
WEBAGENT-R1: Training Web Agents via End-to-End Multi-Turn
Reinforcement Learning

Anonymous ACL submission

Abstract001

While reinforcement learning (RL) has demon-002
strated remarkable success in enhancing large003
language models (LLMs), it has primarily fo-004
cused on single-turn tasks such as solving math005
problems. Training effective web agents for006
multi-turn interactions remains challenging due007
to the complexity of long-horizon decision-008
making across dynamic web interfaces. In this009
work, we present WEBAGENT-R1, a simple yet010
effective end-to-end multi-turn RL framework011
for training web agents. It learns directly from012
online interactions with web environments by013
asynchronously generating diverse trajectories,014
entirely guided by binary rewards depending on015
task success. Experiments on the WebArena-016
Lite benchmark demonstrate the effectiveness017
of WEBAGENT-R1, boosting the task success018
rate of Qwen-2.5-3B from 6.1% to 33.9% and019
Llama-3.1-8B from 8.5% to 44.8%, signifi-020
cantly outperforming existing state-of-the-art021
methods and strong proprietary models such022
as OpenAI o3. In-depth analyses reveal the023
effectiveness of the thinking-based prompting024
strategy and test-time scaling through increased025
interactions for web tasks. We further investi-026
gate different RL initialization policies by in-027
troducing two variants, namely WEBAGENT-028
R1-ZERO and WEBAGENT-R1-COT, which029
highlight the importance of the warm-up train-030
ing stage (i.e., behavior cloning) and provide031
insights on incorporating long chain-of-thought032
(CoT) reasoning in web agents.033

1 Introduction034

Reinforcement learning (RL) has emerged as a035

promising approach for training large language036

models (LLMs), as exemplified by recent ad-037

vances such as DeepSeek-R1 (Guo et al., 2025;038

Team et al., 2025; Yang et al., 2025a). How-039

ever, existing works have primarily focused on040

single-turn, non-interactive tasks such as mathe-041

matical reasoning (Shao et al., 2024; Zeng et al.,042

2025). Their effectiveness in multi-turn, interac- 043

tive environments—particularly in complex sce- 044

narios requiring long-horizon decision-making and 045

domain-specific skills, such as web browsing (Zhou 046

et al., 2024a; He et al., 2024a; Chae et al., 2025)— 047

still remains underexplored. 048

Unlike static environments, web tasks pose 049

unique challenges for LLM agents due to their dy- 050

namic nature and diverse solution spaces. Early 051

works on web agents primarily relied on prompting- 052

based methods (Wang et al., 2024b; Sodhi et al., 053

2024; Fu et al., 2024; Zhang et al., 2025; Yang 054

et al., 2025b) or behavior cloning (BC), which imi- 055

tates demonstrated trajectories via supervised fine- 056

tuning (Yin et al., 2024; Hong et al., 2024; Lai et al., 057

2024; He et al., 2024b; Putta et al., 2024). Despite 058

their initial success, these methods lack the ability 059

to explore diverse strategies or learn from trial and 060

error, limiting the generalizability of web agents. 061

To address this issue, recent works explored apply- 062

ing RL for better policy training. However, most of 063

this line of research has heavily relied on offline or 064

iterative off-policy RL solutions (Peng et al., 2019; 065

Pan et al., 2024; Qi et al., 2025), which break the 066

end-to-end interaction between the web agent and 067

environment, and introduce additional complexi- 068

ties such as trajectory filtering (Bai et al., 2024), 069

outcome reward model training (Qi et al., 2025), 070

or iterative optimization procedures (Zhou et al., 071

2024b). These constraints hinder their practicality 072

for real-world deployment. 073

Meanwhile, several concurrent works have ex- 074

plored end-to-end RL with on-policy updates for 075

training LLM agents in multi-turn interactive sce- 076

narios, such as simulated games and coding en- 077

vironments (Wang et al., 2025; Cao et al., 2025). 078

Unlike off-policy RL that trains on data generated 079

by older versions of the agent, on-policy RL col- 080

lects training data directly from the agent’s current 081

behavior. This ensures that the learning process is 082

better aligned with the agent’s most recent actions, 083

1

often leading to more stable and effective learn-084

ing (Schulman et al., 2015, 2017). It also eliminates085

the need for additional overheads in off-policy RL086

(e.g., maintaining a replay buffer and filtering out-087

dated trajectories), and enables the agent to behave088

adaptively based on its own past decisions—a key089

advantage in interactive environments where early090

decisions can significantly affect next steps.091

These benefits are particularly desirable in online092

web environments, which often involve complex093

interplay between tasks due to dynamic changes094

of the environment. For instance, consider a situ-095

ation where the agent is first tasked to log out of096

a user account and then to edit the user’s profile.097

These tasks are inherently interdependent: once the098

agent logs out, it loses access to the profile page. If099

the agent is trained using off-policy data collected100

from an earlier version that never logged out, it has101

no opportunity to learn the login behavior and may102

incorrectly assume continued access and generate103

invalid actions, ultimately leading to task failure.104

End-to-end RL helps avoid such pitfalls by allow-105

ing the agent to learn proper behaviors in response106

to environmental state changes on-the-fly.107

In light of this, we propose WEBAGENT-R1, an108

end-to-end multi-turn RL framework for training109

web agents. Specifically, our design addresses sev-110

eral key challenges in this setting. First, at each111

step, the environmental observation (e.g., HTML112

content) can span thousands of tokens, causing the113

accumulated context over long horizons to incur114

substantial memory overheads. To mitigate this, we115

introduce a dynamic context compression mecha-116

nism, which adaptively adjusts the contexts across117

turns, ensuring scalability and preventing out-of-118

memory issues. Second, existing RL solutions119

for LLM agents are not well-suited for multi-turn120

scenarios. Inspired by group relative policy opti-121

mization (GRPO) (Shao et al., 2024), we extend it122

to multi-turn settings (M-GRPO) and employ an123

asynchronous trajectory rollout strategy to further124

improve training efficiency by generating multi-125

ple trajectories in parallel. These designs enable126

efficient RL training and lead to state-of-the-art127

performance on the WebArena-Lite benchmark, as128

shown in Figure 1. Extensive ablation studies and129

analyses further validate the effectiveness of our130

key design choices, revealing an effective test-time131

scaling strategy for multi-turn interactive web tasks,132

and shedding lights on understanding the roles of133

behavior cloning and long chain-of-thought (CoT)134

reasoning in RL-based web agent training.135

3B 8B 32B Unknown
Model Size

0

10

20

30

40

50

S
u

cc
es

s
R

at
e

(%
)

Qwen2.5-3B

Llama3.1-8B

Qwen2.5-32B

QwQ-32B

GPT-4o

GPT-4o-Turbo

OpenAI-o3

OpenAI-o4-mini

Filtered BC (Llama3.1-8B)

AWR (Llama3.1-8B)

DigiRL (Llama3.1-8B)

WebRL (Llama3.1-8B)

SFT (Qwen2.5-3B) SFT (Llama3.1-8B)

WebAgent-R1 (Qwen2.5-3B)

WebAgent-R1 (Llama3.1-8B)

Prompting

Finetuning

Ours (finetuned)

Figure 1: Comparison between existing methods and
our WEBAGENT-R1 on the WebArena-Lite benchmark.
Our method outperforms both strong prompting-based
and finetuned baselines, achieving superior performance
across various model sizes.

Our contributions are summarized as follows: 136

• We implement an end-to-end multi-turn RL 137

framework for training web agents, with dy- 138

namic context compression and asynchronous 139

trajectory rollout mechanisms to achieve train- 140

ing efficiency. 141

• Based on the proposed M-GRPO algorithm, 142

our method substantially improves task suc- 143

cess rates of web agents—boosting Qwen-2.5- 144

3B from 6.1% to 33.9% and Llama-3.1-8B 145

from 8.5% to 44.8%—surpassing previous 146

state-of-the-art results on the WebArena-Lite 147

benchmark. 148

• Extensive analyses and ablation studies un- 149

derscore the crucial role of behavior cloning, 150

validate the effectiveness of thinking-based 151

prompting and test-time scaling strategies, 152

and provide actionable insights on incorpo- 153

rating long-CoT reasoning in web agents. 154

2 WebAgent-R1 155

2.1 Problem Formulation 156

We formulate the web task as a Partially Observ- 157

able Markov Decision Process (POMDP), defined 158

by the tuple (S,A, T ,R). At each time step t, the 159

agent first observes a state st ∈ S from the environ- 160

ment E , represented as the text-only HTML content 161

of the current web page. Then, it generates an ac- 162

tion at from a predefined action space A, which 163

includes commonly used web operations. The en- 164

vironment dynamics T (st+1|st, at) represent how 165

the web page changes in response to actions. The 166

2

 Web: [Task Instruction] + [HTML content]
 Agent: <think> thinking process </think> <answer> do(‘Scroll Down’) </answer>

 Web: [HTML content]
 Agent: <think> thinking process </think> <answer> do(‘Click’, element=‘24’) </answer>
 Web: [HTML content]

CMS

Reddit

Gitlab

Map

Shopping

Environment

Click

Type

Select

Enter

Switch

Search

Wait

Exit

…Scroll up/down

Action Space

Task

Async Trajectory Rollout
Reward

History Observation

Dynamic Context Compression

Agent Web

Actions

Observations
Rewards

WebAgent-R1

<think> … </think> <answer> … </answer>

String Match

Reward Functions

History Action

Agent-Web Multi-turn Interaction

Input

Output

URL Match

Program ExecutionMulti-turn GRPO

Step 1 Step 2 Step 3 Step 4Env

Correct

Wrong

Stopped

Observation 1

Action 1

Observation k-1

Observation k

Action k-1

…

 Agent: <think> thinking process </think> <answer> exit(message=‘Task Completed’) </answer>

Figure 2: (Top): Overview of the end-to-end multi-turn RL training framework used in WEBAGENT-R1. (Bottom):
An input/output example of agent–web interaction at the k-th step. The interaction continues until either the
maximum number of steps is reached or the agent generates an exit() action to signal task completion.

agent interacts with the environment until either167

the task is successfully completed or the maximum168

number of steps is reached. At the end, the agent169

receives a binary outcome reward rt ∈ {0, 1} from170

reward functions R.171

Following prior work (Qi et al., 2025), we172

adopt WebArena (Zhou et al., 2024a) as the web173

environment over other simulated or static envi-174

ronments such as WebShop (Yao et al., 2022)175

or Mind2Web (Deng et al., 2023) for greater176

practicality—It provides a realistic, self-hostable177

environment for web agents, along with rule-based178

rubrics that automatically check for indicators of179

success in the final state (e.g., confirmation mes-180

sages or expected content on the page). Note that181

some prior works (Liu et al., 2025; He et al., 2024a)182

incorporate web page screenshots as additional vi-183

sual inputs, whereas our work focuses solely on184

text-based decision-making over HTML. Other ef-185

forts, such as Yang et al. (2025b), explore opti-186

mizing the action space or prompt design without 187

model fine-tuning. These directions are orthogonal 188

to our investigated problem and can be conceptu- 189

ally integrated with our method as future work. 190

2.2 Behavior Cloning 191

To initialize the web agent, we first apply behav- 192

ior cloning (BC) using a fixed dataset of expert 193

demonstrations D = {(ht, at)}, where ht denotes 194

the full interaction history up to time step t, defined 195

as ht = (s1, a1, s2, a2, . . . , st). The policy πθ is 196

trained via supervised fine-tuning (SFT) to imitate 197

expert actions conditioned on this history: 198

LBC = −E(ht,at)∼D [log πθ(at | ht)] 199

This warm-up stage enables the agent to acquire ba- 200

sic web interaction skills defined in the action space. 201

As indicated in our ablation study (§ 3.4), this BC- 202

trained policy provides a crucial foundation for 203

subsequent reinforcement learning optimization. 204

3

Table 1: Comparison of different methods for training web agents. Trial-and-Error indicates whether the method
supports learning through interactions with the environment (i.e., reinforcement learning). On-Policy denotes
whether the training data is collected from the current policy. Replay Buffer Free indicates methods that do not
require selectively sampling trajectories from a replay buffer, a complexity common in off-policy RL. Self-Sufficient
means no external training signals required (e.g., WebRL trains an additional outcome reward model to label new
data generated by GPT-4). As shown, our method is the only one that enables end-to-end RL with on-policy updates
while avoiding additional complexities such as maintaining a replay buffer and being free from external supervision.

Method Trial-and-Error On-Policy Replay Buffer Free Self-Sufficient

Behavior Cloning (SFT) ✘ ✘ ✓ ✓
AWR (Peng et al., 2019) ✘ ✘ ✘ ✓
DigiRL (Bai et al., 2024) ✓ ✘ ✘ ✓
WebRL (Qi et al., 2025) ✓ ✘ ✘ ✘
WEBAGENT-R1 ✓ ✓ ✓ ✓

2.3 End-to-End Multi-Turn Reinforcement205

Learning206

As illustrated in Figure 2, our end-to-end multi-207

turn RL framework trains web agents through on-208

line interactions guided by rule-based outcome re-209

wards. To enable efficient and scalable training, we210

implemented two key mechanisms: dynamic con-211

text compression to reduce memory overhead, and212

asynchronous trajectory rollout to improve sam-213

pling efficiency. Based on the BC-trained policy,214

we further fine-tune the agent using an extension215

of GRPO (Qi et al., 2025) in the multi-turn set-216

tings, termed M-GRPO. Our implementation can217

be viewed as a minimalist approach that supports218

efficient multi-turn RL training while maintaining219

generality, with potential for future extensions (e.g.,220

incorporating fine-grained reward shaping mecha-221

nisms for intermediate steps).222

Dynamic Context Compression In web tasks,223

each observation st often contains thousands of224

tokens. Across multi-turn interactions, the accumu-225

lated context grows rapidly, leading to excessive226

memory usage and potential out-of-memory issues,227

making training impractical. To address this, we228

propose a dynamic context compression strategy.229

As new observations arrive, earlier ones are simpli-230

fied to reduce the context length while preserving231

the complete action history. Let the interaction232

history at step t be ht = (s′1, a1, s
′
2, a2, . . . , st),233

where each s′i is a simplified template (e.g.,234

“Simplified HTML”) representing prior observa-235

tions. When the agent executes an action at and re-236

ceives a new observation st+1, the updated history237

becomes ht+1 = (s′1, a1, s
′
2, a2, . . . , s

′
t, at, st+1),238

where st is replaced by its simplified version s′t.239

This allows the agent to maintain a compact yet240

informative context of past interactions. Since the241

context evolves dynamically, we also update the 242

loss masks accordingly to ensure that the loss is cor- 243

rectly computed only on the action tokens during 244

the M-GRPO optimization. 245

Multi-turn GRPO Inspired by GRPO, we ex- 246

tend its standard form to multi-turn RL settings and 247

introduce multi-turn group relative policy optimiza- 248

tion (M-GRPO). Specifically, for each task q, we 249

first sample a group of trajectories {τ1, τ2, · · · , τG} 250

and then optimize the policy model πθ by minimiz- 251

ing the following loss: 252

LM-GRPO(θ) = −
1

G

G∑
i=1

1

|τi|

|τi|∑
j=1

 1

|ai,j |

|ai,j |∑
t=1

[
Ãi,j,t − β DKL(θ)

] 253

where τi = {ai,1, ai,2, · · · , ai,|τi|} is the sequence 254

of generated actions in the i-th trajectory, Ãi,j,t = 255

min{ri,j,t(θ)Ai,j , clip(ri,j,t(θ), 1−ϵ, 1+ϵ)Ai,j} is 256

the advantage for the t-th token in action ai,j of 257

trajectory τi, ri,j,t(θ) =
πθ(ai,j,t|q,ai,j,<t)
πold(ai,j,t|q,ai,j,<t)

denotes 258

the importance sampling term, ϵ and β are hyper- 259

parameters, and Ai,j =
ri−mean(r)

std(r) is the group rel- 260

ative advantage, computed using a group of rewards 261

r = {r1, r2, . . . , rG} produced by rule-based re- 262

ward functions. 263

Asynchronous Trajectory Rollout Generating 264

a group of trajectories requires repeated interaction 265

with the environment and can be time-consuming. 266

To address this, we introduce an asynchronous tra- 267

jectory rollout strategy, where multiple indepen- 268

dent browser instances {E1, E2, · · · , EG} are instan- 269

tiated, each maintaining its own context (e.g., cook- 270

ies). For each task, all instances are initialized with 271

the same starting page, but the agent interacts with 272

them independently, resulting in diverse histories 273

and trajectories. This asynchronous design enables 274

efficient trajectory generation in M-GRPO. 275

4

Table 2: Task success rate (SR) comparison across different methods on various websites in WebArena-Lite (Liu
et al., 2025; Qi et al., 2025; Zhou et al., 2024a). Baseline performance is reported as the higher value between our
reproduced results and those reported in the literature (Qi et al., 2025). The best scores are highlighted in bold.

Method Reddit GitLab CMS Map Shopping Average SR

Prompting Method
General Model

Qwen2.5-3B 5.3 13.3 5.7 0 4.4 6.1
Llama3.1-8B 5.3 10.0 5.7 15.4 8.9 8.5
Qwen2.5-32B 10.5 20.0 20.0 19.2 17.8 16.9
GPT-4o 10.5 10.0 20.0 20.0 11.1 13.9
GPT-4o-Turbo 10.5 16.7 14.3 36.7 13.3 17.6

Reasoning Model
QwQ-32B 15.8 33.3 25.7 15.4 20.0 22.4
OpenAI-o3 36.8 46.7 45.7 38.5 33.3 39.4
OpenAI-o4-mini 47.4 43.3 45.7 26.9 28.9 36.9

Finetuning Method
Qwen2.5-3B

Behavior Cloning 42.1 16.7 22.9 26.9 11.1 20.0
WEBAGENT-R1 26.3 53.3 48.6 26.9 24.4 33.9

Llama3.1-8B
Behavior Cloning 36.8 6.7 20.0 33.3 17.8 20.6
Filtered BC (Pan et al., 2024) 52.6 20.0 31.4 23.3 8.9 23.0
AWR (Peng et al., 2019) 57.9 26.7 31.4 26.7 17.8 28.5
DigiRL (Bai et al., 2024) 57.9 26.7 37.1 33.3 17.8 30.3
WebRL (Qi et al., 2025) 63.2 46.7 54.3 36.7 31.1 42.4
WEBAGENT-R1 47.4 56.7 57.1 23.1 44.4 44.8

Reward Design We use the default rule-based276

reward functions in the web environment, which277

assign binary rewards (r=1 for success, r=0 other-278

wise) based on task-specific criteria (e.g., reaching279

a target page). This eliminates the need for out-280

come reward models (Qi et al., 2025), ensuring a281

simple and generalizable training setup.282

3 Experiments283

3.1 Experimental Setup284

Web Environment Like prior works (Liu et al.,285

2025; Qi et al., 2025), we focus on web agents286

for real-world scenarios, specifically utilizing We-287

bArena (Zhou et al., 2024a), a self-hostable and288

realistic web environment that supports practical289

tasks across diverse domains: social forums (Red-290

dit), collaborative coding (GitLab), e-commerce291

content management systems (CMS), open street292

maps (Map), and online shopping (Shopping).293

Dataset and Evaluation Metrics Following Qi294

et al. (2025), we use the public 9,460 trajectories295

for behavior cloning, and adopt WebArena-Lite, a296

human-verified version of WebArena, for more re-297

liable evaluation. Specifically, we use 165 verified298

tasks for evaluation and 647 remaining tasks for299

RL training. Task success rate is calculated using300

the built-in rule-based rubrics.301

Baselines For prompting baselines, we provide a 302

comprehensive comparison with both open-source 303

and proprietary models, including general-purpose 304

models (e.g., Qwen2.5, Llama3.1, GPT-4) and 305

reasoning-specialized models (e.g., QwQ, OpenAI 306

o3 (OpenAI, 2025)), covering various model sizes. 307

For finetuning methods, we employ Qwen2.5-3B 308

and Llama3.1-8B as the backbone model. 309

More details on the environment and implemen- 310

tation are provided in Appendix A and B. We also 311

provide the prompt templates and qualitative exam- 312

ples in Appendix D and E. 313

3.2 Main Results 314

Most LLMs still struggle with web tasks through 315

prompting, highlighting the importance of fine- 316

tuning for web agents. As shown in Table 2, 317

our experiments reveal the limitations of off-the- 318

shelf models in web tasks. Despite their strong 319

general capabilities, state-of-the-art models such 320

as OpenAI’s o3 achieve only a 39.4% success rate 321

(SR). In contrast, a finetuned 3B model trained 322

with simple behavior cloning achieves a success 323

rate of 20%, outperforming proprietary models like 324

GPT-4o. We speculate that the poor performance of 325

off-the-shelf models is not due to base model size 326

or capability, but rather to insufficient understand- 327

ing of HTML structure and web-specific behaviors, 328

5

0 5 10 15 20 25 30 35 40
Training Steps

0.05

0.10

0.15

0.20

0.25

R
ew

ar
d

Qwen2.5-3B

LLaMA3.1-8B

(a) Reward

0 10 20 30 40
Training Steps

180

215

250

285

320

T
ra

je
ct

or
y

L
en

gt
h

Qwen2.5-3B

LLaMA3.1-8B

(b) Trajectory Length

0 5 10 15 20 25 30 35 40
Training Steps

7.5

8.0

8.5

9.0

9.5

N
u

m
b

er
of

In
te

ra
ct

io
n

s

Qwen2.5-3B

LLaMA3.1-8B

(c) Number of Interactions

Figure 3: Training dynamics during RL, including rewards, trajectory length, and number of interactions. As
indicated by the dashed vertical lines in the figure, the entire process can be broadly divided into three phases: (1)
initial skill acquisition, (2) exploration for policy refinement, and (3) final policy stabilization.

as evidenced by the observation that both 3B and329

8B models achieve comparable performance after330

behavior cloning. These findings emphasize the331

necessity of domain-specific training on web data332

to develop effective LLM-based web agents.333

Reasoning models are better web agents. Com-334

pared to general-purpose LLMs, models equipped335

with explicit thinking capabilities perform signifi-336

cantly better on web tasks, likely due to their ability337

to decompose high-level goals and explicitly lay338

out dynamic changes in the web interface. This339

gap underscores the importance of thinking in web340

environments, which typically require multi-turn341

decision-making and dynamic contextual under-342

standing. Motivated by this observation, we further343

explore the integration of thinking mechanisms into344

web agents through prompt design (§ 3.5) and train-345

ing strategies (§ 3.4), which further confirms the346

advantage of thinking ability for web agents.347

Reinforcement learning enables stronger perfor-348

mance for web agents. While behavior cloning349

via SFT can significantly improve LLM’s perfor-350

mance as web agents (e.g., boosting Qwen2.5-3B351

from 6.1% to 20%), applying RL on top of the SFT-352

trained policy leads to additional substantial gains353

(e.g., further boosting Qwen2.5-3B from 20% to354

33.9%). We attribute these improvements to RL’s355

ability to optimize long-horizon decision-making,356

explore novel strategies beyond those seen in the357

SFT data through trial-and-error across dynamic358

web interactions. While prior RL solutions for359

web agents, such as DigiRL and WebRL, have also360

shown performance gains, our method achieves361

even stronger results, highlighting the effectiveness362

of our end-to-end multi-turn RL framework.363

3.3 Training Dynamics364

To understand how the proposed end-to-end re-365

inforcement learning optimizes the behavior of366

the web agents, we analyze the training dynamics 367

across three metrics: reward, trajectory length (i.e., 368

the number of tokens in model responses across 369

all multi-turn interactions), and number of interac- 370

tions. As shown in Figure 3, the learning process 371

can be broadly divided into three distinct phases, 372

separated by vertical dashed lines. 373

Reward. Phase 1 shows a rapid increase in re- 374

ward, indicating that the agent quickly learns basic 375

skills and begins to succeed on simpler tasks. In 376

Phase 2, the reward growth plateaus and slightly 377

fluctuates, suggesting that the agent is exploring 378

different strategies and refining its policy. In Phase 379

3, reward gradually improves again, indicating ex- 380

ploitation and increased stability. 381

Trajectory Length. Trajectory length increases 382

sharply during Phase 1, then stabilizes in Phase 2. 383

In Phase 3, a modest increase is observed again. 384

This trend suggests that the agent initially learns 385

to produce more detailed outputs, followed by a 386

period of consolidation and later refinement to bal- 387

ance verbosity with task effectiveness. 388

Number of Interactions. The number of interac- 389

tion rounds increases during Phase 1 as the agent 390

becomes more proactive, followed by a reduction 391

in Phase 2 as it learns to interact more efficiently. 392

In Phase 3, the interaction count stabilizes, indi- 393

cating convergence toward a more consistent and 394

effective interaction strategy. 395

These trends highlight a three-phase learning dy- 396

namic commonly observed in RL: (1) initial skill 397

acquisition, (2) exploration for policy refinement, 398

and (3) final policy stabilization. Interestingly, both 399

Qwen2.5-3B and Llama3.1-8B follow similar learn- 400

ing patterns, suggesting that our end-to-end multi- 401

turn RL framework effectively scales across model 402

sizes and enables stable policy improvement. 403

6

R1-Zero R1-CoT R1
0

10

20

30

40
S

u
cc

es
s

R
at

e

6.1

24.5

20.0

4.8

30.3
33.9Before RL

After RL

(a) Success Rate

R1-Zero R1-CoT R1
0

100

200

300

400

R
es

p
on

se
L

en
gt

h

142

388

48

130

384

42

Before RL

After RL

(b) Response Length

R1-Zero R1-CoT R1
0

5

10

15

20

N
u

m
b

er
of

In
te

ra
ct

io
n

s

17

9 9

12
10

8

Before RL

After RL

(c) Number of Interactions

Figure 4: Ablation study on RL initialization policy by comparing WEBAGENT-R1 (R1) with two variants:
WEBAGENT-R1-ZERO (R1-Zero), initialized from an off-the-shelf model without SFT, and WEBAGENT-R1-COT
(R1-CoT), initialized from an SFT model trained with long chain-of-thought (CoT) data during behavior cloning.
The comparison includes task success rate, single-turn response length, and number of interactions, evaluated both
before and after applying RL.

3.4 Ablation Study404

To validate key design choices in our framework,405

we conduct a set of ablation studies using Qwen2.5-406

3B as the backbone model. Specifically, we in-407

troduce two variants, WEBAGENT-R1-ZERO and408

WEBAGENT-R1-COT, to study the impact of be-409

havior cloning and long CoT for web agents. The410

results are presented in Figure 4.411

Behavior cloning is crucial for training web412

agents with RL. WEBAGENT-R1-ZERO skips413

the behavior cloning stage and starts RL directly414

from an off-the-shelf model, with an initial success415

rate of only 6.1%. Surprisingly, the model’s per-416

formance even deteriorates slightly after RL. We417

hypothesize that this is due to the lack of knowl-418

edge about web tasks since the model tends to pro-419

duce incomplete or ill-formed actions (e.g., missing420

required arguments) and rarely obtains positive re-421

wards during RL. This severely hampers effective422

exploration and learning, highlighting that behav-423

ior cloning is essential for initializing web agents424

and enabling successful subsequent RL.425

Incorporating long-CoT data into behavior426

cloning leads to more performant web agents.427

We first augment the behavior cloning (BC) data428

by generating long-CoT traces using a strong rea-429

soning model (see Appendix C for details), and430

then apply SFT to obtain a long-CoT SFT model431

(i.e., the WEBAGENT-R1-COT variant before RL).432

Compared to the SFT model trained on standard433

BC data, the long-CoT SFT model achieves a much434

higher task success rate (24.5% vs. 20%), demon-435

strating the effectiveness of long-CoT reasoning436

for web agents.437

Limited gains from RL for long-CoT SFT model.438

While RL shows promising improvements for both439

the vanilla SFT and long-CoT SFT models, it is440

Table 3: Analysis of prompting design. We report the
average success rate (SR), single-turn response length,
and number of interactions. The result reveals a novel
test-time scaling paradigm by increasing the number of
interactions for multi-turn interactive web tasks.

Method SR Length # of Interactions

W/o thinking format
Qwen2.5-3B 3.2 139 6
Llama3.1-8B 4.8 43 7
o4-mini 15.9 56 5

With thinking format
Qwen2.5-3B 6.1 142 17
Llama3.1-8B 8.5 39 11
o4-mini 36.9 57 10

interesting that the gain is notably smaller for the 441

latter. Specifically, WEBAGENT-R1 improves from 442

20% to 33.9%, whereas WEBAGENT-R1-COT im- 443

proves from 24.5% to only 30.3%. We hypothe- 444

size that this is because the deterministic reasoning 445

patterns learned during long-CoT BC may con- 446

strain the model’s exploration space during RL, 447

limiting its ability to discover novel strategies com- 448

pared to standard SFT models with more flexible 449

exploratory behaviors. 450

3.5 Analysis 451

Prompting with thinking format unleashes the 452

potential of LLMs as web agents. As shown 453

in Table 3, using the thinking format significantly 454

improves task success rates across models, partic- 455

ularly for stronger ones (e.g., o4-mini improves 456

from 15.9% to 36.9%). Interestingly, while the 457

average single-turn response length remains simi- 458

lar (e.g., 139 → 142 tokens for Qwen2.5-3B), the 459

number of interactions increases substantially (e.g., 460

6 → 17) with the thinking format. This observation 461

suggests a novel test-time scaling strategy for web 462

tasks—rather than producing longer single-turn re- 463

sponses, the web agent can become more effective 464

by engaging in deeper multi-turn interactions. 465

7

5 10 15 20 25 30
Max Number of Interactions

0

10

20

30

40
S

u
cc

es
s

R
at

e
Prompting SFT WebAgent-R1

Figure 5: Analysis of test-time scaling with increased
max number of interactions. Allowing more interactions
enables the web agent to produce longer trajectories and
consistently improves the success rate.

Test-time scaling through increased interac-466

tions leads to better performance on web tasks.467

Building on the above finding, we further inves-468

tigate how increasing the number of interactions469

between the web agent and the environment af-470

fects performance. As shown in Figure 5, allowing471

more interaction turns consistently improves suc-472

cess rates across prompting-based, SFT, and RL-473

based methods. We hypothesize that this form of474

test-time scaling facilitates deeper exploration and475

yields longer trajectories, potentially enabling the476

agent to iteratively refine its actions and make more477

informed decisions through extended interactions.478

4 Related Works479

4.1 LLM-based Agents480

LLMs have demonstrated promising agentic ca-481

pabilities, such as breaking down complex tasks482

into manageable subgoals and reasoning over long483

horizons (Zhou et al., 2022; Huang et al., 2022;484

Madaan et al., 2022; Li et al., 2023a,b; Wu et al.,485

2024; Chu et al., 2025). Building on these capa-486

bilities, LLM-based agents have been applied to487

a variety of real-world interactive tasks, including488

web navigation (Nakano et al., 2021; Yao et al.,489

2022; Ma et al., 2023; Gur et al., 2024; Abuelsaad490

et al., 2024; Lutz et al., 2024; Patel et al., 2024;491

Putta et al., 2024), general computer use (Li et al.,492

2020; Deng et al., 2023; Yang et al., 2024), and em-493

bodied environments (Puig et al., 2018; Shridhar494

et al., 2020; Toyama et al., 2021; Fan et al., 2022;495

Huang et al., 2022). Specifically, our work focuses496

on text-based web agents that operate in browser-497

based environments purely based on HTML con-498

tent, which requires agentic capabilities such as499

tool use, memory, and decision-making under par-500

tial observability (Zhou et al., 2024a; Qi et al.,501

2025). Complementary to this line of work, GUI 502

agents leverage additional multimodal inputs such 503

as screenshots, enabling visual-guided interactions 504

with the environment (Lee et al., 2023; Shaw et al., 505

2023; Zheng et al., 2024; He et al., 2024a,b; Koh 506

et al., 2024; Kil et al., 2024; Lei et al., 2025; Liu 507

et al., 2025). For a comprehensive overview, we 508

refer readers to recent surveys (Wang et al., 2024a; 509

Hu et al., 2025; Ning et al., 2025). 510

4.2 Reinforcement Learning for LLMs 511

Recent advances like DeepSeek-R1 (Guo et al., 512

2025) highlight the strong potential of RL in en- 513

hancing LLMs. However, most prior work focuses 514

on single-turn tasks such as math problems (Shao 515

et al., 2024), with limited exploration in multi-turn 516

settings (Zhou et al., 2024b, 2025). Recent efforts 517

have made some progress in this direction, such as 518

training LLM agents to repeatedly use search en- 519

gines (Jin et al., 2025; Sun et al., 2025; Chen et al., 520

2025; Song et al., 2025), but typically constrain 521

actions to simple API calls without real environ- 522

ment interaction. A few concurrent works, such 523

as RAGEN (Wang et al., 2025) and SkyRL (Cao 524

et al., 2025), have applied RL to more dynamic 525

settings like simulated games and coding envi- 526

ronments (Jimenez et al., 2024). However, real- 527

world web environments remain largely underex- 528

plored. Our work fills this gap by providing a prac- 529

tical framework and offering actionable insights for 530

training web agents with end-to-end RL. 531

5 Conclusion 532

This work introduces WEBAGENT-R1, an end-to- 533

end multi-turn RL framework for training web 534

agents. We extend the standard GRPO to multi- 535

turn settings, termed M-GRPO, and implement dy- 536

namic context compression and asynchronous tra- 537

jectory rollout mechanisms for efficient training. 538

Empirically, WEBAGENT-R1 achieves new state- 539

of-the-art results on the WebArena-Lite benchmark. 540

Our findings underscore the critical role of behav- 541

ior cloning in initializing web agents, providing a 542

strong foundation for effective RL. We further an- 543

alyze training dynamics and explore the effects 544

of thinking-based prompting and test-time scal- 545

ing strategies, showing that increasing interaction 546

depth consistently enhances web agents. Future 547

work includes exploring multi-modal inputs and 548

extending our approach to broader GUI-based tasks 549

beyond web environments, such as computer use. 550

8

Limitations and Potential Risks551

Despite the effectiveness of WEBAGENT-R1, our552

current approach has several limitations that sug-553

gest directions for future work. First, we con-554

sider only textual input for the web tasks. Incor-555

porating additional visual input (e.g., screenshots)556

may enhance performance since visual information,557

such as layout and colors, can be helpful for effec-558

tive navigation and decision-making. Second, our559

method relies on rule-based outcome rewards to560

guide RL training. While effective in our setting,561

such reward functions may not be readily available562

in other interactive scenarios, such as open-ended563

travel planner agents, where task goals are ambigu-564

ous and no clear reference or verifiable outcome565

is available. Lastly, like existing web agents, our566

model is trained with a fixed set of predefined ac-567

tions (e.g., click, type), which can limit its flexi-568

bility when encountering interactive elements that569

require unseen operations. Enabling dynamic adap-570

tation to new operations remains an open challenge571

for web agents.572

In terms of potential risks, such agents should573

be used with caution when deployed in real-world574

environments, especially those involving adminis-575

trative privileges. For example, when interacting576

with content management systems (CMS) in a pro-577

duction environment, the agent may inadvertently578

perform destructive actions, such as modifying or579

deleting sensitive business data. To ensure safe de-580

ployment, future work should incorporate permis-581

sion controls, verification prompts, and safeguards582

to prevent high-impact or irreversible actions.583

References584

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish585
Jagmohan, Aditya Vempaty, and Ravi Kokku. 2024.586
Agent-E: From autonomous web navigation to foun-587
dational design principles in agentic systems. arXiv588
preprint arXiv:2407.13032.589

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane590
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-591
giRL: Training in-the-wild device-control agents592
with autonomous reinforcement learning. Advances593
in Neural Information Processing Systems, 37:12461–594
12495.595

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler596
Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao597
Wang, Akshay Malik, Graham Neubig, Kourosh598
Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei599
Zaharia, Joseph E. Gonzalez, and Ion Stoica. 2025.600

Skyrl-v0: Train real-world long-horizon agents via 601
reinforcement learning. 602

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, 603
Minju Gwak, Gwanwoo Song, Jihoon Kim, Sungh- 604
wan Kim, Dongha Lee, and Jinyoung Yeo. 2025. 605
Web agents with world models: Learning and lever- 606
aging environment dynamics in web navigation. In 607
The Thirteenth International Conference on Learning 608
Representations. 609

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, 610
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen 611
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and 612
Weipeng Chen. 2025. ReSearch: Learning to reason 613
with search for llms via reinforcement learning. 614

Zhendong Chu, Shen Wang, Jian Xie, Tinghui Zhu, 615
Yibo Yan, Jinheng Ye, Aoxiao Zhong, Xuming Hu, 616
Jing Liang, Philip S Yu, and 1 others. 2025. LLM 617
agents for education: Advances and applications. 618
arXiv preprint arXiv:2503.11733. 619

Tri Dao. 2024. FlashAttention-2: Faster attention with 620
better parallelism and work partitioning. In The 621
Twelfth International Conference on Learning Repre- 622
sentations. 623

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam 624
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023. 625
Mind2web: Towards a generalist agent for the web. 626
Advances in Neural Information Processing Systems, 627
36:28091–28114. 628

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man- 629
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, 630
De-An Huang, Yuke Zhu, and Anima Anandkumar. 631
2022. Minedojo: Building open-ended embodied 632
agents with internet-scale knowledge. Advances in 633
Neural Information Processing Systems, 35:18343– 634
18362. 635

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull 636
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and 637
Honglak Lee. 2024. Autoguide: Automated gener- 638
ation and selection of context-aware guidelines for 639
large language model agents. In The Thirty-eighth 640
Annual Conference on Neural Information Process- 641
ing Systems. 642

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 643
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 644
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 645
Deepseek-R1: Incentivizing reasoning capability in 646
llms via reinforcement learning. arXiv preprint 647
arXiv:2501.12948. 648

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa 649
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan- 650
dra Faust. 2024. A real-world webagent with plan- 651
ning, long context understanding, and program syn- 652
thesis. In The Twelfth International Conference on 653
Learning Representations. 654

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, 655
Yong Dai, Hongming Zhang, Zhenzhong Lan, and 656

9

Dong Yu. 2024a. Webvoyager: Building an end-to-657
end web agent with large multimodal models. In658
Proceedings of the 62nd Annual Meeting of the As-659
sociation for Computational Linguistics (Volume 1:660
Long Papers), pages 6864–6890.661

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,662
Hongming Zhang, Tianqing Fang, Zhenzhong Lan,663
and Dong Yu. 2024b. Openwebvoyager: Building664
multimodal web agents via iterative real-world ex-665
ploration, feedback and optimization. arXiv preprint666
arXiv:2410.19609.667

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng668
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,669
Yuxiao Dong, Ming Ding, and 1 others. 2024. Coga-670
gent: A visual language model for gui agents. In Pro-671
ceedings of the IEEE/CVF Conference on Computer672
Vision and Pattern Recognition, pages 14281–14290.673

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan674
Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao, Xi-675
angxin Zhou, Ziyu Zhao, and 1 others. 2025. Os676
agents: A survey on mllm-based agents for computer,677
phone and browser use. In Proceedings of the 63rd678
Annual Meeting of the Association for Computational679
Linguistics.680

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and681
Igor Mordatch. 2022. Language models as zero-shot682
planners: Extracting actionable knowledge for em-683
bodied agents. In International conference on ma-684
chine learning, pages 9118–9147. PMLR.685

Carlos E Jimenez, John Yang, Alexander Wettig,686
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R687
Narasimhan. 2024. SWE-bench: Can language mod-688
els resolve real-world github issues? In The Twelfth689
International Conference on Learning Representa-690
tions.691

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,692
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei693
Han. 2025. Search-r1: Training llms to reason and694
leverage search engines with reinforcement learning.695
arXiv preprint arXiv:2503.09516.696

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang697
Deng, Yu Su, and Wei-Lun Chao. 2024. Dual-view698
visual contextualization for web navigation. In Pro-699
ceedings of the IEEE/CVF Conference on Computer700
Vision and Pattern Recognition, pages 14445–14454.701

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram702
Duvvur, Ming Lim, Po-Yu Huang, Graham Neu-703
big, Shuyan Zhou, Russ Salakhutdinov, and Daniel704
Fried. 2024. Visualwebarena: Evaluating multimodal705
agents on realistic visual web tasks. In Proceedings706
of the 62nd Annual Meeting of the Association for707
Computational Linguistics (Volume 1: Long Papers),708
pages 881–905.709

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying710
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-711
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient712

memory management for large language model serv- 713
ing with pagedattention. In Proceedings of the 29th 714
Symposium on Operating Systems Principles, pages 715
611–626. 716

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux- 717
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang, 718
Xiaohan Zhang, Yuxiao Dong, and 1 others. 2024. 719
Autowebglm: A large language model-based web 720
navigating agent. In Proceedings of the 30th ACM 721
SIGKDD Conference on Knowledge Discovery and 722
Data Mining, pages 5295–5306. 723

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi- 724
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur- 725
vashi Khandelwal, Peter Shaw, Ming-Wei Chang, 726
and Kristina Toutanova. 2023. Pix2struct: Screen- 727
shot parsing as pretraining for visual language under- 728
standing. In International Conference on Machine 729
Learning, pages 18893–18912. PMLR. 730

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, 731
and Yang Liu. 2025. Scaffolding coordinates to pro- 732
mote vision-language coordination in large multi- 733
modal models. In Proceedings of the 31st Inter- 734
national Conference on Computational Linguistics, 735
pages 2886–2903. 736

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 737
Khizbullin, and Bernard Ghanem. 2023a. Camel: 738
Communicative agents for" mind" exploration of 739
large language model society. Advances in Neural 740
Information Processing Systems, 36:51991–52008. 741

Xinze Li, Yixin Cao, Muhao Chen, and Aixin Sun. 742
2023b. Take a break in the middle: Investigating 743
subgoals towards hierarchical script generation. In 744
Findings of the Association for Computational Lin- 745
guistics: ACL 2023, pages 10129–10147. 746

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason 747
Baldridge. 2020. Mapping natural language instruc- 748
tions to mobile ui action sequences. In Proceedings 749
of the 58th Annual Meeting of the Association for 750
Computational Linguistics, pages 8198–8210. 751

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song 752
XiXuan, Yifan Xu, Shudan Zhang, Hanyu Lai, Jiadai 753
Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian 754
Yao, Xueqiao Sun, Siyi Cheng, Qinkai Zheng, Hao 755
Yu, Hanchen Zhang, Wenyi Hong, and 9 others. 2025. 756
VisualAgentBench: Towards large multimodal mod- 757
els as visual foundation agents. In The Thirteenth 758
International Conference on Learning Representa- 759
tions. 760

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem 761
Harutyunyan, and Giovanni Campagna. 2024. 762
Wilbur: Adaptive in-context learning for ro- 763
bust and accurate web agents. arXiv preprint 764
arXiv:2404.05902. 765

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiao- 766
man Pan, Wenhao Yu, and Dong Yu. 2023. Laser: 767
Llm agent with state-space exploration for web navi- 768
gation. arXiv preprint arXiv:2309.08172. 769

10

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,770
and Graham Neubig. 2022. Language models of code771
are few-shot commonsense learners. In Proceedings772
of the 2022 Conference on Empirical Methods in773
Natural Language Processing, pages 1384–1403.774

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,775
Long Ouyang, Christina Kim, Christopher Hesse,776
Shantanu Jain, Vineet Kosaraju, William Saunders,777
and 1 others. 2021. WebGPT: Browser-assisted778
question-answering with human feedback. arXiv779
preprint arXiv:2112.09332.780

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao781
Qu, Yujuan Ding, Wenqi Fan, Xiao-yong Wei, Shanru782
Lin, Hui Liu, Philip S Yu, and 1 others. 2025. A sur-783
vey of webagents: Towards next-generation ai agents784
for web automation with large foundation models.785
arXiv preprint arXiv:2503.23350.786

OpenAI. 2025. Introducing OpenAI o3 and o4-mini.787

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,788
Sergey Levine, and Alane Suhr. 2024. Autonomous789
evaluation and refinement of digital agents. arXiv790
preprint arXiv:2404.06474.791

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-792
Condrei, Marius-Constantin Dinu, Chris Callison-793
Burch, and Sepp Hochreiter. 2024. Large language794
models can self-improve at web agent tasks. arXiv795
preprint arXiv:2405.20309.796

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey797
Levine. 2019. Advantage-weighted regression: Sim-798
ple and scalable off-policy reinforcement learning.799
arXiv preprint arXiv:1910.00177.800

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,801
Tingwu Wang, Sanja Fidler, and Antonio Torralba.802
2018. Virtualhome: Simulating household activities803
via programs. In Proceedings of the IEEE conference804
on computer vision and pattern recognition, pages805
8494–8502.806

Pranav Putta, Edmund Mills, Naman Garg, Sumeet807
Motwani, Chelsea Finn, Divyansh Garg, and Rafael808
Rafailov. 2024. Agent Q: Advanced reasoning and809
learning for autonomous ai agents. arXiv preprint810
arXiv:2408.07199.811

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao812
Sun, Jiadai Sun, Xinyue Yang, Yu Yang, Shuntian813
Yao, Wei Xu, Jie Tang, and Yuxiao Dong. 2025. We-814
bRL: Training LLM web agents via self-evolving on-815
line curriculum reinforcement learning. In The Thir-816
teenth International Conference on Learning Repre-817
sentations.818

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,819
and Yuxiong He. 2020. Zero: Memory optimizations820
toward training trillion parameter models. In SC20:821
International Conference for High Performance Com-822
puting, Networking, Storage and Analysis, pages 1–823
16. IEEE.824

John Schulman, Philipp Moritz, Sergey Levine, Michael 825
Jordan, and Pieter Abbeel. 2015. High-dimensional 826
continuous control using generalized advantage esti- 827
mation. arXiv preprint arXiv:1506.02438. 828

John Schulman, Filip Wolski, Prafulla Dhariwal, 829
Alec Radford, and Oleg Klimov. 2017. Proxi- 830
mal policy optimization algorithms. arXiv preprint 831
arXiv:1707.06347. 832

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 833
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 834
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek- 835
math: Pushing the limits of mathematical reason- 836
ing in open language models. arXiv preprint 837
arXiv:2402.03300. 838

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be- 839
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan- 840
delwal, Kenton Lee, and Kristina N Toutanova. 2023. 841
From pixels to ui actions: Learning to follow in- 842
structions via graphical user interfaces. Advances in 843
Neural Information Processing Systems, 36:34354– 844
34370. 845

Mohit Shridhar, Jesse Thomason, Daniel Gordon, 846
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke 847
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench- 848
mark for interpreting grounded instructions for ev- 849
eryday tasks. In Proceedings of the IEEE/CVF con- 850
ference on computer vision and pattern recognition, 851
pages 10740–10749. 852

Paloma Sodhi, S.R.K Branavan, Yoav Artzi, and Ryan 853
McDonald. 2024. Step: Stacked LLM policies for 854
web actions. In First Conference on Language Mod- 855
eling. 856

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, 857
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji- 858
Rong Wen. 2025. R1-searcher: Incentivizing the 859
search capability in LLMs via reinforcement learning. 860
arXiv preprint arXiv:2503.05592. 861

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan 862
Hou, Yong Jiang, Pengjun Xie, Fei Huang, and Yan 863
Zhang. 2025. Zerosearch: Incentivize the search 864
capability of llms without searching. arXiv preprint 865
arXiv:2505.04588. 866

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, 867
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun 868
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others. 869
2025. Kimi k1. 5: Scaling reinforcement learning 870
with llms. arXiv preprint arXiv:2501.12599. 871

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe- 872
orghe Comanici, Amelia Glaese, Zafarali Ahmed, 873
Tyler Jackson, Shibl Mourad, and Doina Precup. 874
2021. Androidenv: A reinforcement learning plat- 875
form for android. arXiv preprint arXiv:2105.13231. 876

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 877
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 878
Xu Chen, Yankai Lin, and 1 others. 2024a. A survey 879
on large language model based autonomous agents. 880
Frontiers of Computer Science, 18(6):186345. 881

11

https://openai.com/index/introducing-o3-and-o4-mini/

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue882
Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,883
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, and 1884
others. 2025. Ragen: Understanding self-evolution885
in llm agents via multi-turn reinforcement learning.886
arXiv preprint arXiv:2504.20073.887

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and888
Graham Neubig. 2024b. Agent workflow memory.889
arXiv preprint arXiv:2409.07429.890

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,891
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,892
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,893
Ryen W White, Doug Burger, and Chi Wang. 2024.894
Autogen: Enabling next-gen LLM applications via895
multi-agent conversations. In First Conference on896
Language Modeling.897

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,898
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,899
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-900
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,901
Haoran Wei, Huan Lin, Jialong Tang, and 41 others.902
2025a. Qwen3 technical report.903

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian904
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir905
Press. 2024. Swe-agent: Agent-computer interfaces906
enable automated software engineering. Advances in907
Neural Information Processing Systems, 37:50528–908
50652.909

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor,910
Pratik Chaudhari, George Karypis, and Huzefa Rang-911
wala. 2025b. AgentOccam: A simple yet strong base-912
line for LLM-based web agents. In The Thirteenth913
International Conference on Learning Representa-914
tions.915

Shunyu Yao, Howard Chen, John Yang, and Karthik916
Narasimhan. 2022. Webshop: Towards scalable real-917
world web interaction with grounded language agents.918
Advances in Neural Information Processing Systems,919
35:20744–20757.920

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-921
athi Chandu, Kai-Wei Chang, Yejin Choi, and922
Bill Yuchen Lin. 2024. Agent lumos: Unified and923
modular training for open-source language agents.924
In Proceedings of the 62nd Annual Meeting of the925
Association for Computational Linguistics (Volume926
1: Long Papers), pages 12380–12403.927

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-928
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-929
zoo: Investigating and taming zero reinforcement930
learning for open base models in the wild. arXiv931
preprint arXiv:2503.18892.932

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,933
and Volker Tresp. 2025. Webpilot: A versatile and934
autonomous multi-agent system for web task execu-935
tion with strategic exploration. In Proceedings of936
the AAAI Conference on Artificial Intelligence, vol-937
ume 39, pages 23378–23386.938

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and 939
Yu Su. 2024. GPT-4v(ision) is a generalist web agent, 940
if grounded. In Forty-first International Conference 941
on Machine Learning. 942

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, 943
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue 944
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra- 945
ham Neubig. 2024a. Webarena: A realistic web en- 946
vironment for building autonomous agents. In The 947
Twelfth International Conference on Learning Repre- 948
sentations. 949

Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, 950
Pengcheng Yin, Chris Callison-Burch, and Graham 951
Neubig. 2022. Show me more details: Discovering 952
hierarchies of procedures from semi-structured web 953
data. arXiv preprint arXiv:2203.07264. 954

Yifei Zhou, Song Jiang, Yuandong Tian, Jason We- 955
ston, Sergey Levine, Sainbayar Sukhbaatar, and Xian 956
Li. 2025. Sweet-rl: Training multi-turn llm agents 957
on collaborative reasoning tasks. arXiv preprint 958
arXiv:2503.15478. 959

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, 960
and Aviral Kumar. 2024b. Archer: Training language 961
model agents via hierarchical multi-turn rl. In Inter- 962
national Conference on Machine Learning, pages 963
62178–62209. PMLR. 964

12

A Web Environment965

WebArena-Lite WebArena (Zhou et al., 2024a)966

is a realistic, self-hostable web environment for967

developing LLM-based agents. It comprises 812968

real-world web tasks spanning diverse domains, in-969

cluding social forum (Reddit), collaborative coding970

(GitLab), e-commerce content management system971

(CMS), open street map (Map), and online shop-972

ping (OneStopShop). WebArena-Lite (Liu et al.,973

2025) is a curated version of WebArena designed974

for more reliable evaluation. It selects 165 represen-975

tative tasks for human verification as the evaluation976

set and uses the remaining 647 tasks for training.977

It also provides 9,460 trajectories automatically978

annotated by program-based solvers for behavior979

cloning. For each website, the authors (Liu et al.,980

2025) summarize the core functionalities and valid981

items and construct a set of task prototypes and982

manually implement rule-based solvers using Play-983

wright scripts for each prototype. The correspond-984

ing solvers are executed on the websites to collect985

ground-truth trajectories. In total, this produces986

1,186 valid training samples comprising 9,460 tra-987

jectories, released under the Apache License 2.0.988

Action Space Agents interact with the environ-989

ment through a set of predefined actions, including:990

• Click: simulates a left mouse click on a web-991

page element.992

• Right Click: performs a right-click on a spec-993

ified element.994

• Type: inputs a text string into an input field.995

• Search: enters a search query and triggers a996

search operation.997

• Hover: moves the cursor over a specific ele-998

ment to reveal tooltips or hidden menus.999

• Scroll Up / Scroll Down: scrolls the page1000

vertically.1001

• Press Enter: simulates pressing the Enter key,1002

typically after typing.1003

• Switch Tab: changes the current browser tab.1004

• Select Dropdown Option: selects an option1005

from a dropdown menu.1006

• Wait: pauses the agent’s interaction for a brief1007

period.1008

• Exit: terminates the current session with a1009

final message.1010

• Go Backward / Go Forward: navigates back-1011

ward or forward in the browser history.1012

Rule-based Metrics In real-world web tasks, 1013

there are typically no closed-form solutions, and 1014

multiple trajectories may lead to successful task 1015

completion. Therefore, we evaluate agents solely 1016

based on whether the final goal is achieved and 1017

calculate the Success Rate (SR), which indicates 1018

whether a task is successfully completed according 1019

to the following rule-based evaluation metrics: 1020

• String Match: The agent must provide an an- 1021

swer string that matches the expected output. 1022

• URL Match: The agent is required to nav- 1023

igate to a specific webpage. Success is de- 1024

termined by comparing the final URL to a 1025

reference URL. 1026

• Program Execution: The agent must modify 1027

webpage content or configuration. Evaluation 1028

is performed by executing a rule-based script 1029

to extract and verify the final state of the page. 1030

Each task in WebArena is associated with one 1031

of these evaluation metrics, along with the corre- 1032

sponding reference answer, target URL, or valida- 1033

tion script when applicable. This diverse rule-based 1034

metric design ensures consistent evaluation across 1035

a wide range of web tasks, while accommodating 1036

different task objectives and output formats. 1037

B Implementation Details 1038

We implement our method using Qwen2.5-3B and 1039

Llama3.1-8B as the backbone models. By de- 1040

fault, we use the instruction-tuned version for both 1041

prompting and fine-tuning methods. The rein- 1042

forcement learning (RL) initialization policy is de- 1043

rived from the supervised fine-tuning (SFT) check- 1044

point obtained via behavior cloning. Since WebRL 1045

leverages additional GPT-4 generated data to train 1046

Llama3.1-8B, we ensure a fair comparison by ini- 1047

tializing our RL policy with their publicly released 1048

checkpoint and applying our end-to-end RL using 1049

only the original 647 training tasks, without intro- 1050

ducing any extra data. 1051

Our models are trained on a single node of 1052

8 NVIDIA A100 GPUs with 80GB memory via 1053

full-parameter fine-tuning. To optimize GPU uti- 1054

lization, we adopt DeepSpeed (Rajbhandari et al., 1055

2020) for distributed training with ZeRO-3 offload, 1056

along with gradient checkpointing, FlashAttention- 1057

2 (Dao, 2024), and bf16 mixed precision training 1058

enabled for computation efficiency. For SFT, we 1059

use a learning rate of 5e-5 and a batch size of 128, 1060

with a cosine LR scheduler for 5% warmup steps. 1061

13

Table 4: Comparison of model outputs from WEBAGENT-R1 and WEBAGENT-R1-COT. We present successful
trajectories from both models on the same task (“What are the top-3 best-selling products in Jan 2023?”), showing
only the first two steps for clarity (a full trajectory is shown in Figure 6 for additional context). Compared to
WEBAGENT-R1, the long-CoT variant WEBAGENT-R1-COT exhibits a more detailed thinking process.

Model Model Output
WEBAGENT-R1

(Step 1)
<think> # Element: the ‘REPORTS’ section on the left sidebar. </think>
<answer> do(action=“Click", element=“7") </answer>

WEBAGENT-R1
(Step 2)

<think> # Element: the ‘Bestsellers’ report option under the ‘Products’
section in the ‘REPORTS’ </think>
<answer> do(action=“Click”, element=“27”) </answer>

WEBAGENT-R1-COT
(Step 1)

<think> I need to find the top-3 best-selling products for January 2023.
Let me look at the current dashboard. The left sidebar has a "Reports"
section (element 7) which is critical for accessing sales data. The
dashboard’s main content shows a table with a product (“Sprite Yoga Strap
6 foot”) and quantity (6), but this appears to be static local sales data
rather than a report. Since the user needs a specific monthly ranking,
the Reports section is the logical path to business intelligence tools
that can aggregate and sort data by time period. Clicking “Reports” will
likely reveal options for sales analytics, performance tracking, or product
rankings required to identify top-selling items in January 2023. </think>
<answer> do(action=“Click”, element=“7”) </answer>

WEBAGENT-R1-COT
(Step 2)

<think> Alright, let’s break down my thought process here. The user wants
the top-3 best-selling products for January 2023. I previously clicked the
“Reports” menu (element 7) to access analytical sections. Now, analyzing
the current HTML structure:
1. **Locating the Reports Hierarchy**:
The Reports section’s dropdown (div data-bbox=“88,92,1072,720”) contains
nested menus. Under the “Products” subsection (span data-text=“Products”),
I see options like “Views”, **“Bestsellers”**, “Low Stock”, etc.
2. **Identifying the Target Element**:
The element with id=“27” is explicitly labeled ‘Bestsellers’, which
directly matches the user’s request. This is the most logical path to
access sales performance data.
3. **Ruling Out Distractors**:
Other options like “Orders” or “Tax” under the Sales section don’t
specifically target product performance. The “Bestsellers” report is
tailored to rank products by sales volume, making it the correct choice.
4. **Next Step Justification**:
Clicking “Bestsellers” (element 27) will likely load a report listing
products by sales quantity or revenue. From there, I can extract the top-3
entries for January 2023.
Decision: Proceed to click element 27 to access the Bestsellers report,
which is the most direct route to fulfill the user’s query. </think>
<answer> do(action=“Click”, element=“27”) </answer>

For RL training, we use a constant learning rate of1062

1e-6 with a batch size of 16. The KL divergence1063

regularization coefficient β and the clip ratio ϵ are1064

set to 0.001 and 0.2, respectively. The maximum1065

context length and number of new tokens are set to1066

16,384 and 1024. For efficient LLM rollouts during1067

M-GRPO, we use vLLM (Kwon et al., 2023) with1068

a tensor parallel size of 1 and a GPU memory uti-1069

lization ratio of 0.7. Rollout sampling is performed1070

with both the temperature and top-p set to 1.0.1071

C Data Augmentation for Behavior1072

Cloning with long-CoT Traces1073

As introduced in the ablation study (§ 3.4), we1074

augment the original behavior cloning data by gen-1075

erating long-CoT traces using a strong reasoning1076

model, QwQ-32B. We then apply SFT to obtain a 1077

long-CoT SFT model, followed by RL training to 1078

obtain WEBAGENT-R1-COT. As shown in Table 4, 1079

WEBAGENT-R1-COT is able to generate more de- 1080

tailed thinking compared to WEBAGENT-R1. 1081

D Prompt Templates 1082

The prompt used for data augmentation is shown in 1083

Table 5. We define the action space in the system 1084

prompt, which is presented in Table 6. By default, 1085

we use the version with the thinking format. 1086

E Qualitative Examples 1087

In Figures 6–10, we present a real-world successful 1088

trajectory generated by WEBAGENT-R1 for each 1089

of the five websites in WebArena. 1090

14

Table 5: Prompt used for long-CoT data augmentation, with example fill-ins for the fields user intent, action history,
current observation, next action, and remarks, all of which are available in the original behavior cloning data. The
full HTML content in current observation is omitted for clarity.

Long-CoT Data Augmentation Prompt

You are an expert in explaining the behaviors of web agents. The agent is designed to help a human user navigate the website
to complete a task. Given the user’s intent, the agent’s action history, the current HTML content of the web page, and the
agent’s next action associated with optional remarks, your goal is to explain the decision-making process from the agent’s
perspective using first-person narrative (as if the decision is being made in real time).

User Intent: “Establish a new discussion platform called ‘VirtualRealityVanguard’. It should serve
as a cutting-edge forum where VR aficionados can engage in conversations about the newest trends,
games, and applications in the virtual reality realm. Please ensure the sidebar features the
following tags: virtual reality, technology, trends, gaming.”

Action History:

[
{

"round": "0",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Forums' link at the top center",
"action": "do(action="Click", element="1")"

},
{

"round": "1",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Create forum' button next to the 'List of forums' title",
"action": "do(action="Click", element="17")"

},
{

"round": "2",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Name' field at the top of the page",
"action": "do(action="Type", argument="VirtualRealityVanguard", element="12")"

}
]

Current Observation: <html> ... </html>
Next Action: do(action=“Type”, argument=“VirtualRealityVanguard”, element=“14”)
Remarks: # Element: the ‘Title’ input field in the middle of the page

Now, please explain the agent’s thinking process using a first-person narrative.

15

Table 6: System prompt for web agents. By default, we use the version with the thinking format (highlighted in
gray). For the variant without the thinking format (discussed in § 3.5), the gray part is simply removed.

System Prompt

You are a professional web browsing agent assistant that can fulfill user’s high-level instructions. Given simplified html of the
browsed webpage at each step, you plan operations in python-style pseudo code using provided functions.

You should first think about the reasoning process as an internal monologue and then decide an action. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., responding in the
following format: <think> ... </think> <answer> ... </answer>.

More details about the code action: Your action should be readable, simple. Please generate **ONLY ONE ACTION** in
one round. Predefined functions are as follows:

def do(action, argument, element):
"""A single browsing operation on the webpage.
Args:

:param action: one of the actions from ["Click", "Right Click", "Type", "Search", "Hover",
"Scroll Up", "Scroll Down", "Press Enter", "Switch Tab",
"Select Dropdown Option", "Wait"].

:param argument: optional. Only for "Type", "Search", "Switch Tab", and
"Select Dropdown Option", indicating the content to type in, page number (start from 0)
to switch, or key to press. "Search" action is equivalent to "Type" action plus "Enter".

:param element: optional. Only for "Click", "Right Click", "Type", "Search",
"Select Dropdown Option", and "Hover". Should be specific element id in the HTML.

Returns:
None. The webpage will be updated after executing the action.

"""

def exit(message):
"""Ending the browsing process if the assistant think it has fulfilled the goal.
Args:

:param message: optional. If user's instruction is a question, return assistant's answer
in the message based on the browsing content.

Returns:
None.

"""

def go_backward():
"""Go back to the previous page."""

def go_forward():
"""Go forward to the next page."""

Examples:
• <think> # Element: the ’REPORTS’ section on the left sidebar </think>
<answer> do(action="Click", element="7") </answer>

• <think> # Element: the ’Period’ dropdown, middle center </think>
<answer> do(action="Select Dropdown Option", argument="Month", element="20") </answer>

• <think> # Element: the ’From’ date picker input field, middle center </think>
<answer> do(action="Type", argument="01/01/2023", element="22") </answer>

REMEMBER:
• You can generate **ONLY ONE ACTION** in one round.
• If you have multiple potential actions to explore, you should generate other actions in separate rounds.
• Don’t generate an operation element that you do not see in the screenshot.
• Use “# Element” to describe the element you choose in the HTML.
• Use “# Note” to record information useful to answer the instruction if needed.
• If you find yourself fallen into some sort of loop, try to use another method or change your action.
• If you think a page is still loading or still playing animation and you want to wait a while, use “Wait” action
• You are acting in a real world, try your best not to reject user’s demand. Solve all the problem you encounter.
• If you think you didn’t get expected webpage, you should try using more precise and locative description of the element.
• You should **NEVER** try to use the browser’s address bar at the top of the page to navigate.
• Your answer shouldn’t be in a code snippet format. Just write the function name and its arguments.
• If you use do function to perform “Click”, “Right Click”, “Type”, “Search”, “Select Dropdown Option”, and
“Hover”, the parame element must not be None.

16

do(action="Click", element="7")

Step 1

do(action="Click", element="27") do(action="Type", argument="01/01/2023",
element="22")

do(action=“Type", argument="01/31/2023",
element="25")

do(action="Select Dropdown Option",
argument="Month", element="20") do(action="Click", element="16")

do(action="Scroll Down") exit(message="Top-3 best-selling products in
January 2023 are Impulse Duffle, Overnight
Duffle, and Hawkeye Yoga Short-32-Blue")

Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8

Figure 6: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the CMS task: “What
are the top-3 best-selling products in Jan 2023?”.

do(action="Click", element="15") do(action="Type", argument="Homewood Suites
Southpointe", element="13")

do(action="Type", argument="PPG Paints Arena",
element="14")

do(action="Click", element=“16”) exit(message="The estimated driving time from
Homewood Suites Southpointe to PPG Paints

Arena is 34 minutes.")

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 7: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Map task: “From
my stay at Homewood Suites Southpointe, what’s the estimated driving time to reach PPG Paints Arena?”.

17

do(action=“Hover”, element=“14”) do(action=“Hover”, element=“16”) do(action="Click", element=“17”)

do(action="Select Dropdown Option",
argument="Price", element="36") do(action="Click", element=“37”) exit(message="The living room furniture

category is now listed by descending price.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 8: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Shopping task: “List
products from living room furniture category by descending price”.

do(action=“Click”, element=“17”) do(action=“Click”, element=“21”) do(action="Click", element=“30”)

do(action="Scroll Down") do(action="Click", element=“66”) exit(message="TMN_bBn9Z48qVbUFZV45")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 9: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the GitLab task: “Get
me my RSS feed token”.

18

do(action="Search", argument="Star Trek
Starfleet Academy", element="4") do(action=“Click”, element=“22”) do(action="Type", argument="Every watch makes

me feel like a kid again", element="16")

do(action="Scroll Down") do(action="Click", element=“8”) exit(message="The post on Star Trek Starfleet
Academy series has been edited successfully,

adding the line 'Every watch makes me feel like a
kid again' to the body of the post.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 10: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Reddit task: “Edit
my post on Star Trek Starfleet Academy series by adding a line to the body that says "Every watch makes me feel
like a kid again"”.

19

	Introduction
	WebAgent-R1
	Problem Formulation
	Behavior Cloning
	End-to-End Multi-Turn Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Training Dynamics
	Ablation Study
	Analysis

	Related Works
	LLM-based Agents
	Reinforcement Learning for LLMs

	Conclusion
	Web Environment
	Implementation Details
	Data Augmentation for Behavior Cloning with long-CoT Traces
	Prompt Templates
	Qualitative Examples

