’s responses with reference answers and re-
tain the higher-quality responses.

To this end, we propose Curriculum Reinforce-

ment Finetuning (Curr-ReFT). Curr-ReFT com-
prises two sequential stages: Structured Curricu-
lum Reinforcement Learning and Rejected Sample-
based Self-improvement. Extensive experiments
demonstrate Curr-ReFT’s state-of-the-art perfor-
mance on both in- and out-of-domain visual tasks
and abundant public benchmarks, with our en-
hanced small-scale VLMs matching the capabil-
ities of much larger counterparts.
Contributions Summary. (1) Theoretical In-
sight: We demonstrate that rule-based reinforce-
ment learning enhances OOD generalization in
visual tasks without extra data; (2) Curr-ReFT
Framework: An adaptable two-stage post-training
paradigm that strengthens visual reasoning while
preserving fundamental language capabilities; (3)
Curriculum Dataset: A newly constructed 12k-
example dataset spanning detection, classification,
and multimodal math; (4) Empirical Results: Ex-
tensive experiments demonstrate Curr-ReFT’s su-
perior performance across multiple benchmarks.

2 Related Work

2.1 Reasoning Vision-language models

Recent advancements in multimodal models have
evolved from LLaVA’s (Liu et al., 2023) projection-
based approach to Qwen-VL (Bai et al., 2023;
Wang et al., 2024; Yang et al., 2024) and InternVL
(Chen et al., 2024a,b; Luo et al., 2024) series fur-
ther advancing visual instruction tuning and ar-
chitectural efficiency. Concurrently, reasoning-
focused methods have progressed from Monte
Carlo Tree Search techniques (Browne et al., 2012;
Yao et al., 2023) to process-supervised learning (Lu
et al., 2024). OpenAI-O1 (Wainwright and Lowe,
2023) established the RL+SFT paradigm, while
DeepSeek-R1-Zero’s GRPO (Guo et al., 2025)
demonstrated superior reasoning through group-
wise response comparisons without auxiliary net-
works (Schulman et al., 2017). Despite these ad-
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Figure 2: Overall framework of the proposed Curr-ReFT post-training paradigm. Curr-ReFT comprises two
sequential stages: (1) Curriculum Reinforcement Learning that progressively increases task complexity with aligned
reward mechanisms, and (2) Rejected Sample based Self-improvement that maintains fundamental capabilities

(Best viewed in color).

vances, current research primarily targets math and
coding tasks (Liu et al., 2024a), leaving the inter-
section of visual perception and reasoning largely
unexplored. Our Curr-ReFT framework addresses
this through multi-stage RL training.

3 Method

In this section, we elaborate Curr-ReFT, compris-
ing two sequential training stages: Curriculum Re-
inforcement Learning (Sec. 3.2), which achieves
task progression training through three stages of
reward mechanisms, and Rejected Sample based
Self-improvement (Sec. 3.3), which preserves fun-
damental capabilities via quality-guided learning.
The overall framework is illustrated in Fig. 2.
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Figure 3: Illustration of training data organization.
(a) Examples of 3-stage progressive response formats in
Curriculum Reinforcement Learning. (b) Data source in
Reject-sampling SFT phase (detailed Reject-sampling
pipeline in Sec. 3.3).

3.1 Preliminary

Reinforcement Learning with GRPO

DeepSeek R1-Zero (Guo et al., 2025) introduces
the GRPO framework, eliminating dependence
on additional critic networks (PPO-based meth-
ods(Schulman et al., 2017)). Specifically, GRPO
considers the relative performance of responses

rather than absolute reward values. For a given
input query q. The framework generates [V distinct
responses {01, 02, ..., on } from the current policy
mp and evaluates through group-wise comparison:

r; —mean({ry,...,7N})
std({r1,...,7n})

where A; represents the normalized relative quality
of the i-th response within its group.

A = ey

3.2 Structured Curriculum Reinforcement
Learning

The Structured Curriculum Reinforcement Learn-
ing employs a three-phase dynamic adjustment on
task formats and reward functions to address RL’s
sparse reward issue. We will elaborate Binary De-
cision Learning, Multiple Choice Learning, and
Open-ended Response on the task formats and re-
ward designs in Sec. 3.2.1, Sec. 3.2.2, and Sec.
3.2.3, respectively.

3.2.1 Stage 1: Binary Decision Learning

In the initial stage of reinforcement learning, we
adopt binary decision questions as the simplest
form of task format, as shown in Fig. 3 (a), which
significantly reduces the output freedom to binary
choices, making it easier to learn basic visual un-
derstanding and reasoning patterns. Models are
explicitly prompted to answer with ‘yes® or ‘no.°
The reward function for this stage is as follows:

1, ifosqg = Ogt

RBinary (Ostda Ogt) = (2)

0, otherwise

where 044 represents the model’s binary response
and o is the ground truth answer.



3.2.2 Stage 2: Multiple Choice Learning

The second stage introduces choice questions,
which require more sophisticated decision-making
while maintaining structured response formats (as
displayed in Fig. 3 (a). We design different reward
mechanisms for single-choice and multiple-choice
scenarios to provide appropriate learning signals.
For single-choice questions, we maintain a binary
reward structure:

1, ogq= Ogt

3)

Rs (Ostda ogt) = .
0, otherwise
For multiple-choice questions, we introduce a
more nuanced reward function that considers par-
tial correctness:

17 Ostd = Ogt
Rm(ostd7 Ogt) = Ostd C Ogt, ‘Ostd‘ >0

0, otherwise

“4)

where 044 represents the model’s selected options
and o is the set of correct options. This graduated
reward structure encourages the model to identify
correct options while maintaining the incentive for
complete answers.

3.2.3 Stage 3: Open-ended Response Learning

Classification Prompt: ’
"Given the following categories: [vehicle, kitchen, accessory, sports, | P G: [furniture,person kitchen]
outdoor, animal, person,..], please identify and classify all present PUG: [furniture,person,kitchen,food]
categories in the image. Multiple categories may be present. Output
the thinking process in <thinking><\thinking> tag and final answer in
<answer> <\answer>."

Reis =P N GJP U G[=0.75

[furniture,person, kitchen]

Ground truth: “<answer>[furniture,personkitchen, food]</answer>"

Detection Prompt:
"Please provide the bounding box coordinate of the region this 10U_scores>0.5:
sentence describes: right bottom cut off cake. Output the thinking Ruet=1

process in <thinking><\thinking> tag and the final answer in JSON
[491.11, 208.07, 629.00, 391.02]

Gesclaton It Imago, e Mo Objocs =
Figure 4: Verifiable Reward for visual tasks in the Open-
ended Response stage. We have listed the detection and
classification prompt with Verifiable Reward calculation
examples.

Ground truth: "<answer>[494.21, 212.07, 640.0, 394.36]</answer>"

Inspired by DeepSeek-R1’s success in reasoning
tasks, we extend its RL approach to visual domains.
Unlike math or code tasks with clear ground truth,
visual tasks require tailored reward functions. We
design verifiable, task-specific rewards for open-
ended multimodal RL.

Category Overlap Reward for Visual Classifi-
cation For classification, we propose a Category
Overlap Reward, computed as the intersection-over-
union (IoU) between predicted and ground-truth

categories. This continuous reward offers propor-
tional credit for partial correctness, providing richer
feedback than binary matching. Let the predicted
categories be P = ¢y, ¢o, ..., ¢, and ground-truth
categories G' = g1, g2, ..., gn, Where ¢; and g; de-
note individual category labels. The reward is cal-
culated based on their set intersection and union:

R |PNG]| |{cilci € P and ¢; € G}
acc_cls — = s
- |[PUG| ety om PU{g1, ...,gn%5|)

where | PNG| represents the number of correctly
predicted categories, and | PUG| represents the to-
tal number of unique categories in both sets com-
bined. This reward mechanism provides a continu-
ous value in [0,1], better reflecting partial correct-
ness in multi-label scenarios compared to binary
rewards. The classification reward R.;; combines
accuracy and format compliance.

IOU rewards for Visual Detection For object de-
tection tasks, we design a comprehensive reward
function that evaluates both localization accuracy.
The reward mechanism considers three key aspects:
spatial accuracy, prediction reliability, and response
format compliance.

Given a set of predicted bounding boxes
Bstudent = {b1,b2,...,b,} with corresponding
confidence scores f = { f1, fo, ..., fn}, and ground
truth boxes By = {b7",b9", ..., b%}, we first estab-
lish box-level correspondences through IoU match-
ing. By applying a threshold 7, we filter out low-
quality matches where iou; < 7. The localization
accuracy reward Ry, is then computed as the mean
IoU of the remaining valid matches:

Rigu = = Y iou;, V= {iliou; >} (6)

1
Vs
where V denotes the set of valid matches and |V
represents the number of valid matches. To en-
courage accurate object localization, we further
discretize the IoU-based reward using a threshold
of 0.5:

1, if Ry, > 0.5
Raccidet - Ou. (7)
0, otherwise

The final detection reward R 4.; combines both
localization accuracy and format compliance:

Rdet = Racc_det + Rformat (8)



where R 4et €valuates spatial localization accu-
racy and Rfomqt Verifies response format compli-
ance.

3.3 Rejected Sample based Self-improvement

To prevent degradation in general domain, we pro-
pose a Rejected Sample-based Self-improvement
mechanism. This framework comprises three
stages: (1) general-domain data construction; (2)
automatic refinement by GPT-4-O—guided selec-
tion between model and reference responses, en-
hancing data quality via self-improvement; and
(3) supervised fine-tuning on the curated dataset
to reinforce general vision-language competence.
Specifically, step (1) is detailed in Sec. 3.3.1, while
steps (2) and (3) are elaborated in Sec. 3.3.2.

3.3.1 General-domain data construction

The data preparation process involves systematic
sampling from a comprehensive dataset. Utiliz-
ing GPT-4-O as the reward model, we evaluate
generated responses against multiple criteria: accu-
racy, logical consistency, format compliance, and
linguistic fluency. Responses are quantitatively as-
sessed on a 0-100 scale, with those surpassing a
threshold of 85 being integrated into the enhanced
dataset alongside their corresponding queries. The
resultant curated dataset encompasses 1,520 high-
quality samples (12.7% selection rate) across sci-
ence, general knowledge and math (Fig. 3).

3.3.2 Self-Improvement Training

Following dataset construction, we refine the
data by selecting high-quality answers from ei-
ther the original references or model-generated re-
sponses, as determined by LLM-as-Judge (GPT-
40(Wainwright and Lowe, 2023)). As illustrated
in Algorithm 1, for each query in the dataset,
the model generates multiple candidate responses,
which are scored by LLM-as-Judge. The highest-
scoring response—regardless of whether it is
model-generated or a reference—is retained if it
surpasses a quality threshold. The resulting refined
dataset is then used to conduct further fine-tuning.
This self-improvement stage reinforces general-
domain competencies by enabling the model to
learn from its own superior outputs while maintain-
ing robust cross-domain capabilities.

4 [Experiments

Aiming to answer the following questions, we
conduct extensive experiments and test on abun-

Algorithm 1 Rejected Sample based Self-
improvement Self-Improvement Algorithm

Require: Dataset D, Generative Model G, Re-
ward Model 12, Number of samples per input
N, Threshold score 7 = 85
Ensure: Enhanced dataset Dy
1: Initialize an empty enhanced dataset Dy, <

0

2: for each question ¢ € D do

3: Generate N responses using the genera-
tive model G: {ry,79,..., 78} = G(q)

4: Score each response using the re-
ward model R: {si,s2,...,8n} =
R({Tl, o, ... ,’r’N})

5: Find the index of the highest-scored re-
sponse: ¢* = arg max; S;

6: if s; > 7 then

7: Add the highest-scored response to:
Dhew < Dpew U {(Qa ri*)}

8: end if

9: end for

10: Return the enhanced dataset Doy

dant benchmarks:

* RQ1: How does RL perform compared to tra-
ditional SFT in standard CV tasks?

¢ RQ2: How do models trained with Curr-ReFT
perform relative to mainstream VLMs?

* RQ3: How do curriculum strategies like order
rearrangement impact Curriculum RL perfor-
mance? How do curriculum learning and re-
jection sampling contribute to performance in
general and visual tasks, respectively?

* RQ4: Is Curr-ReFT effective across different
backbone models and model sizes?

4.1 Experiment Settings
4.1.1 Datasets and Metrics

Datasets. We built an evaluation framework across
three tasks: visual detection, visual classification,
and multimodal mathematical reasoning—each
with 4,000 training, 1,000 in-domain test and 1,000
out-domain samples. For training and in-domain
test sets, detection and classification data comes
from RefCOCO (Yu et al., 2016) and RefCOCOg
(Mao et al., 2016), while math data use Math360K
(Shi et al., 2024) and Geol70K (Gao et al., 2023).
All training samples are reformatted into binary
decision, choice, and open-ended formats for three-
stage Curriculum RL. Out-domain evaluation in-
cludes RefGTA (Tanaka et al., 2019) for detection,



Pascal-VOC (Everingham et al., 2010) for classifi-
cation, and CLEVR-70k-Counting for math.
Metrics. We use accuracy as the unified evaluation
metric, defined as correct predictions over total test
samples. For detection, a prediction is correct if
the IoU between predicted and ground truth boxes
exceeds 0.5. In classification, predictions matching
ground truth labels are considered correct.

4.1.2 Benchmarks

To give a reasonable result, we evaluate our trained
models on the following authoritative benchmarks:
MathVista (Lu et al., 2023), MATH (Hendrycks
etal., 2021), AI2D (Hiippala et al., 2021), MM Vet
(Yu et al., 2023), MMBench (Liu et al., 2024b),
OCRBench (Liu et al., 2024c¢), and LLaVABench
(Liu et al., 2023), covering a wide range of mathe-
matical reasoning, scientific understanding, visual
perception, and multimodal generalization tasks.

4.1.3 Training Details

All experiments use NVIDIA A800 GPUs. We
primarily train Qwen2.5-VL-3B on 8 GPUs (batch
size=8), with scaling tests using Qwen2.5-VL-7B
across 16 GPUs. The hyperparameters are set as
follows: (1) Learning rates: 2e-5 for RL (GRPO)
training, 2e-7 for rejection sampling phase, and le-
6 for SFT experiments. (2) Maximum pixel size:
401,408. (3) GRPO training steps: 2,500.

The training methods are described as follows:
(1)‘+SFT’ denotes supervised fine-tuning using 12k
multimodal data on open-ended response formats.
(2)‘+ReFT’ denotes rejection-sampling-based SFT;
the data and sampling strategy are detailed in Sec.
3.3. (3)“+RL’ refers to direct GRPO training us-
ing the same 12k samples, with reward functions
aligned with Stage 3 of Curr-RL in Sec. 3.2.3.
(4)‘+Curr-RL’ involves the three-stage curriculum
RL training as detailed in Sec. 3.2. (5)‘+RL-
ReFT’ and ‘+Curr-ReFT’ indicate applying rejection-
sampling-based fine-tuning after RL. (GRPO) or
curriculum RL, respectively.

4.2 Main Results
4.2.1 Generalization Verification of RL (RQ1)

Tab. 1 summarizes the in- and out-of-domain per-
formance of Qwen2.5-VL-3B under SFT, RL, and
Curriculum RL paradigms. Fig. 6 provides qual-
itative comparisons between SFT and our Curr-
RL method. Key observations are as follows: (1)
While SFT improves in-domain accuracy, it con-
sistently fails on out-of-domain tasks, highlighting

Methods In-domain Out-domain

Det Math Cls Det Math Cls
Base 61.8 713 39.6 | 553 40.8 793
+SFT 752 735 502 | 523 308 772
+RL 883 788 629 | 642 741 947
+Curr-RL | 90.6 828 668 | 67.1 784 96.6

Table 1: Performance Comparison: In/Out-domain Per-
formance (%). Base model is chosen as the Qwen2.5-
VL-3B. Notably, ‘Det’ and ‘Cls’ denote detection and
classification.

limited generalization of SFT paradigm. (2) RL-
based methods exhibit stronger generalization, with
Curr-RL achieving the best overall performance. In
particular, it enhances both mathematical reasoning
and visual perception. (3) Qualitatively, Curr-RL
generates more accurate localizations and compre-
hensive explanations across diverse out-of-domain
settings.

Fig. 5 further presents the training dynamics of
SFT, RL, and Curr-RL. (1) Curr-RL demonstrates
more stable training, faster convergence than RL,
and achieves the highest accuracy after conver-
gence. (2) Curr-ReFT achieves larger gains over
RL in visual classification, likely due to the greater
reliance on semantic reasoning. In contrast, detec-
tion tasks focus on spatial perception. Curriculum
mechanisms are particularly effective for semanti-
cally demanding tasks.

4.2.2 Performance Comparation (RQ2)

We report results on visual datasets (Tab. 2) and
public benchmarks (Tab. 3), using Curr-ReFT-
3B/7B initialized from Qwen2.5-VL-3B/7B. Our

Math
In Out Im Out In Out

Qwen2.5-VL-3B 713 40.8 61.8 553 39.6 793
InternVL2_5-4B 694 363 602 545 41.5 789
Qwen2.5-VL-7B 779 54.6 767 63.6 625 813
InternVL2_5-8B 763 52.1 67.1 597 61.1 829
InterVL2-26B 837 77.4 789 683 68.1 91.5
LLaVA-32B 834 78.7 812 654 69.6 93.4

Qwen2.5-VL-3B" 73.5 30.8 752 523 502 7712
InternVL2_5-4B" 72.1 31.8 64.1 528 485 733
InternVL2_5-8B" 80.9 46.9 89.7 412 689 79.2

Curr-ReFT-3B 823 737 898 656 715 952
Curr-ReFT-7B 853 815 922 69.5 731 98.7

Methods Detection Classification

Table 2: Performance comparison on visual tasks.‘In’
denotes in-domain while ‘out’ represents out-of-domain
testing. SFT' results are shown with the slash. Boldface
and underlines indicate the best and second-best results.
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Figure 5: Performance Dynamics: SFT vs. RL vs. Cur-
riculum RL on In-domain and Out-of-domain Tasks.
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Figure 6: Qualitative comparison between our method
and SFT baseline. Thinking process significantly im-
proves reasoning ability.

results reveal the following:

Visual Tasks Curr-ReFT shows strong improve-
ments under OOD conditions. For math reasoning,
Curr-ReFT-7B achieves 81.5% OOD accuracy, out-
performing its base model by +34.6%, and achieves

69.5% and 98.7% on OOD detection and classifi-
cation, respectively—exceeding LLaVA-32B by a
large margin with only 25% of its parameters.
Public Benchmarks Curr-ReFT-7B performs com-
petitively with much larger models (26B/32B) on
most benchmarks. On LLaVABench, it reaches
83.6% (Relative), 69.7% (VLM), and 84.5% (GPT-
40), surpassing LLaVA-32B (82.2%) and approach-
ing GPT-40’s level. This demonstrates the effec-
tiveness of our rejection-based self-improvement
in enhancing general vision-language capacity.

In addition, we observe two noteworthy findings:
(1) OOD classification outperforms in-domain by
+25.6%, likely due to clearer semantics in OOD
test data versus more ambiguous in-domain labels.
(2) SFT remains strong on structured tasks like
detection, but underperforms in reasoning math
tasks.

4.2.3 Ablation Study (RQ3)

Tab. 4(a) and Tab. 4(b) report ablation results
on visual tasks and benchmarks, respectively. We
compare Curr-ReFT-3B with the following vari-
ants: (1) +Curr-RL, without reject-sampling SFT;
(2) +RL, without curriculum learning. To examine
task sensitivity of curriculum learning, we compare
+RLjuage and +RLcnoice (purely judgment or choice
formats), +Curr-RL***™¢ (reverse curriculum, start-
ing with open-ended response with finally judg-
ment format +Curr-RL™* (a mixed strategy that uses
an equal proportion of the three formats). Our ab-
lation study reveals four key insights:

e Curr-RL consistently outperforms standard RL.
Progressive order yields better results than ran-
domized (Mix) or reversed (Reverse) curricula.

* Reject-sampling improves language-centric
benchmarks but compromises visual grounding,

Model AI2D MMVet MMBencl LLaVABench MathVist MATH OCRBench
Relative VLM GPT4
Qwen2.5-VL-3B 7435  39.04 63.00 67.30 56.30 80.40 52.00 38.60 59.70
InternVL2_5-4B 75.84  42.48 73.25 59.50 54.10 78.20 56.00 40.10 68.10
Qwen2-VL-7B 79.10  39.40 70.01 60.20 51.20 74.50 49.40 30.70 65.50
Qwen2.5-VL-7B 78.01 47.69 75.10 81.20 67.10 81.40 63.80 43.40 67.60
InternVL2_5-8B 6542  34.17 52.30 72.10 63.70 80.10 50.10 42.10 59.80
InterVL2-26B 78.89  42.11 72.80 78.10 74.11 81.00 51.40 37.10 62.80
LLaVA-32b 7890  45.20 77.85 80.21 75.30 82.20 57.10 40.10 70.20
Curr-ReFT-3B 79.66  39.95 69.40 73.80 68.10 85.60 57.90 45.80 62.30
Curr-ReFT-7B 83.16 49.95 80.12 83.60 69.70 84.50 65.80 56.60 72.70

Table 3: Performance comparison against mainstream VLMs on public benchmarks. Background colors
denote benchmark categories: yellow for science (AI2D), cyan for general vision-language understanding (MM Vet,
MMBench, LLaVABench), green for math-related tasks (MathVista, MATH), and red for OCR (OCRBench).
Boldface and underlines indicate the best and second-best results, respectively.



Method Math Detection  Classification
In QOut In Qut In Out
Base 713 17.8 31.8 223 39.6 79.8
+SFT 73.5 30.8 752 523 502 77.2
+RLjudge 762 719 89.4 65.1 63.0 94.1
+RLChoice 77.1 732 88.1 635 649 94.5
+RL 78.8 74.1 883 642 629 93.8

+Curr-RLEeverse 724 724 802 66.1 609 943
+Curr-RLMix 778 754 856 67.1 61.8 946
+Curr-RL 828 784 90.6 67.1 668  96.6

+ReFT 69.5 525 257 497 392 724
+RL-ReFT 77.1 703 843 621 549 945
+Curr-ReFT 80.3 737 898 656 654 922

(a) Ablation study results on visual tasks ‘Base’ denotes
Qwen2.5-VL-3B model. Notably, color highlighting indi-
cates different training strategies: Vision-specific SFT results
(green), RL training scheme (blue), General-domain Reject-
sampling SFT ( ), and proposed Curr-ReFT (gray).
Details of ‘+RLjudge’, “+RLchoice”, ‘+Curr-RLR®*®  and
‘+Curr-RLM™ are provided in Sec. 4.2.3.

LLaVA
Method AIZD MMVet MathY OCR MM ——
VLM GPT4

Base 7435  39.04 5200 59.70 6332 63.30 80.40
+SFT 7545 3202  53.60 5890 63.65 59.30 84.10
+RL 7646 3628 5530 60.90 6634 64.70 83.00
+Curr-RL 7736 3674 5630 59.40 69.02 64.10 85.20
+ReFT  78.65 3895 5280 59.50 67.90 66.10 84.20
+Curr-ReFT 79.66 39.95 5790 6230 69.78 68.10 85.60

(b) Ablation study on standard benchmarks. Color coding
follows the same scheme as in Tab. 4a.

Table 4: Ablation Study on major components.

suggesting that general-domain data weakens
alignment with fine-grained visual cues.

* SFT alone is insufficient for generalization under
distribution shift. Despite strong in-domain per-
formance, it performs poorly OOD, especially on
visual reasoning. The absence of feedback limits
its ability to generalize beyond training data.

e Combining Curr-RL with ReFT yields comple-
mentary benefits. Curr-ReFT unifies curriculum-
driven progression and rejection-based general-
ization, yielding balanced gains in perception and
reasoning.

4.2.4 Scaling Analysis (RQ4)

To examine the scaling effectiveness of our Curr-
ReFT framework, we conduct extensive experi-
ments on base models of varying sizes and types.
The results in Tab. 2, Tab. 3 and Tab. 5 indicate that
the effectiveness of Curr-ReFT scales effectively
with model size:
* Compared to the Curr-ReFT-3B, Curr-ReFT-7B
shows consistent improvements: Higher perfor-

Math Detection Classification

Method

In Out In Out In Out
InternVL2_5-4B 69.4 36.3 60.2 54.5 415 78.9
+Curr-ReFT 768174 4671104 684182 612167 502187 873184
InternVL2_5-8B 76.3 52.1 67.1 59.7 61.1 829
+Curr-ReFT 831168 60.218.1 76819.7 7041107 67276.1 90.117.2
Qwen2-VL-7B 71.9 54.6 76.7 63.6 62.5 81.3
+Curr-ReFT 853174 626180 8487181 6957159 69.617.1 87.576.2

Table 5: Scaling Up Experiment on visual dataset:
We evaluate the scalability of the proposed Curr-ReFT
framework on various vision-language base models.
Red 1 indicates the relative gain.

mance on visual tasks (detection: 89.8% —
92.2%, classification: 71.5% — 73.1%) and
better generalization on benchmarks (MM Vet:
39.95% — 49.95%, MathVista: 57.90% —
65.80%).

¢ Curr-ReFT consistently improves performance
across different models (InternVL2_5-4B/8B,
Qwen2-VL-7B, and Qwen2.5-VL-3B/7B), with
gains becoming more pronounced as model size
increases (Detection (InternVL2_5-4B: 54.5% —
61.2% , 76.7; InternVL2_5-8B: 59.7% — 70.4%
, 710.7)).

5 Conclusion

In this paper, we introduce Curr-ReFT, a novel
two-stage post-training paradigm that balances
domain-specific visual reasoning and general
vision-language capabilities. We provide theoreti-
cal insights that reinforcement learning improves
both reasoning and out-of-domain visual task gen-
eralization. We also release a 12k-example curricu-
lum benchmark spanning visual detection, classifi-
cation, and multimodal math. Curr-ReFT achieves
SOTA on abundant benchmarks, with +5.2% avg.
gain in OOD visual tasks.

Limitations and Future Works

While Curr-ReFT effectively improves reasoning
and generalization in small-scale VLMs, several
potential limitations merit consideration. First, the
constrained task formats used in early curriculum
stages (e.g., binary or multiple-choice) may bias the
model toward generating shorter or less diverse re-
sponses in open-ended tasks. Second, although the
progressive task transition facilitates stable learn-
ing, it may also risk catastrophic forgetting of early-
stage skills if not complemented by explicit reten-
tion mechanisms. Third, our three-stage curriculum
is manually designed, which may limit scalability
across domains or modalities.



We partially address the second concern through
a rejection-sampling-based self-improvement that
reinforces general capabilities. Nonetheless, fur-
ther exploration of automated curriculum schedul-
ing and lifelong learning strategies remains a
promising direction.
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