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A critical challenge in glioma treatment is detecting tumour infiltration during
surgery to achieve safe maximal resection'. Unfortunately, safely resectable
residual tumour is found in the majority of patients with glioma after surgery,
causing early recurrence and decreased survival* . Here we present FastGlioma, a
visual foundation model for fast (<10 s) and accurate detection of glioma infiltration
infresh, unprocessed surgical tissue. FastGlioma was pretrained using large-scale
self-supervision (around 4 million images) on rapid, label-free optical microscopy,
and fine-tuned to output a normalized score that indicates the degree of tumour
infiltration within whole-slide opticalimages. In a prospective, multicentre,
international testing cohort of patients with diffuse glioma (n = 220), FastGlioma
was able to detect and quantify the degree of tumour infiltration with an average
areaunder thereceiver operating characteristic curve of 92.1+ 0.9%. FastGlioma
outperformed image-guided and fluorescence-guided adjuncts for detecting
tumour infiltration during surgery by awide margin in a head-to-head, prospective
study (n=129). The performance of FastGlioma remained high across diverse patient
demographics, medical centres and diffuse glioma molecular subtypes as defined by
the World Health Organization. FastGlioma shows zero-shot generalization to other
adult and paediatric brain tumour diagnoses, demonstrating the potential for our
foundation model to be used as a general-purpose adjunct for guiding brain tumour

surgeries. These findings represent the transformative potential of medical
foundation models to unlock the role of artificial intelligence in the care of patients

with cancer.

Theimportance of detecting tumour infiltration within surgical speci-
mens during an operation has been recognized for over a century’.
Despite our best efforts to deliver precision healthcare to patients with
cancer, residual tumour after surgery is amajor public health problem
inthe United States and globally®. For solid cancers and brain tumours,
residual tumour results inworse quality of life, decreased patient sur-
vivaland increased burden on healthcare systems>**'°, Rates of residual
tumour have notimproved over the past two decades, and corrective
surgical procedures and post-surgical treatment have an estimated
total cost of more than US$1 billion annually in the United States®™.
Here we present FastGlioma, an open-source, artificial intelligence
(Al)-based diagnostic system for detecting brain tumour infiltrationin

fresh, unprocessed, unlabelled surgical tissue at the patient’s bedside
(aninteractive demo is available at https://fastglioma.mlins.org).
Conventional microscopy analysis with haematoxylin and eosin
(H&E)-stained tissue during surgery is slow, resource intensive and
reliant on a shrinking pathology workforce'. FastGliomasolves these
limitations by combining rapid, user-friendly, bedside optical micros-
copy and visual foundation models trained on a diverse dataset of
over 11,000 surgical specimens and 4 million unique microscopy
fields of view. Foundation models, such as the GPT-4 and DALL-E3
models, are Al models that are trained on massive, diverse datasets
and canbe adapted to awide range of downstream tasks" ¢, Founda-
tion models for medical Al have the potential to solve challenging
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Fig.1|FastGliomaworkflow. A patient with asuspected diffuse glioma
undergoes surgical resection. During tumour resection, the surgeon samples
tissue from the surgical margin. The portable SRHimaging system acquires
microscopy imagesinthe operatingroom, performed by asingle technician
using simple touchscreeninstructions. A freshly excised surgical specimen
isloaded directly into acustom microscopeslideandinsertedinto the SRH
imager without the need for tissue processing. Additional details onimage
acquisitionare provided in Extended Data Fig.1. SRHimages can be virtually
stained using an H&E-like colour scheme for clinician review as shown above?.
Awhole-slide SRHimage is divided into patches and each patchundergoesa
feedforward pass through a patch tokenizer (Extended DataFig.3a). The patch
tokens, plus an appended classification token <CLS>, are theninputintoa
whole-slide SRH encoder thatis a vision transformer. The patch tokenizer and

clinical tasks by requiring little to no task-specific annotations to
achieve good generalization performance and clinically meaning-
ful results” %, FastGlioma combines visual foundation model train-
ing and efficient fine-tuning strategies to generalize across patient
demographics, healthcare systems and WHO brain tumour diagno-
ses with minimal supervised training. As a general-purpose surgi-
cal adjunct, FastGlioma provides physicians with real-time, accurate
and clinically actionable diagnostic information within seconds
of tissue biopsy that can improve the surgical care of patients with
brain tumours, thereby increasing patient quality of life and overall
survival.

Visual foundation model training

The FastGlioma workflow starts during the surgical resection of
a brain tumour (Fig. 1). Fresh tissue specimens are sampled at
the surgical margins of a resection cavity to detect microscopic
tumour infiltration. Specimens are imaged at the patient’s bedside
using stimulated Raman histology (SRH)—a rapid, label-free, sub-
micrometre-resolution optical imaging method?**?. A major advan-
tage of SRH over other intraoperative imaging methods is thatimage
contrast is generated from the intrinsic biochemical properties of
the specimen and does not rely on stains, dyes or labels. SRH images
canbe acquired in either full-resolution mode (~100 s) or fast mode
(~10 s, lower resolution) depending on the clinician’s preference and
the clinical context (Extended Data Fig.1). Whole-slide images range
from 1 mm?to 10 mm?and are divided into smaller, non-overlapping
fields of view, or patches, for model input. The FastGlioma founda-
tion model training dataset was acquired from 13 medical centres
and includes imaging data from over 3,000 patients, spanning
the diagnostic spectrum of central nervous system tumours and
human cancers (Extended Data Fig. 2). We developed a two-stage
self-supervised learning method specifically designed for training
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whole-slide encoder are pretrained as a visual foundation model using large-
scale self-supervision (Extended Data Fig. 3b). For tumour-infiltration scoring,
aslidescorer modelis fine-tuned to output anormalized continuous score
between 0 and1that predictsthe degree of tumour infiltration within the whole-
slideimage that correspondsto a four-tier whole-slide ordinalinfiltration scale
asdefined by expert neuropathologists (Extended Data Figs. 2and 4). Ordinal
labels are weak because they apply to the slide level only. Despite the weak
labels, FastGlioma provides regional interpretability by identifying areas
within whole-slide SRHimages with a high probability of tumour infiltration.
Scalebars, 100 pm. Tumour resection and microscopy slide images were
adapted fromref. 4. The operatingroom graphic was adapted fromref. 48. The
neuralnetwork architectures were adapted from https://alexlenail. me/NN-SVG/.

vision transformer architectures on whole-slide microscopy images.
First, patch features are extracted using a patch tokenizer trained
using hierarchical self-supervised learning? (Extended Data Fig. 3a,b).
Second, whole-slide image features are learned by generating two
views of the same whole-slide image by randomly splitting, crop-
ping and masking the patch tokens. Both views then undergo a
feedforward pass through a vision transformer, with the patches
asinput tokens, and a whole-slide self-supervised objective is mini-
mized* (Extended Data Fig. 3¢). Using this two-stage strategy to
train a vision foundation model on the full SRH dataset, we obtained
high-quality whole-slide representations and state-of-the-art per-
formance on a previously benchmarked multiclass brain tumour
diagnosis task®. The classification task includes diagnosing the
most common brain tumour types, including diffuse lower-grade
and malignant gliomas with variable amounts of tumour infiltra-
tion. The high-quality patch-level and slide-level self-supervised
training results in minimal trade-off between imaging speed/resolu-
tion versus model performance, with fast SRH reaching a mean class
accuracy of 88.0 + 2.1% versus full-resolution SRH at 90.2 + 3.0%
(Extended Data Fig. 3¢). The proposed vision foundation model
training strategy enables clinicians to seamlessly analyse multiple
specimens throughout the tumour resection without sacrificing model
performance.

Fine-tuning for infiltration scoring

Fine-tuning can improve task-specific foundation model perfor-
mance?®; however, a major disadvantage of fine-tuning is the need
for new large and annotated datasets'. Biomedical datasets are chal-
lenging to obtain, making efficient fine-tuning strategies essential
to ensure safe and effective medical Al performance. To adapt our
SRH foundation model for tumour infiltration detection and scor-
ing, we developed a data-efficient ordinal representation learning
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Fig.2|Prospective clinical testing results. a, The prediction results for the
full prospective, international, multicentre testing cohort of patients with
diffuse glioma (n=220) areshown. ROC curves (mean +s.d.) show the average
performance for predicting four levels of tumour infiltration. Subgroup
analysisisshownin Extended Data Fig. 6. SRH foundation model pretraining
showed strong prediction performance without fine-tuning. When fine-
tuning with ordinal metric learning, FastGliomahad a3.2% increase in overall
performance. FastGlioma outperforms models trained using standard
supervised training (84.7 £ 1.1% mAUC) as shown in Supplementary Table 4.
b, Box and whisker plots, shownin the standardized quartile format, of
FastGliomainfiltration scores by ground-truth value.Scores had strong
correlation with ground-truth ordinal scores (p = 0.77,95% confidence
interval = 0.74-0.78). Individual scores are shown in a histogram and

method called ordinal metric learning that was implemented using
an existing, previously annotated SRH tumour-infiltration dataset®.
The tumour-infiltration dataset is 100x smaller than the foundation
SRH dataset (around 100 versus approximately 10,000 images) and
was annotated by three expert neuropathologists (lead pathologist,
M.P.). The pathologists ranked the degree of tumour infiltration within
each SRH image on a consensus four-tier scale: (0) normal brain tis-
sue/no tumour; (1) atypical cells/possible tumour but not definitive;
(2) sparse tumour infiltration; (3) dense tumour infiltration. Each speci-
men thenunderwent H&E staining and tumour-marker-specificimmu-
nohistochemistry, such asisocitrate dehydrogenase-1/2 (IDH) and p53,
to confirm tumour-infiltration scores*. Using this tumour-infiltration
dataset, ordinal metriclearning fine-tunes the SRH foundation model
by maximizing the latent distance, or metric, between whole-slide
SRH images with different degrees of tumour infiltration (Extended
Data Fig. 5a,b). Moreover, the increased efficiency of ordinal metric
learning stems from enforcing that the model ranks images based
on their tumour infiltration by performing a pairwise comparison
between all images in a training mini-batch. The model then implic-
itly learns similar representations for whole-slide SRH images with
the same degree of tumour infiltration and the representations are
appropriately ordered in the whole-slide embedding space (Extended

0

correspond to AUROC valuesina. ¢, FastGlioma performance on full-
resolution (FR) versus low-resolution SRHimages. Dataare mean +s.d.
FastGliomaallows for al0x increaseinimaging speed with minimal
performance trade-off. d, Whole-slide SRHrepresentations are plotted on
alinear discriminant axis. FastGlioma-learned representations rank
whole-slide SRHimages on a near-linear tumour-infiltration axis. e, Subgroup
analysis by WHO adult-type diffuse glioma subtypes (ROC curves are plotted
asmean ts.d.). FastGlioma performs well across all three adult-type diffuse
gliomas. Importantly, FastGlioma performs well on lower-grade gliomas in
which tumour infiltration and tissue cellularity can be low (Extended Data
Fig. 7). Low-grade and lower tumour infiltration are major challenges for
other surgical adjuncts, such as fluorescence-guided surgery. WT, wild type.

DataFig. 5¢). The fine-tuned model uses a linear slide scoring layer
to output a single scalar value between 0 and 1 that indicates the
degree of tumour infiltration within a whole-slide SRH image, pro-
viding clinically actionable information for each specimen within
seconds of biopsy. In addition to assessing surgical margins, Fast-
Glioma can identify specimens with dense tumour infiltration early
in the surgical resection to obtain high-yield diagnostic tissue for
intraoperative and final pathologic diagnosis. We demonstrate that
ordinal metric learning outperforms other state-of-the-art ordinal
regression methods, especially when training data are limited, achiev-
ing a mean area under the receiver operator characteristic curve
(mAUROC) of 88.7 +1.6% on hold-out testing using the SRH infiltration
dataset.

Prospective testing of FastGlioma

We tested the fine-tuned FastGlioma model in a multicentre, pro-
spective cohort of patients with diffuse glioma to evaluate how the
model generalizes across different continents, medical centres, patient
demographics and WHO diffuse glioma molecular subgroups. Model
testing was designed as asingle-arm, non-inferiority, diagnostic clini-
cal trial with a minimum sample size of 565 SRH specimens for both
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Fig.3|General and interpretable FastGlioma predictions. Diffuse glioma
specimens from the four study medical centres are shown. Specimens span

the full diagnostic spectrum of WHO adult-type diffuse gliomas. Few-shot
visualizations highlight regions of tumour infiltration contained within surgical
specimens using asupportset ofexpert-physician-selected SRH patch keys
tomatchthe underlying SRH query features using FastGlioma. As a visual
foundation model, FastGliomarequires few examples (around 10, University
of Michiganimages only) to achieve interpretable tumour-infiltration

IDH-mutant and IDH-wild-type diffuse gliomas (1,130 total specimens).
All specimen processing and annotation was performed using the
validated four-tiered tumour-infiltration rating system described
above. Three tertiary medical centres across the United States and
Europe were included as testing recruitment sites: University of Cali-
fornia San Francisco (UCSF), New York University (NYU) and Medical
University of Vienna (MUV). Patients were recruited as a consecutive
cohort of adult patients (aged =18 years) with diffuse gliomas who
underwent tumour resection. A total of 220 patients were included
(Extended Data Fig. 2), resulting in 767 IDH-mutant specimens and
659 IDH-wild-type specimens. FastGlioma achieved a mean AUROC
0of 92.1+ 0.9% for differentiating the four degrees of diffuse glioma
infiltration (Fig. 2a). Normalized infiltration scores were strongly
correlated with ground-truth ordinal labels, with a correlation coef-
ficient of p=0.77 (95% confidence interval = 0.74-0.78, P= 0.00)
(Fig. 2b). Importantly, visual foundation model pretraining allowed
FastGlioma to generalize to the fast, low-resolution images acquired
at10ximaging speed withoutaclinically significant reductionin pre-
diction performance (<1% decrease) (Fig. 2c). SRH foundation model
fine-tuning with ordinal metric learning resulted in the FastGlioma
representing whole-slide SRHimages on alinear infiltration axis that
stratifies SRH images according to their ground-truth infiltration
label (Fig. 2d). Model performance and infiltration scores were con-
sistent across patient demographics, including sex, age and race.
mAUROC remained high across medical centres: UCSF (92.1+ 0.2%),
MUV (88.6 + 0.13%) and NYU (92.9 + 0.1%) (Extended Data Fig. 6a,b).
While other surgical adjuncts can be limited to a single brain tumour
diagnosis, FastGliomawas intentionally designed as ageneral-purpose
model for all diffuse gliomas and degrees of tumour infiltration.
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visualizations that generalize across medical centres and degrees of tumour
infiltration. FastGlioma predictions and visualizations are consistent across
diverse histological features, including dense tumour, infiltrated normal brain
parenchyma, tumour-associated immune cell infiltration and atypical cells.
FastGlioma differentiates betweenincreased cellularity due to tumour cell
infiltration versus non-neoplastic cells, such asred blood cells (RBCs). Additional
detailed few-shot visualizations are provided in Extended DataFig. 8. Scalebars,
100 um. The maps were created using Vecteezy.

FastGlioma maintained accurate tumour-infiltration scores despite
thesignificant cytological and histoarchitectural differences related to
tumour grade, molecular genetics, treatment effect or WHO subtypes
(Fig.2e and Extended Data Fig. 6¢c-e). Lastly, FastGlioma outperforms
cellularity/segmentation-based methods for tumour detection by
alarge margin with a >10% mAUROC performance increase, espe-
cially inregions of lower cellularity or tumour densities (Extended
DataFig. 7).

Interpretability and zero-shot results

Interpretable visualizations that highlight regions of tumour infiltra-
tion within whole-slide images are essential to ensure safe, reliable
and trustworthy predictions”. We developed a visualization strategy
that takes advantage of FastGlioma’s self-supervised training and gen-
eralization performance, called few-shot visualizations. For a query
SRHregion or patch, few-shot visualizations use a small support set of
physician-selected SRH patch examples as keys to assess feature simi-
larity (around tenimages). The support setincludes a diverse selection
of diffuse gliomas and normal brain parenchyma SRH patch examples.
FastGlioma few-shot visualizations compare the query cosine similarity
with tumour keys and the dissimilarity with normal keys to generate
tumour-infiltration heat maps. Few-shot visualizations are a flexible
foundation-model-based interpretability framework that canaccom-
modate any supportset selected by pathologists, clinicians or investiga-
tors. Adding or changing support set examples does not require model
retraining. Figure 3 shows interpretable few-shot FastGlioma visuali-
zations from the prospective testing medical centres. The heat maps
demonstrate slide-level segmentation of tumour-infiltrated regions.



Visualization quality generalizes across medical centres, degrees of
tumour infiltration and molecular subgroups (Extended Data Fig. 8).
Similar to FastGlioma tumour-infiltration scoring, few-shot visualiza-
tionsreliably identify regions of tumour infiltration despite variations
in the underlying histological features. FastGlioma learned invariant
tumour-infiltration representations across the molecular subgroups
of diffuse gliomas (Extended Data Fig. 8a,b). Importantly, FastGlioma
demonstrates medical foundation model properties with zero-shot
generalization. FastGlioma achieves accurate tumour-infiltration
detection and few-shot visualization for non-glioma brain tumour diag-
noses, including metastatic brain tumours, primary central nervous
system lymphomas, embryonal tumours and meningiomas (Extended
DataFig.9). Theseresults demonstrate the advantage of visual founda-
tionmodels for medical Al applications and the potential to generalize
to other human cancers without requiring extensive model retraining
or fine-tuning.

FastGlioma as a surgical adjunct

Finally, we evaluated the feasibility and safety of FastGlioma as a sur-
gical adjunct by simulating an interventional clinical trial in which
surgicalresections are guided by FastGlioma predictions. FastGlioma
predictions (experimental arm) were compared in ahead-to-head, pro-
spective comparison against standard-of-care intraoperative surgical
adjuncts (controlarm):image-guided surgery with magnetic resonance
imaging (MRI)-based neuronavigation and fluorescence-guided sur-
gery with 5-aminolevulinicacid (5-ALA). Both adjuncts have been stud-
ied in clinical trials that demonstrated improved extent of resection
and decreased postoperative residual tumour volume??®. In total, 129
patients with diffuse glioma, asubset of the above prospective cohort,
wereincluded, resultingin 624 surgical specimens with matched Fast-
Glioma predictions and radiographic features (contrast enhancement/
FLAIR) and/or 5-ALA status for each surgical specimen according to
previously published and validated protocols*** (Supplementary
Table 3). We evaluated both study arms on the classification task of dif-
ferentiating surgical specimens with the ground truth label of normal
brain (score 0) versus dense tumour infiltration (score 3). Errors on this
taskare clinical high-risk errors because they represent actionable and
decisive predictions: normal brain predictions signal to stop resection,
dense tumour signals to continue resection if otherwise safe. Fast-
Glioma outperformed both image-guided and fluorescence-guided
methods for detecting tumour infiltration by awide margin (Fig. 4a).
FastGliomaachieved an AUROC of 98.1% compared to 76.3% for FLAIR
positivity, 71.8% for contrast enhancement and 89.0% for 5-ALA fluores-
cence. Amajor challengein diffuse glioma surgery isinterpreting FLAIR
positivity, which canindicate tumour infiltration or cerebral oedema,
orboth. FastGliomawas able to correctly differentiate tumour infiltra-
tionand cerebral oedemain FLAIR-positive regions, withan AUROC of
98.7% (ref. 31) (Supplementary Fig. 2). Next, we analysed these results
foreachstudy patient toidentify the number of patients that had one
or more high-risk tumour miss errors, or false-negative predictions,
for both study arms. Tumour miss errors place patients at high risk of
dense, safely resectable residual tumour left within the resection cavity
after surgery. Only 3.8% (5 out 0f 129) of patientsin the FastGliomaarm
had at least 1 high-risk tumour miss compared with 24.0% (31 out of
129) in the surgical adjuncts arm (Fig. 4b). Patients who undergo dif-
fuse gliomaresections guided using current standard-of-care surgical
adjunctsalone are potentially at 6.3x increased relative risk of dense,
safely resectable residual tumour after surgery compared toincluding
FastGlioma as a surgical adjunct. FastGlioma powered by real-time,
label-free, optical imaging with SRH overcomes the inherent limita-
tions of existing adjuncts, such as insufficient tumour fluorescence,
non-specific radiographic features and brain shift, enabling more
precise and effective surgical care of patients with diffuse glioma3®3**
(Extended Data Fig.10).
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Fig.4|Simulated clinical trial results. a, The results of the prospective
simulated clinical trial comparing FastGlioma with current standard-
of-care surgical adjuncts. Both FastGlioma and SRH foundation models
outperformimage-guided and fluorescence-guided surgical methods by a
wide margin for differentiating normal/gliotic brain (score 0) from dense
tumour infiltration (score 3). The performance boost results from FastGlioma
predicting directly on high-resolution, label-free SRH images without
requiringindirectlabels of infiltration, such as 5-ALA fluorescence or
contrastenhancement. b, Graphical summary of the patient-level
false-negative ratesin the prospective cohort. To ensure fair and clinical
representative comparison, false-negative rates were calculated for the
optimal surgical adjunct given the patient’s diffuse glioma subtypes: FLAIR
for IDH-mutant diffuse gliomas and contrast enhancement and 5-ALA was
used for IDH-wild-type tumours. False-negative errors on the score O versus
score 3 classification task represent high-risk tumour misses and place the
patient at the highest risk of residual tumour after surgery resection. The
FastGliomastudy arm had a 3.8% false-negative/tumour miss rate compared
with24.0%in the standard-of-care surgical adjuncts arm. The results indicate
apotential 6.3x decreasein the relative risk of residual tumour within
resection cavities by using FastGlioma to guide tumour resections. Detailed
classificationresultsare provided in Extended DataFig. 10.

Discussion

Here we present FastGlioma, an open-source medical foundation model
for fast, label-free detection of diffuse glioma infiltration during sur-
gery. Withinseconds of tissue sampling, FastGliomaaccurately predicts
the degree of tumour infiltrationin fresh, unprocessed surgical speci-
mens from both IDH-wild-type glioblastomas and IDH-mutant diffuse
gliomas. FastGlioma outperforms standard-of-care image-guided and
fluorescence-guided intraoperative methods for tumour-infiltration
detection by a substantial margin. FastGlioma can be generalized to
other paediatricand adult brain tumour diagnoses, demonstrating its
potential as ageneral-purpose medical foundation model for guiding
brain tumour surgery.

Nature | Vol 637 | 9 January 2025 | 443



Article

FastGlioma has the potential for immediate clinical impact on
improving the comprehensive management of patients with diffuse
glioma. The prognostic importance of the extent of resection and
residual tumour burden has been reproducibly demonstrated in mul-
tiple independent international clinical studies>*%**, FastGlioma
represents an innovative departure from existing surgical adjuncts
by rapidly identifying tumour infiltration at microscopic resolu-
tion using Al, nearly eliminating the potential risk of residual dense
tumour within glioma resection cavities. Al-based computer vision
and visual foundation models can minimize reliance onradiographic
features, contrast enhancement or extrinsic fluorescent labels to
optimize the extent of resection and achieve safe maximal tumour
removal.

Worldwide, over 18 million people will be diagnosed with can-
cerannually®. Theimportance of delivering safe, timely and affordable
cancer surgery hasbeenidentified asa major area ofimprovementin
the global fight against cancer®. Global cancer initiatives have recom-
mended incorporating new technologies, including advanced imag-
ing modalities and Al, into cancer surgery®. SRH and FastGlioma are
accessible and affordable surgical adjuncts for cancer surgery. Future
studies will focus on applying asimilar FastGlioma workflow to other
human cancers, including lung, prostate, head and neck, and breast
cancer®”,

Aspartofthe growing field of Al-based diagnostics**, FastGlioma
is arapid and scalable alternative to conventional wet-lab methods.
Conventional intraoperative pathology using smear preparation and
frozen sectioning is limited in diagnostic and clinical value. Histo-
logical diagnosis?®*?, tumour recurrence®, molecular classification**
and tumour-infiltration detection are now possible through an inte-
grated bedside SRH-AI platform. SRH visual foundation models can
enable computational staining for histological diagnoses, molecular
markers and tumour infiltration within fresh, unprocessed cancer
specimens.

The SRH visual foundation model can facilitate generalization of
FastGlioma to other human cancers. Foundation models will have a
centralroleinthe safe and effective deployment of Alin healthcare and
clinical medicine**¢, Large and diverse medical datasets combined
with high-quality self-supervised training results inbetter performance
and less bias across a wide range of complex clinical and diagnostic
tasks'®*. Here we demonstrate how visual foundation models can
facilitate tumour detection across patient demographics, medical
centres, molecular genetics and brain tumour diagnoses. In conclu-
sion, FastGlioma represents the transformative potential of medical
foundation models to unlock the role of artificial intelligence in the
care of patients with cancer.
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Methods

Study design

We had three main objectives for this study: (1) train a vision trans-
former model on a large and diverse dataset of SRH images using
self-supervision to develop the first SRH visual foundation model;
(2) fine-tune the visual foundation models to develop FastGlioma for
detection and quantification of diffuse glioma infiltration in fresh,
unprocessed surgical specimens; (3) validate FastGliomain a prospec-
tive, multicentre, international cohort of patients with diffuse glioma
and compare results to current surgical adjuncts. We adopted the
common working definition of a foundation model: (1) any machine
learning model thatis (2) trained on alarge and diverse dataset using
(3) self-supervision at scale and (4) can be adapted to a wide range of
downstream tasks'™. We also added to this definition (5) evidence of
zero-shot generalization to new, unseen data. Foundation modelling
had not been previously investigated in studies on the clinical appli-
cations of SRH and we focused on tumour infiltration as the most
clinicallyimportantand ubiquitous problemin cancer surgery as the
major downstream tasks. We aimed to design FastGlioma to detect
microscopic tumour infiltration for all diffuse glioma molecular sub-
types. A major data-centric contribution of this work was develop-
ing a multicentre, international, label-free SRH tumour-infiltration
dataset annotated by expert neuropathologists. Preliminary results
demonstrated the feasibility of generating this complex biomedical
dataset*. Moreover, previous studies that combine SRH and Al were
done such that the same imaging dataset was used both for human
interpretation and Al model training*>**. Here we aimed to push the
limits of Al-based computer vision performance in lower image resolu-
tion/fasterimage acquisition regimes at 10 times the speed of conven-
tional SRHimaging. Finally, we aimed to demonstrate the feasibility of
using FastGlioma as asurgical adjunct and compare tumour detection
performance with existing image-guided and fluorescence-guided
surgical adjuncts.

SRHimaging

All of the images in our study were acquired using intraoperative
fibre-laser-based stimulated Raman scattering microscopy®-*’. The
NIO Imaging System (Invenio Imaging) was used for all training and
testing data collection. We have provided a detailed description of the
imager and laser configurationin previous studies?**. Inbrief,apump
beamat 790 nmand a Stokes beam withatuneable range from1,015 nm
to1,050 nmwas used to stimulate the surgical specimens. The settings
allow for access to the Raman shift spectral range between 2,800 cm™
and 3,130 cm™. Images were acquired as1,000 pixel-widthstrips withan
imaging speed of 0.4 Mpx per strip. In normalimaging mode, each strip
row is acquired independently in a left-right manner using a custom
beam-scanning?®?. Two image channels are acquired sequentially at
2,845 cm™ (CH2 channel) and 2,930 cm™ (CH3 channel) Raman wave-
number shifts. A stimulated Raman signal at 2,845 cm™ represents
the CH2 symmetric stretching mode of lipid-rich structures, such as
myelinated axons. A second Raman peak at 2,930 cm™ corresponds
to protein- and nucleic acid-rich regions such as the cell nucleus and
collagen. As all SRH strips are acquired through standard horizontal
line scanning?®?*°, low-resolution SRH images can be generated by
directly downsampling SRH strip rows by adownsampling factor, such
as1/2,1/4,1/8 and so on. Halving the line sampling factor corresponds
to a 2x imaging time savings. In fast imaging mode, single-channel
images with a user-specified downsampling factor are acquired. The
whole-slide SRH images are then split into 300 x 300 pixel patches
without overlap using a sliding raster window over the full image. All
models are trained using 16-bit, raw, greyscale SRH images. For the
purposes of the study, SRHimages were acquired as two-channelimages
(2,845 cm™,2,930 cm™) for pathologist’s review to determine ground
truth tumour-infiltration labels.

SRH dataset

Clinical SRHimaging began at the University of Michigan (UM) on1june
2015following Institutional Review Board approval (HUM00083059).
All patients with a suspected brain tumour were recruited for intraop-
erative SRH imaging in a prospective manner. The inclusion criteria
were as follows: patients who were undergoing surgery for (1) suspected
central nervous system tumour and/or (2) epilepsy, (3) subject or dura-
ble power of attorney was able to provide consent and (4) preoperative
assessment that additional tumour specimens would be available in
addition to what s required for clinical pathologic diagnosis. Exclusion
criteria were (1) grossly inadequate tissue, (2) insufficient diagnostic
tissue (for example, haemorrhagic, necrotic) or (3) imaging malfunc-
tion. A similarimaging protocol wasimplemented at 12 other medical
centres with clinical SRH imaging deployed in their operating rooms.
Atotal of 2,799 patients, 11,462 whole-slide SRH images and approxi-
mately 4 million unique 300 x 300 pixel SRH patches were included
for SRH foundation model training. Dataset statistics and diagnostic
information are provided in Extended Data Fig. 2.

SRH foundation model training

SRH foundation models consist of two modular components trained
using self-supervision: the patch tokenizer and the whole-slide
encoder.

Patch tokenizer training with hierarchical discrimination. In stand-
ard vision transformers, converting small, fixed-size image patches,
such as 8 x 8 or 16 x 16 pixel patches, into tokens can be done by flat-
tening. This tokenization strategy is not feasible due to the size of
whole-slide SRH images (>6,000 x 6,000 pixels). We therefore devel-
oped adata-driven patch tokenization method that leverages theinher-
ent patient-slide-patch hierarchy of SRH images to define a hierarchi-
cal discriminative learning task®. We previously demonstrated that
hierarchical discrimination, called HiDisc, outperforms instance dis-
crimination methods for biomedical microscopy computer vision
tasks. HiDisc uses self-supervised contrastive learning such that posi-
tive image patches are defined based on a shared ancestry in the
patient-slide-patient data hierarchy. The HiDisc loss is asummation of
three losses, each of which corresponds to instance discrimination at
alevel of the patch-slide-patient hierarchy. We define the HiDisc loss
atthelevelZtobe:

exp(z; - 2,/7)
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the set of all images in the minibatch. A, (i) is the set of allimagesin/
except for the anchorimage i,
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whereancestry, () isthe/-level ancestry for the anchor patch. For exam-
ple, patches x; and x; from the same patient would have the same
patientancestry, thatis,ancestrypatiem(x,-) =ancestry,,....(X)- Thecom-
ponent HiDisc losses calculate the same overall contrastive objective
with positive pairs at different levelsin the hierarchy. Finally, the com-
plete HiDisc loss is the sum of the patch-, slide- and patient-level losses
defined above:
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where A, is aweighting hyperparameter for level # in the total loss. As
HiDisc is a self-supervised representation learning method, we used
the full SRH dataset as shown in Extended Data Fig. 2a. We found that
HiDisc patch tokenizationimproved classification performance com-
pared with ImageNet transfer learning (Extended Data Fig. 3c).

Patch encoding was accomplished using the ResNet-34 architecture
asthebackbone feature extractor and a one-layer multilayer percep-
tron to project the embedding to 128-dimensional latent space for
HiDisc self-supervised training®. We performed ablation studies over
the batch size, learning rate and loss hyperparameters to optimize
performance on the SRH7 dataset. The encoder was trained using
abatch size of 512 and an AdamW optimizer with a learning rate of
0.001 on a cosine decay schedule with warmup for the first 10% of
trainingiterations for atotal of 100,000 iterations on the foundation
SRH dataset. To train using the HiDisc loss, the mini-batches were
constructed by first selecting 64 patients, followed by sampling two
slides per patient, two patches per slide and finally applying two
random augmentations per patch, yielding 512 patches. The patch,
slide and patient losses were weighted equally, and the temperature
was set to 0.7. All of the patch experiments were performed using
mixed-precision and data parallelism on four NVIDIA A40 GPUs, tak-
ing up to 3 days. We performed additional ablation experiments with
open-source foundational patch encoders to assess the quality of
HiDisc feature learning compared with other pretrained models®
(Supplementary Table 4).

Whole-slide encoder. A major contribution of this work was develop-
ing an efficient and effective method for whole-slide self-supervised
training with vision transformer architectures. The major advantage
of vision transformers for whole-slide inference in computational pa-
thology and opticalimaging is their ability to handle large and variably
sized images. The whole-slide self-supervised learning strategy is a
Siamese architecture that requires two random transformations of
the same whole-slide image. The slide-level transformation strategy
is as follows. First, the whole slide is split into two mutually exclusive
patchsets (splitting). Next, two random spatial crops are selected from
the whole-slide image (cropping). Finally, 10-80% of patches from a
crop are dropped (masking). This strategy is ideally suited for vision
transformers because it allows for variable sized inputs and random
dropping of patch tokens/spatial regions within a whole-slide image.
After generating two transformed views, we then minimize a variance-
invariance-covariance (VICReg) self-supervised objective function®.
VICReg is well suited for whole-slide encoding because it is computa-
tionally efficient, does not require negative examples and maintains
high expressivity by avoiding dimensional collapse™.
Thewhole-slide transformer consists of 2 hidden layers with dimen-
sion512, with 4 attention heads per layer. The output of the transformer
is distilled into a <CLS> token, with seven additional register tokens
employed to stabilize training®. Positional information is learned con-
currently in a Fourier feature positional embedding generator net-
work®*. The Fourier feature and MLP hidden dimension of this network
are 96 and 36, respectively. For self-supervision purposes, aone-layer
MLP was trained to project the embedding to 128-dimensional latent
space. The VICReg objective was used for whole-slide self-supervised
training, with the coefficients being 10,10 and 1for the variance, invari-
ance and covariancelosses, respectively. Pretraining was done with an
effective batchsize of 256 and the AdamW optimizer with alearning rate
of 3x107*for 100 epochs on a single NVIDIA Titan V100 GPU. Check-
points were saved every 10 epochs, with the optimal one selected using
slide-level metrics on the histological brain tumour diagnosis task with
ahold-out validation set. A schematic of SRHfoundation model training
is shown in Extended Data Fig. 3. Detailed model training configura-
tions, including batch size, learning rate and other hyperparameters,
areshowninSupplementary Table 6 and are available at GitHub (https://
github.com/MLNeurosurg/fastglioma).

SRH foundation model evaluation

Validation of the foundation model was performed on amulticlass SRH
brain tumour diagnostic task. This dataset consists of 3,560 whole-slide
images from 896 patients (852,000 total patches). Diagnostic classes
are normal brain, high-grade glioma (HGG), low-grade glioma (LGG),
meningioma, pituitary adenoma, schwannoma and metastatic tumour.
In all previous benchmarking studies, training required supervised
filtering of nondiagnostic patches and patch-level average pooling for
whole-slide inference, which is known to degrade performance**.
Here we demonstrate that high-quality self-supervised patch and
whole-slide representation learning with vision transformers bypasses
the need for preprocessing, filtering or patch-level voting/averaging.
We used nearest-neighbour classification (k-NN) for SRH foundation
model evaluation. First, we generated whole-slide representations
for both the training and testing data. Next, the k-NN classifier was
used to match each slide in the testing dataset to the k most similar
representations in the training dataset as determined by their cosine
similarity. We set k=10 in our experiments for all models to ensure
consistent results. This enables us to determine a class prediction for
eachslideinthetesting dataset. We then calculate the mean class accu-
racy (MCA) and mean average precision (mAP) for the seven-class task
for slide metrics (Extended Data Fig. 4). Whole-slide representations
were visualized using ¢-distributed stochastic neighbour embedding
(¢-SNE) to qualitatively assess slide representations with respect to
tumour classes. Embeddings for k-NN and subsequent evaluations
were generated on a single NVIDIA Titan V100 GPU.

Fine-tuning with ordinal representation learning

Our SRH foundation models were specifically developed to adapt to
downstream diagnostic tasks for clinical decision support. Here we
aimed to fine-tune the foundation model for the detection and quan-
tification of tumour infiltration using intraoperative SRH imaging.
While diffuse gliomainfiltration is a continuous random variable, the
majority of previous work modelled glioma infiltration as an ordinal
variable**, such that expert pathologists score the degree of tumour
infiltration onadiscrete, ordered scale. We fine-tuned the foundation
model using the glioma-infiltration dataset from a previous study*.
The dataset consists of 161 surgical specimensimaged using SRH from
35 patients. The degree of tumour infiltration in each SRH image was
scored onascalefrom0to3 by threeindependent expert neuropathol-
ogists, where 0 is no tumour present; 1is mildly cellular tissue either
duetoreactivegliosis or with scattered atypical cells, without definitive
tumour; 2 is tumour present but in mild/sparse density; and 3 is mod-
erate to severe density of tumour cells. This dataset is approximately
100 times smaller than the SRH foundation model training dataset and
approximately 10 times smaller than the calculated sample size for
model testing. Owing to this extreme data sparsity for fine-tuning, we
developed a general, data-efficient, few-shot ordinal representation
learning method called ordinal metric learning. Ordinal metric learn-
ing aims to minimize the feature distance, or metric, between images
with the same ordinal rank. Moreover, it implicitly learns to order
images based on their ordinal label by performing a pairwise com-
parison between all images in a mini-batch. Ordinal metric learning
accomplishes this by applying abinary cross entropy objective on the
distanced, ;=s;— s;betweenscores for all possible pairs ofimagesina
mini-batch to enforce the image with the higher label is assigned a
higher score. The following loss equation accomplishes this:

1
L rdinalMetric — - BCE di :]-i y (5)
Ordinallt iEZI {lB(mbEZB'(i) ( o lb)}
where
BCE(x,y)=y-logo(x) + (1-y) - log(1- o(x)), (6)
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and

1 if [>1
lx.yz{ ) y ’ @
0 otherwise

T isthe set of allimages in the minibatch. B(i) is the set of allimages
in Z except for those with the same label as the anchor image i, £(i),
denoted as,

B(i) =7\ L(i), (8)

A schematic of ordinal metric learning is shown in Extended Data
Fig. 4.

Ordinal metric learning was used to train the FastGlioma model
andincluded fine-tuning the slide encoder and a one layer linear slide
scorer. Tumour-infiltration labels were balanced by whole-slide over-
sampling of the minority classes during training. The model was trained
with abatch size of 16 and adjusted learning rate 0f 1.875 x 10~ for 100
epochs. The best checkpoint was selected using a hold-out validation
set. To evaluate the SRH foundation model, a standard linear evalua-
tion protocol was followed with only the slide scorer being trained.
Our linear evaluation protocolis similar to other self-supervised visual
representation learning methods, such as SImCLR>® or DINO%, where
the visual feature extractor is frozen and a final classification/regres-
sion layer is trained.

Tumour-infiltration scoring metrics

To evaluate the performance of FastGlioma in distinguishing vari-
ous levels of diffuse glioma infiltration, we employ two key metrics:
mAUROC and mean absolute error (MAE). The MAE is calculated by
passing the FastGlioma whole-slide logit through a sigmoid activation
function to rescale between 0 to 1. Similarly, the ground truth labels,
whichrangefrom0to 3, arealsonormalized to 0 to1. We then compute
the MAE by measuring the average absolute difference between the
rescaled logits and the normalized labels. The mAUROC provides a
straightforward metric to assess FastGlioma’s ability to discernbetween
different degrees of tumour infiltration.mAUROC is calculated as the
average of the AUROC for three binary classification tasks: 0 versus 123,
Ol versus 23 and 012 versus 3. This metric reflects the ordinal label
distribution and emphasizes the clinical diagnostic task.

Prospective testing of FastGlioma

Our prospective FastGlioma clinical testing included a primary and
secondary end point. The primary end point was to validate FastGlio-
ma’s ability to reproducibly and accurately detect tumour infiltration
within SRHimages across patient populations, demographics, medical
centres and diffuse glioma subgroups. The secondary end point was
to compare the performance of FastGliomawith the standard-of-care
methods for intraoperative tumour-infiltration detection currently in
use for brain tumour surgery.

Primary testing end point: SRH-based tumour-infiltration detec-
tion. Our primary study end point was to achieve a diagnostic perfor-
mance for detecting diffuse gliomainfiltration in SRHimages on par
with previous SRH classification tasks, such asintraoperative tissue
diagnosis and molecular classification*>**, We designed the primary
testing using the same principles as a single-arm, non-inferiority
diagnostic clinical trial****. To obtain aminimum sample size estimate,
we used previous studies that combined SRH and Al to classify normal
brain versus any tumour tissue. Previously reported accuracy values
range from 89.3t0 95.8% with an average value 0f 93.2% (£3.6%)** **5.
We used this average value to define the expected performance, the
equivalence/non-inferiority limit was set to 5%, the alpha value to
2% and the power to 90%, resulting in a sample size value of 565 SRH
images obtained from surgical margins. We aimed to achieve this

sample size for both IDH-wild-type and IDH-mutant diffuse gliomas
to ensure generalizability and reproducibility across diffuse glioma
molecular subtypes as defined by the WHO. The calculation resulted in
afinal minimum sample size 0of 1,130 surgical specimens. Prospective
patient recruitment was continued until minimum sample sizes were
reached in both IDH-mutant and IDH-wild-type cohorts. All sample
size calculations were performed using the epiR package (v.2.0.46)
inR (v.3.6.3). Ground-truth SRH tumour-infiltration labels were pro-
vided by the on-site study pathologists (M.P., M.M.-E., T.R.-P.). All
pathologists were provided with written and video instructions for
SRH tumour-infiltration scoring using the four-tiered system by our
primary study pathologist (M.P.).

Secondary testing end point: FastGlioma comparison with image-
and fluorescence-based surgical adjuncts for tumour-infiltration
detection. Our secondary study end point was to compare the Fast-
Gliomaintraoperative workflow (experimental arm) with the two most
common surgical adjuncts for identifying tumour infiltration intra-
operatively (control arm) in a simulated prospective surgical trial.
‘Simulated’ terminology is used because FastGliomais not approved by
the Food and Drug Administration or European Medicines Agency to
guide treatment decisions, such as extent of tumour resections. How-
ever, we aimed to demonstrate the feasibility and safety of using FastGli-
omatoguide resections by predicting on surgical specimens sampled
at the resection margin of patients with diffuse glioma. FastGlioma
predictionsinthis setting produce the actionableinformation needed
to guide resection and simulates the clinical setting that FastGlioma
would be deployed. FastGlioma was compared in a head-to-head pro-
spective comparison study to (1) image-guided surgery with MRI-based
neuronavigation and (2) fluorescence-guided surgery with 5-ALA. Both
methods have been shown to improve the extent of resection in ran-
domized controlled trials®®%, In general, neuronavigation and 5-ALA
fluorescence can indicate the presence of tumour infiltration but, in
contrast to FastGlioma, do not quantify the degree of infiltration. For
the purposes of this study and others, tumour detection using neuro-
navigation or 5-ALAwas treated asabinary indicator, forexample, yes/
no contrast enhancement, yes/no 5-ALA fluorescence. To performafair
comparison between FastGliomaand the surgical adjuncts, we designed
this secondary end point to differentiate normal brain tissue (score 0)
versus dense tumour (score 3). We focused specifically on this task be-
cause errorsare clinical high-risk errors and these tumour-infiltration
scores are actionable and decisive: score 0 means stop resection, score
3 means continue resection if otherwise safe. Moreover, this strategy
avoids biasing performance results in favour of FastGlioma, which
provides a continuous score that can differentiate degrees of tumour
infiltration. We aimed to show that FastGlioma was non-inferior to both
neuronavigationand 5-ALA fluorescence for detecting tumour within
surgical specimens collected at the margin of resection cavities during
surgical resection. Details of generating the matched SRH/MRI/5-ALA
specimen dataset as asubset of the primary testing endpoint dataare
described below.

Prospective testing dataset

Three medical centres acted as external FastGlioma testing sites: UCSF,
NYU and MUV. Each medical centre prospectively enrolled patients
for testing. Inclusion criteria were: (1) patient age, >18 years; (2) a
suspected diffuse glioma on preoperative radiographic imaging; and
(3) planned brain tumour resection. Exclusion criteria included:
(1) aborted tumour resection; (2) non-glioma final pathology; and
(3) SRHimager malfunction. We aimed to accurately simulate the clini-
cal setting that FastGlioma would be implemented for surgical inter-
ventions. Study neurosurgeons were therefore instructed to sample
surgical margins at their discretion to identify microscopic tumour
infiltration within the tumour resection cavity. We aimed to provide as
minimalinstruction as possible to account for surgeon/user variability



during FastGlioma testing. After intraoperative SRHimaging, surgical
specimens were removed from the premade microscope slide and
preserved in formalin for downstream tissue processing (Extended
DataFig.1). Each SRH image was scored postoperatively by an onsite,
board-certified neuropathologist with dedicated training and expertise
inintraoperative SRH imaging. Our central neuropathologist (M.P.)
provided verbal and video instructions for tumour-infiltration scor-
ing. We used the previously developed and validated protocol for
0-3 tumour-infiltration scoring®. For the primary testing end point
that is evaluated at the image level, SRH tumour-infiltration scores
provided by the neuropathologists were used as the ground truth.
For the secondary testing end point that is evaluated at the specimen
level, neuronavigation coordinates, radiographic features (that is,
contrastenhancement, FLAIR positive) and 5-ALA fluorescence status
were recorded in real-time by a study technician for each specimen.
Secondary end-point testing was completed at UCSF by a dedicated
study technician (K.S.) and central neuropathologist (M.P.) to stand-
ardize all matched data collection. To optimize for the secondary
testing endpoint, annotated data from UM, NYU and MUV were used
to fine-tune FastGlioma. After intraoperative SRH imaging, the speci-
men was extracted from the premade microscopy slide and sent for
downstream whole-slide/specimen analysis using H&E/immunohis-
tochemistry testing as previously detailed*. Specimen-level ground
truth tumour-infiltration scores were determined based on whole-slide
analysis. This strategy allows for an unbiased comparison betweenall
three surgical adjuncts.

FastGlioma versus cellularity-based tumour-infiltration scoring
The cellularity within the SRH whole-slideimages was calculated tobe
the average number of cells per 300 x 300 pixel SRH patch. The number
of cells was determined using an SRH single-cell segmentation model
training using full supervision. Specifically,aMask R-CNN model with
aResNet-50 backbone pre-trained on the Microsoft COCO dataset was
fine-tuned on 1,000 annotated SRH patches of normal brain and 6
different brain tumour diagnoses®. The final model predictions were
filtered with a non-maximal suppression algorithm to remove over-
lapping cell bounding boxes with >20% area and predictions with less
than 80% confidence. Correlation between cellularity and FastGlioma
tumour-infiltration score was calculated using Pearson’s correlation
coefficient. To evaluate whether cellularity can be used to detect diffuse
gliomainfiltration, the surrogate tumour-infiltration score forawhole
slide was calculated using the cellularity value. This was then used to
calculate the mAUROC across the three different tumour-infiltration
tasks to compare with FastGlioma infiltration scores as shown in
Extended Data Fig. 7.

Few-shot visualizations and model interpretability

We aimed to develop awhole-slide visualization method that canaccu-
rately and flexibly identify regions of tumour infiltration within SRH
images toimprove modelinterpretability. Studies on vision transform-
ers have generally relied on plotting self-attention coefficientsto gen-
erate data visualizations®. Unfortunately, this strategy does not
guarantee uniformly high attention coefficients on foreground/tumour
infiltrated regions and is known to produce spurious high attention
coefficients in background regions®. We therefore developed a
few-shot visualization strategy that uses a curated support set of expert
physician-selected SRH patches, or keys, thatinclude diverse examples
of normal brain parenchyma and diffuse glioma subtypes. This strategy
takes advantage of the representational power of the self-supervised
patch tokenizer to identify similar SRH features within any given
whole-slide field-of-view. Specifically, for any SRH patch query, x,,
withinawhole-slide SRHimage, we calculate the dot product between
the tokenized query patchz,and asupportset of tokenized keys, S. We
first determine whether the query patch is foreground/diagnostic by
determiningifthe maximal dot product across the support set exceeds

athreshold, ¢. If not, then the patchis classified as background. If the
query dot product exceeds ¢ for any patchin the support set, we then
assignitafew-shotvisualization score, s,. This is defined as the differ-
ence between the maximum dot product from the tumour exemplars
inthe supportsubset, S;,mou» and the maximum dot product from the
normal exemplars, S;,ormar

s, if max sim(z,, z,) >
q Vpes a2p) > @
,

Sq= )
Smin Otherwise
where
s;= max sim(z,z,)- max sim(z, z,)
q V €S tumour e YV nE€Snormal v (10)

;
and sim is the cosine similarity, sim(x, y) = HJ):\H[};H and ¢ was 0.5 for our

visualizations. This visualization strategy has the advantage of leverag-
ing both the feature similarity between tumour patches and the dis-
similarity between tumour and normal patches. If a patch has a high
similarity to any of the tumour exemplars and high dissimilarity with
the normal exemplars, then s,>0, and vice versa. Empirically, 10 or less
patch exemplars per subset can yield high-quality and interpretable
visualizations using FastGlioma. Moreover, this strategy demonstrates
good zero-shot generalization to non-glioma brain tumour diagnoses
without needing to add tumour-specific examples (for example, men-
ingioma or medulloblastoma exemplars) to the supportset, asshown
in Extended Data Fig. 10.

Computational hardware and software

SRHimages were processed using an Intel Core i76700K Skylake Quad-
Core 4.0 central processing unit with our custom Python-based (v.3.9)
mlins-package. We used the pydicom package (v.2.3.1) to process the
SRHimages from the NIO Imaging System. All archived postprocessed
image patches were saved as 16-bit TIFF images and handled using
the tifffile package (v.2020.10.1). All models were trained using the
University of Michigan Advanced Research Computing (ARC) Armis2
high-performance computing cluster. Visual patch and whole-slide
encoders were trained on NVIDIA A40 and Titan V100 graphical pro-
cessing units (GPUs), respectively. Evaluations were performed on
NVIDIA Titan V100 GPUs. All custom code for training and inference
can be found in our open-source FastGlioma repository. Our models
wereimplementedin PyTorch Lightning (v.1.8.4). We used the ImageNet
pretrained ResNet-34 model from torchvision (v.0.14.0). Scikit-learn
(v.1.4.1) was used to compute performance metrics on model predic-
tions at both training and inference. Additional dependencies and
specifications can be found at our GitHub page (https://github.com/
MLNeurosurg/fastglioma).

Ethics and inclusion statement

Our research was approved by the University of Michiganinstitutional
review board (HUM00083059) and the methods were carried out in
accordance with theinstitutional review board’s guidelines, regulations
and policies. All human participants who met the inclusion criteria as
stated above were included in the study.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The FastGlioma model parameters will be made publicly available
for investigational use only under a Creative Commons Attribu-
tion Non Commercial Share Alike 4.0 license through HuggingFace
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(https://huggingface.co/mlinslab/fastglioma). Institutional Review
Board approval was obtained from all of the participating institutions
for SRH imaging and data collection. Restrictions apply to the avail-
ability of raw patient imaging or genetic data, which were used with
institutional permission through IRB approval for the current study,
and are therefore not publicly available. All data sharing between medi-
cal centres is regulated through data use agreements with the study
authors. A similar data sharing protocol may be established for inter-
ested investigators. Publicaccessto an open-source repository of SRH
images can be found at OpenSRH (https://opensrh.mlins.org/). Please
contact the corresponding authors for any requests for data sharing.
Allrequests will be evaluated based oninstitutional and departmental
policies to determine whether the data requested is subject to intel-
lectual property or patient privacy obligations. Data can be shared
only for non-commercialacademic purposes and will require aformal
material transfer agreement.

Code availability

All code was implemented in Python (v.3.9) using PyTorch Lightning
(v.1.8.4) as the primary machine learning framework. The follow-
ing packages were used for data analysis: pydicom (v.2.3.1), tifffile
(v.2020.10.1), PyTorch (v.1.13.0), torchvision (v.0.14.0), pandas (v.1.5.3),
NumPy (v.1.24.4), matplotlib (v.3.6.3), opencv-python (v.3.4.18.65)
and scikit-learn (v.1.4.1). For data visualization and scientific plotting,
we used R (v.3.5.2) packages ggplot2 (v.3.3.5), dplyr (v.2.1.1), and the
tidyverse (v.1.3.1). All code and scripts to reproduce the main experi-
ments of this paper are available at GitHub (https://github.com/MLNeu-
rosurg/fastglioma) under an MIT license.
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Extended DataFig.1|Extended FastGlioma workflow and dataset
generation. a, FastGliomaisintended for patients with asuspected diffuse
gliomaon preoperativeimaging studies. Surgical specimens are sampled from
the patient resection cavity. During sampling, neuronavigation coordinates
and 5-ALA fluorescence status arerecorded by alaboratory technicianinreal
time. Core specimens are sent for clinical pathologic testing, including
histologic and molecular classification with SRH**, and the margin specimens
aresent for FastGlioma prediction. Surgeons were encouraged to sample
withinthe resection cavity accordingto their clinicaljudgement and context.
b, Eachsurgical specimenis loaded into apremade microscopesslide and
imaged at the patient’s bedside using the NIO Imaging System (Invenio
Imaging, Inc., Santa Clara, CA). Ascout photograph of the specimen s taken
and the imaging field of view selected by the user using simple touchscreen
instructions. SRHimaging does not require askilled imaging technician. SRH
images are acquired sequentially as strips at two Raman shifts, 2845 cm™and

2930 cm™. The size and number of strips tobe acquired is set by the operator
who defines the desired image size. Images canbe acquiredin either two-
channel, full resolution mode or one-channel (2845 cm™ only), low resolution
fast mode to decrease imaging time by a factor of 10. ¢, Following SRH imaging,
surgical specimens were removed from the microscope, formalin-fixed, and
paraffin-embedded for H&E and immunohistochemistry (IHC) staining. Similar
to previous protocols, tumour-specific IHC labels were used, if available, to
determine the degree of tumour infiltration based on molecular genetics®*.
Aneuropathologist from each institution thenscores the degree of tumour
infiltration within the SRHimages and the H&E/IHC-stained slides on a 0-3 scale.
Slide-level predictions are generated from image-level FastGlioma predictions
by taking the average image-level prediction. Scale bars,100 pm. Tumour
resectionand microscopy slideimages were adapted fromref. 4. The neural
network architectures were adapted from https://alexlenail.me/NN-SVG/.
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Extended DataFig. 3 |Self-supervised foundation model training.

a, The FastGlioma patch tokenizeris trained via self-supervised hierarchical
contrastivelearning on over 4 million 300x300 pixel SRH patches. Positive
patch pairs are generated using the patch-slide-patient hierarchy of clinical
SRHimages. Patches undergo afeedforward pass through aResNet-34
modeland a contrastive learning objective is minimized?. b, t-SNE patch
representations are plotted and coloured according to the ground truth whole
slidelabel. Patch-level self-supervised training results in representations that
spanatumour infiltration axis without the need for patch-level supervision.
¢, Wholeslide self-supervisionis accomplished by generating two views of a
wholeslide SRHimage viarandom splitting, cropping, and masking of the
patchtokens. Therandom sequence of patchesineach view thenundergoa

feedforward pass through aslide transformer. The slide-level representations
arethen projectedinto alower-dimensional projection space where a self-
supervised objective is minimized (VICReg). Our whole slide self-supervised
training strategy was benchmarked using several internal SRH classification
metrics, including multiclass brain tumour classification. Mean class accuracy
ofablationstudies are plotted. Whole slide SRH representations are plotted via
t-SNE and show tumour diagnosis discrimination. Trained slide transformer
producesinterpretable multi-headed self-attention maps that differentiate
tumour infiltration from normal brain and nondiagnostic regions. Scale bars,
100 pm. The neural network architectures were adapted from https://
alexlenail.me/NN-SVG/.
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Extended DataFig. 4 |Ordinal metric learning for efficient ordinal
representationlearning. a, Amajor design challenge for FastGlioma was
enforcing the model output to be asemantically meaningful continuous
tumour infiltration score while being trained using discrete, ordinal labels.
Thisdesign choice was warranted because biologic tumour infiltrationis
continuous given asurgical specimen or microscopy image. Each wholeslide
SRHimage undergoes afeedforward pass through the slide encoder andslide
scorer, which outputs asingle scalar value. We then compute a pairwise
distance matrix between eachinstance in the minibatch using the scores.
Finally, abinary cross entropy (BCE) loss iscomputed between the pair’s dot
product, x;-x,, and the label ¢;associated with the pair, defined as 1iflabel;is
greater thanlabel;, and O otherwise. Al BCE losses are summed and minimized.
Intuitively, this representation learning strategy corresponds to ordering each
wholeslide according to theamount of accumulated ‘force’ generated by the

other examples within the minibatch. For example, in the figure above, whole
slides with label 3 will be maximally pushed to the right by all other examples.
Wholesslides with label 2 will be pushed to the right by two examples (O sand1s)
and to left by one example (3 s). b, We performed an ablation study on ordinal
metriclearningusing the well studied and benchmarked face age estimation
dataset (n=24085)°"%2. We show that ordinal metric learning outperforms
other state-of-the-art ordinal regression methods and is especially effective
whenannotated datais sparse (plotted asmean +s.d.). Ordinal metriclearning
producesanearlinear subspace that orders each faceimage accordingto their
respective ages. ¢, Hold-out cross validation studies were performed on our
training dataset (n =161) that showed improved ordinal regression performance
ontumour infiltration scoring than other methods (ROC curves plotted as
mean+s.d.).d, Tumourinfiltration scores are shown for ordinal metric learning
versus other baseline strategies.
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Extended DataFig.5|Speed versus performance trade-offablation
studies. a, The NIO Imaging System can speed imaging time by acquiring only
asingle-channelimage or by decreasingline scanning density. Fast SRHisa
single channel greyscale image acquired at Raman wavenumber 2845 cm™and
scanning every Sthline, which corresponds to approximately 10X speedup in

imaging time. Examples of full resolution and low resolution images are shown.

b, We performed hold-out cross validation ablation studies (n = 161) to examine
the trade-offbetweenimage resolution/speed and model performance
(plotted as mean +s.d.). We found less than 2% decreasein mAUROC with the
10X speed-up of Fast SRH. c, We examined how tumour infiltration scores are

related using both full resolution and fast SRHimaging. Scores are strongly
correlated witha Pearson correlation coefficient, r,of 0.90 and score residual
(Srr-Srase) Standard deviation of 0.102.d, Ademonstration of the similarity
between the wholesslide encoder self-attention coefficients for full resolution
versus fast SRHimage. Despite significant pixel-level differences between the
twoimaging domains, self-attention and tumour infiltration scores on the
wholeslides are similar. Note in the Fast SRH row above, virtual H&E
colorschemeis shown for visualization purposes only. The true underlying
imageis the low-resolution Fast SRHimage. Scale bars,100 pm.
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Extended DataFig. 6 | Extended prospective testing results withsubgroup
analysis. a, Subgroup analysis by patient demographics. FastGlioma scores by
sex, age, and race are shown using box and whisker plots in the standardized
quartile format. b, Subgroup analysis by medical centre. mMAUROC value is
plotted for both FastGlioma and the SRH foundation model (plotted as

mean ts.d.). Performance remained high across the three external testing
medical centres. ¢, Mean AUROC values are plotted by tumour grade.
Importantly, similar performanceis seen across all diffuse glioma grades,
indicating that FastGliomascores are not reliant on specific histologic features
found within diffuse glioma grades. Lower grade cytologic features and low
tumour infiltration were preliminary concerns about the performance of
FastGliomathat did notbear outin prospective testing. Mean AUROC values
and standard deviations are shown.d, Subgroup analysis by index/first surgery

versus surgery for recurrent tumour (ROC curves plotted asmean £s.d.).
Atotal of 442 surgical specimens were sampled from patients with recurrent
tumours. FastGlioma maintained good performance for detecting tumour
infiltrationinrecurrent tumours, whichis known to be challenging for
intraoperative frozen sectioning*>*3. e, Whole slide SRH representations are
shown for IDH mutant and IDH wildtype diffuse gliomas. Points are coloured by
their ground truth tumour infiltration scores. Despite differences in molecular
features, the representation of whole slide SRHimagesis similarly distributed
according to tumour infiltration. These findings demonstrate that FastGlioma
isinvariant to molecular markers, tumour subtypes, and histologic features for
defining the degree of tumour infiltration within SRHimages. This is
contrasted with 5-ALA fluorescence whichis only approved for use in
glioblastomas, IDH-wildtype.
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Extended DataFig.7|Cytologic analysis of FastGlioma tumour infiltration
scores. a, Increased cellularity, or cellular density, is a cytologic feature of
diffuse gliomas and s correlated with the degree of tumour infiltration®®,
However, cellularity aloneis a poor predictor for tumour infiltration across
tumour grade, diffuse glioma molecular subgroups, and degree of infiltration.
Cellularity as a predictor performs progressively worse as degree of tumour
infiltration decreases and with lower tumour grades*. We evaluate the
relationship between cellularity and FastGlioma scores. Cellularity and
FastGliomascores have aPearson correlation coefficient of 0.65. Consistent
with previous results, we identify surgical specimens without tumour
infiltration (0 s) that have cellular densities comparable to specimens witha
lowto moderate degree of tumour infiltration (1sand 2 s). Additionally, some
dense tumour specimens (3 s) were found to have relatively low cellularity
(<10). Examples of both of these scenarios are shown. The kernel density

estimates (KDE) of the FastGlioma scores demonstrate the expected ordinal
distribution across the ground truth labels; cellularity KDEs are poorly
distributed according to ground truthlabels, especially for 0-2 scores.
FastGlioma has a clinically significantincrease in mAUROC compared to
cellularity-based predictions. b, Cellularity versus FastGlioma scores are
plotted by molecular subgroup. Despite differences in cytologic features
(anaplasia, pleomorphism, nuclear-cytoplasmic ratios) across molecular
subgroups, FastGlioma tumour infiltration scoring is consistently accurate.
Diffuse gliomamolecular subgroups show asimilar correlation between
cellularity and score values. FastGlioma effectively uses the full tumour
infiltration score range to quantify the degree of tumour infiltrationacross all
molecular subgroups. FastGlioma outperforms cellularity-based metrics for
predicting degree of tumour infiltration. Scale bars, 100 pm.
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Extended DataFig. 8 | Few-shot visualizations of diffuse gliomainfiltration.
a, Apanel of wholeslide SRHimages across diffuse glioma molecular
subgroups areshown. We have selected cases across the prospective testing
medical centres. Few-shot visualizations identify tumour infiltrated regions
inmolecular oligodendrogliomas, astrocytomas, and glioblastoma. Right,

we showinsets fromeach wholeslideimage to demonstrate the diversity of
underlying histologic and cytologic features found within diffuse glioma
subgroups. We also show several SRHimages with O ground truth scores from
patients diagnosed with glioblastomas who previously underwent surgery and
chemoradiation. SRH images show evidence of treatment effect, including
reactive astrocytes and hyalinized blood vessels. Despite these non-neoplastic
pathologic findings, FastGlioma gives low tumour infiltration scores and does

notidentify regions of dense tumour infiltration. However, the limitations of
few-shot visualization are shown here with erroneous tumour matching shown
insome regions of pathologic hyalinized vasculature. b, Similar to previous
studies on visual foundation models®*, we used principal component analysis
(PCA) on patchfeatures extracted by FastGlioma. PCA provides an unsupervised
visualization strategy to better elucidate the learned patch features. We
observe that tumour infiltrated regions are matched between SRH images
despite changesin degree of tumour infiltration, molecular subtype, and
histologic features. Detailed comparisons between FastGliomascores, few-
shot visualizations, and SRH images can be found at fastglioma.mlins.org.
Scalebars, 100 pm.
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Extended DataFig.9|Zero-shotpredictions and visualizations. We
evaluated FastGlioma’s zero-shot generalization to non-adult-type diffuse
glioma brain tumour diagnoses. FastGlioma fine-tuning was restricted to adult-
type diffuse gliomas; here we show FastGlioma predictions on non-adult-type
diffuse gliomas (zero-shot). Moreover, few-shot visualization heatmaps are
shown for non-glioma brain tumours using diffuse glioma SRH keys. The figure
shows examples of brain tumours from several broad categories, such as
ring-enhancinglesions, paediatric gliomas, embryonal tumours, non-tumour
lesions, and extraaxial tumours. CNS lymphomas are infiltrative brain tumours
and canbe challenging to differentiate from glioblastomasintraoperatively.
SRHimages show classic perivascular arrangement (angiocentricity) with
tumour cells forming layers around the blood vessels. Residual microscopic
metastatic tumour is the major cause of tumour recurrence after surgery.
FastGliomaidentified regions of microscopic residual metastatic tumour.
Tumour infiltration from paediatric gliomas, such as diffuse midline gliomas

and pilocytic astrocytomas, is detected by FastGlioma. Paediatric diffuse
midline gliomas can have aspectrum of histologic morphologies that can differ
inappearance compared to glioblastomas. Rosenthal fibres (black lobules),
presentinpilocytic astrocytomasbutrarein diffuse gliomas, arenotasource
of error for FastGlioma. Acellular and nondiagnostic regions are not segmented
asregions of tumour infiltration. Embryonal tumours have distinctive ‘small
round blue cell’ cytologic features that FastGlioma correctly identifies as
tumour infiltration. FastGlioma provides real-time confirmation of the absence
of tumour infiltration during surgery, such asinfarcts. Meningiomas are known
toinvade adjacentdura, whichis the major source of tumour recurrence.
FastGlioma canidentify meningiomainfiltration within normal durasampled
atthe dural margin. Theseresults provide evidence for the potential of
FastGliomato generalize beyond brain tumours, such as breast, lung, and
prostate cancer.Scale bars, 100 um.
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Extended DataFig.10 | Comparison of FastGliomaand surgical adjuncts for
diffuse gliomaresection. a, Classification performance for distinguishing
betweennormal brain and dense tumour by FastGlioma versus surgical
adjuncts ondiffuse gliomas, IDH-mutation. FLAIR positivity in IDH-mutant
gliomasis considered aradiographic marker of tumour infiltration and is used
todefine extent of resection®. In our matched cohort, FastGliomabalanced
accuracyis +11.8% compared to FLAIR positivity. FLAIR had relatively lower
specificity due toahigher number of false positives. Non-specific causes of
FLAIR positivity, such as vasogenic oedema, resultin decreased accuracy.

b, Classification performance of FastGlioma versus surgical adjuncts on
glioblastomas, IDH-wildtype. Patients with complete removal of contrast
enhancing regions haveimproved progression-free and overall survival*®,
Inour matched cohort, FastGliomabalanced accuracy is +13.8% compared to
contrast enhancement for IDH-wildtype glioblastomas. Tumour infiltration
isknown to extend beyond regions of contrastenhancement and dense,

viable tumour isidentified in non-enhancing regions®*. Our findings of poor
sensitivity are consistent with previous radiopathologic correlation studies®°.
5-ALA fluorescenceis usedin glioblastomasurgery to guide surgical resection®,
Previous studies have reported awide range of sensitivity and specificity
values of 5-ALA fluorescence as anindicator of tumour infiltration depending
ontumour types, tumour grade, and recurrence status®**¢%, In our matched
cohort, FastGliomaachieveda +13.5% increase in balanced accuracy compared
to 5-ALA. ¢, Illustrative examples of matched surgical specimens with
FastGlioma predictions, neuronavigation coordinates, radiographic features,
and 5-ALAstatus. The lower left shows concordance between FLAIR positivity
and FastGlioma prediction with dense tumour within the specimen. Centre
showsaspecimenoutside the contrastenhancing rim of aglioblastoma with
white matter tumour infiltrationidentified by FastGlioma. Lower right shows
anexample of 5-ALA fluorescent positive tissue. The patienthad arecurrent
glioblastoma with associated treatment effect and reactive astrocytes.
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Software and code

Policy information about availability of computer code

Data collection  The software and code used in this study for development of the FastGlioma model is publicly available at https://github.com/MLNeurosurg/
fastglioma. Proprietary software used in the NIO Imaging System (Invenio Imaging, Inc) was used for optical imaging.

Data analysis All code was implemented in Python (version 3.9) using PyTorch Lightning (1.8.4) as the primary machine learning framework. The following
packages were used for data analysis: pydicom (2.3.1), tifffile (2020.10.10), PyTorch (1.13.0), torchvision (0.14.0), pandas (1.5.3), NumPy
(1.23.5), matplotlib (3.6.3), opencv-python (3.7.0), and scikit-learn (1.4.1). For data visualization and scientific plotting, we used R (3.5.2)
packages ggplot2 (3.3.5), dplyr (2.1.1), and the tidyverse (1.3.1). All code and scripts to reproduce the experiments of this paper are available
on GitHub at https://github.com/MLNeurosurg/fastglioma under an MIT license.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The FastGlioma model parameters will be made publicly available for investigational use only under a MIT license through HuggingFace (https://huggingface.co/
mlinslab/fastglioma). Institutional Review Board approval was obtained from all participating institutions for SRH imaging and data collection. Restrictions apply to
the availability of raw patient imaging or genetic data, which were used with institutional permission through IRB approval for the current study, and are thus not
publicly available. All data sharing between medical centers is regulated through data use agreements with the study authors. A similar data sharing protocol may
be established for interested investigators. Public access to an open-source repository of SRH images can be found at OpenSRH (https://opensrh.mlins.org/). Please
contact the corresponding authors (T.H., S.H.J.) for any requests for data sharing. All requests will be evaluated based on institutional and departmental policies to
determine whether the data requested is subject to intellectual property or patient privacy obligations. Data can only be shared for non-commercial academic
purposes and will require a formal material transfer agreement.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender All reported findings apply to patients of any sex or gender. Subgroup analysis was performed based on sex and gender. See
Extended Data Figure 6.

Reporting on race, ethnicity, or ' All reported findings apply to patients of any race, ethnicity, and other socially relevant groupings. Subgroup analysis was

other socially relevant performed based on race, ethnicity, and other social relevant groupings. See Extended Data Figure 6.
groupings
Population characteristics Prospective testing dataset characteristics:

Sex: Males=128, Female=92

Age: < 35 year=32, 35-55 years=74, > 55 years=75

Race: White=157, Non-white=45

Recurrence status: Primary=148, Recurrent=70, unknown=2
WHO grade: =10, 11=38, 111=31, V=130, unknown=11

IDH status: Wildtype=119, Mutant=81, unknown=20

Recruitment Patients were recruited by clinical staff at the time of initial presentation and/or immediately preoperatively. Patients with
suspected diffuse glioma were identified as potential study candidates preoperatively. Patients were recruited consecutively
and based on clinical presentation without systematic screening or exclusion. All patients were treated according the
standard-of-care based on the local hospital system. Self-selection bias was of minimal concern because FastGlioma testing
was non-interventional and did not effect patient treatment. Inclusion criteria for SRH imaging and FastGlioma testing: (1)
patient age > 18 years old, (2) a suspected diffuse glioma on preoperative radiographic imaging, and (3) planned brain tumor
resection. Exclusion criteria included: (1) aborted tumor resection, (2) non-glioma final pathology, and (3) SRH imager
malfunction.

Ethics oversight University of Michigan Institutional Review Board (HUMO00083059)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We elected to perform prospective, international, multicenter clinical testing of FastGlioma in order to adhere to the rigorous standards of
responsible machine learning in healthcare. Our prospective clinical testing was designed using the same principles as a
non-inferiority diagnostic clinical trial. We set the expected accuracy for both the control and experimental arms to be 93.2%, the equivalence
limit was set to 5%, power to 90%, and alpha to 2%, resulting in a sample size value of 565 SRH images from
surgical margins. We aimed to achieve this sample size for both IDH-wildtype and IDH-mutant diffuse gliomas, resulting in a final minimum
sample size of 1130 surgical specimens. All sample size calculations were performed using the epiR package
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(version 2.0.46) in R (version 3.6.3).

Data exclusions  Exclusion criteria for SRH imaging was (1) insufficient diagnostic tissue as determined by surgeon or pathologist, (2) grossly inadequate tissue
(e.g. hemorrhagic, necrotic, fibrous, liquid, etc.), and (3) SRH imager malfunction.

Replication We performed a leave-K-out cross-validation, such that our methods were replicated across different subsets, or folds, of the training dataset.
We were able to replicate FastGlioma performance results across each fold, which included a minimum of 5 held-out evaluation sets. We also
replicated our predictions results across three external, independent, international medical centers.

Randomization  Randomization was not relevant for this study. Study design was as a single-arm, non-interventional, diagnostic, clinical trial. Direct one-to-
one comparison was made between FastGlioma versus image-guided and fluorescence-guided surgery. Matched comparison between
FastGlioma predictions of surgical specimens and radiographic/fluorescent features necessitated evaluation for both modalities. Surgical
specimens imaged in the operating room were selected by the clinician and the remainder of the clinical brain tumor specimen was sent for
final pathologic analysis.

Blinding Surgical procedures could not be blinded to the surgeon. Pathologists evaluated the SRH and H&E/IHC specimens independently without

patient information. Final FastGlioma inference was performed without PHI and tumor infiltration labels. There were no sources of data
leakage during model training or inference.
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Our prospective study was a non-interventional, diagnostic study so does not meet criteria for clinical trial registration.

Study protocol Prospective study protocol can be found at this link: https://www.dropbox.com/scl/fi/rz5x8g4ybnqo7rtj4nh5v/Prospective-
Diagnostic-Testing-of-FastGlioma-for-Intraoperative-Tumor-Infiltration-Detection.docx?rlkey=6yrcuj7slucbjua55ikr2hauv&dI=0

Data collection Three medical centers acted as external FastGlioma testing sites: University of California San Francisco, New York University, and
Medical University of Vienna. Each center collected prospective data over the following intervals: UCSF: 03/2022-02/2023, NYU:
06/2020-03/2023, MUV: 11/2020-07/2023, Each medical center prospectively enrolled patients for testing. Inclusion criteria were:
(1) patient age greater or equal to 18 years old, (2) a suspected diffuse glioma on preoperative radiographic imaging, and (3) planned
brain tumor resection. Exclusion criteria included: (1) aborted tumor resection, (2) non-glioma final pathology, and (3) SRH imager
malfunction. We aimed to accurately simulate the clinical setting that FastGlioma would be implemented for surgical interventions.

Outcomes Primary testing endpoint was SRH-based tumor infiltation detection with FastGlioma. Second testing endpoint was was to compare
the FastGlioma intraoperative workflow (experimental arm) with the two most common surgical adjuncts for identifying tumor
infiltration intraoperatively (control arm) in a simulated prospective surgical trial. 'Simulated' terminology is used because FastGlioma
is not approved by the Food and Drug Administration or European Medicines Agency to guide treatment decisions, such as extent of
tumor resections.
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Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied: ) )
DPescribe-any-atithentication-proceduresforeach-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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