WEBAGENT-R1: Training Web Agents via End-to-End Multi-Turn
Reinforcement Learning

Anonymous ACL submission

Abstract

While reinforcement learning (RL) has demon-
strated remarkable success in enhancing large
language models (LLMs), it has primarily fo-
cused on single-turn tasks such as solving math
problems. Training effective web agents for
multi-turn interactions remains challenging due
to the complexity of long-horizon decision-
making across dynamic web interfaces. In this
work, we present WEBAGENT-R 1, a simple yet
effective end-to-end multi-turn RL framework
for training web agents. It learns directly from
online interactions with web environments by
asynchronously generating diverse trajectories,
entirely guided by binary rewards depending on
task success. Experiments on the WebArena-
Lite benchmark demonstrate the effectiveness
of WEBAGENT-R1, boosting the task success
rate of Qwen-2.5-3B from 6.1% to 33.9% and
Llama-3.1-8B from 8.5% to 44.8%, signifi-
cantly outperforming existing state-of-the-art
methods and strong proprietary models such
as OpenAl 03. In-depth analyses reveal the
effectiveness of the thinking-based prompting
strategy and test-time scaling through increased
interactions for web tasks. We further investi-
gate different RL initialization policies by in-
troducing two variants, namely WEBAGENT-
R1-ZERO and WEBAGENT-R1-COT, which
highlight the importance of the warm-up train-
ing stage (i.e., behavior cloning) and provide
insights on incorporating long chain-of-thought
(CoT) reasoning in web agents.

1 Introduction

Reinforcement learning (RL) has emerged as a
promising approach for training large language
models (LLMs), as exemplified by recent ad-
vances such as DeepSeek-R1 (Guo et al., 2025;
Team et al., 2025; Yang et al., 2025a). How-
ever, existing works have primarily focused on
single-turn, non-interactive tasks such as mathe-
matical reasoning (Shao et al., 2024; Zeng et al.,

2025). Their effectiveness in multi-turn, interac-
tive environments—particularly in complex sce-
narios requiring long-horizon decision-making and
domain-specific skills, such as web browsing (Zhou
et al., 2024a; He et al., 2024a; Chae et al., 2025)—
still remains underexplored.

Unlike static environments, web tasks pose
unique challenges for LLM agents due to their dy-
namic nature and diverse solution spaces. Early
works on web agents primarily relied on prompting-
based methods (Wang et al., 2024b; Sodhi et al.,
2024; Fu et al., 2024; Zhang et al., 2025; Yang
et al., 2025b) or behavior cloning (BC), which imi-
tates demonstrated trajectories via supervised fine-
tuning (Yin et al., 2024; Hong et al., 2024; Lai et al.,
2024; He et al., 2024b; Putta et al., 2024). Despite
their initial success, these methods lack the ability
to explore diverse strategies or learn from trial and
error, limiting the generalizability of web agents.
To address this issue, recent works explored apply-
ing RL for better policy training. However, most of
this line of research has heavily relied on offline or
iterative off-policy RL solutions (Peng et al., 2019;
Pan et al., 2024; Qi et al., 2025), which break the
end-to-end interaction between the web agent and
environment, and introduce additional complexi-
ties such as trajectory filtering (Bai et al., 2024),
outcome reward model training (Qi et al., 2025),
or iterative optimization procedures (Zhou et al.,
2024b). These constraints hinder their practicality
for real-world deployment.

Meanwhile, several concurrent works have ex-
plored end-to-end RL with on-policy updates for
training LLM agents in multi-turn interactive sce-
narios, such as simulated games and coding en-
vironments (Wang et al., 2025; Cao et al., 2025).
Unlike off-policy RL that trains on data generated
by older versions of the agent, on-policy RL col-
lects training data directly from the agent’s current
behavior. This ensures that the learning process is
better aligned with the agent’s most recent actions,

often leading to more stable and effective learn-
ing (Schulman et al., 2015, 2017). It also eliminates
the need for additional overheads in off-policy RL
(e.g., maintaining a replay buffer and filtering out-
dated trajectories), and enables the agent to behave
adaptively based on its own past decisions—a key
advantage in interactive environments where early
decisions can significantly affect next steps.

These benefits are particularly desirable in online
web environments, which often involve complex
interplay between tasks due to dynamic changes
of the environment. For instance, consider a situ-
ation where the agent is first tasked to log out of
a user account and then to edit the user’s profile.
These tasks are inherently interdependent: once the
agent logs out, it loses access to the profile page. If
the agent is trained using off-policy data collected
from an earlier version that never logged out, it has
no opportunity to learn the login behavior and may
incorrectly assume continued access and generate
invalid actions, ultimately leading to task failure.
End-to-end RL helps avoid such pitfalls by allow-
ing the agent to learn proper behaviors in response
to environmental state changes on-the-fly.

In light of this, we propose WEBAGENT-R1, an
end-to-end multi-turn RL framework for training
web agents. Specifically, our design addresses sev-
eral key challenges in this setting. First, at each
step, the environmental observation (e.g., HTML
content) can span thousands of tokens, causing the
accumulated context over long horizons to incur
substantial memory overheads. To mitigate this, we
introduce a dynamic context compression mecha-
nism, which adaptively adjusts the contexts across
turns, ensuring scalability and preventing out-of-
memory issues. Second, existing RL solutions
for LLM agents are not well-suited for multi-turn
scenarios. Inspired by group relative policy opti-
mization (GRPO) (Shao et al., 2024), we extend it
to multi-turn settings (M-GRPO) and employ an
asynchronous trajectory rollout strategy to further
improve training efficiency by generating multi-
ple trajectories in parallel. These designs enable
efficient RL training and lead to state-of-the-art
performance on the WebArena-Lite benchmark, as
shown in Figure 1. Extensive ablation studies and
analyses further validate the effectiveness of our
key design choices, revealing an effective test-time
scaling strategy for multi-turn interactive web tasks,
and shedding lights on understanding the roles of
behavior cloning and long chain-of-thought (CoT)
reasoning in RL-based web agent training.

I Prompting
Il Finetuning Y WebAgent-R1 (Llama3.1-8B)
% Ours (finctuncd) ~ @ WebRL (Llama3.1-8B)
401 OpenAl-03 @
OpenAl-o4-mini @
Y WebAgent-R1 (Qwen2.5-3B)
_ DigiRL. (Llama3.1-8B)
= 304 -
Py @ AWR (Llama3.1-8B)
f; Filtered BC (Llama3.1-8B) QwQ-32B
¢ ° "o
2 20{ @SFT (Qwen2.5-3B) @SFT (Llama3.1-8B)
ks ® GPT-40-Turbo @
end 5
Qwen2.5-32B GPT-40@
104 Llama3.1-8B
[]
@ Qwen2.5-3B
"B B 3B Unkhown

Model Size
Figure 1: Comparison between existing methods and
our WEBAGENT-R1 on the WebArena-Lite benchmark.
Our method outperforms both strong prompting-based
and finetuned baselines, achieving superior performance
across various model sizes.

Our contributions are summarized as follows:

* We implement an end-to-end multi-turn RL
framework for training web agents, with dy-
namic context compression and asynchronous
trajectory rollout mechanisms to achieve train-
ing efficiency.

* Based on the proposed M-GRPO algorithm,
our method substantially improves task suc-
cess rates of web agents—boosting Qwen-2.5-
3B from 6.1% to 33.9% and Llama-3.1-8B
from 8.5% to 44.8%—surpassing previous
state-of-the-art results on the WebArena-Lite
benchmark.

» Extensive analyses and ablation studies un-
derscore the crucial role of behavior cloning,
validate the effectiveness of thinking-based
prompting and test-time scaling strategies,
and provide actionable insights on incorpo-
rating long-CoT reasoning in web agents.

2 WebAgent-R1

2.1 Problem Formulation

We formulate the web task as a Partially Observ-
able Markov Decision Process (POMDP), defined
by the tuple (S,.A, T, R). At each time step ¢, the
agent first observes a state s; € S from the environ-
ment &, represented as the text-only HTML content
of the current web page. Then, it generates an ac-
tion a; from a predefined action space .4, which
includes commonly used web operations. The en-
vironment dynamics 7 (S¢+1|s¢, a¢) represent how
the web page changes in response to actions. The

Action Space

WebAgent-R1

<think> ... </think> <answer> ... </answer>

Environment

Es Type | Enter) Readit
0 Actions 0
& Click Wait Agent '! FYd web ’g
dc—D e=—0
Rewards A
=] Switch E Select Observations © Gitlab
i \G’) Shopping
3 Search % Exit Async Trajectory Rollout Reward <
Env Step 1 Step 2 Step 3 Step 4 <>
: o= s L cms
. Scroll up/down _— = Uy 3 s a O Correct
, — Reward Functions
¥ w nep @ % % o Wrong
Dynamic Context Compression o URL Match

-_, SEEE— g
History Observation = - @ ﬁl = 0 Stopped

History Action

Multi-turn GRPO

String Match

Program Execution

Agent-Web Multi-turn Interaction

Web: [Task Instruction] + [HTML content] observation1
Agent: <think> thinking process </think> <answer> do('Scroll Down’) </answer> Action 1

Input -
Web: [HTML content] Observation k-1

Agent: <think> thinking process </think> <answer> do('Click’, element='24") </answer> Action k-1

Web: [HTML content]

Observation k

Output Agent: <think> thinking process </think> <answer> exit(message='Task Completed’) </answer>

Figure 2: (Top): Overview of the end-to-end multi-turn RL training framework used in WEBAGENT-R 1. (Bottom):
An input/output example of agent—web interaction at the k-th step. The interaction continues until either the
maximum number of steps is reached or the agent generates an exit () action to signal task completion.

agent interacts with the environment until either
the task is successfully completed or the maximum
number of steps is reached. At the end, the agent
receives a binary outcome reward r; € {0, 1} from
reward functions R.

Following prior work (Qi et al., 2025), we
adopt WebArena (Zhou et al., 2024a) as the web
environment over other simulated or static envi-
ronments such as WebShop (Yao et al., 2022)
or Mind2Web (Deng et al., 2023) for greater
practicality—It provides a realistic, self-hostable
environment for web agents, along with rule-based
rubrics that automatically check for indicators of
success in the final state (e.g., confirmation mes-
sages or expected content on the page). Note that
some prior works (Liu et al., 2025; He et al., 2024a)
incorporate web page screenshots as additional vi-
sual inputs, whereas our work focuses solely on
text-based decision-making over HTML. Other ef-
forts, such as Yang et al. (2025b), explore opti-

mizing the action space or prompt design without
model fine-tuning. These directions are orthogonal
to our investigated problem and can be conceptu-
ally integrated with our method as future work.

2.2 Behavior Cloning

To initialize the web agent, we first apply behav-
ior cloning (BC) using a fixed dataset of expert
demonstrations D = {(h¢, a;)}, where h; denotes
the full interaction history up to time step ¢, defined
as hy = (s1,a1, $2,a2,...,8¢). The policy 7y is
trained via supervised fine-tuning (SFT) to imitate
expert actions conditioned on this history:

Lpc = —En, a0)~p [log mo(as | hy)]

This warm-up stage enables the agent to acquire ba-
sic web interaction skills defined in the action space.
As indicated in our ablation study (§ 3.4), this BC-
trained policy provides a crucial foundation for
subsequent reinforcement learning optimization.

Table 1: Comparison of different methods for training web agents. Trial-and-Error indicates whether the method
supports learning through interactions with the environment (i.e., reinforcement learning). On-Policy denotes
whether the training data is collected from the current policy. Replay Buffer Free indicates methods that do not
require selectively sampling trajectories from a replay buffer, a complexity common in off-policy RL. Self-Sufficient
means no external training signals required (e.g., WebRL trains an additional outcome reward model to label new
data generated by GPT-4). As shown, our method is the only one that enables end-to-end RL with on-policy updates
while avoiding additional complexities such as maintaining a replay buffer and being free from external supervision.

Method Trial-and-Error On-Policy Replay Buffer Free Self-Sufficient
Behavior Cloning (SFT) X X v v
AWR (Peng et al., 2019) X X b 4 v
DigiRL (Bai et al., 2024) v X X v
WebRL (Qi et al., 2025) v b 4 b 4 b 4
WEBAGENT-R1 v 4 v v

2.3 End-to-End Multi-Turn Reinforcement
Learning

As illustrated in Figure 2, our end-to-end multi-
turn RL framework trains web agents through on-
line interactions guided by rule-based outcome re-
wards. To enable efficient and scalable training, we
implemented two key mechanisms: dynamic con-
text compression to reduce memory overhead, and
asynchronous trajectory rollout to improve sam-
pling efficiency. Based on the BC-trained policy,
we further fine-tune the agent using an extension
of GRPO (Qi et al., 2025) in the multi-turn set-
tings, termed M-GRPO. Our implementation can
be viewed as a minimalist approach that supports
efficient multi-turn RL training while maintaining
generality, with potential for future extensions (e.g.,
incorporating fine-grained reward shaping mecha-
nisms for intermediate steps).

Dynamic Context Compression In web tasks,
each observation s; often contains thousands of
tokens. Across multi-turn interactions, the accumu-
lated context grows rapidly, leading to excessive
memory usage and potential out-of-memory issues,
making training impractical. To address this, we
propose a dynamic context compression strategy.
As new observations arrive, earlier ones are simpli-
fied to reduce the context length while preserving
the complete action history. Let the interaction
history at step t be hy = (s}, a1,8h,a2,...,5t),
where each s, is a simplified template (e.g.,
“Simplified HTML”) representing prior observa-
tions. When the agent executes an action a; and re-
ceives a new observation s¢, 1, the updated history
becomes hir1 = (8], a1, 85, a9, ..., at, St+1),
where s, is replaced by its simplified version s}.
This allows the agent to maintain a compact yet
informative context of past interactions. Since the

context evolves dynamically, we also update the
loss masks accordingly to ensure that the loss is cor-
rectly computed only on the action tokens during
the M-GRPO optimization.

Multi-turn GRPO Inspired by GRPO, we ex-
tend its standard form to multi-turn RL settings and
introduce multi-turn group relative policy optimiza-
tion (M-GRPO). Specifically, for each task ¢, we
first sample a group of trajectories {71, 72, - - , 7¢ }
and then optimize the policy model 7y by minimiz-
ing the following loss:

Ly.creo(0) = — Z |:A~i,j,t - ﬁDKL(G)]>

where 7; = {a; 1,02, - ,a;,} is the sequence
of generated actions in the i-th trajectory, A; ;; =
min{ri7j7t(9)Ai’j, Clip(?“@j’t(e), 1—e, 1+€)A1‘7j} is
the advantage for the ¢-th token in action a; j of
7o (@i, 5.t1q,05,5.<¢)
. — mod(@ij,tla,ai,5,<t)
the importance sampling term, € and 3 are hyper-

_ r;—mean(r) .
parameters, and A; ; = sy 1 the group rel-
ative advantage, computed using a group of rewards
r = {r1,re,...,r¢} produced by rule-based re-
ward functions.

trajectory 7;, 15 j.+(6) = denotes

Asynchronous Trajectory Rollout Generating
a group of trajectories requires repeated interaction
with the environment and can be time-consuming.
To address this, we introduce an asynchronous tra-
jectory rollout strategy, where multiple indepen-
dent browser instances {1, &2, - - - , £ } are instan-
tiated, each maintaining its own context (e.g., cook-
ies). For each task, all instances are initialized with
the same starting page, but the agent interacts with
them independently, resulting in diverse histories
and trajectories. This asynchronous design enables
efficient trajectory generation in M-GRPO.

Table 2: Task success rate (SR) comparison across different methods on various websites in WebArena-Lite (Liu
et al., 2025; Qi et al., 2025; Zhou et al., 2024a). Baseline performance is reported as the higher value between our
reproduced results and those reported in the literature (Qi et al., 2025). The best scores are highlighted in bold.

Method Reddit GitLab CMS Map Shopping Average SR
Prompting Method

General Model
Qwen2.5-3B 53 133 5.7 0 4.4 6.1
Llama3.1-8B 53 10.0 5.7 15.4 8.9 8.5
Qwen2.5-32B 10.5 20.0 20.0 19.2 17.8 16.9
GPT-40 10.5 10.0 20.0 20.0 11.1 13.9
GPT-40-Turbo 10.5 16.7 143 367 133 17.6

Reasoning Model
QwQ-32B 15.8 333 257 154 20.0 224
OpenAl-03 36.8 46.7 457 385 333 394
OpenAl-04-mini 474 433 457 269 28.9 36.9

Finetuning Method

Qwen2.5-3B
Behavior Cloning 42.1 16.7 229 269 11.1 20.0
WEBAGENT-R1 26.3 533 48.6 269 244 33.9

Llama3.1-8B
Behavior Cloning 36.8 6.7 200 333 17.8 20.6
Filtered BC (Pan et al., 2024) 52.6 20.0 314 233 8.9 23.0
AWR (Peng et al., 2019) 57.9 26.7 314 267 17.8 28.5
DigiRL (Bai et al., 2024) 57.9 26.7 37.1 333 17.8 30.3
WebRL (Qi et al., 2025) 63.2 46.7 543 367 31.1 424
WEBAGENT-R1 47.4 56.7 571 231 44.4 44.8

Reward Design We use the default rule-based

Baselines

For prompting baselines, we provide a

reward functions in the web environment, which
assign binary rewards (r=1 for success, r=0 other-
wise) based on task-specific criteria (e.g., reaching
a target page). This eliminates the need for out-
come reward models (Qi et al., 2025), ensuring a
simple and generalizable training setup.

3 Experiments

3.1 Experimental Setup

Web Environment Like prior works (Liu et al.,
2025; Qi et al., 2025), we focus on web agents
for real-world scenarios, specifically utilizing We-
bArena (Zhou et al., 2024a), a self-hostable and
realistic web environment that supports practical
tasks across diverse domains: social forums (Red-
dit), collaborative coding (GitLab), e-commerce
content management systems (CMS), open street
maps (Map), and online shopping (Shopping).

Dataset and Evaluation Metrics Following Qi
et al. (2025), we use the public 9,460 trajectories
for behavior cloning, and adopt WebArena-Lite, a
human-verified version of WebArena, for more re-
liable evaluation. Specifically, we use 165 verified
tasks for evaluation and 647 remaining tasks for
RL training. Task success rate is calculated using
the built-in rule-based rubrics.

comprehensive comparison with both open-source
and proprietary models, including general-purpose
models (e.g., Qwen2.5, Llama3.1, GPT-4) and
reasoning-specialized models (e.g., QwQ, OpenAl
03 (OpenAl, 2025)), covering various model sizes.
For finetuning methods, we employ Qwen2.5-3B
and Llama3.1-8B as the backbone model.

More details on the environment and implemen-
tation are provided in Appendix A and B. We also
provide the prompt templates and qualitative exam-
ples in Appendix D and E.

3.2 Main Results

Most LLMs still struggle with web tasks through
prompting, highlighting the importance of fine-
tuning for web agents. As shown in Table 2,
our experiments reveal the limitations of off-the-
shelf models in web tasks. Despite their strong
general capabilities, state-of-the-art models such
as OpenAlI’s 03 achieve only a 39.4% success rate
(SR). In contrast, a finetuned 3B model trained
with simple behavior cloning achieves a success
rate of 20%, outperforming proprietary models like
GPT-40. We speculate that the poor performance of
off-the-shelf models is not due to base model size
or capability, but rather to insufficient understand-
ing of HTML structure and web-specific behaviors,

1
I
I
i
I
I
I
1
I
I

—8— Qwen2.5-3B
LLaMA3.1-8B

1
i
]
]

1

W

©
o

©
<)

I
i
I
1
I
4
1
I
¥
I
1
1

o]
o

Number of Interactions
oo
o

—8— Quen25-3B
LLaMA3.1-8B

—8— Quen2.5-3B
LLaMA3.1-8B

I
i
1
I
I
1 ¥
1 i
I]
1 |
I I
1]
1]

=1

1S

0 5 10 15 20 2 30 35 40 0 10 20 30 n 0 5 10 15 20 25 30 35 40
Training Steps Training Steps Training Steps
(a) Reward (b) Trajectory Length (c) Number of Interactions

Figure 3: Training dynamics during RL, including rewards, trajectory length, and number of interactions. As
indicated by the dashed vertical lines in the figure, the entire process can be broadly divided into three phases: (1)
initial skill acquisition, (2) exploration for policy refinement, and (3) final policy stabilization.

as evidenced by the observation that both 3B and
8B models achieve comparable performance after
behavior cloning. These findings emphasize the
necessity of domain-specific training on web data
to develop effective LLM-based web agents.

Reasoning models are better web agents. Com-
pared to general-purpose LLMs, models equipped
with explicit thinking capabilities perform signifi-
cantly better on web tasks, likely due to their ability
to decompose high-level goals and explicitly lay
out dynamic changes in the web interface. This
gap underscores the importance of thinking in web
environments, which typically require multi-turn
decision-making and dynamic contextual under-
standing. Motivated by this observation, we further
explore the integration of thinking mechanisms into
web agents through prompt design (§ 3.5) and train-
ing strategies (§ 3.4), which further confirms the
advantage of thinking ability for web agents.

Reinforcement learning enables stronger perfor-
mance for web agents. While behavior cloning
via SFT can significantly improve LLM’s perfor-
mance as web agents (e.g., boosting Qwen2.5-3B
from 6.1% to 20%), applying RL on top of the SFT-
trained policy leads to additional substantial gains
(e.g., further boosting Qwen2.5-3B from 20% to
33.9%). We attribute these improvements to RL’s
ability to optimize long-horizon decision-making,
explore novel strategies beyond those seen in the
SFT data through trial-and-error across dynamic
web interactions. While prior RL solutions for
web agents, such as DigiRL and WebRL, have also
shown performance gains, our method achieves
even stronger results, highlighting the effectiveness
of our end-to-end multi-turn RL framework.

3.3 Training Dynamics

To understand how the proposed end-to-end re-
inforcement learning optimizes the behavior of

the web agents, we analyze the training dynamics
across three metrics: reward, trajectory length (i.e.,
the number of tokens in model responses across
all multi-turn interactions), and number of interac-
tions. As shown in Figure 3, the learning process
can be broadly divided into three distinct phases,
separated by vertical dashed lines.

Reward. Phase 1 shows a rapid increase in re-
ward, indicating that the agent quickly learns basic
skills and begins to succeed on simpler tasks. In
Phase 2, the reward growth plateaus and slightly
fluctuates, suggesting that the agent is exploring
different strategies and refining its policy. In Phase
3, reward gradually improves again, indicating ex-
ploitation and increased stability.

Trajectory Length. Trajectory length increases
sharply during Phase 1, then stabilizes in Phase 2.
In Phase 3, a modest increase is observed again.
This trend suggests that the agent initially learns
to produce more detailed outputs, followed by a
period of consolidation and later refinement to bal-
ance verbosity with task effectiveness.

Number of Interactions. The number of interac-
tion rounds increases during Phase 1 as the agent
becomes more proactive, followed by a reduction
in Phase 2 as it learns to interact more efficiently.
In Phase 3, the interaction count stabilizes, indi-
cating convergence toward a more consistent and
effective interaction strategy.

These trends highlight a three-phase learning dy-
namic commonly observed in RL: (1) initial skill
acquisition, (2) exploration for policy refinement,
and (3) final policy stabilization. Interestingly, both
Qwen2.5-3B and Llama3.1-8B follow similar learn-
ing patterns, suggesting that our end-to-end multi-
turn RL framework effectively scales across model
sizes and enables stable policy improvement.

I
f=
e
f=
(==}

388 384

)
(=}

B Before RL 33.9 L Jivfmv RL § 17 BN Bcfore RL
After RL 30.3 = After RL = After RL
£30 2300 215 -
= 2L 3 g 12
220 200 % 200 =10 9 ol 0
Jé} 2 142 13, ;
10 100 <5
61 4g = 8 1 |
0 - 0
R1-Zero R1-CoT R1 R1-Zero R1-CoT R1 R1-Zero R1-CoT R1
(a) Success Rate (b) Response Length (c) Number of Interactions

Figure 4: Ablation study on RL initialization policy by comparing WEBAGENT-R1 (R1) with two variants:
WEBAGENT-R 1-ZERO (R1-Zero), initialized from an off-the-shelf model without SFT, and WEBAGENT-R1-COT
(R1-CoT), initialized from an SFT model trained with long chain-of-thought (CoT) data during behavior cloning.
The comparison includes task success rate, single-turn response length, and number of interactions, evaluated both

before and after applying RL.

3.4 Ablation Study

To validate key design choices in our framework,
we conduct a set of ablation studies using Qwen2.5-
3B as the backbone model. Specifically, we in-
troduce two variants, WEBAGENT-R 1-ZERO and
WEBAGENT-R1-COT, to study the impact of be-
havior cloning and long CoT for web agents. The
results are presented in Figure 4.

Behavior cloning is crucial for training web
agents with RL. WEBAGENT-R1-ZERO skips
the behavior cloning stage and starts RL directly
from an off-the-shelf model, with an initial success
rate of only 6.1%. Surprisingly, the model’s per-
formance even deteriorates slightly after RL. We
hypothesize that this is due to the lack of knowl-
edge about web tasks since the model tends to pro-
duce incomplete or ill-formed actions (e.g., missing
required arguments) and rarely obtains positive re-
wards during RL. This severely hampers effective
exploration and learning, highlighting that behav-
ior cloning is essential for initializing web agents
and enabling successful subsequent RL.

Incorporating long-CoT data into behavior
cloning leads to more performant web agents.
We first augment the behavior cloning (BC) data
by generating long-CoT traces using a strong rea-
soning model (see Appendix C for details), and
then apply SFT to obtain a long-CoT SFT model
(i.e., the WEBAGENT-R1-COT variant before RL).
Compared to the SFT model trained on standard
BC data, the long-CoT SFT model achieves a much
higher task success rate (24.5% vs. 20%), demon-
strating the effectiveness of long-CoT reasoning
for web agents.

Limited gains from RL for long-CoT SFT model.
While RL shows promising improvements for both
the vanilla SFT and long-CoT SFT models, it is

Table 3: Analysis of prompting design. We report the
average success rate (SR), single-turn response length,
and number of interactions. The result reveals a novel
test-time scaling paradigm by increasing the number of
interactions for multi-turn interactive web tasks.

Method SR Length # of Interactions

Wr/o thinking format
Qwen2.5-3B 32 139 6
Llama3.1-8B 4.8 43 7
04-mini 15.9 56 5

With thinking format
Qwen2.5-3B 6.1 142 17
Llama3.1-8B 8.5 39 11
04-mini 36.9 57 10

interesting that the gain is notably smaller for the
latter. Specifically, WEBAGENT-R 1 improves from
20% to 33.9%, whereas WEBAGENT-R1-COT im-
proves from 24.5% to only 30.3%. We hypothe-
size that this is because the deterministic reasoning
patterns learned during long-CoT BC may con-
strain the model’s exploration space during RL,
limiting its ability to discover novel strategies com-
pared to standard SFT models with more flexible
exploratory behaviors.

3.5 Analysis

Prompting with thinking format unleashes the
potential of LLMs as web agents. As shown
in Table 3, using the thinking format significantly
improves task success rates across models, partic-
ularly for stronger ones (e.g., 04-mini improves
from 15.9% to 36.9%). Interestingly, while the
average single-turn response length remains simi-
lar (e.g., 139 — 142 tokens for Qwen2.5-3B), the
number of interactions increases substantially (e.g.,
6 — 17) with the thinking format. This observation
suggests a novel test-time scaling strategy for web
tasks—rather than producing longer single-turn re-
sponses, the web agent can become more effective
by engaging in deeper multi-turn interactions.

e
[en)

1 —e— Prompting SFT —&— WebAgent-R1

[\] w
(e} o

Success Rate

—_
[en)

5 10 15 20 25 30
Max Number of Interactions

Figure 5: Analysis of test-time scaling with increased
max number of interactions. Allowing more interactions
enables the web agent to produce longer trajectories and
consistently improves the success rate.

Test-time scaling through increased interac-
tions leads to better performance on web tasks.
Building on the above finding, we further inves-
tigate how increasing the number of interactions
between the web agent and the environment af-
fects performance. As shown in Figure 5, allowing
more interaction turns consistently improves suc-
cess rates across prompting-based, SFT, and RL-
based methods. We hypothesize that this form of
test-time scaling facilitates deeper exploration and
yields longer trajectories, potentially enabling the
agent to iteratively refine its actions and make more
informed decisions through extended interactions.

4 Related Works
4.1 LLM-based Agents

LLMs have demonstrated promising agentic ca-
pabilities, such as breaking down complex tasks
into manageable subgoals and reasoning over long
horizons (Zhou et al., 2022; Huang et al., 2022;
Madaan et al., 2022; Li et al., 2023a,b; Wu et al.,
2024; Chu et al., 2025). Building on these capa-
bilities, LLM-based agents have been applied to
a variety of real-world interactive tasks, including
web navigation (Nakano et al., 2021; Yao et al.,
2022; Ma et al., 2023; Gur et al., 2024; Abuelsaad
et al., 2024; Lutz et al., 2024; Patel et al., 2024;
Putta et al., 2024), general computer use (Li et al.,
2020; Deng et al., 2023; Yang et al., 2024), and em-
bodied environments (Puig et al., 2018; Shridhar
et al., 2020; Toyama et al., 2021; Fan et al., 2022;
Huang et al., 2022). Specifically, our work focuses
on text-based web agents that operate in browser-
based environments purely based on HTML con-
tent, which requires agentic capabilities such as
tool use, memory, and decision-making under par-
tial observability (Zhou et al., 2024a; Qi et al.,

2025). Complementary to this line of work, GUI
agents leverage additional multimodal inputs such
as screenshots, enabling visual-guided interactions
with the environment (Lee et al., 2023; Shaw et al.,
2023; Zheng et al., 2024; He et al., 2024a,b; Koh
et al., 2024; Kil et al., 2024; Lei et al., 2025; Liu
et al., 2025). For a comprehensive overview, we
refer readers to recent surveys (Wang et al., 2024a;
Hu et al., 2025; Ning et al., 2025).

4.2 Reinforcement Learning for LL.Ms

Recent advances like DeepSeek-R1 (Guo et al.,
2025) highlight the strong potential of RL in en-
hancing LLMs. However, most prior work focuses
on single-turn tasks such as math problems (Shao
et al., 2024), with limited exploration in multi-turn
settings (Zhou et al., 2024b, 2025). Recent efforts
have made some progress in this direction, such as
training LLM agents to repeatedly use search en-
gines (Jin et al., 2025; Sun et al., 2025; Chen et al.,
2025; Song et al., 2025), but typically constrain
actions to simple API calls without real environ-
ment interaction. A few concurrent works, such
as RAGEN (Wang et al., 2025) and SkyRL (Cao
et al., 2025), have applied RL to more dynamic
settings like simulated games and coding envi-
ronments (Jimenez et al., 2024). However, real-
world web environments remain largely underex-
plored. Our work fills this gap by providing a prac-
tical framework and offering actionable insights for
training web agents with end-to-end RL.

5 Conclusion

This work introduces WEBAGENT-R 1, an end-to-
end multi-turn RL framework for training web
agents. We extend the standard GRPO to multi-
turn settings, termed M-GRPO, and implement dy-
namic context compression and asynchronous tra-
jectory rollout mechanisms for efficient training.
Empirically, WEBAGENT-R 1 achieves new state-
of-the-art results on the WebArena-Lite benchmark.
Our findings underscore the critical role of behav-
ior cloning in initializing web agents, providing a
strong foundation for effective RL. We further an-
alyze training dynamics and explore the effects
of thinking-based prompting and test-time scal-
ing strategies, showing that increasing interaction
depth consistently enhances web agents. Future
work includes exploring multi-modal inputs and
extending our approach to broader GUI-based tasks
beyond web environments, such as computer use.

Limitations and Potential Risks

Despite the effectiveness of WEBAGENT-R 1, our
current approach has several limitations that sug-
gest directions for future work. First, we con-
sider only textual input for the web tasks. Incor-
porating additional visual input (e.g., screenshots)
may enhance performance since visual information,
such as layout and colors, can be helpful for effec-
tive navigation and decision-making. Second, our
method relies on rule-based outcome rewards to
guide RL training. While effective in our setting,
such reward functions may not be readily available
in other interactive scenarios, such as open-ended
travel planner agents, where task goals are ambigu-
ous and no clear reference or verifiable outcome
is available. Lastly, like existing web agents, our
model is trained with a fixed set of predefined ac-
tions (e.g., click, type), which can limit its flexi-
bility when encountering interactive elements that
require unseen operations. Enabling dynamic adap-
tation to new operations remains an open challenge
for web agents.

In terms of potential risks, such agents should
be used with caution when deployed in real-world
environments, especially those involving adminis-
trative privileges. For example, when interacting
with content management systems (CMS) in a pro-
duction environment, the agent may inadvertently
perform destructive actions, such as modifying or
deleting sensitive business data. To ensure safe de-
ployment, future work should incorporate permis-
sion controls, verification prompts, and safeguards
to prevent high-impact or irreversible actions.

References

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish
Jagmohan, Aditya Vempaty, and Ravi Kokku. 2024.
Agent-E: From autonomous web navigation to foun-
dational design principles in agentic systems. arXiv
preprint arXiv:2407.13032.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di-
giRL: Training in-the-wild device-control agents
with autonomous reinforcement learning. Advances
in Neural Information Processing Systems, 37:12461—
12495.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler
Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh
Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei
Zaharia, Joseph E. Gonzalez, and Ion Stoica. 2025.

Skyrl-v0: Train real-world long-horizon agents via
reinforcement learning.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong,
Minju Gwak, Gwanwoo Song, Jihoon Kim, Sungh-
wan Kim, Dongha Lee, and Jinyoung Yeo. 2025.
Web agents with world models: Learning and lever-
aging environment dynamics in web navigation. In
The Thirteenth International Conference on Learning
Representations.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and
Weipeng Chen. 2025. ReSearch: Learning to reason
with search for llms via reinforcement learning.

Zhendong Chu, Shen Wang, Jian Xie, Tinghui Zhu,
Yibo Yan, Jinheng Ye, Aoxiao Zhong, Xuming Hu,
Jing Liang, Philip S Yu, and 1 others. 2025. LLM
agents for education: Advances and applications.
arXiv preprint arXiv:2503.11733.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Repre-
sentations.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36:28091-28114.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343—
18362.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. 2024. Autoguide: Automated gener-
ation and selection of context-aware guidelines for
large language model agents. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-R1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2024. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. In The Twelfth International Conference on
Learning Representations.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and

Dong Yu. 2024a. Webvoyager: Building an end-to-
end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 6864—6890.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Hongming Zhang, Tianqing Fang, Zhenzhong Lan,
and Dong Yu. 2024b. Openwebvoyager: Building
multimodal web agents via iterative real-world ex-
ploration, feedback and optimization. arXiv preprint
arXiv:2410.19609.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and 1 others. 2024. Coga-
gent: A visual language model for gui agents. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14281-14290.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan
Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao, Xi-
angxin Zhou, Ziyu Zhao, and 1 others. 2025. Os
agents: A survey on mllm-based agents for computer,
phone and browser use. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International conference on ma-
chine learning, pages 9118-9147. PMLR.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-rl: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang
Deng, Yu Su, and Wei-Lun Chao. 2024. Dual-view
visual contextualization for web navigation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14445-14454.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Lim, Po-Yu Huang, Graham Neu-
big, Shuyan Zhou, Russ Salakhutdinov, and Daniel
Fried. 2024. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 881-905.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient

memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and 1 others. 2024.
Autowebglm: A large language model-based web
navigating agent. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5295-5306.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi-
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur-
vashi Khandelwal, Peter Shaw, Ming-Wei Chang,
and Kristina Toutanova. 2023. Pix2struct: Screen-
shot parsing as pretraining for visual language under-
standing. In International Conference on Machine
Learning, pages 18893-18912. PMLR.

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li,
and Yang Liu. 2025. Scaffolding coordinates to pro-
mote vision-language coordination in large multi-
modal models. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,

pages 2886—2903.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023a. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Xinze Li, Yixin Cao, Muhao Chen, and Aixin Sun.
2023b. Take a break in the middle: Investigating
subgoals towards hierarchical script generation. In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 10129-10147.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198-8210.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song
XiXuan, Yifan Xu, Shudan Zhang, Hanyu Lai, Jiadai
Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian
Yao, Xuegiao Sun, Siyi Cheng, Qinkai Zheng, Hao
Yu, Hanchen Zhang, Wenyi Hong, and 9 others. 2025.
VisualAgentBench: Towards large multimodal mod-
els as visual foundation agents. In The Thirteenth
International Conference on Learning Representa-
tions.

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem
Harutyunyan, and Giovanni Campagna. 2024.
Wilbur: Adaptive in-context learning for ro-
bust and accurate web agents. arXiv preprint
arXiv:2404.05902.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiao-
man Pan, Wenhao Yu, and Dong Yu. 2023. Laser:
Llm agent with state-space exploration for web navi-
gation. arXiv preprint arXiv:2309.08172.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1384—1403.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
and 1 others. 2021. WebGPT: Browser-assisted
question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao
Qu, Yujuan Ding, Wenqi Fan, Xiao-yong Wei, Shanru
Lin, Hui Liu, Philip S Yu, and 1 others. 2025. A sur-
vey of webagents: Towards next-generation ai agents
for web automation with large foundation models.
arXiv preprint arXiv:2503.23350.

OpenAl. 2025. Introducing OpenAl 03 and o4-mini.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024. Autonomous
evaluation and refinement of digital agents. arXiv
preprint arXiv:2404.06474.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-
Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. 2024. Large language
models can self-improve at web agent tasks. arXiv
preprint arXiv:2405.20309.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. 2019. Advantage-weighted regression: Sim-
ple and scalable off-policy reinforcement learning.
arXiv preprint arXiv:1910.00177.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
8494-8502.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. 2024. Agent Q: Advanced reasoning and
learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao
Sun, Jiadai Sun, Xinyue Yang, Yu Yang, Shuntian
Yao, Wei Xu, Jie Tang, and Yuxiao Dong. 2025. We-
bRL: Training LLM web agents via self-evolving on-
line curriculum reinforcement learning. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

11

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2015. High-dimensional
continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be-
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan-
delwal, Kenton Lee, and Kristina N Toutanova. 2023.
From pixels to ui actions: Learning to follow in-
structions via graphical user interfaces. Advances in
Neural Information Processing Systems, 36:34354—
34370.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740-10749.

Paloma Sodhi, S.R.K Branavan, Yoav Artzi, and Ryan
McDonald. 2024. Step: Stacked LLM policies for
web actions. In First Conference on Language Mod-
eling.

Huatong Song, Jinhao Jiang, Yinggian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025. Rl-searcher: Incentivizing the
search capability in LLMs via reinforcement learning.
arXiv preprint arXiv:2503.05592.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan
Hou, Yong Jiang, Pengjun Xie, Fei Huang, and Yan
Zhang. 2025. Zerosearch: Incentivize the search
capability of llms without searching. arXiv preprint
arXiv:2505.04588.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, and 1 others. 2024a. A survey
on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

https://openai.com/index/introducing-o3-and-o4-mini/

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue
Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, and 1
others. 2025. Ragen: Understanding self-evolution
in llm agents via multi-turn reinforcement learning.
arXiv preprint arXiv:2504.20073.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and
Graham Neubig. 2024b. Agent workflow memory.
arXiv preprint arXiv:2409.07429.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversations. In First Conference on
Language Modeling.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, and 41 others.
2025a. Qwen3 technical report.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024. Swe-agent: Agent-computer interfaces
enable automated software engineering. Advances in
Neural Information Processing Systems, 37:50528—
50652.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor,
Pratik Chaudhari, George Karypis, and Huzefa Rang-
wala. 2025b. AgentOccam: A simple yet strong base-
line for LLM-based web agents. In The Thirteenth
International Conference on Learning Representa-
tions.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.

Advances in Neural Information Processing Systems,
35:20744-20757.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12380—12403.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2025. Webpilot: A versatile and
autonomous multi-agent system for web task execu-
tion with strategic exploration. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 23378-23386.

12

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. GPT-4v(ision) is a generalist web agent,
if grounded. In Forty-first International Conference
on Machine Learning.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024a. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Repre-
sentations.

Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu,
Pengcheng Yin, Chris Callison-Burch, and Graham
Neubig. 2022. Show me more details: Discovering
hierarchies of procedures from semi-structured web
data. arXiv preprint arXiv:2203.07264.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason We-
ston, Sergey Levine, Sainbayar Sukhbaatar, and Xian
Li. 2025. Sweet-rl: Training multi-turn 1lm agents
on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024b. Archer: Training language
model agents via hierarchical multi-turn rl. In Inter-
national Conference on Machine Learning, pages
62178-62209. PMLR.

A Web Environment

WebArena-Lite WebArena (Zhou et al., 2024a)
is a realistic, self-hostable web environment for
developing LLLM-based agents. It comprises 812
real-world web tasks spanning diverse domains, in-
cluding social forum (Reddit), collaborative coding
(GitLab), e-commerce content management system
(CMS), open street map (Map), and online shop-
ping (OneStopShop). WebArena-Lite (Liu et al.,
2025) is a curated version of WebArena designed
for more reliable evaluation. It selects 165 represen-
tative tasks for human verification as the evaluation
set and uses the remaining 647 tasks for training.
It also provides 9,460 trajectories automatically
annotated by program-based solvers for behavior
cloning. For each website, the authors (Liu et al.,
2025) summarize the core functionalities and valid
items and construct a set of task prototypes and
manually implement rule-based solvers using Play-
wright scripts for each prototype. The correspond-
ing solvers are executed on the websites to collect
ground-truth trajectories. In total, this produces
1,186 valid training samples comprising 9,460 tra-
jectories, released under the Apache License 2.0.

Action Space Agents interact with the environ-
ment through a set of predefined actions, including:

¢ Click: simulates a left mouse click on a web-
page element.

* Right Click: performs a right-click on a spec-
ified element.

Type: inputs a text string into an input field.

Search: enters a search query and triggers a
search operation.

Hover: moves the cursor over a specific ele-
ment to reveal tooltips or hidden menus.

Scroll Up / Scroll Down: scrolls the page
vertically.

Press Enter: simulates pressing the Enter key,
typically after typing.

Switch Tab: changes the current browser tab.
Select Dropdown Option: selects an option
from a dropdown menu.

» Wait: pauses the agent’s interaction for a brief
period.

Exit: terminates the current session with a
final message.

Go Backward / Go Forward: navigates back-
ward or forward in the browser history.

13

Rule-based Metrics In real-world web tasks,
there are typically no closed-form solutions, and
multiple trajectories may lead to successful task
completion. Therefore, we evaluate agents solely
based on whether the final goal is achieved and
calculate the Success Rate (SR), which indicates
whether a task is successfully completed according
to the following rule-based evaluation metrics:

* String Match: The agent must provide an an-
swer string that matches the expected output.

* URL Match: The agent is required to nav-
igate to a specific webpage. Success is de-
termined by comparing the final URL to a
reference URL.

* Program Execution: The agent must modify
webpage content or configuration. Evaluation
is performed by executing a rule-based script
to extract and verify the final state of the page.

Each task in WebArena is associated with one
of these evaluation metrics, along with the corre-
sponding reference answer, target URL, or valida-
tion script when applicable. This diverse rule-based
metric design ensures consistent evaluation across
a wide range of web tasks, while accommodating
different task objectives and output formats.

B Implementation Details

We implement our method using Qwen2.5-3B and
Llama3.1-8B as the backbone models. By de-
fault, we use the instruction-tuned version for both
prompting and fine-tuning methods. The rein-
forcement learning (RL) initialization policy is de-
rived from the supervised fine-tuning (SFT) check-
point obtained via behavior cloning. Since WebRL
leverages additional GPT-4 generated data to train
Llama3.1-8B, we ensure a fair comparison by ini-
tializing our RL policy with their publicly released
checkpoint and applying our end-to-end RL using
only the original 647 training tasks, without intro-
ducing any extra data.

Our models are trained on a single node of
8 NVIDIA A100 GPUs with 80GB memory via
full-parameter fine-tuning. To optimize GPU uti-
lization, we adopt DeepSpeed (Rajbhandari et al.,
2020) for distributed training with ZeRO-3 offload,
along with gradient checkpointing, FlashAttention-
2 (Dao, 2024), and bf16 mixed precision training
enabled for computation efficiency. For SFT, we
use a learning rate of 5e-5 and a batch size of 128,
with a cosine LR scheduler for 5% warmup steps.

Table 4: Comparison of model outputs from WEBAGENT-R1 and WEBAGENT-R1-COT. We present successful
trajectories from both models on the same task (“What are the top-3 best-selling products in Jan 2023?”), showing
only the first two steps for clarity (a full trajectory is shown in Figure 6 for additional context). Compared to

WEBAGENT-R1, the long-CoT variant WEBAGENT-R 1-COT exhibits a more detailed thinking process.

Model
WEBAGENT-R1
(Step 1)

WEBAGENT-R1
(Step 2)

WEBAGENT-R1-COT
(Step 1)

Model Output

<think> # Element: the ‘REPORTS’ section on the left sidebar.
<answer> do(action=“Click"”, element=“7") </answer>

<think> # Element: the ‘Bestsellers’
section in the ‘REPORTS’ </think>
<answer> do(action=“Click”, element=“27") </answer>

<think> I need to find the top-3 best-selling products for January 2023.
Let me look at the current dashboard. The left sidebar has a "Reports”
section (element 7) which is critical for accessing sales data. The
dashboard’s main content shows a table with a product (“Sprite Yoga Strap
6 foot”) and quantity (6), but this appears to be static local sales data
rather than a report. Since the user needs a specific monthly ranking,
the Reports section is the logical path to business intelligence tools
that can aggregate and sort data by time period. Clicking “Reports” will
likely reveal options for sales analytics, performance tracking, or product
rankings required to identify top-selling items in January 2023. </think>
<answer> do(action=“Click”, element=“7") </answer>

</think>

report option under the ‘Products’

<think> Alright, let’s break down my thought process here. The user wants
the top-3 best-selling products for January 2023. I previously clicked the
“Reports” menu (element 7) to access analytical sections. Now, analyzing
the current HTML structure:

1. *xLocating the Reports Hierarchy#x:

The Reports section’s dropdown (div data-bbox=“88,92,1072,720”) contains
nested menus. Under the “Products” subsection (span data-text=“Products”),

I see options like “Views”,

x“Bestsellers”, “Low Stock”, etc.

2. **xIdentifying the Target Element**:

The element with

WEBAGENT-R1-COT
(Step 2)

Other options like

ild=sr
directly matches the user’s request.
access sales performance data.
3. **Ruling Out Distractors*x:
“Orders”
specifically target product performance.

is explicitly labeled ‘Bestsellers’, which
This is the most logical path to

under the Sales section don’t
The “Bestsellers” report is

or “Tax”

tailored to rank products by sales volume, making it the correct choice.
4. x*Next Step Justificationx*:

(element 27) will likely load a report listing
products by sales quantity or revenue. From there, I can extract the top-3
entries for January 2023.
**xDecisionx*: Proceed to click element 27 to access the Bestsellers report,
which is the most direct route to fulfill the user’s query. </think>
<answer> do(action=“Click”, element=“27") </answer>

Clicking “Bestsellers”

For RL training, we use a constant learning rate of
le-6 with a batch size of 16. The KL divergence
regularization coefficient 8 and the clip ratio € are
set to 0.001 and 0.2, respectively. The maximum
context length and number of new tokens are set to
16,384 and 1024. For efficient LLM rollouts during
M-GRPO, we use vLLM (Kwon et al., 2023) with
a tensor parallel size of 1 and a GPU memory uti-
lization ratio of 0.7. Rollout sampling is performed
with both the temperature and top-p set to 1.0.

C Data Augmentation for Behavior
Cloning with long-CoT Traces

As introduced in the ablation study (§ 3.4), we
augment the original behavior cloning data by gen-
erating long-CoT traces using a strong reasoning

14

model, QwQ-32B. We then apply SFT to obtain a
long-CoT SFT model, followed by RL training to
obtain WEBAGENT-R1-COT. As shown in Table 4,
WEBAGENT-R1-COT is able to generate more de-
tailed thinking compared to WEBAGENT-R1.

D Prompt Templates

The prompt used for data augmentation is shown in
Table 5. We define the action space in the system
prompt, which is presented in Table 6. By default,
we use the version with the thinking format.

E Qualitative Examples

In Figures 610, we present a real-world successful
trajectory generated by WEBAGENT-R1 for each
of the five websites in WebArena.

Table 5: Prompt used for long-CoT data augmentation, with example fill-ins for the fields user intent, action history,
current observation, next action, and remarks, all of which are available in the original behavior cloning data. The
full HTML content in current observation is omitted for clarity.

Long-CoT Data Augmentation Prompt

You are an expert in explaining the behaviors of web agents. The agent is designed to help a human user navigate the website
to complete a task. Given the user’s intent, the agent’s action history, the current HTML content of the web page, and the
agent’s next action associated with optional remarks, your goal is to explain the decision-making process from the agent’s
perspective using first-person narrative (as if the decision is being made in real time).

User Intent: “Establish a new discussion platform called ‘VirtualRealityVanguard’. It should serve
as a cutting-edge forum where VR aficionados can engage in conversations about the newest trends,
games, and applications in the virtual reality realm. Please ensure the sidebar features the
following tags: virtual reality, technology, trends, gaming.”

Action History:
L

{
"round”: "@",
"observation”: "#x Simplified html **",
"remarks"”: "# Element: the 'Forums' link at the top center”,
"action"”: "do(action="Click"”, element="1")"

35

{
"round”: "1",
"observation”: "#x Simplified html **",
"remarks"”: "# Element: the 'Create forum' button next to the 'List of forums' title”,
"action"”: "do(action="Click"”, element="17")"

} ’

{
"round”: "2",
"observation”: "x*x Simplified html %",
"remarks"”: "# Element: the 'Name' field at the top of the page”,
"action"”: "do(action="Type", argument="VirtualRealityVanguard”, element="12")"

3

]
Current Observation: <html> ... </html>

Next Action: do(action=“Type”, argument=“VirtualRealityVanguard”, element=“14")
Remarks: # Element: the ‘Title’ input field in the middle of the page

Now, please explain the agent’s thinking process using a first-person narrative.

15

Table 6: System prompt for web agents. By default, we use the version with the thinking format (highlighted in
gray). For the variant without the thinking format (discussed in § 3.5), the gray part is simply removed.

System Prompt

You are a professional web browsing agent assistant that can fulfill user’s high-level instructions. Given simplified html of the
browsed webpage at each step, you plan operations in python-style pseudo code using provided functions.

You should first think about the reasoning process as an internal monologue and then decide an action. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., responding in the
following format: <think> ... </think> <answer> ... </answer>.

More details about the code action: Your action should be readable, simple. Please generate **ONLY ONE ACTION** in
one round. Predefined functions are as follows:

def do(action, argument, element):
"""A single browsing operation on the webpage.
Args:
:param action: one of the actions from ["Click”, "Right Click”, "Type", "Search”, "Hover"”,
"Scroll Up", "Scroll Down", "Press Enter”, "Switch Tab”,
"Select Dropdown Option”, "Wait"].
:param argument: optional. Only for "Type", "Search”, "Switch Tab"”, and
"Select Dropdown Option”, indicating the content to type in, page number (start from Q)
to switch, or key to press. "Search” action is equivalent to "Type"” action plus "Enter”.
:param element: optional. Only for "Click", "Right Click", "Type", "Search”,
"Select Dropdown Option”, and "Hover"”. Should be specific element id in the HTML.
Returns:
None. The webpage will be updated after executing the action.

nnn

def exit(message):
"""Ending the browsing process if the assistant think it has fulfilled the goal.
Args:
:param message: optional. If user's instruction is a question, return assistant's answer
in the message based on the browsing content.
Returns:
None.

nnn

def go_backward():
"""Go back to the previous page.

nnn

def go_forward():
"""Go forward to the next page.

nnn

Examples:
e <think> # Element: the ’REPORTS’ section on the left sidebar </think>
<answer> do(action="Click"”, element="7") </answer>

e <think> # Element: the ’Period’ dropdown, middle center </think>
<answer> do(action="Select Dropdown Option”, argument="Month", element="20") </answer>

e <think> # Element: the ’From’ date picker input field, middle center </think>
<answer> do(action="Type", argument="01/01/2023", element="22") </answer>

REMEMBER:

* You can generate **ONLY ONE ACTION** in one round.

* If you have multiple potential actions to explore, you should generate other actions in separate rounds.

* Don’t generate an operation element that you do not see in the screenshot.

» Use “# Element” to describe the element you choose in the HTML.

* Use “# Note” to record information useful to answer the instruction if needed.

* If you find yourself fallen into some sort of loop, try to use another method or change your action.

* If you think a page is still loading or still playing animation and you want to wait a while, use “Wait” action
* You are acting in a real world, try your best not to reject user’s demand. Solve all the problem you encounter.
* If you think you didn’t get expected webpage, you should try using more precise and locative description of the element.
* You should **NEVER** try to use the browser’s address bar at the top of the page to navigate.

* Your answer shouldn’t be in a code snippet format. Just write the function name and its arguments.

* If you use do function to perform “Click”, “Right Click”, “Type”, “Search”, “Select Dropdown Option”, and
“Hover”, the parame element must not be None.

16

Step 1

Dashboard

do(action="Click", element="7")

Step 4

Bestsellers Report
———- @

°

°

do(action="Type", argument="01/31/2023",

element="25")

Step 7

Bestsellers Report

do(action="Scroll Down")

do(action="Click", element="27")

do(action="Select Dropdown Option",
argument="Month", element="20")

exit(message="Top-3 best-selling products in
January 2023 are Impulse Duffle, Overnight
Duffle, and Hawkeye Yoga Short-32-Blue")

Bestsellers Report

Step 2

Step 5

Bestsellers Report

Step 8

| ‘ E

nmp

Step 3

Bestsellers Report

do(action="Type", argument="01/01/2023",

element="22")

Step 6

Bestsellers Report

do(action="Click", element="16")

Figure 6: A real-world example of a successful trajectory generated by WEBAGENT-R 1 on the CMS task
are the top-3 best-selling products in Jan 2023?”.

Step 1

- Opensreetian.
(-]}

Welcome to
OpenStreetMap!

do(action="Click", element="15")

Step 4

Welcome to
OpenstreetMap!

do(action="Click", element="16")

nmp

4 Openstreetiap.

9
e

Welcome to
OpenStreetMap!

Step 2

do(action="Type", argument="Homewood Suites

Southpointe", element="13")

Step b

]

exit(message="The estimated driving time from

Homewood Suites Southpointe to PPG Paints

Arena is 34 minutes.")

nsp

Step 3

Welcome to
OpenstreetMap!

: “What

do(action="Type", argument="PPG Paints Arena",

element="14")

Figure 7: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Map task: “From
my stay at Homewood Suites Southpointe, what’s the estimated driving time to reach PPG Paints Arena?”.

17

Step 1 Step 2 Step 3

One St Markert

L] O St Markert

One Stop Market One Stop Market One Stop Market

e

n

1R oot
E

e

(0w oo
=2E

do(action="Hover", element="14") do(action="Hover", element="16") do(action="Click", element="17")

Step 4 Step 5 Step 6

Living Room Furniture Living Room Furniture

-

do(action="Select Dropdown Option", At L waen exit(message="The living room furniture
argument="Price", element="36") do(action="Click", element="37") category is now listed by descending price.")

Figure 8: A real-world example of a successful trajectory generated by WEBAGENT-R 1 on the Shopping task: “List
products from living room furniture category by descending price”.

Step 1 Step 2 Step 3

Projects

do(action="Click", element="17") do(action="Click", element="21") do(action="Click", element="30")

Step 4 Step 5 Step 6

do(action="Scroll Down") do(action="Click", element="66")

exit(message="TMN_bBn9Z48qVbUFZV45")

Figure 9: A real-world example of a successful trajectory generated by WEBAGENT-R 1 on the GitLab task: “Get
me my RSS feed token” .

18

S G b 1 Srabestonmns search

opeen From Alex Kurtzman and Nancy Drew Creator, Ordered at
Paramounts

ump S nmp ’R .
do(action="Search", argument="Star Trek L oo do(action="Type", argument="Every watch makes
Starfleet Academy", element="4") (i e, clne= 22 me feel like a kid again", element="16")
Step 4 Step b Step 6

= R == eI | Paramounty o
Trek:Starloet .| e
From Alex Kurtzman and Nancy Drew Creator, Ordered at ———" » Hide i forum
Paramount+ e Tootbox
nmp i ———
-] o
e e ()
do(action="Scroll Down") do(action="Click", element="8") ST T (R e Sy el Sl

Academy series has been edited successfully,
adding the line 'Every watch makes me feel like a
kid again' to the body of the post.")

Figure 10: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Reddit task: “Edit
my post on Star Trek Starfleet Academy series by adding a line to the body that says "Every watch makes me feel

"

like a kid again"”.

19

	Introduction
	WebAgent-R1
	Problem Formulation
	Behavior Cloning
	End-to-End Multi-Turn Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Training Dynamics
	Ablation Study
	Analysis

	Related Works
	LLM-based Agents
	Reinforcement Learning for LLMs

	Conclusion
	Web Environment
	Implementation Details
	Data Augmentation for Behavior Cloning with long-CoT Traces
	Prompt Templates
	Qualitative Examples

