

000 CERTIFYING GRAPH NEURAL NETWORKS 001 002 AGAINST LABEL AND STRUCTURE POISONING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Robust machine learning for graph-structured data has made significant progress
011 against test-time attacks, yet certified robustness to poisoning – where adversaries
012 manipulate the training data – remains largely underexplored. For image data,
013 state-of-the-art poisoning certificates rely on partitioning-and-aggregation schemes.
014 However, we show that these methods fail when applied in the graph domain
015 due to the inherent label and structure sparsity found in common graph datasets,
016 making effective graph-partitioning difficult. To address this challenge, we pro-
017 pose a novel semi-supervised learning framework called deep Self-Training Graph
018 Partition Aggregation (ST-GPA), which enriches each graph partition with infor-
019 mative pseudo-labels and synthetic edges, enabling effective certification against
020 node-label and graph-structure poisoning under sparse conditions. Our method
021 is architecture-agnostic, scales to large numbers of partitions, and consistently
022 and significantly improves robustness guarantees against both label and structure
023 poisoning across multiple benchmarks, while maintaining strong clean accuracy.
024 Overall, our results establish a promising direction for certifiably robust learning
025 on graph-structured data against poisoning under sparse conditions.

026 027 1 INTRODUCTION

028 Graph Neural Networks (GNNs) are highly susceptible to adversarial perturbations in their input
029 graph applied at test or training time (Zügner et al., 2018). Subsequently developed empirical
030 defenses are at the continual risk of being rendered ineffective by more sophisticated ways to choose
031 adversarial perturbations (Koh et al., 2022; Mujkanovic et al., 2022). This motivates the development
032 of robustness certificates, which provide provable guarantees about the stability of predictions under
033 worst-case data perturbations, allowing to rigorously assess and mitigate adversarial vulnerabilities.
034 While significant advances in providing such provable guarantees for GNNs against test-time attacks
035 have been made (Günnemann, 2022b; Hojny et al., 2024), certifying robustness of GNNs against
036 data poisoning, where an adversary can manipulate the graph structure (Zügner & Günnemann, 2019)
037 or node-labels (Lingam et al., 2024) at training time, remains largely underexplored.

038 The most effective approaches to derive poisoning robustness guarantees in the image domain rely on
039 partitioning the training data, learning separate (base) classifiers, and aggregating predictions (e.g.,
040 via majority vote) (Levine & Feizi, 2021). However, we demonstrate that these methods fail when
041 directly applied to common graph learning tasks such as node classification. In particular, we find
042 that the core challenge is *sparsity*: both labels and graph structure are often too sparse to provide
043 effective training signals under data partitioning, leading to poor performance for label certificates
044 and vacuous robustness guarantees for structure poisoning. This raises a critical question:

045 *How can we effectively analyze and guarantee the trustworthiness of graph neural networks
046 in the presence of structure and label poisoning, while maintaining their utility?*

047 In this work, we address this challenge by introducing a novel semi-supervised learning framework
048 called deep Self-Training Graph Partition Aggregation (ST-GPA) that successfully overcomes the
049 sparsity problem and enables effective poisoning certification of GNNs against structure and label
050 poisoning (see Figure 1). In particular, our method enriches the subgraphs created through partitioning
051 the original graph, with synthetic data generated using carefully designed self-training approaches.
052 *Self-training* is a concept from semi-supervised learning (Chapelle et al., 2006) that refers to training
053

Figure 1: Deep Self-Training Graph Partition Aggregation (ST-GPA). To certify against *structure poisoning*, the graph’s edges are partitioned. The resulting set of sparse graphs are enriched with informative pseudo-edges and then, an ensemble of GNNs is trained on the partitions. To certify against *label poisoning*, the graph’s node labels are partitions, and the resulting sparsely labeled graphs enhanced with pseudo-labels, before training the ensemble. To *jointly certify* against both poisoning, ST-GPA partitions both the edges and labels and adds pseudo-edges and pseudo-labels.

a model on its own predictions to expand the leverageable training set, **and it has been successfully used in empirical defenses such as Li et al. (2024); Lee & Park (2025)**. Concretely, for each sparsely labeled graph partition, our method efficiently generates synthetic (pseudo) labels, expanding the available node-label set. In a similar spirit, for each sparsely connected subgraph, our method generates synthetic edges through solving a link prediction problem, endowing each subgraph with a more informative structure. Then, by training GNNs as base classifiers on these enriched subgraphs and aggregating their outputs using a majority vote, we obtain strong certificates for label poisoning, structure poisoning, and joint label-structure poisoning. Our contributions are:

- (i) In Section 3 we generalize the partition-and-aggregate paradigm prevalent in the image domain to derive poisoning robustness certificates to non-i.i.d structured data. Then, in Section 4, we **identify and characterize a failure mode** of certifying robustness against poisoning using this paradigm **on graph-structured data** rooted in the label and structure sparsity found in common graph datasets.
- (ii) In Section 5 we propose deep Self-Training Graph Partition Aggregation (ST-GPA), a novel semi-supervised learning framework that augments each partition with carefully obtained pseudo-labels and/or synthetic edges, **overcoming the sparsity problem** when partitioning graph-structured data.
- (iii) ST-GPA is the first effective certificate against structure and label poisoning for node classification with GNNs. In particular, we set a **new state-of-the-art certified poisoning robustness for GNNs** across multiple benchmarks, while being efficient with competitive clean accuracies (see Section 6).

Overall, our work highlights the importance of self-training in certifying poisoning robustness of GNNs and lays the foundation for future work against training-time attacks in the graph domain. We believe that our insights on improving partition-based certification using self-training may be of independent interest beyond graph learning.

2 PRELIMINARIES

We consider an attributed, undirected graph $G \subseteq \mathbb{G}$ described by a feature matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ of m -dimensional features for n nodes and a set of edges $\mathcal{E} \subseteq \{(i, j), i, j \in [n]\}$ with $[n] = \{1, \dots, n\}$, where two nodes i and j are connected if and only if $\{i, j\} \in \mathcal{E}$, and each node belongs to one out of C classes with $\mathbb{Y} = [C]$. We study semi-supervised (transductive) node classification, that is the full graph $G = (\mathcal{E}, \mathbf{X}, \mathbf{y})$ is available at training but its nodes are only partially labeled. This is modeled using a label vector $\mathbf{y} \in (\mathbb{Y} \cup \{-1\})^n$, where entry $y_i \in \mathbb{Y} = [C]$ indicates the label of node i , and $y_i = -1$ means the node i is unlabeled. We model GNNs as functions $f : \mathbb{G} \rightarrow \mathbb{Y}^n$, and collect the labels in the graph in the set $\mathcal{Y} = \cup_{v \in V_{\text{labeled}}} \{(v, y_v)\}$ and the node attributes in the set $\mathcal{X} = \cup_{v \in V} \{(v, \mathbf{X}_v)\}$. We write graph datasets as $D = (\mathcal{E}, \mathcal{X}, \mathcal{Y})$.

108 **Perturbation model.** In this work we study two types of poisoning attacks on graph-structured data:
 109 *label flipping* and *structure perturbations*. To quantify the strength of an attack, we define *attack*
 110 *budgets* r_l, r_s , which bound the number of allowed modifications to labels and structure, respectively.
 111 We model the set of possible poisoned graphs \tilde{G} as a ball centered around the clean graph G :

$$\mathcal{B}_{r_l, r_s}(G) = \left\{ \tilde{G} = (\tilde{\mathcal{E}}, \tilde{\mathbf{X}}, \tilde{\mathbf{y}}) \mid \delta(\tilde{\mathbf{y}}, \mathbf{y}) \leq r_l, \Delta(\tilde{\mathcal{E}}, \mathcal{E}) \leq r_s \right\} \quad (1)$$

114 where $\Delta(\mathcal{X}, \mathcal{Y}) = |(\mathcal{X} \setminus \mathcal{Y}) \cup (\mathcal{Y} \setminus \mathcal{X})|$ is the symmetric difference between two sets, and
 115 $\delta(\tilde{\mathbf{y}}, \mathbf{y}) = \sum_{i=1}^n \mathbf{1}_{\tilde{y}_i \neq y_i}$ is the number of different entries between two vectors (i.e. Hamming
 116 distance). Equation (1) models three different perturbation models: (i) label flipping ($r_l > 0, r_s = 0$);
 117 (ii) structure poisoning ($r_l = 0, r_s > 0$); and (iii) both together ($r_l > 0, r_s > 0$).

118 **Deep partition aggregation.** State-of-the-art certified robustness guarantees for supervised image
 119 classification under poisoning attacks have been achieved via the partition-and-aggregate paradigm.
 120 The most prominent implementation of which is Deep Partition Aggregation (DPA) (Levine & Feizi,
 121 2021). Here, the core idea is to partition an i.i.d training dataset D into k disjoint subsets and to train
 122 independent classifiers $f_D^{(i)} : \mathcal{X} \rightarrow \mathcal{Y}$ deterministically on each partition i . At inference time, for a
 123 given input image $x \in \mathcal{X}$, the final prediction is made via *majority vote* across all base classifiers:

$$g_D(x) = \arg \max_{c \in \mathcal{Y}} n_c(D, x), \quad (2)$$

124 where $n_c(D, x) = \sum_{i=1}^k \mathbf{1}[f_D^{(i)}(x) = c]$ counts the number of classifiers predicting class c for input x .
 125 This setup enables a formal robustness guarantee for the aggregated prediction under poisoning:

126 **Theorem 1** (Levine & Feizi (2021)). *Given a clean dataset D , the majority-vote prediction remains
 127 unchanged, i.e. $g_D(x) = g_{\tilde{D}}(x)$, for any perturbed dataset $\tilde{D} \in \mathcal{B}_r(D)$ bounded by the attack budget
 128 r , as long as*

$$r \leq \left\lfloor \frac{n_c(D, x) - \max_{c' \neq c} (n_{c'}(D, x) + \mathbf{1}_{c' < c})}{2} \right\rfloor, \quad (3)$$

129 where $c = g_D(x)$ is the predicted class on the clean dataset.

3 GENERALIZED DEEP PARTITION AGGREGATION FOR NON-I.I.D. DATA

130 Even though DPA has been formulated for image data, the general paradigm to derive poisoning
 131 guarantees can be readily generalized to non-i.i.d. structured data. The main idea is based on
 132 recognizing that deriving a guarantee like Theorem 1 does not depend on the i.i.d. nature of the
 133 dataset, but rather on a partitioning scheme h where the potentially poisoned objects are partitioned
 134 into subsets *independent* of one another. In particular, it can be formulated w.r.t. a general set of
 135 objects \mathcal{O} that may be poisoned, where $o_1 \in \mathcal{O}$ may not be independent of another $o_2 \in \mathcal{O}$ (e.g., in a
 136 graph, one node may not be independently sampled from another node), as long as the partition o_1 is
 137 grouped into, is not affected by the value of any other element in \mathcal{O} , and thus, **poisoning any object
 138 can only affect exactly one partition**.

139 Concretely, to formulate a split-and-majority voting certificate for general potentially structured data,
 140 assume a dataset $D = (\mathcal{T}, \mathcal{O})$ consists of a set of objects \mathcal{T} that are known to be clean and a set of
 141 objects \mathcal{O} that may be poisoned. For example, for i.i.d. image data $\mathcal{O} = \{x_i\}_{i=1}^n$ and $\mathcal{T} = \emptyset$. Then,
 142 k partitions \mathcal{P}_i with $i \in [k]$ are created as follows:

$$\mathcal{P}_i := (\mathcal{T}, \{o \in \mathcal{O} \mid h(\mathcal{T}, o) = i \pmod k\}) \quad (4)$$

143 where h is a deterministic (hash) function that takes \mathcal{T} and one $o \in \mathcal{O}$ as input and outputs a number
 144 in \mathbb{N} representing the partition index, into which the given object o should be grouped. Then, one
 145 independently trains base classifiers $f_D^{(i)} : \mathbb{X} \rightarrow \mathbb{Y}$ on each partition \mathcal{P}_i , where \mathbb{X} represents a general
 146 data domain. Without loss of generality, we assume $f_D^{(i)}$ to output a scalar class prediction, i.e.,
 147 $\mathbb{Y} \subseteq \mathbb{N}$. For example, for node classification, the data domain can be defined as $\mathbb{X} = (\mathbb{G}, \mathbb{N}_0)$ where
 148 \mathbb{G} is the set of possible graphs and the second element in the tuple refers to the index of a node, for
 149 which a class prediction is sought.¹ Now, given an input $x \in \mathbb{X}$, the final prediction is made as in
 150 DPA for images via a majority vote across all base classifiers (Equation (2)), which we denote $g_D(x)$.

151 ¹If $f_D^{(i)}$ outputs a vector for several indexable objects (e.g., nodes in a graph), this can be equivalently
 152 represented as a scalar prediction for each indexable object, where the index of the object for which the
 153 prediction is sought for, is part of \mathbb{X} .

162 Lastly, for general data domains, the set difference $\Delta(D, \tilde{D})$ may not always be an appropriate
 163 distance measure, and different choices of the hash function h may affect how many partitions $d_h \in \mathbb{N}$
 164 are affected when poisoning an object $o \in \mathcal{O}$. Thus, assume a general distance function $d(D, \tilde{D})$
 165 between the clean dataset D and the perturbed dataset \tilde{D} . Further, assume that a perturbation of size
 166 $d(D, \tilde{D})$ leads to at most p changed partitions given h . Then, the scalar d_h links the perturbation size
 167 $d(D, \tilde{D})$ to the upper bound p on the number of changed partitions as follows: $d_h \cdot d(D, \tilde{D}) \geq p$.
 168 Exemplary, $d_h > 1$ if one object is partitioned (duplicated) into multiple partitions as done by Wang
 169 et al. (2022). Now, we can state the following general theorem that follows the proof strategy outlined
 170 by Levine & Feizi (2021) and we refer to Appendix C.1 for a formal proof:

171 **Theorem 2** (Generalized DPA). *Given a clean, possible non-i.i.d and structured dataset D , and a
 172 poisoned dataset \tilde{D} , the majority-vote classifier prediction remains unchanged, i.e., $g_D(x) = g_{\tilde{D}}(x)$,
 173 as long as $d_h d(D, \tilde{D}) \leq \lfloor (n_c(D, x) - \max_{c' \neq c} (n_{c'}(D, x) + \mathbb{1}_{c' < c})) / 2 \rfloor = r_m(D, x)$, where $c =$
 174 $g_D(x)$ is the predicted class on the clean dataset.*

175 We refer to the right-hand side of the condition in Theorem 2 as the *robust margin* $r_m(D, x)$ of a
 176 sample x given a dataset D . To conclude, we need to find a (hash) function h , a scalar d_h , and a
 177 distance measure $d(D, \tilde{D})$ to get a robustness guarantee for an ensemble classifier with Theorem 2.

178 **Generalized DPA for Graphs.** We define a general hash function in Equation (5) that allows to
 179 partition a graph based on its node features \mathcal{X} . This hash function can be used for all three perturbation
 180 models captured by Equation (1), as we detail below.

$$h(\mathcal{X}, o) = \begin{cases} h(X_i||X_j) + h(X_j||X_i) & \text{if } o = \{i, j\} \in \mathcal{E} \\ h(X_v) & \text{if } o = (v, \mathbf{y}_v) \in \mathcal{Y} \end{cases} \quad (5)$$

181 The hash function $h(\mathcal{X}, o)$ determines the partition index for an edge, by taking the features of the
 182 incident nodes and concatenating them. We add both orderings to make the partitioning process
 183 invariant to the actual node order. When partitioning labels, $h(\mathcal{X}, o)$ takes the corresponding node’s
 184 features as input. The h in Equation (5) can be any hash function, but we choose the MD5 hash in
 185 this work to make it simple to take in strings and convert the output to non-negative integers. As each
 186 edge or label is in exactly one partition, $d_h = 1$.

187 Finally, we choose three distance metrics for the three different threat models. For **label poisoning**,
 188 we take the Hamming distance $\delta(\mathbf{y}, \tilde{\mathbf{y}})$ between label vectors. For **graph structure poisoning**, we use
 189 the symmetric set difference $\Delta(\mathcal{E}, \tilde{\mathcal{E}})$ between edge sets. Note that inserting or deleting an edge in the
 190 graph leads to $\Delta(\mathcal{E}, \tilde{\mathcal{E}}) = 1$ and the modification of an edge to $\Delta(\mathcal{E}, \tilde{\mathcal{E}}) = 2$. Similarly, the insertion
 191 or deletion of an edge leads to exactly one affected partition based on h , but a modification of an
 192 edge affects two. For a **combination of label and structure poisoning**, we add up the two distances
 193 $d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}})) = \delta(\mathbf{y}, \tilde{\mathbf{y}}) + \Delta(\mathcal{E}, \tilde{\mathcal{E}})$. This is indeed a distance metric and the proof can be found in
 194 Appendix C.2. Given the graph dataset D from Section 2, plugging in the different distance measures
 195 along with our h from Equation (5) and $d_h = 1$ into Theorem 2, we get the following conditions for
 196 our certificates to hold:

$$\text{i. } \tilde{G} \in \mathcal{B}_{r_l > 0, r_s = 0}(G) : \delta(\mathbf{y}, \tilde{\mathbf{y}}) \leq r_m(D, x) \quad (\text{label-flipping certificate}) \quad (6)$$

$$\text{ii. } \tilde{G} \in \mathcal{B}_{r_l = 0, r_s > 0}(G) : \Delta(\mathcal{E}, \tilde{\mathcal{E}}) \leq r_m(D, x) \quad (\text{structure-poisoning certificate}) \quad (7)$$

$$\text{iii. } \tilde{G} \in \mathcal{B}_{r_l > 0, r_s > 0}(G) : d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}})) \leq r_m(D, x) \quad (\text{certifying both}) \quad (8)$$

207 where $r_m(D, x)$ is the robust margin introduced in Theorem 2. In the context of transductive node
 208 classification, x refers to a node that we seek to classify in the graph D . In general, x could refer to a
 209 node in an arbitrary graph different to D .

210 4 LIMITATIONS OF THE SIMPLE PARTITIONING IN THE GRAPH DOMAIN

211 We first expose that the partitioning scheme used by DPA does not work well on graph datasets due
 212 to their inherent label and structure sparsity. In the context of image classification, obtaining provable
 213 poisoning robustness through partitioning yields significant results (Levine & Feizi, 2021). For
 214 example, using 1,000 partitions on CIFAR-10 achieves a certified accuracy of 50% against 392 label

flips. The key factor in deriving strong robustness guarantees through partitioning is the number of partitions k . Increasing the number of partitions increases the possible perturbation budget. Notably, the maximum number of tolerated perturbations before the certified ratio drops to 0% is $\lfloor \frac{k}{2} \rfloor$. As a result, the number of partitions k should be as large as possible to produce good certified radii. In image datasets, the primary constraint on increasing k is the size of the training dataset. With 50,000 training images in CIFAR-10, it is feasible to use $k = 1,000$ partitions while maintaining acceptable performance of the base classifiers $f_D^{(i)}$.

However, this approach does not translate straightforwardly into the graph domain. In particular, common graph datasets typically contain significantly fewer labeled training samples (nodes) compared to image datasets (see Table 1 in Appendix A). For label-flipping attacks, applying the partitioning scheme naively to node labels results in partitions with very few labeled nodes – often fewer than the number of classes. For example, as illustrated in Figure 2, when using 40% of nodes for training on Cora-ML, having $k = 281$ partitions yields an average of only 4 labeled nodes per partition. This restricts the certification bound to 140 label flips, and base classifiers suffer from significantly reduced performance, as each model only has access to on average 4 labels during training. Even worse, Figure 4(a) shows that choosing $k = 80$ partitions already leads to a clean accuracy of only close to 40% of an ensemble of GCNs (Kipf & Welling, 2017) on Cora-ML, whereas a GCN trained without partitioning achieves $\sim 78.77\%$ accuracy.

Similarly, for structure partitioning the graph structure rapidly deteriorates as edges are divided among partitions, rendering the partitions ineffective for GNNs. This is illustrated in Figure 3, where we plot the mean of average node degrees across partitions. When the number of partitions roughly exceeds $k > 50$, the connectivity in the individual partitions’ subgraph becomes virtually nonexistent. Since GNNs rely on various forms of message passing to aggregate information from graph neighborhoods, partitions with sparse or disconnected edges severely impair their ability to learn meaningful representations. Under such conditions, the base classifiers’ performance deteriorate to that of a multilayer perceptron (MLP), which, however, is already inherently robust to structure perturbations since it does not utilize potentially poisoned edge information.

Overall, partitioning-based robustness certificates cannot be naively applied in the graph domain due to the inherent label and structure sparsity, motivating the need for more sophisticated methods.

5 DEEP SELF-TRAINING GRAPH PARTITION AGGREGATION

To address these sparsity challenges, we propose various semi-supervised learning methods to enhance the performance of the weak classifiers by selecting either pseudo-labels or edges, or both, on each partition’s limited training data. In this way, we obtain strong certificates on graph datasets.

5.1 SEMI-SUPERVISED LEARNING FOR LABEL GENERATION

To maximize the utilization of the limited available labels within each partition, we employ two complementary pseudo-label generation methods: (i) co-training (CT), and (ii) self-training (ST). *First*, the co-training method leverages the graph structure to propagate existing labels to neighboring nodes. While the previous work (ParWalks, Wu et al. (2012)) also generates pseudo-labels for the training of a GNN as proposed by Li et al. (2018), its high computational complexity renders this approach impractical for larger graph datasets. Instead, we propose the use of label propagation (LP) (Zhu & Ghahramani, 2003) to significantly speed up the co-training process. The key advantage of LP is that it does not require computing the inverse of a Laplacian matrix inherent to ParWalks, and can be efficiently applied to large graph datasets. *Second*, for self-training we propose training a GNN on the existing labeled data and selecting the most confident predictions, as determined by their softmax scores, to serve as pseudo-labels for subsequent training iterations. Notably, both methods

Figure 2: Label sparsity (Cora-ML)

access to on average 4 labels during training. Even worse, Figure 4(a) shows that choosing $k = 80$ partitions already leads to a clean accuracy of only close to 40% of an ensemble of GCNs (Kipf & Welling, 2017) on Cora-ML, whereas a GCN trained without partitioning achieves $\sim 78.77\%$ accuracy.

Figure 3: Graph structure sparsity (on Cora-ML)

270

Algorithm 1 ST-GPA against label flipping

271

Require: Graph dataset $D = (\mathcal{E}, \mathcal{X}, \mathcal{Y})$, selectiveness t , co-training method $CT(\mathcal{E}, \mathcal{X}, \mathcal{Y}, t)$, self-training method $ST(\mathcal{E}, \mathcal{X}, \mathcal{Y}, t)$, training order $o_t = \{CT, ST\}^m$, hash function h

Ensure: A robust ensemble classifier g

- 1: split labels into partitions
- 2: $y_i = \{y | y \in \mathcal{Y}, h(\mathcal{X}, y) \equiv i \pmod{n}\}$
- 3: **for** each partition i **do**
- 4: $\hat{y} = op(\varepsilon_i, \mathcal{X}, y_i, t)$
- 5: $y_i = y_i \cup \hat{y}$
- 6: **end for**
- 7: train f_i on $\hat{D} = \{\mathcal{E}, \mathcal{X}, y_i\}$
- 8: **end for**
- 9: count base classifier predictions $n_c(v)$
- 10: **return** $g(v) = \arg \max_{c \in [C]} n_c(v)$

287

(co- and self-training) can be applied consecutively as we demonstrate in Section 6, where we observe that applying first co-training and then self-training works best (Figure 5(a)).

290

In LP we propagate a score matrix $S \in \mathbb{R}^{n \times c}$ in which $S_{i,j}$ represents the likelihood of node i belonging to class j . S is initialized to be the one-hot encoded label matrix $\mathbf{Y} \in \mathbb{R}^{n \times c}$ as in Equation (9) (where an unlabeled node has a row of zeros in \mathbf{Y}), and propagated with the normalized adjacency matrix $\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$, with a probability of $1 - \alpha$ to randomly teleport to a labeled node, as shown in Equation (10), which is iterated until convergence or a cutoff iteration.

295

$$S^{(0)} = \mathbf{Y} \quad (9)$$

296

$$S^{(i+1)} = \alpha \tilde{\mathbf{A}} S^{(i)} + (1 - \alpha) \mathbf{Y} \quad (10)$$

298

Both co-training and self-training result in a score matrix $S \in \mathbb{R}^{n \times c}$, which is used for selecting pseudo-labels. We introduce hyperparameter t representing the number of pseudo-labels with the highest scores added *per class* via either method to control the selectiveness. A lower t adds less but often higher-quality pseudo-labels, while higher t adds more but less-confident ones. Using these methods, we present the full certification pipeline against label flipping in Algorithm 1.

303

5.2 SEMI-SUPERVISED LEARNING FOR EDGE GENERATION

305

Motivated by the concept of self-training in graph machine learning, we extend semi-supervised learning to edge prediction by generating pseudo-edges instead of pseudo-labels. Guided by the homophily assumption, we generate pseudo-edges that connect node pairs likely belonging to the same class based on a model trained on the current graph. Here, modern link prediction methods (Zhang & Chen, 2018; Kazi et al., 2023) struggle as the edges in every partition are extremely sparse (see Section 4). Instead, we try to capture the overall graph structure and dilute the effect of possible inter-class edges by adding in a denser graph than the original one. Within each partition, we first train a GNN to obtain initial node predictions and confidence scores, typically represented by the softmax outputs of the final GNN layer. We then iteratively add edges between node pairs with the highest sum of confidence of being in the same class. The number of edges added is controlled by a hyperparameter ε , which specifies the multiplier of the number of added edges within each partition relative to the original graph. Using this expanded edge set, a second GNN is trained to produce final predictions used for certification. Our certification pipeline against structure perturbation is outlined in Algorithm 2. On first sight, a downside of our link prediction scheme is that we sample a denser graph for each partition than the original one. If this is implemented naively, it will have roughly $O(kn^2)$ time and memory complexity, which does not scale well with the graph size and the number of partitions. To address this, we introduce an efficient algorithm in Appendix D.1, which has a near-linear complexity based on managing a global edge-candidate heap.

323

With the proposed methods addressing either label flipping or structure perturbations, a scheme for certifying against *both types of attacks* becomes possible. We partition both the poisoned labels and

Algorithm 2 ST-GPA against structure pert.

Require: Graph dataset $D = (\mathcal{E}, \mathcal{X}, \mathcal{Y})$, selectiveness ε , link prediction method $LinkPred(e_i, \mathcal{X}, \mathcal{Y}, \varepsilon)$, hash function h

Ensure: A robust ensemble classifier g

- 1: split edges into partitions
- 2: $e_i = \{e | e \in \mathcal{E}, h(\mathcal{X}, e) \equiv i \pmod{n}\}$
- 3: **for** each partition i **do**
- 4: $\hat{e}_i = LinkPred(e_i, \mathcal{X}, \mathcal{Y}, \varepsilon)$
- 5: $e_i = e_i \cup \hat{e}_i$
- 6: **end for**
- 7: count base classifier predictions $n_c(v)$
- 8: **return** $g(v) = \arg \max_{c \in [C]} n_c(v)$

Figure 4: The effectiveness of our proposed method demonstrated by the increase in certified accuracy, compared to the vanilla partition-based approach. (a) and (b) are certified against label flipping (LF) with $k = 80$ and $k = 500$ partitions respectively; (c) and (d) are certified against structure perturbations (SP) with $k = 800$ partitions; (e) is certified against both (LF&SP) with $k = 250$ partitions. We showcase the stark improvement of robustness both on Cora-ML and PubMed, demonstrating that our method works for both smaller and larger graphs. The red lines in (c) and (d) represents the performance of an infinitely robust MLP, serving as a trivial baseline for structure perturbation. **The green dots are the non-robust clean accuracies of the same model trained without any partitions.**

edges into partitions, perform semi-supervised edge and label generation iteratively, and obtain the final base classifier by training on the extended edges and labels, before we take the majority vote and compute the certificates.² We provide pseudocode for this joint pipeline in Appendix D.2.

6 EXPERIMENTAL EVALUATION

In this section, we investigate the robustness guarantees derived by deep self-training graph partition aggregation and showcase the improvement of ST-GPA compared to vanilla partition aggregation on graphs. We provide code to reproduce our results in the reproducibility statement.

Experimental details. We demonstrate results for transductive node classification on four datasets: Cora-ML (Bojchevski & Günnemann, 2018), and the three Planetoid datasets CiteSeer, Cora, and PubMed (Yang et al., 2016); and for three GNNs: Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), Graph Attention Networks (GAT) (Veličković et al., 2018), and APPNP (Gasteiger et al., 2018). To train a robust classifier, we partition the datasets as described in Section 5. Each round of semi-supervised learning using ST-GPA adds pseudo-labels or edges to the training sets of the individual partitions, while keeping the partitions isolated. We train an ensemble classifier after each round of pseudo-label or pseudo-edge generation to investigate the effect of the individual semi-supervised learning steps. Results are reported using *certified accuracy*, which is the percentage of test nodes whose predictions are provably correct, as a function of the perturbation size defined in Equation (1). In all figures, the colored areas represent the standard deviation over 3 deterministically chosen seeds. We represent a baseline ensemble classifier trained on partitions without any semi-supervised learning as dashed lines. It is important to note that unlike as in label flipping, Multi-Layer Perceptrons (MLPs) exhibit infinite robustness against structure perturbations, since they do not utilize edge information during training. Consequently, any model with certified accuracy against structure perturbations below that of an MLP is trivial. Thus, we include an MLP as baseline as a red-dotted line in the structure perturbation plots. In these plots, we discard the trivial part of the curve below this baseline. We provide further details on our experiment setup in Appendix A.

ST-GPA yields strong certified robustness. Figure 4 demonstrates the stark improvement of certified accuracies by our proposed certification method ST-GPA, against label flipping (Figures 4(a) and 4(b)), structure perturbation (Figures 4(c) and 4(d)), and both label and structure perturbations (Figure 4(e)). If the partitioning is applied without our proposed semi-supervised learning strategy, we only get marginal certified accuracy curves (orange dashed lines), due to the sparsity of labels or edges as discussed in Section 4. In the structure case on Cora-ML (Figure 4(c)), the clean accuracy of an ensemble GCN is even worse than an infinitely robust MLP, rendering the naive approach ineffective. In contrast, with our method we restore the ensemble classifier’s clean accuracy to a higher level **compared to an ensemble without semi-supervised learning**, typically around 70% to 80%, and this also allows the certified accuracy curves to drop down slower, meaning higher certified accuracy against the same number of perturbations. **We included the non-robust clean accuracy of a GCN**

²We do edge generation first, since we find co-training relies on meaningful graph structure.

Figure 5: (a) Different orders of co-training and self-training against label flipping on Cora-ML with $k = 80$ and label propagation as co-training method; (b) Label propagation provides similar performance in co-training compared to ParWalks (Wu et al., 2012) while being scalable to larger graphs, demonstrated on Cora-ML with 80 partitions; (c) Our method provides significant improvements on PubMed with 200 partitions with link prediction, co-training then self-training, while stacking more rounds of semi-supervised learning in said order yields further but marginal improvement.

trained without any partitioning as a reference. Table 2 in Appendix A reports clean accuracies on other datasets with other models.

In our certificate against label flipping, we demonstrate the effect by the order of co-training and self-training in Figure 5(a). We find that first co-training and then self-training generally works best. This is because doing self-training first means training GNNs on very sparsely labeled partitions. With $k = 80$ partitions, each partition contains on average only about 10 labels on smaller datasets. In contrast, co-training with label propagation does not require a preliminary training step and effectively leverages the graph structure despite the extremely low label rate, producing high-quality pseudo-labels that can be further improved by subsequent self-training rounds. This effect is prevalent in all datasets as we show in Figure 8 in Appendix B.2. Consequently, we adopt this order for experiments with all other attack models involving label flipping.

In our certificate against both label flipping and structure perturbations, we perform link prediction, then co-training with label propagation, and finally self-training on labels. We perform several rounds

Figure 6: In (a) to (c) our method improves the vanilla partition-based certificate regardless of the GNN type; (d) to (f) demonstrate for GCNs that our method scales very well for larger number of partitions k , which provides better certificates.

432 of edge and label generation in this order because label propagation relies on the meaningful graph
 433 structure that link prediction generates, and self-training generally works better after co-training, as we
 434 find out in Figure 5(a). In Figure 5(c) we show that our method introduces significant improvements
 435 in the first round, and stacking more rounds of edge and label generation leads to further, yet marginal,
 436 improvements. In Figure 9 in Appendix B.2 we show that our method introduces clean accuracy
 437 improvements even for the smaller graph datasets, although only with very few partitions.

438 **Co-training with label propagation is similarly performant as ParWalks yet scalable.** Since
 439 Li et al. (2018) originally proposed ParWalks in combination with self-training to address low
 440 label rates, we compare ParWalks with label propagation (Zhu & Ghahramani, 2003). As shown
 441 in Figure 5(b), the performance advantage of ParWalks over LP is negligible. This is consistent
 442 across different datasets as shown in Figure 10 in Appendix B.2. Given that label propagation with
 443 random teleportation does not require computing the inverse of the Laplacian, we adopt LP as primary
 444 method.

445 **Our method works with any GNN.** The first row in Figure 6 shows the performance of GCN,
 446 GAT, and APPNP with and without our proposed approach. The results clearly indicate that similar
 447 performance improvements and trends hold across all models, with clean accuracy boosted to around
 448 80% for label, 76% for structure, and about 67% for both. We highlight this feature because the
 449 vanilla partition-based certificates do not assume anything on the classifier itself, and with better
 450 GNNs our method is still compatible for producing even better certificates.

451 **Our method scales well with partitions.** The second row in Figure 6 shows the effect of varying
 452 the number of partitions k . The figures clearly demonstrate the effectiveness and scalability of the
 453 proposed semi-supervised learning methods: as k increases, which is necessary to derive stronger
 454 guarantees, the baseline performance rapidly declines due to the sparsity of labels and structure per
 455 partition. However, our experiments indicate that link prediction, co-training and self-training are
 456 required for non-trivial robustness guarantees. This is supported by more results in Figure 11 in
 457 Appendix B.2. We note that dividing labels to more than 100 partitions becomes impractical given
 458 the training size of 30% in the case of Cora-ML, as partitioning would result in some partitions
 459 containing no labeled nodes, making training on those partitions infeasible.

460 Further experiments regarding how we choose the selectiveness hyperparameter t and ε , and label
 461 propagation teleportation parameter α are included in Appendix B.3.

463 7 DISCUSSION ON LIMITATIONS

464 We've shown that our semi-supervised training scheme is essential for meaningful robustness guarantees
 465 in the graph domain with partition-based methods, and it's powerful and scalable as it applies to
 466 any GNN and any number of partitions. In this section, we address the limitations in this scheme and
 467 show that it hints promising research directions.

468 **Application to heterophilic graphs.** The core scheme introduced by this paper are semi-supervised
 469 learning methods on partitioned labels or edges, namely co-training with label propagation, self-
 470 training, and link prediction. These methods are designed to leverage the homophily assumption,
 471 i.e. nodes with the similar nodes are more likely to be connected. This dependence is exposed
 472 with our evaluation of structure certificates on Wiki-CS(Mernyei & Cangea, 2020), where the graph
 473 neighborhoods are way less homogeneous. Consequently, our link prediction guided by homophily
 474 has little effect of capturing the real graph structure, yielding minimal improvements compared to a
 475 trivial partitioning scheme. In general, heterophilic graphs are an emerging research interest in the
 476 graph learning domain and has a wide range of real-world applications. Applying our method to
 477 them requires heterophilic adaptations of the semi-supervised learning methods, which are individual
 478 research directions on their own. Thus, certified accuracies on heterophilic graphs is beyond the
 479 scope of this paper. Nonetheless, the introduced partitioning and self-training scheme should still
 480 provide strong robustness guarantees when adapted to heterophilic graphs.

481 **Link prediction can be expensive.** In the link prediction against structure perturbations, we tried
 482 to recreate the graph structure isolating the influence of poisoned edges in each partition. Unlike
 483 real-world graphs, the graphs we created by linking intra-class edges are, by design, denser. This
 484 is inherently due to the low signal-to-noise ratio of the link prediction process – the pseudo-edges
 485 generated are, by a small chance, false. To counter this, we typically add in more edges than the
 original graph has, and the idea is to capture the overall graph structure and dilute the effect of

486 inter-class edges. Consequently, the graph we train our classifiers on is semi-dense. This result in a
 487 higher overhead for the training process, both in computation and memory. In Appendix F we report
 488 how the edge ensemble scales in total time for a clearer picture of this drawback. We observe that
 489 our link prediction scheme doesn't bring improvements on larger datasets such as ogbn-arxiv(Hu
 490 et al., 2020), where the graph is denser and larger, and we do not have the capacity in time to run our
 491 link prediction algorithm, as shown in Table 5 in Appendix F. The solution to this problem would be
 492 the utilization of other link prediction algorithms, and this is not trivial as most state-of-the-art link
 493 prediction algorithms are designed to operate on original full graphs instead of the sub-sampled sparse
 494 partitions. However, given the competitive structure certificates we obtained on small to medium
 495 graph datasets, we believe that link prediction is essential to achieve better certified accuracies than
 496 an MLP in the context of graph structure perturbations.

497 8 RELATED WORK

498 While robustness certification against test-time attacks is well researched for i.i.d. data as well as for
 499 the graph domain (Günnemann, 2022a; Scholten et al., 2022; Hojny et al., 2024), there are few works
 500 studying certification against changes to the training data. For the image domain, there are three main
 501 approaches: (i) partition-and-aggregate (Levine & Feizi, 2021), (ii) randomized smoothing (over the
 502 training data) (Weber et al., 2023), and (iii) differential privacy (Ma et al., 2019); and we refer to
 503 Gosch et al. (2025) for a representative survey. Most related to our work is the partition-and-aggregate
 504 scheme (Levine & Feizi, 2021), which saw many follow-up works (Wang et al., 2022; Chen et al.,
 505 2022; Rezaei et al., 2023). However, it was only applied to the image domain. Regarding graphs,
 506 Lai et al. (2024b) develop a probabilistic poisoning certificate against node-injection following the
 507 randomized smoothing approach that they extended to collective certification in Lai et al. (2024a),
 508 which however is not applicable to the perturbation models studied in this work. Gosch et al. (2025)
 509 develops a novel certification paradigm, which is first applied to certify node-feature poisoning
 510 and later extended to label poisoning (Sabanayagam et al., 2025), but in both cases is limited to
 511 infinite-width GNNs. **Further, the label certificate by Sabanayagam et al. (2025) does only scale to**
 512 **datasets having at most 100-200 training labels and thus, does not scale to even our smallest datasets.**
 513 Li et al. (2025) apply partitioning to derive poisoning certificates for GNNs. However, they do not
 514 certify against label flipping, and their structure certificates are below the performance of an MLP
 515 (see Appendix E) and thus, vacuous. Further, their feature certification is only applicable to graph
 516 classification, as every node is in every partition.

517 9 CONCLUSION

518 In this paper, we present a self-training framework (ST-GPA) that significantly improves certified
 519 robustness against data poisoning in sparse graph-structured data domains. By adding both synthetic
 520 labels and structure through effective semi-supervised learning techniques, our method overcomes
 521 the limitations of existing partition-based approaches. Empirical results show large improvements in
 522 certified robustness to both label and structure poisoning without compromising clean accuracy. Our
 523 findings highlight that effectively leveraging semi-supervised learning on sparse data is essential for
 524 provably robust graph machine learning against poisoning through partition-based approaches and
 525 offer a promising direction for building more robust models beyond the graph domain.

526 ETHICS STATEMENT

527 This work advances the field of certifiable machine learning by enabling robustness of graph neural
 528 networks against structure and label poisoning attacks, thereby fostering more reliable and trustworthy
 529 machine learning. While there might be many further potential societal consequences of our work,
 530 none which we feel must be specifically highlighted here.

531 REPRODUCIBILITY STATEMENT

532 We ensure reproducibility by providing a detailed description of the models, datasets, hyperparameter
 533 and random seed selection methods in Appendix A. The code to reproduce our results can be found at:
 534 <https://figshare.com/s/3beaf03eb7e2c6c8d4ad>. Our certification pipeline use only deterministically
 535 chosen seeds, so the results are also deterministically reproducible. Alongside the descriptions of our
 536 experimental setup we also provide an overview over all parameters in Table 3.

540 REFERENCES
541

542 Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
543 inductive learning via ranking. In *6th International Conference on Learning Representations, ICLR*
544 2018, 2018.

545 Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. *Semi-Supervised Learning (Adaptive*
546 *Computation and Machine Learning)*. MIT Press, 2006.

547

548 Ruoxin Chen, Zenan Li, Jie Li, Junchi Yan, and Chentao Wu. On collective robustness of bagging
549 against data poisoning. In *International Conference on Machine Learning*, pp. 3299–3319. PMLR,
550 2022.

551 Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Personalized embedding prop-
552 agation: Combining neural networks on graphs with personalized pagerank. *CoRR*, abs/1810.05997,
553 2018.

554

555 Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, and Stephan Günnemann.
556 Provable robustness of (graph) neural networks against data poisoning and backdoor attacks.
557 *Transactions on Machine Learning Research (TMLR)*, 2025.

558 Stephan Günnemann. *Graph Neural Networks: Adversarial Robustness*, pp. 149–176. Springer
559 Nature Singapore, 2022a.

560

561 Stephan Günnemann. Graph neural networks: Adversarial robustness. In *Graph Neural Networks:*
562 *Foundations, Frontiers, and Applications*, pp. 149–176. Springer Singapore, 2022b.

563 Christopher Hojny, Shiqiang Zhang, Juan S. Campos, and Ruth Misener. Verifying message-passing
564 neural networks via topology-based bounds tightening. In *International Conference on Machine*
565 *Learning (ICML)*, 2024.

566

567 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
568 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *CoRR*,
569 abs/2005.00687, 2020.

570 Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein. Differ-
571 entiable graph module (dgm) for graph convolutional networks. *IEEE Transactions on Pattern*
572 *Analysis and Machine Intelligence*, 45(2):1606–1617, 2023.

573

574 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
575 In *International Conference on Learning Representations (ICLR)*, 2017.

576 Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
577 sanitization defenses. *Machine Learning*, 2022.

578

579 Yuni Lai, Bailin Pan, Kaihuang Chen, Yancheng Yuan, and Kai Zhou. Collective certified robustness
580 against graph injection attacks. In *International Conference on Machine Learning (ICML)*, 2024a.

581 Yuni Lai, Yulin Zhu, Bailin Pan, and Kai Zhou. Node-aware bi-smoothing: Certified robustness
582 against graph injection attacks. In *IEEE Symposium on Security and Privacy (SP)*, 2024b.

583

584 Woohyun Lee and Hogun Park. Self-supervised adversarial purification for graph neural networks. In
585 Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj,
586 Kiri Wagstaff, and Jerry Zhu (eds.), *Proceedings of the 42nd International Conference on Machine*
587 *Learning*, volume 267 of *Proceedings of Machine Learning Research*, pp. 33715–33735. PMLR,
588 13–19 Jul 2025.

589 A Levine and S Feizi. Deep partition aggregation: Provable defense against general poisoning attacks.
590 In *International Conference on Learning Representations (ICLR)*, 2021.

591

592 Jiate Li, Meng Pang, Yun Dong, and Binghui Wang. Deterministic certification of graph neural
593 networks against graph poisoning attacks with arbitrary perturbations. In *IEEE/CVF Conference*
on *Computer Vision and Pattern Recognition (CVPR)*, 2025.

594 Kuan Li, YiWen Chen, Yang Liu, Jin Wang, Qing He, Minhao Cheng, and Xiang Ao. Boosting the
 595 adversarial robustness of graph neural networks: An OOD perspective. In *The Twelfth International*
 596 *Conference on Learning Representations*, 2024.

597 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
 598 for semi-supervised learning. In *Proceedings of the Thirty-Second AAAI Conference on Artificial*
 599 *Intelligence (AAAI-18)*, pp. 3538–3545, 2018.

600 Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking label
 601 poisoning for GNNs: Pitfalls and attacks. In *International Conference on Learning Representations*
 602 (*ICLR*), 2024.

603 Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners: attacks
 604 and defenses. In *International Joint Conference on Artificial Intelligence (IJCAI)*, 2019.

605 Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
 606 networks. *arXiv preprint arXiv:2007.02901*, 2020.

607 Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bojchevski. Are defenses for
 608 graph neural networks robust? In *Advances in Neural Information Processing Systems (NeurIPS)*,
 609 2022.

610 Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, and Soheil Feizi. Run-off election: Improved
 611 provable defense against data poisoning attacks. In *International Conference on Machine Learning*
 612 (*ICML*), 2023.

613 Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Günnemann, and Debarghya Ghoshdastidar. Ex-
 614 act certification of (graph) neural networks against label poisoning. In *The Thirteenth International*
 615 *Conference on Learning Representations*, 2025.

616 Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, and Stephan Günnemann.
 617 Randomized message-interception smoothing: Gray-box certificates for graph neural networks. In
 618 *Advances in Neural Information Processing Systems, NeurIPS*, 2022.

619 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 620 of graph neural network evaluation. *CoRR*, abs/1811.05868, 2018.

621 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 622 Bengio. Graph attention networks, 2018. URL <https://arxiv.org/abs/1710.10903>.

623 Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved certified defenses against data
 624 poisoning with (deterministic) finite aggregation. In *International Conference on Machine Learning*
 625 (*ICML*), 2022.

626 Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. RAB: Provable Robustness
 627 Against Backdoor Attacks . In *IEEE Symposium on Security and Privacy (SP)*, 2023.

628 Xiao-ming Wu, Zhenguo Li, Anthony So, John Wright, and Shih-fu Chang. Learning with partially
 629 absorbing random walks. In *Advances in Neural Information Processing Systems*, volume 25.
 630 Curran Associates, Inc., 2012.

631 Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
 632 graph embeddings. *CoRR*, abs/1603.08861, 2016.

633 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. *Conference on*
 634 *Neural Information Processing Systems (NeurIPS)*, 2018.

635 Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
 636 tion. *Journal of Software Engineering and Applications*, 5(7), 2003.

637 Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
 638 learning. In *International Conference on Learning Representations (ICLR)*, 2019.

639 Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
 640 for graph data. In *SIGKDD*, pp. 2847–2856, 2018.

648 A EXPERIMENT SETUP
649

650 **Datasets.** As described in the beginning of Section 6, we use the 3 Planetoid datasets (Yang et al.,
651 Cora, CiteSeer and PubMed, available on pytorch geometric,³ and the citation dataset Cora-ML
652 (Bojchevski & Günnemann, 2018). As a standard procedure in graph machine learning (Shchur et al.,
653 2018), we preprocess all the datasets by taking the largest connected component and force the graph
654 to be undirected. The statistics of the dataset we use can be found in Table 1. The training, validation
655 and test set nodes are determined with scikit-learn’s `train_test_split()` function,⁴ with `random_state`
656 fixed to 12138. We first separate the test nodes’ indices from training and validation (and unused),
657 then use this function again to separate the training set from the validation with the same seed. Only
658 the 30% training labels are available to the model during training. [Additionally, we evaluate the label](#)
659 [certificates on Wiki-CS \(Mernyei & Cangea, 2020\) and ogbn-arxiv \(Hu et al., 2020\), and we use](#)
660 [sample 1/10 of their original splits.](#)

661
662 Table 1: Statistics of Datasets. The number of training labels consist 30% of all nodes. We adopt a
663 30%-10%-30% training-validation-test split across all datasets.

Name	# Nodes	# Training Labels	# Edges	# Features	# Classes	Avg. Degree
Cora-ML	2810	843	7981	2879	7	2.84
CiteSeer	2110	633	3668	3703	6	1.74
Cora	2708	812	5069	1433	7	1.87
PubMed	19717	5915	44324	500	3	2.25
Wiki-CS	11701	586	216123	300	10	18.47
ogbn-arxiv	169343	9600	1166243	128	40	6.89

664
665
666
667
668
669
670 Table 2: Model Clean Accuracies on Datasets. We report the clean accuracy (percentage) on the
671 test nodes with given dataset and model with the standard deviation of 3 repeated experiments with
672 different initialization seeds to the model.

	MLP	GCN	GAT	APPNP
Cora-ML	74.02(0.26)	78.77(2.10)	76.95(0.37)	85.13(0.24)
CiteSeer	70.35(0.20)	67.46(0.45)	64.98(2.38)	72.30(0.61)
Cora	67.78(0.06)	76.18(0.41)	75.77(1.22)	83.39(0.82)
PubMed	73.09(0.05)	83.66(1.33)	79.01(0.56)	87.49(0.41)

673
674 We follow a 30%-10%-30% train-validation-test split of node labels for all experiments following
675 Li et al. (2025). Note that the 10% validation set is typically used for regularization tasks such as
676 hyperparameter tuning and early stopping when training a single GNN. However, since we use a fixed
677 set of hyperparameters and do not employ early stopping, the validation set is not utilized during
678 training.

679 **Model Parameters.** We used Graph Convolutional Networks (GCN)(Kipf & Welling, 2017), Graph
680 Attention Networks (GAT), and Approximate Personalized Propagation of Neural Predictions
681 (APPNP)(Gasteiger et al., 2018) throughout our evaluations.

682 Our GCNs consist of 2 layers of GCNConv layer with added self-loops from pytorch geometric.⁵
683 At the bottleneck we use 8 hidden channels, a dropout layer, and ReLU activation. For GAT we
684 use 2 GATConv layers from pytorch geometric.⁶ The first layer condense the feature channels to 8
685 hidden channels with 8 attention heads, and applies dropout and ELU activation, and the second layer
686 then condense the 8×8 dimension in the middle to class-wise logits. The APPNP model consists
687 of a 2 layer MLP with 8 hidden channels and then an APPNP layer from pytorch geometric⁷ to

688 ³<https://pytorch-geometric.readthedocs.io/en/2.6.0/modules/datasets.html>

689 ⁴https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

690 ⁵https://pytorch-geometric.readthedocs.io/en/2.5.2/generated/torch_geometric.nn.conv.GCNConv.html

691 ⁶https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATConv.html

692 ⁷https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.APPNP.html

702 propagate representations, with number of iterations $K = 10$, and teleport probability $\alpha = 0.1$. In
 703 structure perturbation experiments specifically, we don't use dropout as it provides us with better
 704 results. Additionally, we use an 2 layered MLP as baseline against structure perturbations. It also has
 705 8 hidden units and no dropouts. Note that here in our setup, the GCN with an empty graph is strictly
 706 equivalent to the MLP. Both other attack models use dropouts with a probability of 0.5. All other
 707 unstated parameters follow the pytorch geometric default.

708 **Hyperparameters for Training.** For all GNN training, we use a fixed set of hyperparameters
 709 inherited from Li et al. (2018), which are commonly used in GNN models. Specifically, all models
 710 are trained for 200 epochs without early stopping, using the Adam optimizer with a learning rate
 711 of 0.01 and a weight decay of 5×10^{-4} . However, due to the unstable nature of GNN training, we
 712 choose the epoch with the lowest loss for prediction. To calculate this without overfitting, we separate
 713 the data in each partition in halfs, and use one half for training and another for evaluation of the loss.
 714 Note that this split happens to the partitioned 30% labels or edges each partition have access to.

715 For label propagation, we iterate until the score matrix converges, but cap off at 100 iterations.
 716

717 **Evaluation Process.** As described in Section 5, either all edges, the 30% training set labels, or
 718 both are partitioned for the weak classifiers, depending on different types of attacks. We perform
 719 transductive node classification, meaning that the weak classifiers then have access to all the graph
 720 data $G = (\mathcal{E}, \mathbf{X}, \mathbf{y})$ except for the poisoned items, which are partitioned in the first place.
 721

722 All models are evaluated with at least 3 different deterministically chosen seeds for model initialization
 723 to evaluate the repeatability of our results. The seeds are chosen by python's random module. We
 724 seed the random module with a fixed seed of 123456, and then use random.randint(0, 2**32) to
 725 generate a deterministic random seed each time we repeat an experiment.

726 After the training is done, we evaluate the certified accuracies on the 30% test nodes. This is done by
 727 storing the class predictions of each weak classifier for each node and calculate the robust margin as
 728 introduced in Equation (8). Then the certified accuracies we reported are given by calculating the ratio
 729 of test nodes whose robust margin, together with a specific perturbation size, satisfies Equation (8).

730 **Hyperparameters Summary.** Here we provide a table of all hyperparameters involved as a summary
 731 to our description of the experiment setup, alongside their default values and selection criteria.
 732 Throughout this paper, all hyperparameters take their default values (if any) unless otherwise stated.
 733

734 **Table 3: Hyperparameters**

735 hyperparameter	736 description	737 attack models	738 related models	739 default value	740 selection criteria
741 lr	742 learning rate	743 all	744 all	745 0.01	746 follows Li et al. (2018)
747 wd	748 weight decay	749 all	750 all	751 5×10^{-4}	752 follows Li et al. (2018)
753 ep	754 training epochs	755 all	756 all	757 200	758 follows Li et al. (2018)
759 es	760 early stopping	761 all	762 all	763 None	764 follows Li et al. (2018)
765 init_seed	766 seed for python random module	767 all	768 all	769 123456	770 /
771 repetition	772 number of repeated experiments	773 all	774 all	775 3	776 /
777 num_layers	778 number of layers in the model	779 all	780 all	781 2	782 prevents overfitting
783 hidden_size	784 hidden channels	785 all	786 all	787 8	788 prevents overfitting
789 dropout	790 dropout probability in dropout layers	791 all	792 GCN, GAT	793 0.5	794 prevents overfitting
796 activation	797 activation function between 2 layers	798 all	799 GCN, APPNP, MLP	800 ReLU	801 /
803 GAT		804 all	805 ELU	806	807 /
809 train_size	810 % of labels for training	811 all	812 all	813 30%	814 /
815 val_size	816 % of labels for validation	817 all	818 all	819 10%	820 /
822 test_size	823 % of labels for testing	824 all	825 all	826 30%	827 /
830 <i>k</i>	831 number of partitions	832 LF	833 all	834 80	835 Figure 6
836		837 SP	838 all	839 800	840 Figure 11
842		843 LF&SP	844 all	845 200	846 Figure 6
848 order	849 order of co-training and self-training	850 LF, LF&SP	851 all	852 C/T then S/T	853 Figure 8
854 co-train method	855 ParWalks(PW) or label propagation(LP)	856 LF, LF&SP	857 all	858 LP	859 Figure 10
860 <i>t</i>	861 number of pseudo-labels per class	862 LF, LF&SP	863 all	864 50	865 Figure 13(a)
866 α	867 teleport probability in label propagation	868 LF, LF&SP	869 all	870 0.9	871 Figure 13(b)
874 ε	875 $\times \varepsilon$ pseudo-edges than original graph	876 SP	877 all	878 dataset specific	879 Figure 14

751
 752
 753
 754
 755

756 **B ADDITIONAL EXPERIMENT RESULTS**757 **B.1 CLEAN ACCURACY OF ENSEMBLES**

(a) Partitioning labels (b) Partitioning Edges

Figure 7: Deterioration of clean accuracy of ensembles on Cora-ML. Standard deviations are reported as colored areas over 3 different seeds.

In Figure 7 we show the clean accuracies of an ensemble classifier if the partitioning scheme is applied trivially, i.e. without semi-supervised learning. In the label case, the sparsity degrades the clean accuracy of the ensemble as k goes larger. With $k = 100$ partitions, the clean accuracy drops to just over 20%. In the edge partitioning case, lack of edge information degrades the clean accuracy of an ensemble below that of an MLP's over about $k = 30$ partitions. The deterioration of performance shown here necessitate the introduction of semi-supervised learning schemes within the sparse partitions.

810 B.2 ADDITIONAL RESULTS ON OTHER DATASETS
811

812 In Figure 5, we presented the proof of 3 statements we made in Section 6 with only results on one
813 selected dataset. Here we present results on other datasets as well and prove that the trends concluded
814 in Section 6 still holds with little further explanations. Note that the subfigures marked with (*) are
815 already present in Section 6.

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 8: We show different orders of co-training and self-training against label flipping on different datasets. $k = 80$ unless otherwise stated.

The order of co-train then self-train generally works the best against label flipping. Figure 8 showcases this fact. Our method restores the clean accuracy to generally 70% to 80%, while having higher certified accuracies, despite the poor performance with vanilla partitions.

Figure 9: Different number of rounds of link prediction + co-training + self-training against both label and structure perturbations.

Against both label and structure perturbations on smaller datasets, our method provides improvement but the limit of k prevents meaningful joint certificates. Due to the extreme sparsity of labels and edges if we are facing poisoning of both, we can't use too many partitions, typically limiting k to around 10. Although the curve drops too fast due to a small k , yielding hardly any usable certified accuracy against even 1 poisoned label or edge, our method still provides 15% to 20% clean accuracy increase.

Figure 10: Comparison between our method (co-training with label propagation) and ParWalks (Wu et al., 2012). The results are achieved by co-training then self-training on given datasets, with $k = 80$ partitions unless otherwise stated.

Co-training with label propagation is similarly performant as ParWalks yet scalable. Our method has similar certified accuracy compared to ParWalks across datasets, except for CiteSeer where it's about 10% less. However, we argue that this is compensated by the vastly shorter training time and the characteristic that scales easily to larger datasets by our method.

Figure 11: Scalability over k with our link prediction method.

Link prediction allows arbitrarily large k which generates even better certificates. In Fig. 11, we demonstrate the near-perfect scalability of link prediction on generating certificates. The number of partitions k determines the maximum achievable robustness with the partitioning scheme. Therefore, given sufficient computational resources, increasing k directly leads to improved robustness. Furthermore, we emphasize that k is theoretically unbounded in its capacity to enhance robustness against structure perturbations.

Figure 12: Certifying label flipping on larger graph datasets.

Our co-training and self-training scheme also scales to even larger datasets. Figure 12 shows the performance gain upon a trivial partitioning scheme on Wiki-CS and ogbn-arxiv. Our co-training and self-training generally restores a 60% clean accuracy while having also a higher certified accuracy. We used 1/10 label rate as other datasets to demonstrate this improvement with less partitions. If we use the original split, an even larger k would also be possible.

918
919

B.3 ABLATIONS ON HYPERPARAMETERS

920
921
922
923
924
925
926
927928
929Figure 13: Certifying label flipping on Cora-ML with $k = 80$ partitions.930
931
932
933
934
935
936
937
938
939

The hyperparameter t offers a way to balance between performance and robustness. Figure 13(a) illustrates the impact of varying the number of pseudo-labels t added during training. When t is small, such as $t = 1$ or $t = 10$, the pseudo-labels are too selective and insufficient in quantity to effectively train the subsequent GNN. Conversely, when t is too large, for example $t \geq 600$, the quality of the pseudo-labels deteriorates, which negatively affects the ensemble classifier’s performance. Therefore, selecting an appropriate range for t is critical to achieving optimal certified accuracy. For Cora-ML, this corresponds roughly to the range $50 \leq t \leq 200$. Since $t = 50$ works already quite well and introduce less computation overhead, we fix $t = 50$ for all experiments.

940
941
942
943
944
945

The random teleport probability α is pretty robust, but need to be properly chosen. Figure 13(b) shows the certificates with co-training then self-training, but varying the random teleport probability α . An $\alpha = 0$ means always randomly teleport to a labeled node in co-training, while an $\alpha = 1$ means no random teleport. As demonstrated by the results, the performance generally plateaus when $0.01 \leq \alpha \leq 0.99$. As long as α isn’t chosen to be too large or too small, the certified accuracy remains the best achievable one. We choose to fix $\alpha = 0.9$ for all experiments.

946
947
948
949
950
951
952953
954Figure 14: Certifying structure perturbations on the three smaller datasets with $k = 800$ partitions.955
956
957
958
959
960
961
962

There is a best ε for each dataset that we can tune to maximize robustness. ε serves as a control parameter for the selectiveness in adding pseudo-edges. A too small ε fails to capture sufficient graph structure, while a too large ε introduces noise that reduces the signal-to-noise ratio in the generated graph, thereby degrading performance. So there is a best ε in between, and according to Figure 14, this best value varies a lot between datasets, even though the size of which are similar. To avoid high overheads in all other experiments, we cap ε to 20.

963
964
965
966
967
968
969
970
971

972 C PROOF OF THEOREMS
973974 C.1 PROOF OF GENERALIZED DPA
975976 We restate theorem 2 before proving it:
977978 **Theorem 2** (Generalized DPA). *Given a clean, possible non-i.i.d and structured dataset D , and a
979 poisoned dataset \tilde{D} , the majority-vote classifier prediction remains unchanged, i.e., $g_D(x) = g_{\tilde{D}}(x)$, where $c =$
980 $g_D(x)$ is the predicted class on the clean dataset.*
981982 *Proof.* We first introduce a lemma that gets rid of the floor operation:
983984 **Lemma 3** (Floor operation equivalency).
985

986
$$a \leq \lfloor \frac{b}{2} \rfloor \Leftrightarrow 2a \leq b, \forall a, b \in \mathbb{N} \quad (11)$$

987

988 *Proof.* $a \leq \lfloor \frac{b}{2} \rfloor \leq \frac{b}{2} \Rightarrow a \leq \frac{b}{2}$ and $2a \leq b \Rightarrow a \leq \frac{b}{2} \Rightarrow a = \lfloor a \rfloor \leq \lfloor \frac{b}{2} \rfloor$ \square
989990
991 We use the shorthand notation of n_c being $n_c(D, x)$ and \tilde{n}_c being $n_c(\tilde{D}, x)$, and $r = d(D, \tilde{D})$.
992993 Given Theorem 2 and Lemma 3
994

995
$$2d_h \cdot r \leq n_c - \max_{c' \neq c} (n_{c'} + \mathbf{1}_{c' < c}) \quad (12)$$

996

997 We get rid of the max operation by taking any class and move all terms to one side
998

999
$$0 \leq n_c - n_{c'} - \mathbf{1}_{c' < c} - 2d_h \cdot r, \forall c' \neq c \quad (13)$$

1000

1001 Because the training is conducted in a deterministic manner, the classifier will give the same prediction
1002 if the training data is the same. So the number of weak classifiers that predicts differently for a node
1003 $f_i(v) \neq \tilde{f}_i(v)$ is also at most $d_h \cdot r$. So for any class, the number of predictions changed is bounded
1004 by
1005

1006
$$\forall \bar{c} \in [n_C], |n_{\bar{c}} - \tilde{n}_{\bar{c}}| \leq d_h \cdot r \quad (14)$$

1007

1008 From Equation (14) we plug in $\bar{c} = c$ and $\bar{c} = c'$ to get
1009

1010
$$n_c - \tilde{n}_c \leq d_h \cdot r \quad (15)$$

1011 which is equivalent to
1012

1013
$$\tilde{n}_{c'} - n_{c'} \leq d_h \cdot r \quad (16)$$

1014

1015 Plugging this to Equation (13), we have
1016

1017
$$\forall c' \neq c, 0 \leq n_c - n_{c'} - \mathbf{1}_{c' < c} - 2d_h \cdot r \quad (19)$$

1018

1019
$$\leq \underbrace{\tilde{n}_c + d_h \cdot r}_{\text{Equation (17)}} - \underbrace{\tilde{n}_{c'} + d_h \cdot r}_{\text{Equation (18)}} - \mathbf{1}_{c' < c} - 2d_h \cdot r \quad (20)$$

1020

1021
$$= \tilde{n}_c - \tilde{n}_{c'} - \mathbf{1}_{c' < c} \quad (21)$$

1022

1023 So for the ensemble classifier trained on poisoned data
1024

1025
$$\tilde{n}_c \geq \max_{c' \neq c} (\tilde{n}_{c'} + \mathbf{1}_{c' < c}) \quad (22)$$

1026

1027 and the ensemble classifier's prediction is unchanged because c is the majority. \square
1028

1026 C.2 PROOF OF DISTANCE FUNCTION
10271028 The following is a proof that $d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}}))$ is a distance.
10291030 *Proof.* We recall that $d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}}))$ is defined to be the sum of symmetric set difference between
1031 edges and the hamming distance between labels

1032
$$d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}})) = \Delta(\mathcal{E}, \tilde{\mathcal{E}}) + \delta(\mathbf{y}, \tilde{\mathbf{y}}) \quad (23)$$

1033

1034 and a function $d : M \times M \rightarrow \mathbb{R}$ is a distance on metric space M if $\forall x \in M$, $d(x, x) = 0$,
1035 $d(x, y) > 0$, $x \neq y$, $d(x, y) = d(y, x)$, and $d(x, y) \leq d(x, z) + d(y, z)$.1036 We first note that $d(\cdot, \cdot)$ between one $(\mathcal{E}, \mathbf{y})$ and itself is 0 because both its terms are 0; It's value is
1037 always positive as it's the sum of two positive numbers, if both input are distinct; $d(\cdot, \cdot)$ is symmetric
1038 because both its terms are symmetric and changing the order of objects doesn't affect the value.
1039

1040 To prove triangle inequality

1041
$$d((\mathcal{E}_1, \mathbf{y}_1), (\mathcal{E}_3, \mathbf{y}_3)) = \Delta(\mathcal{E}_1, \mathcal{E}_3) + \delta(\mathbf{y}_1, \mathbf{y}_3) \quad (24)$$

1042

1043
$$\leq \Delta(\mathcal{E}_1, \mathcal{E}_2) + \Delta(\mathcal{E}_2, \mathcal{E}_3) + \delta(\mathbf{y}_1, \mathbf{y}_2) + \delta(\mathbf{y}_2, \mathbf{y}_3) \quad (25)$$

1044

1045
$$= d((\mathcal{E}_1, \mathbf{y}_1), (\mathcal{E}_2, \mathbf{y}_2)) + d((\mathcal{E}_2, \mathbf{y}_2), (\mathcal{E}_3, \mathbf{y}_3)) \quad (26)$$

1046 So $d((\mathcal{E}, \mathbf{y}), (\tilde{\mathcal{E}}, \tilde{\mathbf{y}}))$ is indeed a distance metric.
1047 \square
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **Algorithm 3** Efficient Edge Candidate Selection for Link Augmentation

1081 **Require:** Number of nodes per class n_c , node confidence scores per class:
1082 $\{S_c = [s_{c,1}, s_{c,2}, \dots, s_{c,n_c}]\}$ sorted descending, desired number of edges to add $\varepsilon \cdot e$

1083 **Ensure:** Top- $\varepsilon \cdot e$ pseudo-edges with highest sum of confidence scores

1084 1: Initialize global max-heap G (size = number of classes)

1085 2: **for** each class c **do**

1086 3: Initialize empty local max-heap L_c

1087 4: Insert initial pair $(0, 1)$ with score $s = S_c[u] + S_c[v]$ and class index as tuple (u, v, s, c) into G

1088 5: **end for**

1089 6: **while** number of added edges smaller than $\varepsilon \cdot e$ **do**

1090 7: Extract top (u, v, s, c) from global heap G

1091 8: Add $e = (u, v)$ to candidate edge set

1092 9: For local heap L_c , consider children pairs:

1093 10: $child_1 = (u, v + 1)$ if $v + 1 \leq n_c$

1094 11: $child_2 = (u + 1, v)$ if $u + 2 = v$

1095 12: **for** each valid child pair (u, v) **do**

1096 13: Compute sum of score $s = S_c[u] + S_c[v]$

1097 14: Insert tuple (u, v, s) into L_c

1098 15: **end for**

1099 16: Extract next top tuple (u', v', s) from L_c

1100 17: Insert (u', v', s, c) into global heap G

1101 18: **end while**

1102 19: **return** Final candidate edges across all classes

1103
1104

D ALGORITHMS

1105
1106
1107
1108

D.1 EFFICIENT SELECTION OF PSEUDO-EDGE CANDIDATES

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

As the number of nodes, k or ε goes up, the number of possible edge pairs also scales up, which results in significant computational overhead. To address this challenge, we propose a time and memory-efficient algorithm for selecting edge candidates with the highest combined confidence scores across all classes. The algorithm for selecting edges is described in Algorithm 3. A global max-heap keeps track of which class has the next best edge candidate according to the sum of scores. We initialize the global heap by inserting the first pair $(0, 1)$ from each class, as these pairs hold the maximum possible sum of scores within their respective classes. To add edges, we repeatedly pick the top element from the global heap until the number of edges selected exceeds the threshold defined by ε .

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

To supply the global heap with the best candidates from each class, every class maintains a local heap, which is initially empty. Each time an edge is selected from the global heap, the algorithm accesses the corresponding class's local heap and inserts the next candidate pairs. To prevent local heaps from becoming prohibitively large, we do not insert all possible node pairs at once. Instead, node pairs are added only when they can potentially represent the best candidate. This is enabled by pre-sorting nodes and their confidence scores within each class in descending order. Consequently, nodes with smaller indices correspond to higher scores. This ordering induces a binary tree structure over node pairs, illustrated in Figure 15, where an edge (u, v) has a larger combined score than $(u, v + 1)$, and $(u + 1, v)$. As the criterion, the sum of scores is commutative, (u, v) and (v, u) represent the same edge candidate, so we consider only node pairs (u, v) where $u < v$. This results in the half binary tree structure in Figure 15.

Figure 15: Tree structure for spawning edge candidates. An edge in layer i is guaranteed to have a higher score than in layer $i + 1$ and a lower score than in layer $i - 1$.

1134 Since most nodes have two parents, simply adding both $(u, v + 1)$ and $(u + 1, v)$ to the local heap
 1135 would result in duplicate insertions of many nodes. To avoid this, we add the pair $(u + 1, v)$ only
 1136 when $u + 2 = v$. This condition effectively removes the red dashed connections shown in Figure 15
 1137 and ensures that each edge pair is added to the local heap exactly once. This also guarantees that the
 1138 local heap always contains the node pair with the highest possible sum of scores.
 1139

1140 **D.2 PROPOSED GENERAL CERTIFICATION PIPELINE AGAINST BOTH LABEL FLIPPING AND
 1141 STRUCTURE PERTURBATIONS**

1142 **Algorithm 4** ST-GPA joint pipeline

1143 **Require:** Graph dataset $D = (\mathcal{E}, \mathcal{X}, \mathcal{Y})$, a label propagation method $\hat{\mathbf{y}} = LP(\varepsilon, \mathcal{X}, \mathbf{y})$, a label self-
 1144 training method $\hat{\mathbf{y}} = LST(\varepsilon, \mathcal{X}, \mathbf{y})$, an link prediction method $\hat{\varepsilon} = EST(\varepsilon, \mathcal{X}, \mathbf{y})$, a training
 1145 order $o_t = \{LP, LST, EST\}^m$
 1146 **Ensure:** A robust ensemble classifier g
 1147 1: split poisoned targets into partitions $\varepsilon_i = \{e \in \mathcal{E} | h(e) \equiv i\}$ and/or $\mathbf{y}_i = \{-1\}^x \cup labels$
 1148 2: **for** each operation op in the given order o_t **do**
 1149 3: **for** each partition i **do**
 1150 4: $\hat{\varepsilon}$ or $\hat{\mathbf{y}} = op(\varepsilon_i, \mathcal{X}, \mathbf{y}_i)$
 1151 5: $\varepsilon_i = \varepsilon_i \cup \hat{\varepsilon}$
 1152 6: $\mathbf{y}_i = \mathbf{y}_i \cup \hat{\mathbf{y}}$
 1153 7: **end for**
 1154 8: **end for**
 1155 9: train weak classifiers on final edges, labels and features
 1156 10: count weak classifier predictions
 1157 11: calculate certificate

1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **E DISCUSSION ON THE RELATION TO PGNNCERT AGAINST STRUCTURE**
 1189 **PERTURBATIONS**

1191 Li et al. (2025) apply a similar partitioning scheme to derive poisoning certificates for GNNs. In their
 1192 work, a thread model of arbitrarily perturbing edges, nodes, and node features is considered. In this
 1193 section, we provide comparison between our results and theirs. Due to their certified accuracy does
 1194 not outperform an infinitely robust MLP, we do not report them in Section 6.

1195 To compare our works directly, we adopted their published code and use their exact dataset splits.
 1196 We then run our proposed approach on their data split. Note that the only difference in the setup
 1197 is the model and hyperparameters for training, where we use a 2-layered GCN as described in
 1198 Appendix A, and they use a 3-layered GCN with skip connections and linear layer. In Li et al. (2025),
 1199 2 different partitioning schemes were proposed, namely edge centric and node centric, which has
 1200 similar performance against structure perturbations, so we report the result with the node centric
 1201 variant only. Due to the limitation of implementation of Li et al. (2025), their code does not scale
 1202 to larger number of partitions due to memory limits, so we choose $k = 60$ as a compromise and
 1203 keep other parameters exactly the same for a fair comparison. Note that normally our link prediction
 1204 scheme can be used with significantly larger k -s to generate competitive certificates, so we also report
 1205 $k = 600$ with the same setup. Although Li et al. (2025) doesn't report results on Cora, their code can
 1206 be easily adapted as the Planetoid datasets share the same data loader in PyTorch, so we report results
 1207 on Cora as well.

1211 Figure 16: Certified accuracies of our method compared to Li et al. (2025), $\varepsilon = 30$. PGNNCert-N's
 1212 performance falls steadily below the MLP baseline which is infinitely robust to structure perturbation;
 1213 a trivially applied partitioning scheme has only on-par clean accuracy with an MLP, yielding hardly
 1214 any meaningful perturbation budget; with our proposed link prediction method, the certified accuracies
 1215 is most competitive.

1216
 1217
 1218
 1219
 1220 As shown in Figure 16, PGNNCert-N's performance is consistently outperformed by the infinitely
 1221 robust MLP baseline on all datasets. In the mean time, our link prediction method shows similar
 1222 improvements to certified accuracy over the MLP baseline as previously reported in Section 6 and
 1223 Appendix B. At $k = 60$, the allowed perturbation budget is very small. But the reported $k = 600$
 1224 curves shows the normal performance of our method with more partitions, yielding larger perturbation
 1225 budgets.

1226
 1227
 1228 Provided that PGNNCert's performance is below the MLP baseline in the case of structure pertur-
 1229 bation, we don't report a comparison to PGNNCert in the results in this paper, as we already use the
 1230 MLP baseline as a lowest acceptable case in all our results against structure perturbation.

1231
 1232
 1233 In Li et al. (2025), no certificate against label flipping is reported. As we have already shown in
 1234 Appendix B.1, the partitioning scheme does not readily transfer to labels, so we don't compare our
 1235 results with Li et al. (2025) on label flipping.

1242 **F SCALABILITY OF PROPOSED METHODS**
 1243

1244 In this section, we analyze the scalability of our 3 proposed self-training methods by reporting
 1245 the relative time used in our experiments. In all our experiments, we use one single NVIDIA
 1246 GTX1080Ti GPU. The link prediction uses CPU only. While it can be easily parallelized, we report
 1247 the performance on 1 CPU core only, as link prediction on individual partitions are usually done
 1248 so. The time reported are for relative reference considering the number of nodes and edges in each
 1249 dataset.

1250 We first point out that the time complexity scales linearly with the number of partitions k , since the
 1251 partitions are disjoint once they are created. Partitioning the dataset takes a negligible amount of
 1252 time, and can easily be accelerated by pre-processing the dataset and store all the partition indices.
 1253 Consequently, it is reasonable that we only report time taken per partition in this section. The memory
 1254 complexity is irrelevant w.r.t. k by the same reason that the partitions are disjoint. The training on
 1255 individual partitions could be done in a parallel or distributive manner.

1256
 1257 **Table 4: Time used for co-training and self-training with $t = 50$**
 1258

	Cora-ML	CiteSeer	Cora	PubMed	Wiki-CS	ogbn-arxiv
graph size (Nr. nodes)	2810	2110	2708	19717	11701	169343
training time per partition (s)	6.4	5.5	5.5	2.7	3.1	40.9
thereof training w/o SSL	36.1%	37.3%	36.4%	31.9%	29.0%	31.4%
thereof C/T	26.8%	24.7%	25.2%	30.8%	36.4%	37.0%
thereof S/T	37.1%	38.0%	38.4%	37.3%	34.6%	31.6%

1266 Table 4 shows the time taken to train an individual partition on all datasets we tested. Label partition
 1267 training is generally very fast. Note that the time portion reported for training without semi-supervised
 1268 learning represents the time baseline for training on the raw partition, which has also similar time
 1269 complexity of training on the clean graph. Judging from the percentages reported, co-training and
 1270 self-training is just another round of training of a GNN, which takes similar time as training the first
 1271 one on the raw partition. The results show good scalability of our label self-training methods as the
 1272 time portion stays roughly equal regardless of the size of the dataset, and the total time necessary to
 1273 train the ensemble scales roughly linearly with the graph size (number of nodes).

1274
 1275 **Table 5: Time used for link prediction with $\varepsilon = 1.0$**
 1276

	Cora-ML	CiteSeer	Cora	PubMed	Wiki-CS	ogbn-arxiv
graph size (Nr. edges)	7981	3668	5069	44324	216343	1166243
training time per partition (s)	1.9	1.0	2.0	9.3	19.3	67.8
thereof training w/o SSL	32.3%	58.7%	57.5%	14.4%	8.2%	6.6%
thereof L/P	7.3%	3.8%	5.5%	13.8%	34.5%	42.8%
thereof training with pseudo-edges	60.4%	37.5%	37.0%	71.8%	57.2%	50.6%

1284 Table 5 shows the time taken per partition for edge semi-supervised training. Although smaller
 1285 datasets has faster training time per partition, more partitions are required in structure perturbation
 1286 to generate a meaningful certificate. Therefore, the time taken to train an edge ensemble is usually
 1287 comparably longer than an label ensemble. In the smaller datasets, training without and with the
 1288 pseudo-edges take roughly the same time. However, as the number of edges grows, training with
 1289 pseudo-edges becomes the predominant factor in total training time, and the time taken to find the
 1290 pseudo-edges becomes non-negligible. On larger graphs, this is especially a choking factor as we
 1291 usually add more pseudo-edges than there originally are ($\varepsilon \gg 1.0$), making the link prediction very
 1292 time-consuming.

1293
 1294
 1295

1296 G CLEAN ACCURACY INCREASE WITH SEMI-SUPERVISED LEARNING
1297

1298 Our semi-supervised learning methods are tailored to boost *certifiable* robustness by improving the
1299 weak classifier’s performance. Compared to a single classifier, the semi-supervised learning methods
1300 we propose are much more powerful on weak classifiers. By doing co-training, self-training and link
1301 prediction, the weak classifiers’ performance gets boosted, which in turn yields improved certifiable
1302 robustness for the ensemble.

1303 When compared to a boost of accuracy of the weak classifier, an ensemble classifier’s clean accuracy
1304 increases by a larger margin. This is due to the nature of an ensemble, where only a majority of votes
1305 has to be correct. This is shown in Table 6. An ablation that how semi-supervised learning performs
1306 without partitioning is also included for comparison.

1308
1309 Table 6: Clean accuracies (%) of weak classifiers and ensembles on Cora-ML

		w/o	C/T	S/T	L/P
	$k = 1$ (brings no robustness)	78.77	80.39 (+1.52)	78.92 (+0.15)	78.99 (+0.22)
partition labels, $k = 80$	individual	25.80	39.91 (+14.11)	43.45 (+17.65)	
	ensemble	38.79	76.59 (+37.80)	80.70 (+41.91)	
partition edges, $k = 800$	individual	71.28			70.32 (-0.96)
	ensemble	74.26			76.34 (+2.08)

1317 Individual classifiers’ accuracy is the average value over all partitions.

1318
1319 As shown in Table 6, the clean accuracy increase is little, if any, when applied to the unpartitioned
1320 dataset. The boost of clean accuracy is the most effective on partitioned data, where the baseline
1321 accuracy is low due to sparsity. In general, the ensemble classifier’s accuracy increases by a larger
1322 margin compared to individual classifiers’. In the structure perturbation case, the weak classifiers
1323 even observe a decrease in accuracy, but the ensemble has nonetheless a higher clean accuracy. This
1324 is due to that more samples have a majority of correct predicting weak classifiers after link prediction.

1325 The results further strengthen the necessity of our proposed semi-supervised learning scheme. While
1326 the partitioning provides the fundamental provable robustness, the individual classifiers perform
1327 poorly under sparse conditions in the vanilla setup. Here, our proposed semi-supervised training
1328 scheme is fully responsible for the improvement of the weak classifiers’ accuracies, in turn resulting
1329 in much better clean and certified robustness for the overall ensemble.

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 **H LLM USAGE**
13511352 LLMs are used to assist with writing tasks such as grammar checking and polishing. They are not
1353 employed in the research ideation process or in generating the text in this paper.
1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403