Under review as a conference paper at ICLR 2026

CERTIFYING GRAPH NEURAL NETWORKS
AGAINST LABEL AND STRUCTURE POISONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust machine learning for graph-structured data has made significant progress
against test-time attacks, yet certified robustness to poisoning — where adversaries
manipulate the training data — remains largely underexplored. For image data,
state-of-the-art poisoning certificates rely on partitioning-and-aggregation schemes.
However, we show that these methods fail when applied in the graph domain
due to the inherent label and structure sparsity found in common graph datasets,
making effective graph-partitioning difficult. To address this challenge, we pro-
pose a novel semi-supervised learning framework called deep Self-Training Graph
Partition Aggregation (ST-GPA), which enriches each graph partition with infor-
mative pseudo-labels and synthetic edges, enabling effective certification against
node-label and graph-structure poisoning under sparse conditions. Our method
is architecture-agnostic, scales to large numbers of partitions, and consistently
and significantly improves robustness guarantees against both label and structure
poisoning across multiple benchmarks, while maintaining strong clean accuracy.
Overall, our results establish a promising direction for certifiably robust learning
on graph-structured data against poisoning under sparse conditions.

1 INTRODUCTION

Graph Neural Networks (GNNs) are highly susceptible to adversarial perturbations in their input
graph applied at test or training time (Ziigner et al., 2018). Subsequently developed empirical
defenses are at the continual risk of being rendered ineffective by more sophisticated ways to choose
adversarial perturbations (Koh et al., 2022; Mujkanovic et al., 2022). This motivates the development
of robustness certificates, which provide provable guarantees about the stability of predictions under
worst-case data perturbations, allowing to rigorously assess and mitigate adversarial vulnerabilities.
While significant advances in providing such provable guarantees for GNNs against test-time attacks
have been made (Gilinnemann, 2022b; Hojny et al., 2024), certifying robustness of GNNs against
data poisoning, where an adversary can manipulate the graph structure (Ziigner & Gilinnemann, 2019)
or node-labels (Lingam et al., 2024) at training time, remains largely underexplored.

The most effective approaches to derive poisoning robustness guarantees in the image domain rely on
partitioning the training data, learning separate (base) classifiers, and aggregating predictions (e.g.,
via majority vote) (Levine & Feizi, 2021). However, we demonstrate that these methods fail when
directly applied to common graph learning tasks such as node classification. In particular, we find
that the core challenge is sparsity: both labels and graph structure are often too sparse to provide
effective training signals under data partitioning, leading to poor performance for label certificates
and vacuous robustness guarantees for structure poisoning. This raises a critical question:

How can we effectively analyze and guarantee the trustworthiness of graph neural networks
in the presence of structure and label poisoning, while maintaining their utility?

In this work, we address this challenge by introducing a novel semi-supervised learning framework
called deep Self-Training Graph Partition Aggregation (ST-GPA) that successfully overcomes the
sparsity problem and enables effective poisoning certification of GNNs against structure and label
poisoning (see Figure 1). In particular, our method enriches the subgraphs created through partitioning
the original graph, with synthetic data generated using carefully designed self-training approaches.
Self-training is a concept from semi-supervised learning (Chapelle et al., 2006) that refers to training

Under review as a conference paper at ICLR 2026

. Predicted More Confident

Edges Predictions
.
" ® ® @ Predict o® @ Train 3
gl oo — euc . &b | L
o =2 & @ Edges & 9, GNN @ égag
O 54 : ; ; (5 2=
Node @ Test ()Ve :% ®))) g’.oga
Labels Nodes o E @ % Predict g Train 28 1
(o ~ ®00 — = —> LL
s ® 3 .
L © ©® o Edges @5 GNN 9 J
Improved Base Classifiers
Predicted More Confident . :
Labels Predictions Better Certified Accuracy
- . . N
O Predict O Train
Ce, 2 e! o:o —— o. o:o R
EIRSSE K s> L
QY 5 ® o Labels ® Y5, GNN o | B8
Bes, =9 : : ; Fo 3 —>
=) P o Predict 50 g Train g 2 (
S| -t —— <D —— '
&~ O B DY B
L ® Yo Labels ® Y5 GNN o J

Figure 1: Deep Self-Training Graph Partition Aggregation (ST-GPA). To certify against structure
poisoning, the graph’s edges are partitioned. The resulting set of sparse graphs are enriched with
informative pseudo-edges and then, an ensemble of GNNss is trained on the partitions. To certify
against label poisoning, the graph’s node labels are partitions, and the resulting sparsely labeled
graphs enhanced with pseudo-labels, before training the ensemble. To jointly certify against both
poisoning, ST-GPA partitions both the edges and labels and adds pseudo-edges and pseudo-labels.

a model on its own predictions to expand the leverageable training set, and it has been successfully
used in empirical defenses such as Li et al. (2024); Lee & Park (2025). Concretely, for each sparsely
labeled graph partition, our method efficiently generates synthetic (pseudo) labels, expanding the
available node-label set. In a similar spirit, for each sparsely connected subgraph, our method
generates synthetic edges through solving a link prediction problem, endowing each subgraph with a
more informative structure. Then, by training GNNs as base classifiers on these enriched subgraphs
and aggregating their outputs using a majority vote, we obtain strong certificates for label poisoning,
structure poisoning, and joint label-structure poisoning. Our contributions are:

(i) In Section 3 we generalize the partition-and-aggregate paradigm prevalent in the image domain to
derive poisoning robustness certificates to non-i.i.d structured data. Then, in Section 4, we identify
and characterize a failure mode of certifying robustness against poisoning using this paradigm on
graph-structured data rooted in the label and structure sparsity found in common graph datasets.

(ii) In Section 5 we propose deep Self-Training Graph Partition Aggregation (ST-GPA), a novel semi-
supervised learning framework that augments each partition with carefully obtained pseudo-labels
and/or synthetic edges, overcoming the sparsity problem when partitioning graph-structured data.

(iii) ST-GPA is the first effective certificate against structure and label poisoning for node classification
with GNNSs. In particular, we set a new state-of-the-art certified poisoning robustness for GNNs
across multiple benchmarks, while being efficient with competitive clean accuracies (see Section 6).

Overall, our work highlights the importance of self-training in certifying poisoning robustness of
GNNs and lays the foundation for future work against training-time attacks in the graph domain.
We believe that our insights on improving partition-based certification using self-training may be of
independent interest beyond graph learning.

2 PRELIMINARIES

We consider an attributed, undirected graph G C G described by a feature matrix X € R"*™ of
m-dimensional features for n nodes and a set of edges £ C {{i,j},4,j € [n]} with [n] = {1,...,n},
where two nodes ¢ and j are connected if and only if {7, j} € £, and each node belongs to one out
of C classes with Y = [C]. We study semi-supervised (transductive) node classification, that is the
full graph G = (€, X, y) is available at training but its nodes are only partially labeled. This is
modeled using a label vector y € (Y U {—1})", where entry y; € Y = [C] indicates the label of
node i, and y; = —1 means the node 7 is unlabeled. We model GNNs as functions f : G — Y™, and
collect the labels in the graph in the set Y = Uy, { (v, ¥o)} and the node attributes in the set
X = Upev{(v, X,)}. We write graph datasets as D = (€, X,))).

Under review as a conference paper at ICLR 2026

Perturbation model. In this work we study two types of poisoning attacks on graph-structured data:
label flipping and structure perturbations. To quantify the strength of an attack, we define attack
budgets r, rs, which bound the number of allowed modifications to labels and structure, respectively.
We model the set of possible poisoned graphs G as a ball centered around the clean graph G:

BThTs(G) = {é = (S,X,g) | 5(:’;’:‘,/) S Tl, A(éag) S Ts} (1)

where A(X,Y) = |[(X\Y)U (Y \X)| is the symmetric difference between two sets, and
5(9,y) = Y.i; 15,2y, is the number of different entries between two vectors (i.e. Hamming
distance). Equation (1) models three different perturbation models: (i) label flipping (r; >0, rs =0);
(ii) structure poisoning (r; =0, 75 >0); and (iii) both together (r; >0, rs > 0).

Deep partition aggregation. State-of-the-art certified robustness guarantees for supervised image
classification under poisoning attacks have been achieved via the partition-and-aggregate paradigm.
The most prominent implementation of which is Deep Partition Aggregation (DPA) (Levine & Feizi,
2021). Here, the core idea is to partition an i.i.d training dataset D into k disjoint subsets and to train
independent classifiers f g Vx> Y deterministically on each partition <. At inference time, for a
given input image x € X, the final prediction is made via majority vote across all base classifiers:

gD(x) = a‘rgmaﬁ(nC(Dzz)v 2
ce

where n.(D,z) = Zle 1 [fg) () =] counts the number of classifiers predicting class ¢ for input x.
This setup enables a formal robustness guarantee for the aggregated prediction under poisoning:
Theorem 1 (Levine & Feizi (2021)). Given a clean dataset D, the majority-vote prediction remains

unchanged, i.e. gp(x) = gp(x), for any perturbed dataset D € B,(D) bounded by the attack budget
r, as long as

5 3

where ¢ = gp(x) is the predicted class on the clean dataset.

< {nC(D7 z) — maxy 2. (ne (D, x) + 1C/<C)J
/r‘ — b

3 GENERALIZED DEEP PARTITION AGGREGATION FOR NON-1.I.D. DATA

Even though DPA has been formulated for image data, the general paradigm to derive poisoning
guarantees can be readily generalized to non-i.i.d. structured data. The main idea is based on
recognizing that deriving a guarantee like Theorem 1 does not depend on the i.i.d. nature of the
dataset, but rather on a partitioning scheme i where the potentially poisoned objects are partitioned
into subsets independent of one another. In particular, it can be formulated w.r.t. a general set of
objects O that may be poisoned, where 01 € O may not be independent of another 0, € O (e.g.,in a
graph, one node may not be independently sampled from another node), as long as the partition o is
grouped into, is not affected by the value of any other element in O, and thus, poisoning any object
can only affect exactly one partition.

Concretely, to formulate a split-and-majority voting certificate for general potentially structured data,
assume a dataset D = (T, O) consists of a set of objects 7 that are known to be clean and a set of
objects O that may be poisoned. For example, for i.i.d. image data O = {x;}" , and T = @. Then,
k partitions P; with ¢ € [k] are created as follows:

Pi:=(T,{o€ O|h(T,0) =i (mod k)}) 4)

where £ is a deterministic (hash) function that takes 7 and one o € O as input and outputs a number
in N representing the partition index, into which the given object o should be grouped. Then, one

independently trains base classifiers f g)X — Y on each partition P;, where X represents a general

data domain. Without loss of generality, we assume f g) to output a scalar class prediction, i.e.,
Y C N. For example, for node classification, the data domain can be defined as X = (G, Ny) where
G is the set of possible graphs and the second element in the tuple refers to the index of a node, for
which a class prediction is sought.! Now, given an input = € X, the final prediction is made as in
DPA for images via a majority vote across all base classifiers (Equation (2)), which we denote gp (z).

'If f(Di) outputs a vector for several indexable objects (e.g., nodes in a graph), this can be equivalently
represented as a scalar prediction for each indexable object, where the index of the object for which the
prediction is sought for, is part of X.

Under review as a conference paper at ICLR 2026

Lastly, for general data domains, the set difference A(D, D) may not always be an appropriate
distance measure, and different choices of the hash function ~ may affect how many partitions d, € N
are affected when poisoning an object o € O. Thus, assume a general distance function d(D, D)
between the clean dataset D and the perturbed dataset D. Further, assume that a perturbation of size
d(D, D) leads to at most p changed partitions given h. Then, the scalar dj, links the perturbation size
d(D, D) to the upper bound p on the number of changed partitions as follows: dj, - d(D, D) > p.
Exemplary, d, > 1 if one object is partitioned (duplicated) into multiple partitions as done by Wang
et al. (2022). Now, we can state the following general theorem that follows the proof strategy outlined
by Levine & Feizi (2021) and we refer to Appendix C.1 for a formal proof:

Theorem 2 (Generalized DPA). Given a clean, possible non-i.i.d and structured dataset D, and a
poisoned dataset D, the majority-vote classifier prediction remains unchanged, i.e., gp(z) = g (),
as long as dpd(D, D) < |(n.(D,z) — maxy 4. (ne (D, z) + 1o<.))/2] = rm(D, x), where ¢ =
gp(x) is the predicted class on the clean dataset.

We refer to the right-hand side of the condition in Theorem 2 as the robust margin r,, (D,) of a
sample x given a datase~t D. To conclude, we need to find a (hash) function h, a scalar dj,, and a
distance measure d(D, D) to get a robustness guarantee for an ensemble classifier with Theorem 2.

Generalized DPA for Graphs. We define a general hash function in Equation (5) that allows to
partition a graph based on its node features X’. This hash function can be used for all three perturbation
models captured by Equation (1), as we detail below.

h(X,0) = {h(Xi||Xj)+h(Xj|Xi) ifo={i,j} €€)
h(X) ifo=(v,y,) €Y

The hash function h(X, 0) determines the partition index for an edge, by taking the features of the
incident nodes and concatenating them. We add both orderings to make the partitioning process
invariant to the actual node order. When partitioning labels, h(X, o) takes the corresponding node’s
features as input. The A in Equation (5) can be any hash function, but we choose the MDS5 hash in
this work to make it simple to take in strings and convert the output to non-negative integers. As each
edge or label is in exactly one partition, dp = 1.

Finally, we choose three distance metrics for the three different threat models. For label poisoning,
we take the Hamming distance 0(y, §) between label vectors. For graph structure poisoning, we use
the symmetric set difference A(E, £) between edge sets. Note that inserting or deleting an edge in the
graph leads to A(&, £) = 1 and the modification of an edge to A(€, £) = 2. Similarly, the insertion
or deletion of an edge leads to exactly one affected partition based on &, but a modification of an
edge affects two. For a combination of label and structure poisoning, we add up the two distances
d((€,9),(E,9)) =d(y,g) +A(E,E). This is indeed a distance metric and the proof can be found in
Appendix C.2. Given the graph dataset D from Section 2, plugging in the different distance measures
along with our h from Equation (5) and dj, = 1 into Theorem 2, we get the following conditions for
our certificates to hold:

i. GeBysor—0(G): 0y, §) <rm(D,x) (label-flipping certificate) (6)
ii. G€Bror.>0(G): (&) <rm(D,) (structure-poisoning certificate) (7)
iii. G€Bysor>0(G): d(&,y),(€,9) <rm(D,x) (certifying both) (8)

where r,,, (D, x) is the robust margin introduced in Theorem 2. In the context of transductive node
classification, = refers to a node that we seek to classify in the graph D. In general, x could refer to a
node in an arbitrary graph different to D.

4 LIMITATIONS OF THE SIMPLE PARTITIONING IN THE GRAPH DOMAIN

We first expose that the partitioning scheme used by DPA does not work well on graph datasets due
to their inherent label and structure sparsity. In the context of image classification, obtaining provable
poisoning robustness through partitioning yields significant results (Levine & Feizi, 2021). For
example, using 1,000 partitions on CIFAR-10 achieves a certified accuracy of 50% against 392 label

Under review as a conference paper at ICLR 2026

flips. The key factor in deriving strong robustness guarantees through partitioning is the number of
partitions k. Increasing the number of partitions increases the possible perturbation budget. Notably,
the maximum number of tolerated perturbations before the certified ratio drops to 0% is L%J .Asa
result, the number of partitions k should be as large as possible to produce good certified radii. In
image datasets, the primary constraint on increasing k is the size of the training dataset. With 50,000
training images in CIFAR-10, it is feasible to use £ = 1, 000 partitions while maintaining acceptable

performance of the base classifiers f g).

However, this approach does not translate straightforwardly

into the graph domain. In particular, common graph datasets . 1833
typically contain significantly fewer labeled training sam- 7501
ples (nodes) compared to image datasets (see Table 1 in Ap- 600
pendix A). For label-flipping attacks, applying the partitioning 4501
scheme naively to node labels results in partitions with very ffﬁ
few labeled nodes — often fewer than the number of classes. For 01

example, as illustrated in Figure 2, when using 40% of nodes vl e 0
for training on Cora-ML, having k = 281 partitions yields an

average of only 4 labeled nodes per partition. This restricts the Figure 2: Label sparsity (Cora-ML)
certification bound to 140 label flips, and base classifiers suffer

from significantly reduced performance, as each model only has access to on average 4 labels during
training. Even worse, Figure 4(a) shows that choosing & = 80 partitions already leads to a clean
accuracy of only close to 40% of an ensemble of GCNs (Kipf & Welling, 2017) on Cora-ML, whereas
a GCN trained without partitioning achieves ~78.77% accuracy.

Average Number of Training Labels

Number of Labels

Similarly, for structure partitioning the graph structure rapidly
deteriorates as edges are divided among partitions, rendering
the partitions ineffective for GNNs. This is illustrated in Fig-
ure 3, where we plot the mean of average node degrees across
partitions. When the number of partitions roughly exceeds
k > 50, the connectivity in the individual partitions’ subgraph
becomes virtually nonexistent. Since GNNs rely on various
forms of message passing to aggregate information from graph
neighborhoods, partitions with sparse or disconnected edges 11632 50 100 200
. . . J . . Number of Partitions
severely impair their ability to learn meaningful representations.
Under such conditions, the base classifiers’ performance deteri- Figure 3: Graph structure sparsity
orate to that of a multilayer perceptron (MLP), which, however, (on Cora-ML)
is already inherently robust to structure perturbations since it
does not utilize potentially poisoned edge information.

—e— Mean Average Degree

[

—

Average Degree

(=]

Overall, partitioning-based robustness certificates cannot be naively applied in the graph domain due
to the inherent label and structure sparsity, motivating the need for more sophisticated methods.

5 DEEP SELF-TRAINING GRAPH PARTITION AGGREGATION

To address these sparsity challenges, we propose various semi-supervised learning methods to enhance
the performance of the weak classifiers by selecting either pseudo-labels or edges, or both, on each
partition’s limited training data. In this way, we obtain strong certificates on graph datasets.

5.1 SEMI-SUPERVISED LEARNING FOR LABEL GENERATION

To maximize the utilization of the limited available labels within each partition, we employ two
complementary pseudo-label generation methods: (i) co-training (CT), and (ii) self-training (ST).
First, the co-training method leverages the graph structure to propagate existing labels to neighboring
nodes. While the previous work (ParWalks, Wu et al. (2012)) also generates pseudo-labels for the
training of a GNN as proposed by Li et al. (2018), its high computational complexity renders this
approach impractical for larger graph datasets. Instead, we propose the use of label propagation (LP)
(Zhu & Ghahramani, 2003) to significantly speed up the co-training process. The key advantage of
LP is that it does not require computing the inverse of a Laplacian matrix inherent to ParWalks, and
can be efficiently applied to large graph datasets. Second, for self-training we propose training a
GNN on the existing labeled data and selecting the most confident predictions, as determined by their
softmax scores, to serve as pseudo-labels for subsequent training iterations. Notably, both methods

Under review as a conference paper at ICLR 2026

Algorithm 1 ST-GPA against label flipping Algorithm 2 ST-GPA against structure pert.
Require: Graph dataset D = (€, X,)), selective- Require: Graph dataset D=(&,X,)), se-
ness t, co-training method CT(E, X, y, t), self- lectiveness ¢, link prediction method
training method ST(E, X, y,t), training order LinkPred(e;, X,), €), hash function h
o+ = {CT, ST}™, hash function h Ensure: A robust ensemble classifier g
Ensure: A robust ensemble classifier g 1: split edges into partitions
1: split labels into partitions e; ={ele € &, h(X,e) =i (mod n)}
v, ={yly € Y,h(X,y) =i (mod n)} 2: for each partition i do
2: for each partition i do 3: é; =LinkPred(e;, X, Y, ¢)
3. for each operation op in given order o; do 4 e =e;Ué;
4: @=Op(€i7X7yiat) 5: trainfi OnD:{eiaXay}
5: Y=y Uy 6: end for
6: endfor 7: count base classifier predictions n.(v)
7: train fon D ={&,X,y;} 8: return g(v) = arg max.c(c) e (v)
8: end for
9: count base classifier predictions n.(v)
10: return g(v) = arg max.ec| ne(v)

(co- and self-training) can be applied consecutively as we demonstrate in Section 6, where we observe
that applying first co-training and then self-training works best (Figure 5(a)).

In LP we propagate a score matrix S € R"™*¢ in which S; ; represents the likelihood of node 4
belonging to class j. S is initialized to be the one-hot encoded label matrix Y € R"*¢ as in
Equation (9) (where an unlabeled node has a row of zeros in Y'), and propagated with the normalized

adjacency matrix A = D 2AD" 2, witha probability of 1 — « to randomly teleport to a labeled
node, as shown in Equation (10), which is iterated until convergence or a cutoff iteration.

SO —y)
S+ — 0 ASD 4 (1 —)Y (10)

Both co-training and self-training result in a score matrix S € R™*€, which is used for selecting
pseudo-labels. We introduce hyperparameter ¢ representing the number of pseudo-labels with the
highest scores added per class via either method to control the selectiveness. A lower ¢ adds less but
often higher-quality pseudo-labels, while higher ¢ adds more but less-confident ones. Using these
methods, we present the full certification pipeline against label flipping in Algorithm 1.

5.2 SEMI-SUPERVISED LEARNING FOR EDGE GENERATION

Motivated by the concept of self-training in graph machine learning, we extend semi-supervised
learning to edge prediction by generating pseudo-edges instead of pseudo-labels. Guided by the
homophily assumption, we generate pseudo-edges that connect node pairs likely belonging to the
same class based on a model trained on the current graph. Here, modern link prediction methods
(Zhang & Chen, 2018; Kazi et al., 2023) struggle as the edges in every partition are extremely sparse
(see Section 4). Instead, we try to capture the overall graph structure and dilute the effect of possible
inter-class edges by adding in a denser graph than the original one. Within each partition, we first
train a GNN to obtain initial node predictions and confidence scores, typically represented by the
softmax outputs of the final GNN layer. We then iteratively add edges between node pairs with the
highest sum of confidence of being in the same class. The number of edges added is controlled by a
hyperparameter €, which specifies the multiplier of the number of added edges within each partition
relative to the original graph. Using this expanded edge set, a second GNN is trained to produce
final predictions used for certification. Our certification pipeline against structure perturbation is
outlined in Algorithm 2. On first sight, a downside of our link prediction scheme is that we sample
a denser graph for each partition than the original one. If this is implemented naively, it will have
roughly O(kn?) time and memory complexity, which does not scale well with the graph size and the
number of partitions. To address this, we introduce an efficient algorithm in Appendix D.1, which
has a near-linear complexity based on managing a global edge-candidate heap.

With the proposed methods addressing either label flipping or structure perturbations, a scheme for
certifying against both types of attacks becomes possible. We partition both the poisoned labels and

Under review as a conference paper at ICLR 2026

—— Ours Partition-based certificate w/o semi-supervised learning =+ MLP baseline —— Clean accuracy w/o partitioning

84
0 70 s 82 0
80
10 10 76 78

20 20 75 7
10 10 - 4

Certified Accuracy (%)

8 16 24 32 0 10 80 120 160 200 0 8 16 24 32) 20 10 60
Number of Labels Perturbed Number of Labels Perturbed Number of Edges Perturbed Number of Edges Perturbed

(a) Cora-ML,LF (b) PubMed, LF (c) Cora-ML, SP (d) PubMed, SP

0

Figure 4: The effectiveness of our proposed method demonstrated by the increase in certified accuracy,
compared to the vanilla partition-based approach. (a) and (b) are certified against label flipping (LF)
with & = 80 and k£ = 500 partitions repectively; (c) and (d) are certified against structure perturbations
(SP) with k£ = 800 partitions; (e) is certified against both (LF&SP) with £ = 250 partitions. We
showcase the stark improvement of robustness both on Cora-ML and PubMed, demonstrating that
our method works for both smaller and larger graphs. The red lines in (c) and (d) represents the
performance of an infinitely robust MLP, serving as a trivial baseline for structure perturbation. The
green dots are the non-robust clean accuracies of the same model trained without any partitions.

edges into partitions, perform semi-supervised edge and label generation iteratively, and obtain the
final base classifier by training on the extended edges and labels, before we take the majority vote
and compute the certificates.> We provide pseudocode for this joint pipeline in Appendix D.2.

6 EXPERIMENTAL EVALUATION

In this section, we investigate the robustness guarantees derived by deep self-training graph partition
aggregation and showcase the improvement of ST-GPA compared to vanilla partition aggregation on
graphs. We provide code to reproduce our results in the reproducibility statement.

Experimental details. We demonstrate results for transductive node classification on four datasets:
Cora-ML (Bojchevski & Giinnemann, 2018), and the three Planetoid datasets CiteSeer, Cora, and
PubMed (Yang et al., 2016); and for three GNNs: Graph Convolutional Networks (GCN) (Kipf &
Welling, 2017), Graph Attention Networks (GAT) (Velickovi¢ et al., 2018), and APPNP (Gasteiger
et al., 2018). To train a robust classifier, we partition the datasets as described in Section 5. Each
round of semi-supervised learning using ST-GPA adds pseudo-labels or edges to the training sets
of the individual partitions, while keeping the partitions isolated. We train an ensemble classifier
after each round of pseudo-label or pseudo-edge generation to investigate the effect of the individual
semi-supervised learning steps. Results are reported using certified accuracy, which is the percentage
of test nodes whose predictions are provably correct, as a function of the perturbation size defined in
Equation (1). In all figures, the colored areas represent the standard deviation over 3 deterministically
chosen seeds. We represent a baseline ensemble classifier trained on partitions without any semi-
supervised learning as dashed lines. It is important to note that unlike as in label flipping, Multi-Layer
Perceptrons (MLPs) exhibit infinite robustness against structure perturbations, since they do not
utilize edge information during training. Consequently, any model with certified accuracy against
structure perturbations below that of an MLP is trivial. Thus, we include an MLP as baseline as a
red-dotted line in the structure perturbation plots. In these plots, we discard the trivial part of the
curve below this baseline. We provide further details on our experiment setup in Appendix A.

ST-GPA yields strong certified robustness. Figure 4 demonstrates the stark improvement of certified
accuracies by our proposed certification method ST-GPA, against label flipping (Figures 4(a) and 4(b)),
structure perturbation (Figures 4(c) and 4(d)), and both label and structure perturbations (Figure 4(e)).
If the partitioning is applied without our proposed semi-supervised learning strategy, we only get
marginal certified accuracy curves (orange dashed lines), due to the sparsity of labels or edges as
discussed in Section 4. In the structure case on Cora-ML (Figure 4(c)), the clean accuracy of an
ensemble GCN is even worse than an infinitely robust MLP, rendering the naive approach ineffective.
In contrast, with our method we restore the ensemble classifier’s clean accuracy to a higher level
compared to an ensemble without semi-supervised learning, typically around 70% to 80%, and this
also allows the certified accuracy curves to drop down slower, meaning higher certified accuracy
against the same number of perturbations. We included the non-robust clean accuracy of a GCN

>We do edge generation first, since we find co-training relies on meaningful graph structure.

Under review as a conference paper at ICLR 2026

---- Partition-based certificate w/o semi-supervised learning

g ?8: co-train then self-train §8 —— Label Propagation 70 92 rounds
z 601 self-train then co-train ! ParWalks 609, - 1 round
k] 60 - 60 504>
2 50 self-train 50
240 co-train 40 40
T 304 304N, 30
£ 20 20— 20
S 01 TS 10 Sersc 10

0 = U s s s e B 55 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 20 40 60
Number of Labels Perturbed Number of Labels Perturbed Number of Labels and Edges Perturbed
(a) Cora-ML, LF (b) Cora-ML, LF (c) PubMed, LF&SP

Figure 5: (a) Different orders of co-training and self-training against label flipping on Cora-ML with
k = 80 and label propagation as co-training method; (b) Label propagation provides similar perfor-
mance in co-training compared to ParWalks (Wu et al., 2012) while being scalable to larger graphs,
demonstrated on Cora-ML with 80 partitions; (c) Our method provides significant improvements on
PubMed with 200 partitions with link prediction, co-training then self-training, while stacking more
rounds of semi-supervised learning in said order yields further but marginal improvement.

trained without any partitioning as a reference. Table 2 in Appendix A reports clean accuracies on
other datasets with other models.

In our certificate against label flipping, we demonstrate the effect by the order of co-training and
self-training in Figure 5(a). We find that first co-training and then self-training generally works best.
This is because doing self-training first means training GNNs on very sparsely labeled partitions.
With k = 80 partitions, each partition contains on average only about 10 labels on smaller datasets. In
contrast, co-training with label propagation does not require a preliminary training step and effectively
leverages the graph structure despite the extremely low label rate, producing high-quality pseudo-
labels that can be further improved by subsequent self-training rounds. This effect is prevalent in all
datasets as we show in Figure 8 in Appendix B.2. Consequently, we adopt this order for experiments
with all other attack models involving label flipping.

In our certificate against both label flipping and structure perturbations, we perform link prediction,
then co-training with label propagation, and finally self-training on labels. We perform several rounds

=— Ours ZZI Partition-based certificate w/o semi-supervised learning =+ MLP baseline
S == GCN 70 === GCN
I 76 GAT 60PN GAT
£ === APPNP 504 === APPNP
2 01N
S 401 3
= - 40
E 304
z 204
o] 74 B¢ 104
| | ‘ - \ I =
0 9 18 27 0 12 24 36 48 60 0 20 40 60 80
Number of Labels Perturbed Number of Edges Perturbed Number of Labels and Edges Perturbed
(a) LF, Cora-ML, k& = 80 (b) SP, Cora-ML, k = 800 (c) LF&SP, PubMed, k£ = 200
— 80
= === k=200 70 === k=50
2z 76 k = 400 60 k=100
) TE— p—
£ === k=800 50 === k=200
g === k= 1600 :() === k=300
= 75
|51 30
&
= L 20
5 i
© T41%% 10 =
0 12 24 36 0 20 40 60 0 20 40 60
Number of Labels Perturbed Number of Edges Perturbed Number of Labels and Edges Perturbed
(d) LF, Cora-ML (e) SP, Cora-ML (f) LE&SP, PubMed

Figure 6: In (a) to (c) our method improves the vanilla partition-based certificate regardless of the
GNN type; (d) to (f) demonstrate for GCNs that our method scales very well for larger number of
partitions k, which provides better certificates.

Under review as a conference paper at ICLR 2026

of edge and label generation in this order because label propagation relies on the meaningful graph
structure that link prediction generates, and self-training generally works better after co-training, as we
find out in Figure 5(a). In Figure 5(c) we show that our method introduces significant improvements
in the first round, and stacking more rounds of edge and label generation leads to further, yet marginal,
improvements. In Figure 9 in Appendix B.2 we show that our method introduces clean accuracy
improvements even for the smaller graph datasets, although only with very few partitions.

Co-training with label propagation is similarly performant as ParWalks yet scalable. Since
Li et al. (2018) originally proposed ParWalks in combination with self-training to address low
label rates, we compare ParWalks with label propagation (Zhu & Ghahramani, 2003). As shown
in Figure 5(b), the performance advantage of ParWalks over LP is negligible. This is consistent
across different datasets as shown in Figure 10 in Appendix B.2. Given that label propagation with
random teleportation does not require computing the inverse of the Laplacian, we adopt LP as primary
method.

Our method works with any GNN. The first row in Figure 6 shows the performance of GCN,
GAT, and APPNP with and without our proposed approach. The results clearly indicate that similar
performance improvements and trends hold across all models, with clean accuracy boosted to around
80% for label, 76% for structure, and about 67% for both. We highlight this feature because the
vanilla partition-based certificates do not assume anything on the classifier itself, and with better
GNNs our method is still compatible for producing even better certificates.

Our method scales well with partitions. The second row in Figure 6 shows the effect of varying
the number of partitions k. The figures clearly demonstrate the effectiveness and scalability of the
proposed semi-supervised learning methods: as k increases, which is necessary to derive stronger
guarantees, the baseline performance rapidly declines due to the sparsity of labels and structure per
partition. However, our experiments indicate that link prediction, co-training and self-training are
required for non-trivial robustness guarantees. This is supported by more results in Figure 11 in
Appendix B.2. We note that dividing labels to more than 100 partitions becomes impractical given
the training size of 30% in the case of Cora-ML, as partitioning would result in some partitions
containing no labeled nodes, making training on those partitions infeasible.

Further experiments regarding how we choose the selectiveness hyperparameter ¢ and €, and label
propagation teleportation parameter « are included in Appendix B.3.

7 DISCUSSION ON LIMITATIONS

We’ve shown that our semi-supervised training scheme is essential for meaningful robustness guaran-
tees in the graph domain with partition-based methods, and it’s powerful and scalable as it applies to
any GNN and any number of partitions. In this section, we address the limitations in this scheme and
show that it hints promising research directions.

Application to heterophilic graphs. The core scheme introduced by this paper are semi-supervised
learning methods on partitioned labels or edges, namely co-training with label propagation, self-
training, and link prediction. These methods are designed to leverage the homophily assumption,
i.e. nodes with the similar nodes are more likely to be connected. This dependence is exposed
with our evaluation of structure certificates on Wiki-CS(Mernyei & Cangea, 2020), where the graph
neighborhoods are way less homogeneous. Consequently, our link prediction guided by homophily
has little effect of capturing the real graph structure, yielding minimal improvements compared to a
trivial partitioning scheme. In general, heterophilic graphs are an emerging research interest in the
graph learning domain and has a wide range of real-world applications. Applying our method to
them requires heterophilic adaptations of the semi-supervised learning methods, which are individual
research directions on their own. Thus, certified accuracies on heterophilic graphs is beyond the
scope of this paper. Nonetheless, the introduced partitioning and self-training scheme should still
provide strong robustness guarantees when adapted to heterophilic graphs.

Link prediction can be expensive. In the link prediction against structure perturbations, we tried
to recreate the graph structure isolating the influence of poisoned edges in each partition. Unlike
real-world graphs, the graphs we created by linking intra-class edges are, by design, denser. This
is inherently due to the low signal-to-noise ratio of the link prediction process — the pseudo-edges
generated are, by a small chance, false. To counter this, we typically add in more edges than the
original graph has, and the idea is to capture the overall graph structure and dilute the effect of

Under review as a conference paper at ICLR 2026

inter-class edges. Consequently, the graph we train our classifiers on is semi-dense. This result in a
higher overhead for the training process, both in computation and memory. In Appendix F we report
how the edge ensemble scales in total time for a clearer picture of this drawback. We observe that
our link prediction scheme doesn’t bring improvements on larger datasets such as ogbn-arxiv(Hu
et al., 2020), where the graph is denser and larger, and we do not have the capacity in time to run our
link prediction algorithm, as shown in Table 5 in Appendix F. The solution to this problem would be
the utilization of other link prediction algorithms, and this is not trivial as most state-of-the-art link
prediction algorithms are designed to operate on original full graphs instead of the sub-sampled sparse
partitions. However, given the competitive structure certificates we obtained on small to medium
graph datasets, we believe that link prediction is essential to achieve better certified accuracies than
an MLP in the context of graph structure perturbations.

8 RELATED WORK

While robustness certification against test-time attacks is well researched for i.i.d. data as well as for
the graph domain (Giinnemann, 2022a; Scholten et al., 2022; Hojny et al., 2024), there are few works
studying certification against changes to the training data. For the image domain, there are three main
approaches: (i) partition-and-aggregate (Levine & Feizi, 2021), (ii) randomized smoothing (over the
training data) (Weber et al., 2023), and (iii) differential privacy (Ma et al., 2019); and we refer to
Gosch et al. (2025) for a representative survey. Most related to our work is the partition-and-aggregate
scheme (Levine & Feizi, 2021), which saw many follow-up works (Wang et al., 2022; Chen et al.,
2022; Rezaei et al., 2023). However, it was only applied to the image domain. Regarding graphs,
Lai et al. (2024b) develop a probabilistic poisoning certificate against node-injection following the
randomized smoothing approach that they extended to collective certification in Lai et al. (2024a),
which however is not applicable to the perturbation models studied in this work. Gosch et al. (2025)
develops a novel certification paradigm, which is first applied to certify node-feature poisoning
and later extended to label poisoning (Sabanayagam et al., 2025), but in both cases is limited to
infinite-width GNNs. Further, the label certificate by Sabanayagam et al. (2025) does only scale to
datasets having at most 100-200 training labels and thus, does not scale to even our smallest datasets.
Li et al. (2025) apply partitioning to derive poisoning certificates for GNNs. However, they do not
certify against label flipping, and their structure certificates are below the performance of an MLP
(see Appendix E) and thus, vacuous. Further, their feature certification is only applicable to graph
classification, as every node is in every partition.

9 CONCLUSION

In this paper, we present a self-training framework (ST-GPA) that significantly improves certified
robustness against data poisoning in sparse graph-structured data domains. By adding both synthetic
labels and structure through effective semi-supervised learning techniques, our method overcomes
the limitations of existing partition-based approaches. Empirical results show large improvements in
certified robustness to both label and structure poisoning without compromising clean accuracy. Our
findings highlight that effectively leveraging semi-supervised learning on sparse data is essential for
provably robust graph machine learning against poisoning through partition-based approaches and
offer a promising direction for building more robust models beyond the graph domain.

ETHICS STATEMENT

This work advances the field of certifiable machine learning by enabling robustness of graph neural
networks against structure and label poisoning attacks, thereby fostering more reliable and trustworthy
machine learning. While there might be many further potential societal consequences of our work,
none which we feel must be specifically highlighted here.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing a detailed description of the models, datasets, hyperparameter
and random seed selection methods in Appendix A. The code to reproduce our results can be found at:
https://figshare.com/s/3beaf03eb7e2c6c8d4ad. Our certification pipeline use only deterministically
chosen seeds, so the results are also deterministically reproducible. Alongside the descriptions of our
experimental setup we also provide an overview over all parameters in Table 3.

10

https://figshare.com/s/3beaf03eb7e2c6c8d4ad

Under review as a conference paper at ICLR 2026

REFERENCES

Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In 6th International Conference on Learning Representations, ICLR
2018, 2018.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-Supervised Learning (Adaptive
Computation and Machine Learning). MIT Press, 2006.

Ruoxin Chen, Zenan Li, Jie Li, Junchi Yan, and Chentao Wu. On collective robustness of bagging
against data poisoning. In International Conference on Machine Learning, pp. 3299-3319. PMLR,
2022.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Personalized embedding prop-
agation: Combining neural networks on graphs with personalized pagerank. CoRR, abs/1810.05997,
2018.

Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, and Stephan Giinnemann.
Provable robustness of (graph) neural networks against data poisoning and backdoor attacks.
Transactions on Machine Learning Research (TMLR), 2025.

Stephan Gilinnemann. Graph Neural Networks: Adversarial Robustness, pp. 149—176. Springer
Nature Singapore, 2022a.

Stephan Gilinnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 149—176. Springer Singapore, 2022b.

Christopher Hojny, Shigiang Zhang, Juan S. Campos, and Ruth Misener. Verifying message-passing
neural networks via topology-based bounds tightening. In International Conference on Machine
Learning (ICML), 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. CoRR,
abs/2005.00687, 2020.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein. Differ-
entiable graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(2):1606-1617, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, 2022.

Yuni Lai, Bailin Pan, Kaihuang Chen, Yancheng Yuan, and Kai Zhou. Collective certified robustness
against graph injection attacks. In International Conference on Machine Learning (ICML), 2024a.

Yuni Lai, Yulin Zhu, Bailin Pan, and Kai Zhou. Node-aware bi-smoothing: Certified robustness
against graph injection attacks. In IEEE Symposium on Security and Privacy (SP), 2024b.

Woohyun Lee and Hogun Park. Self-supervised adversarial purification for graph neural networks. In
Aarti Singh, Maryam Fazel, Daniel Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj,
Kiri Wagstaff, and Jerry Zhu (eds.), Proceedings of the 42nd International Conference on Machine
Learning, volume 267 of Proceedings of Machine Learning Research, pp. 33715-33735. PMLR,
13-19 Jul 2025.

A Levine and S Feizi. Deep partition aggregation: Provable defense against general poisoning attacks.
In International Conference on Learning Representations (ICLR), 2021.

Jiate Li, Meng Pang, Yun Dong, and Binghui Wang. Deterministic certification of graph neural
networks against graph poisoning attacks with arbitrary perturbations. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2025.

11

Under review as a conference paper at ICLR 2026

Kuan Li, YiWen Chen, Yang Liu, Jin Wang, Qing He, Minhao Cheng, and Xiang Ao. Boosting the
adversarial robustness of graph neural networks: An OOD perspective. In The Twelfth International
Conference on Learning Representations, 2024.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), pp. 3538-3545, 2018.

Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking label
poisoning for GNNGs: Pitfalls and attacks. In International Conference on Learning Representations
(ICLR), 2024.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners: attacks
and defenses. In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Péter Mernyei and Citélina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Felix Mujkanovic, Simon Geisler, Stephan Giinnemann, and Aleksandar Bojchevski. Are defenses for
graph neural networks robust? In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, and Soheil Feizi. Run-off election: Improved
provable defense against data poisoning attacks. In International Conference on Machine Learning
(ICML), 2023.

Mabhalakshmi Sabanayagam, Lukas Gosch, Stephan Glinnemann, and Debarghya Ghoshdastidar. Ex-
act certification of (graph) neural networks against label poisoning. In The Thirteenth International
Conference on Learning Representations, 2025.

Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, and Stephan Giinnemann.
Randomized message-interception smoothing: Gray-box certificates for graph neural networks. In
Advances in Neural Information Processing Systems, NeurIPS, 2022.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved certified defenses against data
poisoning with (deterministic) finite aggregation. In International Conference on Machine Learning
(ICML), 2022.

Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. RAB: Provable Robustness
Against Backdoor Attacks . In IEEE Symposium on Security and Privacy (SP), 2023.

Xiao-ming Wu, Zhenguo Li, Anthony So, John Wright, and Shih-fu Chang. Learning with partially
absorbing random walks. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. CoRR, abs/1603.08861, 2016.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Conference on
Neural Information Processing Systems (NeurIPS), 2018.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. Journal of Software Engineering and Applications, 5(7), 2003.

Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks on neural networks
for graph data. In SIGKDD, pp. 2847-2856, 2018.

12

https://arxiv.org/abs/1710.10903

Under review as a conference paper at ICLR 2026

A EXPERIMENT SETUP

Datasets. As decribed in the beginning of Section 6, we use the 3 Planetoid datasets (Yang et al.,
2016) Cora, CiteSeer and PubMed, available on pytorch geometric,® and the citation dataset Cora-ML
(Bojchevski & Giinnemann, 2018). As a standard procedure in graph machine learning (Shchur et al.,
2018), we preprocess all the datasets by taking the largest connected component and force the graph
to be undirected. The statistics of the dataset we use can be found in Table 1. The training, validation
and test set nodes are determined with scikit-learn’s train_test_split() function,* with random_state
fixed to 12138. We first separate the test nodes’ indices from training and validation (and unused),
then use this function again to separate the training set from the validation with the same seed. Only
the 30% training labels are available to the model during training. Additionally, we evaluate the label
certificates on Wiki-CS (Mernyei & Cangea, 2020) and ogbn-arxiv (Hu et al., 2020), and we use
sample 1/10 of their original splits.

Table 1: Statistics of Datasets. The number of training labels consist 30% of all nodes. We adopt a
30%-10%-30% training-validation-test split across all datasets.

Name #Nodes # Training Labels # Edges # Features # Classes Avg. Degree

Cora-ML 2810 843 7981 2879 7 2.84
CiteSeer 2110 633 3668 3703 6 1.74
Cora 2708 812 5069 1433 7 1.87
PubMed 19717 5915 44324 500 3 2.25
Wiki-CS 11701 586 216123 300 10 18.47
ogbn-arxiv 169343 9600 1166243 128 40 6.89

Table 2: Model Clean Accuracies on Datasets. We report the clean accuracy (percentage) on the
test nodes with given dataset and model with the standard deviation of 3 repeated experiments with
different initialization seeds to the model.

MLP GCN GAT APPNP

Cora-ML 74.02(0.26) 78.77(2.10) 76.95(0.37) 85.13(0.24)
CiteSeer 70.35(0.20) 67.46(0.45) 64.98(2.38) 72.30(0.61)

Cora 67.78(0.06) 76.18(0.41) 75.77(1.22) 83.39(0.82)
PubMed 73.09(0.05) 83.66(1.33) 79.01(0.56) 87.49(0.41)

We follow a 30%-10%-30% train-validation-test split of node labels for all experiments following
Li et al. (2025). Note that the 10% validation set is typically used for regularization tasks such as
hyperparameter tuning and early stopping when training a single GNN. However, since we use a fixed
set of hyperparameters and do not employ early stopping, the validation set is not utilized during
training.

Model Parameters. We used Graph Convolutional Networks (GCN)(Kipf & Welling, 2017), Graph
Attention Networks (GAT), and Approximate Personalized Propagation of Neural Predictions
(APPNP)(Gasteiger et al., 2018) throughout our evaluations.

Our GCNss consist of 2 layers of GCNConv layer with added self-loops from pytorch geometric.’
At the bottleneck we use 8 hidden channels, a dropout layer, and ReLU activation. For GAT we
use 2 GATConv layers from pytorch geometric.® The first layer condense the feature channels to 8
hidden channels with 8 attention heads, and applies dropout and ELU activation, and the second layer
then condense the 8 x 8 dimension in the middle to class-wise logits. The APPNP model consists
of a 2 layer MLP with 8 hidden channels and then an APPNP layer from pytorch geometric’ to

3https://pytorch-geometric.readthedocs.io/en/2.6.0/modules/datasets.html
*https://scikit-learn.org/stable/modules/generated/sklearn.model _selection.train_test_split.html
Shttps://pytorch-geometric.readthedocs.io/en/2.5.2/generated/torch_geometric.nn.conv.GCNConv.html
Shttps://pytorch- geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATConv.html
"https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv. APPNP.html

13

https://pytorch-geometric.readthedocs.io/en/2.6.0/modules/datasets.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://pytorch-geometric.readthedocs.io/en/2.5.2/generated/torch_geometric.nn.conv.GCNConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.APPNP.html

Under review as a conference paper at ICLR 2026

propagate representations, with number of iterations K = 10, and teleport probability o« = 0.1.In
structure perturbation experiments specifically, we don’t use dropout as it provides us with better
results. Additionally, we use an 2 layered MLP as baseline against structure perturbations. It also has
8 hidden units and no dropouts. Note that here in our setup, the GCN with an empty graph is strictly
equivalent to the MLP. Both other attack models use dropouts with a probability of 0.5. All other
unstated parameters follow the pytorch geometric default.

Hyperparameters for Training. For all GNN training, we use a fixed set of hyperparameters
inherited from Li et al. (2018) , which are commonly used in GNN models. Specifically, all models
are trained for 200 epochs without early stopping, using the Adam optimizer with a learning rate
of 0.01 and a weight decay of 5 x 10~%. However, due to the unstable nature of GNN training, we
choose the epoch with the lowest loss for prediction. To calculate this without overfitting, we separate
the data in each partition in halfs, and use one half for training and another for evaluation of the loss.
Note that this split happens to the partitioned 30% labels or edges each partition have access to.

For label propagation, we iterate until the score matrix converges, but cap off at 100 iterations.

Evaluation Process. As described in Section 5, either all edges, the 30% training set labels, or
both are partitioned for the weak classifiers, depending on different types of attacks. We perform
transductive node classification, meaning that the weak classifiers then have access to all the graph
data G = (&, X, y) except for the poisoned items, which are partitioned in the first place.

All models are evaluated with at least 3 different deterministically chosen seeds for model initialization
to evaluate the repeatability of our results. The seeds are chosen by python’s random module. We
seed the random module with a fixed seed of 123456, and then use random.randint(0, 2**32) to
generate a deterministic random seed each time we repeat an experiment.

After the training is done, we evaluate the certified accuracies on the 30% test nodes. This is done by
storing the class predictions of each weak classifier for each node and calculate the robust margin as
introduced in Equation (8). Then the certified accuracies we reported are given by calculating the ratio
of test nodes whose robust margin, together with a specific perturbation size, satisfies Equation (8).

Hyperparameters Summary. Here we provide a table of all hyperparameters involved as a summary
to our description of the experiment setup, alongside their default values and selection criteria.
Throughout this paper, all hyperparameters take their default values (if any) unless otherwise stated.

Table 3: Hyperparameters

hyperparameter description attack models related models default value selection criteria
Ir learning rate all all 0.01 follows Li et al. (2018)
wd weight decay all all 5x 104 follows Li et al. (2018)
ep training epochs all all 200 follows Li et al. (2018)
es early stopping all all None follows Li et al. (2018)
init_seed seed for python random module all all 123456 /
repetition number of repeated experiments all all 3 /
num_layers number of layers in the model all all 2 prevents overfitting
hidden_size hidden channels all all 8 prevents overfitting
dropout dropout probability in dropout layers all GCN, GAT 0.5 prevents overfitting
activation activation function between 2 layers all GCN, APPNE, MLP Rel.U /
all GAT ELU /
train_size % of labels for training all all 30% /
val_size % of labels for validation all all 10% /
test_size % of labels for testing all all 30% /
LF 80 Figure 6
k number of partitions SP all 800 Figure 11
LF&SP 200 Figure 6
order order of co-training and self-training LF, LF&SP all C/T then S/T Figure 8
co-train method ParWalks(PW) or label propagation(LP) LF, LF&SP all LP Figure 10
t number of pseudo-labels per class LFE, LF&SP all 50 Figure 13(a)
[teleport probability in label propagation LF, LF&SP all 0.9 Figure 13(b)
€ X € pseudo-edges than original graph SP all dataset specific Figure 14

14

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENT RESULTS
B.1 CLEAN ACCURACY OF ENSEMBLES
— Random guess --- MLP

80 85
60

80
40

5

20

Ensemble Clean Accuracy

0 20 10 60 80 100 0 20 10 GO 80 100
Number of Partitions Number of Partitions

(a) Partitioning labels (b) Partitioning Edges

Figure 7: Deterioration of clean accuracy of ensembles on Cora-ML. Standard deviations are reported
as colored areas over 3 different seeds.

In Figure 7 we show the clean accuracies of an ensemble classifier if the partitioning scheme is
applied trivially, i.e. without semi-supervised learning. In the label case, the sparsity degrades
the clean accuracy of the ensemble as &k goes larger. With & = 100 partitions, the clean accuracy
drops to just over 20%. In the edge partitioning case, lack of edge information degrades the clean
accuracy of an ensemble below that of an MLP’s over about k = 30 partitions. The deterioration of
performance shown here necessitate the introduction of semi-supervised learning schemes within the
sparse partitions.

15

Under review as a conference paper at ICLR 2026

B.2 ADDITIONAL RESULTS ON OTHER DATASETS

In Figure 5, we presented the proof of 3 statements we made in Section 6 with only results on one
selected dataset. Here we present results on other datasets as well and prove that the trends concluded
in Section 6 still holds with little further explanations. Note that the subfigures marked with (*) are
already present in Section 6.

co-train then self-train — co-train — self-train then co-train self-train ---- w/o
80 8|
60 . ?U
70 70
g 50 60 607,
2 40 50 50
= 30 40 10
] R 301 30
E 20 20 20
& 10 10 0 A
= 0 0 0 S
0 5 10 15 20 25 30 0 5 10 15 20 25 0 5 10 15 20 25 30 0 50 100 150 200
Number of Labels Perturbed Number of Labels Perturbed Number of Labels Perturbed Number of Labels Perturbed
(a) Cora-ML(") (b) CiteSeer (c) Cora (d) PubMed, k = 500

Figure 8: We show different orders of co-training and self-training against label flipping on different
datasets. k£ = 80 unless otherwise stated.

The order of co-train then self-train generally works the best against label flipping. Figure 8
showcases this fact. Our method restores the clean accuracy to generally 70% to 80%, while having
higher certified accuracies, despite the poor performance with vanilla partitions.

—— w/ 2 rounds of edge and label generation w/ 1 round of edge and label generation -==- w/o

60

60
50
109
30
20

Bl

409,

w

o B B 8 5

1

)
)
)
)
)
)

4

0 p 3 5 0 1 2 3 4 L 0 20 40 60
Number of Labels and Edges Perturbed

0 1 2 3 4 5 6 E
Number of Labels and Edges Perturbed Number of Labels and Edges Perturbed

> E :
Number of Labels and Edges Perturbed

(a) Cora-ML, k = 10 (b) CiteSeer, k = 10 (c) Cora, k =10 (d) PubMed™, k = 200

Figure 9: Different number of rounds of link prediction + co-training + self-training against both
label and structure perturbations.

Against both label and structure perturbations on smaller datasets, our method provides
improvement but the limit of & prevents meaningful joint certificates. Due to the extreme sparsity
of labels and edges if we are facing poisoning of both, we can’t use too many partitions, typically
limiting k to around 10. Although the curve drops too fast due to a small k, yielding hardly any
usable certified accuracy against even 1 poisoned label or edge, our method still provides 15% to
20% clean accuracy increase.

—— Ours (Co-train with Label Propagation) Co-train with ParWalks ---- w/o
S 60 70 70
g 6 50 60 6075
Z 5 0 50 50
< 40 30 10 40
T 301w TN 301 30
£ 20 % 01 S 20 20 :
£ ~ ~
T oo 10 NN 10 SR KRR 10
0 0 i 0 == 0 S=sn
0 5 10 15 20 25 30 0 5 10 15 20 25 0 5 10 15 20 25 30 0 50 100 150 200
Number of Labels Perturbed Number of Labels Perturbed Number of Labels Perturbed Number of Labels Perturbed
* .
(a) Cora-ML) (b) CiteSeer (c) Cora (d) PubMed, k = 500

Figure 10: Comparison between our method (co-training with label propagation) and ParWalks(Wu
et al., 2012). The results are achieved by co-training then self-training on given datasets, with k = 80
partitions unless otherwise stated.

Co-training with label propagation is similarly performant as ParWalks yet scalable. Our
method has similar certified accuracy compared to ParWalks across datasets, except for CiteSeer
where it’s about 10% less. However, we argue that this is compensated by the vastly shorter training
time and the characteristic that scales easily to larger datasets by our method.

16

Under review as a conference paper at ICLR 2026

— Ours ZZI Partition-based certificate w/o semi-supervised learning =+ MLP baseline

S = k=200 |73 k=200 = p—200 === k=100
- k= 400 = 400 k=400 85 k=200
= =800 | g9 k=800 g4 i = 400

72 === k= 1600 = k= 1600 = k=800

5™ 82
= 71
T o8 81
S R R = 80
- AL 70 "\\:_ \ i —\‘_“-\ I e B\
0 20 40 60 0 20 40 60 80 100 0 20 40 60 0 100 200 300
Number of Edges Perturbed Number of Edges Perturbed Number of Edges Perturbed Number of Edges Perturbed
() CoraML™), e =12 (b) CiteSeer, ¢ = 20 (c) Cora, & = 20 (d) PubMed, ¢ = 12

Figure 11: Scalability over k with our link prediction method.

Link prediction allows arbitrarily large & which generates even better certificates. In Fig. 11,
we demonstrate the near-perfect scalability of link prediction on generating certificates. The number
of partitions k determines the maximum achievable robustness with the partitioning scheme. There-
fore, given sufficient computational resources, increasing k directly leads to improved robustness.
Furthermore, we emphasize that k is theoretically unbounded in its capacity to enhance robustness
against structure perturbations.

co-train then self-train co-train ---- Partition-based certificate w/o semi-supervised learning

60
50
401>
30
20
10

60
50
10
30
20
104>

Certified Accuracy (%)

0 20 10 60 80 20 40 60 80 100 120 140 160
Number of Labels Perturbed Number of Labels Perturbed

(a) Wiki-CS, kK = 300 (b) ogbn-arxiv, £ = 400
Figure 12: Certifying label flipping on larger graph datasets.

Our co-training and self-training scheme also scales to even larger datasets. Figure 12 shows the
performance gain upon a trivial partitioning scheme on Wiki-CS and ogbn-arxiv. Our co-training and
self-training generally restores a 60% clean accuracy while having also a higher certified accuracy.
We used 1/10 label rate as other datasets to demonstrate this improvement with less partitions. If we
use the original split, an even larger £ would also be possible.

17

Under review as a conference paper at ICLR 2026

B.3 ABLATIONS ON HYPERPARAMETERS

---- Partition-based certificate w/o semi-supervised learning

a=00

60 a=0.001
50 — a=04
404, — a=0.99
30108, a=10

5 10 15 20 25 30 35 0 5 10 520 25 30
Number of Labels Perturbed Number of Labels Perturbed

(a) Ablation of ¢ (b) Ablation of «
Figure 13: Certifying label flipping on Cora-ML with k = 80 partitions.

The hyperparameter ¢ offers a way to balance between performance and robustness. Figure 13(a)
illustrates the impact of varying the number of pseudo-labels ¢ added during training. When ¢ is small,
such as ¢t = 1 or ¢t = 10, the pseudo-labels are too selective and insufficient in quantity to effectively
train the subsequent GNN. Conversely, when ¢ is too large, for example ¢ > 600, the quality of the
pseudo-labels deteriorates, which negatively affects the ensemble classifier’s performance. Therefore,
selecting an appropriate range for ¢ is critical to achieving optimal certified accuracy. For Cora-ML,
this corresponds roughly to the range 50 < ¢ < 200. Since ¢ = 50 works already quite well and
introduce less computation overhead, we fix ¢ = 50 for all experiments.

The random teleport probability « is pretty robust, but need to be properly chosen. Figure 13(b)
shows the certificates with co-training then self-training, but varying the random teleport probability
a An o = 0 means always randomly teleport to a labeled node in co-training, while an o = 1
means no random teleport. As demonstrated by the results, the performance generally plateaus when
0.01 < a < 0.99. As long as « isn’t chosen to be too large or too small, the certified accuracy
remains the best achievable one. We choose to fix o = 0.9 for all experiments.

--=- Partition-based certificate w/o semi-supervised learning

S =20 £=1000

5 76 e=120 |7 — =800

Y — =80 |13 — =400

<5 e=30 £=250

=

£ 71

S
m 70 et

0 10 20 30 40 0 20 40 60 80 100 0 10 20 30 40 50 60
Number of Edges Perturbed Number of Edges Perturbed Number of Edges Perturbed

(a) Cora-ML (b) CiteSeer (c) Cora

Figure 14: Certifying structure perturbations on the three smaller datasets with £ = 800 partitions.

There is a best ¢ for each dataset that we can tune to maximize robustness. ¢ serves as a control
parameter for the selectiveness in adding pseudo-edges. A too small € fails to capture sufficient graph
structure, while a too large ¢ introduces noise that reduces the signal-to-noise ratio in the generated
graph, thereby degrading performance. So there is a best € in between, and according to Figure 14,
this best value varies a lot between datasets, even though the size of which are similar. To avoid high
overheads in all other experiments, we cap ¢ to 20.

18

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREMS

C.1 PROOF OF GENERALIZED DPA

We restate theorem 2 before proving it:

Theorem 2 (Generalized DPA). Given a clean, possible non-i.i.d and structured dataset D, and a
poisoned dataset D, the majority-vote classifier prediction remains unchanged, i.e., gp(z) = g (),
as long as dnd(D, D) < | (ne(D,z) — maxe 4. (ne (D, 2) + 1o <)) /2] = rm(D, x), where ¢ =
gp(x) is the predicted class on the clean dataset.

Proof. We first introduce a lemma that gets rid of the floor operation:

Lemma 3 (Floor operation equivalency).

b
a< L?@Qaﬁb,Va,beN (11)
Proof.angJSgéaggand2a§b:>a§%:>a:mj§L%J O

We use the shorthand notation of .. being n.(D, z) and 71, being n.(D, x), and r = d(D, D).

Given Theorem 2 and Lemma 3

2dp - r < ne— n};aéx(ncf +1o<e) (12)

We get rid of the max operation by taking any class and move all terms to one side
0<n,—ng —lyce —2dy -1,¥ # ¢ (13)

Because the training is conducted in a deterministic manner, the classifier will give the same prediction
if the training data is the same. So the number of weak classifiers that predicts differently for a node

fi(v) # f;(v) is also at most dy, - 7. So for any class, the number of predictions changed is bounded
by

Ve € [ncl, |ne — ng| <dp -7 (14)

From Equation (14) we plug in ¢ = c and ¢ = ¢ to get

Ne —Ne < dp -1 (15)
P — g < dp 7 (16)
which is equivalent to

ncgﬁc"_dh'r (17)
—MNer < _ﬁc’ + dh - (18)

Plugging this to Equation (13), we have
Ve #c,0<ne— Ny — loce—2dp, -7 (19)
< ﬁc + dh s *ﬁc’ + dh - r 71(:’<c - 2dh - T (20)

Equation (17) Equation (18)

= e — e — Loce 2D

So for the ensemble classifier trained on poisoned data

Ne > max(ﬁc/ —+ 1C/<C) (22)
' #c

and the ensemble classifier’s prediction is unchanged because c is the majority. [

19

Under review as a conference paper at ICLR 2026

C.2 PROOF OF DISTANCE FUNCTION

The following is a proof that d((£,y), (£, %)) is a distance.

Proof. We recall that d((£,y), (£,9)) is defined to be the sum of symmetric set difference between
edges and the hamming distance between labels

d((£,y), (£.,9)) = A(E.€) + 6(y. §) (23)

and a function d : M x M — R is a distance on metric space M if Vz € M, d(z,z) = 0,
d(z,y) > 0,2 #y, d(z,y) = d(y,z), and d(x,y) < d(z, z) + d(y, 2).

We first note that d(-, -) between one (€, y) and itself is 0 because both its terms are 0; It’s value is
always positive as it’s the sum of two positive numbers, if both input are distinct; d(-,) is symmetric
because both its terms are symmetric and changing the order of objects doesn’t affect the value.

To prove triangle inequality

d((&1,y1), (E3,y3)) = A(E1,E3) +6(y1,y3) (24)
< A&, E) + A&, E3) + (Y1, y2) + (Y2, y3) (25)
=d((&1,y1), (E2,Y2)) + d((E2,Y2), (E3,Y3)) (26)

So d((€,y), (£,) is indeed a distance metric.

20

Under review as a conference paper at ICLR 2026

Algorithm 3 Efficient Edge Candidate Selection for Link Augmentation

Require: Number of nodes per class n., node confidence scores per class:
{Sc = [S¢,1,8¢,2y- - - Sen. |} sorted descending, desired number of edges to add ¢ - e
Ensure: Top-¢ - e pseudo-edges with highest sum of confidence scores

1: Initialize global max-heap G (size = number of classes)
2: for each class c do
3: Initialize empty local max-heap L.

4: Insert initial pair (0, 1) with score s = S.[u] + S.[v] and class index as tuple (u, v, s, ¢) into

5: end for
6: while number of added edges smaller than ¢ - e do
7: Extract top (u, v, s, ¢) from global heap G
8: Adde = (u,v) to candidate edge set
9: For local heap L., consider children pairs:
10: childy = (u,v+ 1) ifv+1 < n,
11: childy = (u+ 1,v) ifu+2=w
12: for each valid child pair (u,v) do
13: Compute sum of score s = S..[u] + S¢[v]
14: Insert tuple (u, v, s) into L,
15: end for

16: Extract next top tuple (v',v’, s) from L,

17: TInsert (v, s, ¢) into global heap G

18: end while

19: return Final candidate edges across all classes

D ALGORITHMS

D.1 EFFICIENT SELECTION OF PSEUDO-EDGE CANDIDATES

As the number of nodes, k or € goes up, the number of possible
edge pairs also scales up, which results in significant computa-
tional overhead. To address this challenge, we propose a time
and memory-efficient algorithm for selecting edge candidates
with the highest combined confidence scores across all classes.
The algorithm for selecting edges is described in Algorithm 3.
A global max-heap keeps track of which class has the next best
edge candidate according to the sum of scores. We initialize
the global heap by inserting the first pair (0, 1) from each class,
as these pairs hold the maximum possible sum of scores within
their respective classes. To add edges, we repeatedly pick the
top element from the global heap until the number of edges
selected exceeds the threshold defined by €.

To supply the global heap with the best candidates from each
class, every class maintains a local heap, which is initially
empty. Each time an edge is selected from the global heap,
the algorithm accesses the corresponding class’s local heap
and inserts the next candidate pairs. To prevent local heaps
from becoming prohibitively large, we do not insert all pos-
sible node pairs at once. Instead, node pairs are added only
when they can potentially represent the best candidate. This
is enabled by pre-sorting nodes and their confidence scores

Figure 15: Tree structure for spawn-
ing edge candidates. An edge in
layer ¢ is guaranteed to have a higher
score than in layer ¢ 4+ 1 and a lower
score than in layer ¢ — 1.

within each class in descending order. Consequently, nodes with smaller indices correspond to higher
scores. This ordering induces a binary tree structure over node pairs, illustrated in Figure 15, where
an edge (u,v) has a larger combined score than (u, v + 1), and (u + 1,v). As the criterion, the sum
of scores, is commutative, (u, v) and (v, u) represent the same edge candidate, so we consider only
node pairs (u, v) where u < v. This results in the half binary tree structure in Figure 15.

21

Under review as a conference paper at ICLR 2026

Since most nodes have two parents, simply adding both (u,v + 1) and (u + 1, v) to the local heap
would result in duplicate insertions of many nodes. To avoid this, we add the pair (u + 1,v) only
when u + 2 = v. This condition effectively removes the red dashed connections shown in Figure 15
and ensures that each edge pair is added to the local heap exactly once. This also guarantees that the
local heap always contains the node pair with the highest possible sum of scores.

D.2 PROPOSED GENERAL CERTIFICATION PIPELINE AGAINST BOTH LABEL FLIPPING AND
STRUCTURE PERTURBATIONS

Algorithm 4 ST-GPA joint pipeline

Require: Graph dataset D = (£, X,)), a label propagation method y = LP(e, X, y), a label self-
training method y = LST (¢, X, y), an link prediction method é = EST (¢, X, y), a training
order o, = {LP, LST, EST}™

Ensure: A robust ensemble classifier g

1: split poisoned targets into partitions ¢; = {e € E|h(e) =i} and/or y; = {—1}" U labels

2: for each operation op in the given order o, do

3: for each partition ¢ do

& forg=op(e X, y;)

5: g, =¢;UE

6: yi=y Uy

7

8

9

0

1

end for
: end for
: train weak classifiers on final edges, labels and features
. count weak classifier predictions
: calculate certificate

22

Under review as a conference paper at ICLR 2026

E DISCUSSION ON THE RELATION TO PGNNCERT AGAINST STRUCTURE
PERTURBATIONS

Li et al. (2025) apply a similar partitioning scheme to derive poisoning certificates for GNNs. In their
work, a thread model of arbitrarily perturbing edges, nodes, and node features is considered. In this
section, we provide comparison between our results and theirs. Due to their certified accuracy does
not outperform an infinitely robust MLP, we do not report them in Section 6.

To compare our works directly, we adopted their published code and use their exact dataset splits.
We then run our proposed approach on their data split. Note that the only difference in the setup
is the model and hyperparameters for training, where we use a 2-layered GCN as described in
Appendix A, and they use a 3-layered GCN with skip connections and linear layer. In Li et al. (2025),
2 different partitioning schemes were proposed, namely edge centric and node centric, which has
similar performance against structure perturbations, so we report the result with the node centric
variant only. Due to the limitation of implementation of Li et al. (2025), their code does not scale
to larger number of partitions due to memory limits, so we choose k& = 60 as a compromise and
keep other parameters exactly the same for a fair comparison. Note that normally our link prediction
scheme can be used with significantly larger k-s to generate competitive certificates, so we also report
k = 600 with the same setup. Although Li et al. (2025) doesn’t report results on Cora, their code can
be easily adapted as the Planetoid datasets share the same data loader in PyTorch, so we report results
on Cora as well.

-=- PGNNCert-N (k = 60) — Ours (k =60) Ours (k = 600)
—— Partition-based certificate w/o semi-supervised learning -+ MLP baseline
S - 7
~ [8e]
g 80 e
o
S 7
- - 69
T % 7
£ PR \
e ~ N 1N
E N 65
e - - a 63 st -
0 5 10 15 0 5 10 15 0 5 10 15 20 25 30
Number of Edges Perturbed Number of Edges Perturbed Number of Edges Perturbed
(a) Cora-ML, magnified (b) CiteSeer, magnified (c) Cora, magnified

Figure 16: Certified accuracies of our method compared to Li et al. (2025), ¢ = 30. PGNNCert-N’s
performance falls steadily below the MLP baseline which is infinitely robust to structure perturbation;
a trivially applied partitioning scheme has only on-par clean accuracy with an MLP, yielding hardly
any meaningful perturbation budget; with our proposed link prediction method, the certified accuracies
is most competitive.

As shown in Figure 16, PGNNCert-N’s performance is consistently outperformed by the infinitely
robust MLP baseline on all datasets. In the mean time, our link prediction method shows similar
improvements to certified accuracy over the MLP baseline as previously reported in Section 6 and
Appendix B. At £ = 60, the allowed perturbation budget is very small. But the reported £ = 600
curves shows the normal performance of our method with more partitions, yielding larger perturbation
budgets.

Provided that PGNNCert’s performance is below the MLP baseline in the case of structure perturba-
tion, we don’t report a comparison to PGNNCert in the results in this paper, as we already use the
MLP baseline as a lowest acceptable case in all our results against structure perturbation.

In Li et al. (2025), no certificate against label flipping is reported. As we have already shown in
Appendix B.1, the partitioning scheme does not readily transfer to labels, so we don’t compare our
results with Li et al. (2025) on label flipping.

23

Under review as a conference paper at ICLR 2026

F SCALABILITY OF PROPOSED METHODS

In this section, we analyze the scalability of our 3 proposed self-training methods by reporting
the relative time used in our experiments. In all our experiments, we use one single NVIDIA
GTX1080Ti GPU. The link prediction uses CPU only. While it can be easily parallelized, we report
the performance on 1 CPU core only, as link prediction on individual partitions are usually done
so. The time reported are for relative reference considering the number of nodes and edges in each
dataset.

We first point out that the time complexity scales linearly with the number of partitions £, since the
partitions are disjoint once they are created, Partitioning the dataset takes a negligible amount of
time, and can easily be accelerated by pre-processing the dataset and store all the partition indices.
Consequently, it is reasonable that we only report time taken per partition in this section. The memory
complexity is irrelevant w.r.t. k by the same reason that the partitions are disjoint. The training on
individual partitions could be done in a parallel or distributive manner.

Table 4: Time used for co-training and self-training with ¢ = 50

Cora-ML CiteSeer Cora PubMed Wiki-CS ogbn-arxiv

graph size (Nr. nodes) 2810 2110 2708 19717 11701 169343
training time per partition (s) 6.4 5.5 5.5 2.7 3.1 40.9

thereof training w/o SSL 36.1% 373% 364% 31.9% 29.0% 31.4%

thereof C/T 26.8% 247% 252% 30.8% 36.4% 37.0%

thereof S/T 37.1% 380% 384% 37.3% 34.6% 31.6%

Table 4 shows the time taken to train an individual partition on all datasets we tested. Label partition
training is generally very fast. Note that the time portion reported for training without semi-supervised
learning represents the time baseline for training on the raw partition, which has also similar time
complexity of training on the clean graph. Judging from the percentages reported, co-training and
self-training is just another round of training of a GNN, which takes similar time as training the first
one on the raw partition. The results show good scalability of our label self-training methods as the
time portion stays roughly equal regardless of the size of the dataset, and the total time necessary to
train the ensemble scales roughly linearly with the graph size (number of nodes).

Table 5: Time used for link prediction with e = 1.0

Cora-ML CiteSeer Cora PubMed Wiki-CS ogbn-arxiv

graph size (Nr. edges) 7981 3668 5069 44324 216343 1166243
training time per partition (s) 1.9 1.0 2.0 9.3 19.3 67.8
thereof training w/o SSL 32.3% 587% 57.5% 14.4% 8.2% 6.6%
thereof L/P 7.3% 3.8% 5.5% 13.8% 34.5% 42.8%

thereof training with pseudo-edges 60.4% 37.5% 37.0% 71.8% 57.2% 50.6%

Table 5 shows the time taken per partition for edge semi-supervised training. Although smaller
datasets has faster training time per partition, more partitions are required in structure perturbation
to generate a meaningful certificate. Therefore, the time taken to train an edge ensemble is usually
comparably longer than an label ensemble. In the smaller datasets, training without and with the
pseudo-edges take roughly the same time. However, as the number of edges grows, training with
pseudo-edges becomes the predominant factor in total training time, and the time taken to find the
pseudo-edges becomes non-negligible. On larger graphs, this is especially a choking factor as we
usually add more pseudo-edges than there originally are (¢ >> 1.0), making the link prediction very
time-consuming.

24

Under review as a conference paper at ICLR 2026

G CLEAN ACCURACY INCREASE WITH SEMI-SUPERVISED LEARNING

Our semi-supervised learning methods are tailored to boost certifiable robustness by improving the
weak classifier’s performance. Compared to a single classifier, the semi-supervised learning methods
we propose are much more powerful on weak classifiers. By doing co-training, self-training and link
prediction, the weak classifiers’ performance gets boosted, which in turn yields improved certifiable
robustness for the ensemble.

When compared to a boost of accuracy of the weak classifier, an ensemble classifier’s clean accuracy
increases by a larger margin. This is due to the nature of an ensemble, where only a majority of votes
has to be correct. This is shown in Table 6. An ablation that how semi-supervised learning performs
without partitioning is also included for comparison.

Table 6: Clean accuracies (%) of weak classifiers and ensembles on Cora-ML

w/o C/T S/IT L/P
k = 1 (brings no robustness) 78.77 80.39 (+1.52) 78.92 (+0.15) 78.99 (+0.22)

individual ~ 25.80 3991 (+14.11) 43.45 (+17.65)
ensemble 38.79 76.59 (+37.80) 80.70 (+41.91)

individual ~ 71.28 70.32 (-0.96)
ensemble 74.26 76.34 (+2.08)

Individual classifiers’ accuracy is the average value over all partitions.

partition labels, £k = 80

partition edges, k = 800

As shown in Table 6, the clean accuracy increase is little, if any, when applied to the unpartitioned
dataset. The boost of clean accuracy is the most effective on partitioned data, where the baseline
accuracy is low due to sparsity. In general, the ensemble classifier’s accuracy increases by a larger
margin compared to individual classifiers’. In the structure perturbation case, the weak classifiers
even observe a decrease in accuracy, but the ensemble has nonetheless a higher clean accuracy. This
is due to that more samples have a majority of correct predicting weak classifiers after link prediction.

The results further strengthen the necessity of our proposed semi-supervised learning scheme. While
the partitioning provides the fundamental provable robustness, the individual classifiers perform
poorly under sparse conditions in the vanilla setup. Here, our proposed semi-supervised training
scheme is fully responsible for the improvement of the weak classifiers’ accuracies, in turn resulting
in much better clean and certified robustness for the overall ensemble.

25

Under review as a conference paper at ICLR 2026

H LLM USAGE

LLMs are used to assist with writing tasks such as grammar checking and polishing. They are not
employed in the research ideation process or in generating the text in this paper.

26

	Introduction
	Preliminaries
	Generalized deep partition aggregation for non-i.i.d. data
	Limitations of the simple partitioning in the graph domain
	Deep self-training graph partition aggregation
	Semi-supervised learning for label generation
	Semi-supervised learning for edge generation

	Experimental evaluation
	Discussion on Limitations
	Related work
	Conclusion
	Experiment setup
	Additional experiment results
	Clean accuracy of ensembles
	Additional results on other datasets
	Ablations on hyperparameters

	Proof of theorems
	Proof of generalized DPA
	Proof of distance function

	Algorithms
	Efficient selection of pseudo-edge candidates
	Proposed general certification pipeline against both label flipping and structure perturbations

	Discussion on the relation to PGNNCert against structure perturbations
	Scalability of proposed methods
	Clean accuracy increase with semi-supervised learning
	LLM Usage

