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Abstract

Training energy-based models (EBMs) on discrete spaces is challenging because
sampling over such spaces can be difficult. We propose to train discrete EBMs with
energy discrepancy (ED), a novel type of contrastive loss functional which only
requires the evaluation of the energy function at data points and their perturbed
counter parts, thus not relying on sampling strategies like Markov chain Monte
Carlo (MCMC). Energy discrepancy offers theoretical guarantees for a broad class
of perturbation processes of which we investigate three types: perturbations based
on Bernoulli noise, based on deterministic transforms, and based on neighbourhood
structures. We demonstrate their relative performance on lattice Ising models,
binary synthetic data, and discrete image data sets.

1 Introduction

Building large-scale probabilistic models for discrete data is a critical challenge in machine learning
for its broad applicability to perform inference and generation tasks on images, text, or graphs.
Energy-based models (EBMs) are a class of particularly flexible models pebm ∝ exp(−U), where
the modelling of the energy function U through a neural network function can be taylored to the
data set of interest. However, EBMs are notoriously difficult to train due to the intractability of their
normalisation.

Figure 1: Generated
samples from the
EBM trained with
Energy Discrepancy
on static MNIST.

The most popular paradigm for the training of EBMs is the contrastive diver-
gence (CD) algorithm (Hinton, 2002) which performs approximate maximum
likelihood estimation by using short-run Markov Chain Monte Carlo (MCMC)
to approximate intractable expectations with respect to pebm. The success of
CD has lead to rich research results on sampling from discrete distributions
to enable fast and accurate estimation of the EBM (Zanella, 2020; Grathwohl
et al., 2021; Zhang et al., 2022b; Sun et al., 2022b,a, 2023; Emami et al., 2023).
However, training EBMs with CD remains challenging: Firstly, discrete prob-
abilistic models often exhibit a large number of spurious modes which are
difficult to explore even for the most advanced sampling algorithms. Secondly,
CD lacks theoretical guarantees due to short run MCMC (Carreira-Perpinan &
Hinton, 2005) and often times leads to malformed energy landscapes (Nijkamp
et al., 2019).

We propose the usage of a new type of loss function called Energy Discrepancy (ED) (Schröder
et al., 2023) for the training of energy-based models on discrete spaces. The definition of ED only
requires the evaluation of the EBM on positive and contrasting, negative samples. Unlike CD,
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energy discrepancy does not require sampling from the model during training, thus allowing for fast
training with theoretical guarantees. We demonstrate the effectiveness of ED by training Ising models,
estimating discrete densities, and modelling discrete images in high-dimensions (see Figure 1 for an
illustration).

2 Energy Discrepancies

Energy discrepancies are based on the idea that if information is processed through a channel Q then
information will be lost. Mathematically, this is expressed through the data processing inequality
KL(Qpdata ∥ Qpebm) ≤ KL(pdata ∥ pebm). Consequently, the difference of the two KL divergences
forms a valid loss for density estimation (Lyu, 2011). Retaining only terms that depend on the energy
function U results in the energy discrepancy (Schröder et al., 2023):

Definition 1 (Energy Discrepancy). Let pdata be a positive density on a measure space (X , dx)3and
let q(y|x) be a conditional probability density. Define the contrastive potential induced by q as

Uq(y) := − log
∑
x′∈X

q(y|x′) exp(−U(x′)) (1)

We define the energy discrepancy between pdata and U induced by q as

EDq(pdata, U) := Epdata(x)[U(x)]− Epdata(x)Eq(y|x)[Uq(y)].

The validity of this loss functional is given by the following non-parametric estimation result,
previously stated in Schröder et al. (2023):

Theorem 1. Let pdata be a positive probability density on (X , dx). Assume that for all x ∼ pdata
and y ∼ q(y|x), Var(x|y) > 0. Then, the energy discrepancy EDq is functionally convex in U and
has, up to additive constants, a unique global minimiser U∗ = argminEDq(pdata, U). Furthermore,
this minimiser is the Gibbs potential for the data distribution, i.e. pdata ∝ exp(−U∗).

We give the proof of Theorem 1 in Appendix A.1. The perturbation q can be chosen quite generally as
long as it can be guaranteed that computing y comes at a loss of information which mathematically is
expressed through the variance of recovering x from y ∼ q(y|x) being positive. In the next section,
we propose some practical choices for q.

2.1 Training Discrete Energy-Based Models with Energy Discrepancy

The perturbation process q needs to be chosen under the following considerations: 1) The contrastive
potential Uq(y) has a numerically tractable approximation. 2) The negative samples obtained through
q are informative for training the EBM when only finite amounts of data are available. We propose
three categories for constructing perturbative processes:

Bernoulli Perturbation. For ε ∈ (0, 1), let ξ ∼ Bernoulli(ε)d. On X = {0, 1}d, consider the
perturbation y = x+ ξmod(2) which induces a symmetric transition density q(y − x) on {0, 1}d.
Due to the symmetry of q, we can then write the contrastive potential as

Ubernoulli(y) = − log
∑
x′∈X

q(y − x′) exp(−U(x′)) = − logEx′∼q(y−x′)[exp(−U(x′))]

The expectation on the right hand side can now be approximated via sampling M Bernoulli random
variables ξj and taking the remainder of (y + ξj)/2. We denote this method as ED-Bern.

Deterministic Transformation. The perturbation q can also be defined through a deterministic
information loosing map g : X → Y , where the space Y may or may not be equal to X depending on
the choice of g. The contrastive potential can be expressed in terms of the preimage of g, i.e.

Ug(y) = − log
∑

{x′:g(x′)=y}

exp(−U(x′)) = − logEx′∼U({g−1(y)})[exp(−U(x′))]− c

3On discrete spaces dx is assumed to be a counting measure. On continuous spaces X , the appearing sums
and expectations turn into integrals with respect to the Lebesgue measure
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Table 1: Experiment results with seven 2D synthetic problems. We display the negative log-likelihood
(NLL) and MMD (in units of 1× 10−4). The results of baselines are taken from Zhang et al. (2022a).

Metric Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

NLL↓

PCD 20.094 19.991 20.565 19.763 19.593 20.172 21.214
ALOE+ 20.062 19.984 20.570 19.743 19.576 20.170 21.142
EB-GFN 20.050 19.982 20.546 19.732 19.554 20.146 20.696
ED-Bern (ours) 20.039 19.992 20.601 19.710 19.568 20.084 20.679
ED-Pool (ours) 20.051 19.999 20.604 19.721 19.531 20.084 20.676
ED-Grid (ours) 20.049 19.965 20.601 19.715 19.564 20.088 20.678

MMD↓

PCD 2.160 0.954 0.188 0.962 0.505 1.382 2.831
ALOE+ 0.149 0.078 0.636 0.516 1.746 0.718 12.138
EB-GFN 0.583 0.531 0.305 0.121 0.492 0.274 1.206
ED-Bern (ours) 0.120 0.014 0.137 -0.088 0.046 0.045 1.541
ED-Pool (ours) 0.129 -0.003 -0.021 0.042 0.126 0.101 2.080
ED-Grid (ours) 0.097 -0.066 0.022 0.018 0.351 0.097 2.049

with c = log |{g−1(y)}|. Again, the contrastive potential can be approximated through sampling M
instances from the uniform distribution over the set {x′ : g(x′) = y}. In our numerical experiments,
we focus on the mean-pooling transform gpool whose inverse are block-wise permutations. For details,
see Appendix C.2. We denote this method as ED-Pool.

Neighbourhood-based Transformation. Finally, inspired from concrete score matching (Meng
et al., 2022), we may define energy discrepancies based on neighbourhood maps x 7→ N (x) ∈ XK

which assign each point x ∈ X a set of K neighbours4. We define the forward perturbation q(y|x)
by selecting neighbours y ∼ U(N (x)) uniformly at random. Conversely, the contrastive potential
can be expressed in terms of the inverse neighbourhood y 7→ N−1(y) ∈ XK , i.e. the set of points
that have y to their neighbour. We then obtain for the contrastive potential

UN (y) = − log
1

K

∑
x′∈X :y∈N (x′)

exp(−U(x′)) = − logEx′∼U({N−1(y)})[exp(−U(x′))] .

In practice, we choose the grid neighbourhood (Appendix C.3) and denote this method by ED-Grid.

Stabilising Training. Above schemes permit the approximation of the contrastive potential from M
samples which are generated by first sampling y ∼ q(y|x), after which we compute M approximate
recoveries xj

−. The full loss can then be constructed for each data point x+ ∼ pdata by calculating
log
∑M

j=1 exp(U(x+)− U(xj
−))− log(M) using the numerically stabilised logsumexp function. In

practice, however, we find that this estimator for energy discrepancy is biased due to the logarithm
and can exhibit high variance. To stabilise training, we introduce an offset for the logarithm which
introduces a deterministic lower bound for the loss. This yields the energy discrepancy loss function

Lq,M,w(U) :=
1

N

N∑
i=1

log

w +

M∑
j=1

exp(U(xi
+)− U(xi,j

− ))

− log(M) (2)

with xi
+ ∼ pdata. In Appendix C.5 we proof that this approximation is consistent for any fixed w:

Theorem 2. For every ε>0 there exist N,M ∈N such that |Lq,M,w(U)−EDq(pdata, U)|<ε a.s..

3 Experiments

Figure 2: Experiment results on learning lattice Ising models.
Left to right: ground truth, ED-Bern, ED-Pool, ED-Grid.

Training Ising Models. We evaluate
the proposed methods on the lattice
Ising model, which has the form of

p(x) ∝ exp(xTJx), x ∈ {−1, 1}D,

where J = σAD with σ ∈ R and AD

being the adjacency matrix of a D×D

4We are making the assumption that the numbers of neighbours is the same for each point. A more general
case is discussed in Appendix C.4.
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Table 2: Experimental results on discrete image modelling. We report the negative log-likelihood
(NLL) on the test set for different models. The results of Gibbs, GWG, and DULA are taken from
Zhang et al. (2022b), and the result of EB-GFN is from Zhang et al. (2022a).

Dataset \ Method Gibbs GWG EB-GFN DULA ED-Bern (ours) ED-Pool (ours) ED-Grid (ours)

Static MNIST 117.17 80.01 102.43 80.71 95.38 168.07 90.15
Dynamic MNIST 121.19 80.51 105.75 81.29 97.03 144.26 81.26
Omniglot 142.06 94.72 112.59 145.68 97.87 118.66 94.64
Caltech Silhouettes 163.50 96.20 185.57 100.52 96.36 501.96 117.70

grid. Following Zhang et al. (2022a), we generate training data through Gibbs sampling and use
the generated data to fit a symmetric matrix J via energy discrepancy. In Figure 2, we consider
D = 10× 10 grids with σ = 0.2 and illustrate the learned matrix J using a heatmap. It can be seen
that the variants of energy discrepancy can identify the pattern of the ground truth, confirming the
effectiveness of our methods. We defer experimental details and quantitative results comparing with
baselines to Appendix E.1.

Discrete Density Estimation. In this experiment, we follow the experimental setting of Dai et al.
(2020); Zhang et al. (2022a), which aims to model discrete densities over 32-dimensional binary
data that are discretisations of continuous densities on the plane (see Figure 4). Specifically, we
convert each planar data point x̂ ∈ R2 to a binary data point x ∈ {0, 1}32 via Gray code (Gray,
1953). Consequently, the models face the challenge of modeling data in a discrete space, which is
particularly difficult due to the non-linear transformation from x̂ to x.

We compare our methods to three baselines: PCD (Tieleman, 2008), ALOE+ (Dai et al., 2020), and
EB-GFN (Zhang et al., 2022a). The experimental details are given in Appendix E.2. For qualitative
evaluation, we visualise the energy landscapes learned by our methods in Figure 3. It shows that
energy discrepancy is able to faithfully model multi-modal distributions and accurately learn the
sharp edges present in the data support. For further qualitative comparisons, we refer to the energy
landscapes of baseline methods presented in Figure C.2 of Zhang et al. (2022a). Moreover, we
quantitatively evaluate different methods in Table 1 by showing the negative log-likelihood (NLL)
and the exponential Hamming MMD (Gretton et al., 2012). Perhaps surprisingly, we find that energy
discrepancy outperforms the baselines on most settings, despite not requiring MCMC simulation like
PCD or training an additional variational network like ALOE and EB-GFN. A possible explanation
for this are biases introduced by short-run MCMC sampling in the case of PCD or non-converged
variational proposals in ALOE. By definition, ED transforms the data distribution as well as the
energy function which corrects for such biases.

Discrete Image Modelling. Here, we evaluate our methods in discrete high-dimensional spaces.
Following the settings in Grathwohl et al. (2021); Zhang et al. (2022b), we conduct experiments on
four different binary image datasets. Training details are given in Appendix E.3. After training, we
adopt Annealed Importance Sampling (Neal, 2001) to estimate the log-likelihoood.

The baselines include persistent contrastive divergence with vanilla Gibbs sampling, Gibbs-With-
Gradient (Grathwohl et al., 2021, GWG), Generative-Flow-Network (Zhang et al., 2022a, GFN), and
Discrete-Unadjusted-Langevin-Algorithm (Zhang et al., 2022b, DULA). The NLLs on the test set are
reported in Table 2. We see that energy discrepancy yields comparable performances to the baselines,
while ED-Pool is unable to capture the data distribution. We emphasise that energy discrepancy only
requires M (here, M = 32) evaluations of the energy function per data point in parallel. This is
notably fewer than contrastive divergence, which requires simulating multiple MCMC steps without
parallelisation. We also visualise the generated samples in Figure 11, which showcase the diversity
and high quality of the images generated by ED-Bern and ED-Grid. However, we observed that
ED-Pool suffers from mode collapse.

4 Conclusion and Outlook

In this paper we demonstrate how energy discrepancy can be used for efficient and competitive
training of energy-based models on discrete data without MCMC. The loss can be defined based on a
large class of perturbative processes of which we introduce three types: noise, determinstic transform,
and neighbourhood-based transform. Our results show that the choice of perturbation matters and
motivates further research on effective choices depending on the data structure of interest.
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We observe empirically that similarly to other contrastive losses, energy discrepancy shows limitations
when the ambient dimension of X is significantly larger than the intrinsic dimension of the data. In
these cases, training is aided significantly by a base distribution that models the lower-dimensional
space populated by data. For this reason, the adoption of ED on new data sets or different data
structures may require adjustments to the methodology such as learning appropriate base distributions
and finding more informative perturbative transforms.

For future work, we are interested in how this work extends to highly structured data such as graphs
or text. These settings may require a deeper understanding of how the perturbation influences
the performance of ED and what is gained from gradient information in CD (Zhang et al., 2022b;
Grathwohl et al., 2021) or ratio matching (Liu et al., 2023).
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A Abstract Proofs and Derivations

A.1 Proof of the Non-Parametric Estimation Theorem 1

In this subsection we give a formal proof for the uniqueness of minima of EDq(pdata, U) as a
functional in the energy function U . We first reiterate the theorem as stated in the paper:
Theorem 1. Let pdata be a positive probability density on (X , dx). Assume that for all x ∼ pdata
and y ∼ q(y|x), Var(x|y) > 0. Then, the energy discrepancy EDq is functionally convex in U and
has, up to additive constants, a unique global minimiser U∗ = argminEDq(pdata, U). Furthermore,
this minimiser is the Gibbs potential for the data distribution, i.e. pdata ∝ exp(−U∗).

We test energy discrepancy on the first and second order optimality conditions, i.e. we test that the
first functional derivative of ED vanishes in U∗ and that the second functional derivative is positive
definite. For uniqueness and well-definedness, we constrain the optimisation domain to the following
set:

G :=

{
U : X 7→ R such that exp(−U) ∈ L1(X ,dx) , U ∈ L1(pdata) , and min

x∈X
U(x) = 0

}
and require that there exists a U∗ ∈ G such that exp(−U∗) ∝ pdata. We now start with the following
lemmata and then complete the proof of Theorem 1 in Corollary 1.
Lemma 1. Let h ∈ G be arbitrary. The first variation of EDq is given by

d

dϵ
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)[h(x)]− Epdata(x)Eq(y|x)EpU (z|y)[h(z)] (3)

where pU (z|y) = q(y|z) exp(−U(z))∑
z′∈X q(y|z′) exp(−U(z′)) .
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Proof. We define the short-hand notation Uϵ := U + ϵh. The energy discrepancy at Uε reads

EDq(pdata, Uϵ) = Epdata(x)[Uϵ(x)] + Epdata(x)Eq(y|x)

[
log
∑
z∈X

q(y|z) exp(−Uϵ(z))

]
.

For the first functional derivative, we only need to calculate

d

dϵ
log
∑
z∈X

q(y|z) exp(−Uϵ(z)) =
∑
z∈X

−q(y|z)h(z) exp(−Uϵ(z))∑
z′∈X q(y|z′) exp(−Uϵ(z′))

= −EpUϵ (z|y)[h(z)]. (4)

Plugging this expression into EDq(pdata, Uϵ) and setting ϵ = 0 yields the first variation of EDq .

Lemma 2. The second variation of EDq is given by

d2

dϵ2
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)Eq(y|x)VarpU (z|y)[h(z)].

Proof. For the second order term, we have based on equation 4 and the quotient rule for derivatives:

d2

dϵ2
log
∑
z∈X

q(y|z) exp(−Uϵ(z))

=

∑
z∈X q(y|z) exp(Uϵ(z))h

2(z)
∑

z′∈X q(y|z′) exp(−Uϵ(z
′))(∑

z′∈X q(y|z′) exp(−Uϵ(z′))
)2

−
∑

z∈X q(y|z) exp(Uϵ(z))h(z)
∑

z′∈X q(y|z′) exp(−Uϵ(z
′))h(z′)(∑

z′∈X q(y|z′) exp(−Uϵ(z′))
)2

= EpUϵ (z|y)[h
2(z)]− EpUϵ (z|y)[h(z)]

2 = VarpUϵ (z|y)[h(z)] .

We obtain the desired result by interchanging the outer expectations with the derivatives in ϵ.

Corollary 1. Let c = minx∈X (− log pdata(x)). For U∗ = − log(pdata)− c ∈ G it holds that

d

dϵ
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= 0

d2

dϵ2
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

> 0 for all h ,

Furthermore, U∗ is the unique global minimiser of EDq(pdata, ·) in G.

Proof. By definition, the variance is non-negative, i.e. for every h ∈ G:

d2

dϵ2
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= VarpU (z|y)[h(z)] ≥ 0 .

Consequently, the energy discrepancy is convex and an extremal point of EDq(pdata, ·) is a global
minimiser. We are left to show that the minimiser is obtained at U∗ and unique. First of all, we have
for U∗:

EpU∗ (z|y)[h(z)] =
∑
z∈X

q(y|z) exp(−U∗(z))∑
z′∈X q(y|z′) exp(−U∗(z′))

h(z)

=
∑
z∈X

q(y|z)pdata(z)∑
z′∈X q(y|z′)pdata(z′)

h(z).

By applying the outer expectations we obtain

Epdata(x)Eq(y|x)EpU∗ (z|y)[h(z)] =
∑
x∈X

pdata(x)
∑
y∈Y

(
q(y|x)

∑
z∈X

(
q(y|z)pdata(z)∑

z′∈X q(y|z′)pdata(z′)
h(z)

))
=
∑
z∈X

∑
y∈Y

q(y|x)pdata(z)h(z)

= Epdata(z)[h(z)],
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where we used that the marginal distributions
∑

x∈X pdata(x)q(y|x) cancel out and the conditional
probability density integrates to one. This implies

d

dϵ
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= Epdata(z)[h(z)]− Epdata(z)[h(z)] = 0.

for all h ∈ G. We now show that
d2

dϵ2
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)Eq(y|x)Varpdata(z|y)[h(z)] > 0 .

Assume that the second variation was zero. Since the perturbed data distribution∑
x∈X pdata(x)q(y|x) is positive, the second variation at U∗ is zero if and only if the conditional vari-

ance Varpdata(z|y)[h(z)] = 0. Since U∗+εh ∈ G, the function h can not be constant. By definition of
the conditional variance, h(z) must then be a deterministic function of y ∼

∑
x∈X q(y|x)pdata(x).

Since h was arbitrary, there exists a measurable map g such that z = g(y) and Varpdata(z|y)[z] = 0
which is a contradiction to our assumptions. Consequently, U∗ is the unique global minimiser of
EDq which completes the statement in Theorem 1.

B Connections to other Methods

In this section, we follow Schröder et al. (2023).

B.1 Connections of Energy Discrepancy with Contrastive Divergence

The contrastive divergence update can be derived from an energy discrepancy when, for Eθ fixed, q
satisfies the detailed balance relation

q(y|x) exp(−Eθ(x)) = q(x|y) exp(−Eθ(y)) .

To see this, we calculate the contrastive potential induced by q: We have

− log
∑
x′∈X

q(y|x′) exp(−Eθ(x
′)) = − log

∑
x′∈X

q(x′|y) exp(−Eθ(y)) = Eθ(y) .

Consequently, the energy discrepancy induced by q is given by
EDq(pdata, Eθ) = Epdata(x)[Eθ(x)]− Epdata(x)Eq(y|x)[Eθ(y)] .

Updating θ based on a sample approximation of this loss leads to the contrastive divergence update

∆θ ∝ 1

N

N∑
i=1

∇θEθ(x
i)− 1

N

N∑
i=1

∇θEθ(y
i) yi ∼ q(·|xi)

It is important to notice that the distribution q depends on Eθ and needs to adjusted in each step of the
algorithm. For fixed q, EDq(pdata, Eθ) satisfies Theorem 1. This means that each step of contrastive
divergence optimises a loss with minimiser E∗

θ = − log pdata + c. However, the loss function
changes in each step of contrastive divergence. The connection also highlights the importance
Metropolis-Hastings adjustment to ensure that the implied q distribution satisfies the detailed balance
relation.

B.2 Derivation of Energy Discrepancy from KL Contractions

A Kullback-Leibler contraction is the divergence function KL(pdata ∥ pebm)−KL(Qpdata ∥ Qpebm)
(Lyu, 2011) for the convolution operator Qp(y) =

∑
x′∈X q(y|x′)p(x′). The linearity of the

convolution operator retains the normalisation of the measure, i.e. for the energy-based distribution
pebm we have

Qpebm =
1

ZU

∑
x′∈X

q(y|x′) exp(−U(x′)) with ZU =
∑
x′∈X

exp(−U(x′)) .

The KL divergences then become with Uq := − logQ exp(−U(x))

KL(pdata ∥ pebm) = Epdata(x)[log pdata(x)] + Epdata(x)[U(x)] + logZU

KL(Qpdata ∥ Qpebm) = EQpdata(y)[logQpdata(y)] + EQpdata(y) [Uq(y)] + logZU

Since the normalisation cancels when subtracting the two terms we find
KL(pdata ∥ pebm)−KL(Qpdata ∥ Qpebm) = EDq(pdata, U) + c

where c is a constant that contains the U -independent entropies of pdata and Qpdata.
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C Sample Approximations of Energy Discrepancies

In this section, we discuss practical implementations of the mean-pooling transform as an infor-
mation destroying deterministic process and the grid-neighbourhood as a neighbourhood-based
transformation.

C.1 General Strategy

As a general strategy, the contrastive potential has to be written as an expectation over an appropriate
to be determined distribution pneg,q,y that depends on the chosen perturbation process and on the
point where the contrastive potential is evaluated, i.e.

Uq(y) = − logEpneg,q,y(x′) exp(−U(x′)) (5)

which allows the evaluation of the contrastive potential via sampling from pneg,q,y. The energy
discrepancy can then be written as

EDq(pdata, U) = Epdata(x)Eq(y|x)
[
logEpneg,q,y(x′) [exp(U(x)− U(x′))]

]
(6)

by using properties of the logarithm and exponential and the fact that U(x) does not depend on the
expectations taken in y and x′. The loss can then be approximated via ancestral sampling. We first
sample a batch xi

+ ∼ pdata, subsequently sample its perturbed counter part yi ∼ q(·|xi
+), and finally

sample M negative samples xi,j
− ∼ pneg,q,yi . Sometimes, the perturbed sample yi is never explicitely

computed in the process. As described in Equation (2), the approximation is always stabilised through
tunable hyper-parameter w which finally yields the loss function

Lq,M,w(U) :=
1

N

N∑
i=1

log

w +

M∑
j=1

exp(U(xi
+)− U(xi,j

− ))

− log(M)

The justification for the stabilisation is two-fold. Firstly, the logarithm makes the Monte-Carlo
approximation of the contrastive potential biased due to Jensens inequality. The bias is negative,
given to leading order by the variance of the approximation, and depends on the energy function U .
Thus, the optimiser may start to optimise for a high bias and high variance estimator of the contrastive
potential rather than learning the data distribution. While this issue can be alleviated by significantly
large choices for M , it is much more practical to introduce a deterministic lower bound to the
loss-functional through the stabilisation w, which prevents the bias and logarithm from diverging.
Secondly, the effect of the stabilisation goes to zero as M increases. Thus, the asymptotic limit for
M and N large is retained through the stabilisation. For more details and analogous arguments in the
continuous case, see Schröder et al. (2023).

C.2 Mean Pooling Transform

We describe the mean-pooling transform on the example of image data which takes values in the
space {0, 1}h×w. We fix a window size s and reshape each data-point into blocks of size s× s, i.e.

{0, 1}h×w → {0, 1}s×s×h
s ×

w
s , x 7→ x̄

The mean pooling transform gpool computes the average over each block x̄•,•,i,j for i = 1, 2, . . . , h/s
and j = 1, 2, . . . , w/s. The corresponding preimage of the mean pooling transform is given by the
set of points which are identical to x up to block-wise permutation, i.e.

g−1(gpool(x)) = {x′ ∈ X : there exist πi,j ∈ Ss×s s.t. x̄′
l,k,i,j = x̄′

πi,j(l,k),i,j
for all l, k, i, j}

where Ss×s denotes the permutation group for matrices of size s× s. In practice, the mean-pooled
data point has to never be computed, only the block wise permutations of the data point are required.
Consequently, we obtain negative samples through xi,j

− ∼ U(g−1(gpool(x
i))), i.e. via block wise

permutation of the entries of each data point xi.

Strictly speaking, this transformation violates the assumptions of Theorem 1 for data points that only
consist of blocks that average to 1 or 0. Since this is only the case for a small set of the state space,
we assume this violation to be negligible.
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C.3 Grid Neighborhood

The grid neighbourhood for x ∈ {0, 1}d is constructed as

Ngrid(x) = {y ∈ {0, 1}d : y − x = ±ek, k = 1, 2, . . . , d}

where ek is a vector of zeros with a one in the k-th entry. This neighbourhood structure is symmetric,
i.e. N−1

grid(y) = Ngrid(y). Consequently, the negative samples are created by sampling from

xi,j
− ∼ U(Ngrid(y

i)) with yi ∼ U(Ngrid(x
i))

Notice that each negative sample is the second neighbour of the positive sample, and with a small
chance the positive sample itself.

C.4 Directed Neighbourhood Structures

More generally, the neighbourhood structure may form a non-symmetric directed graph for which
the neighbourhood maps N−1 and N don’t coincide. In this case, an additional weighting-term is
introduced. We denote the number of neighbours of x as Kx = |N (x)| and the number of elements
of which y is a neighbour as K ′

y = |N−1(y)|. The forward transition density is given by the uniform
distribution, i.e.

q(y|x) =
{
1/Kx if y ∈ N (x)
0 else (7)

We then have

UN (y) = log
∑
x′∈X

q(y|x′) exp(−U(x′))

= log
∑

x′∈N−1(y)

1

Kx′
exp(−U(x′))

= log
1

K ′
y

∑
x′∈N−1(y)

K ′
y

Kx′
exp(−U(x′))

= logEx′∼U({N−1(y)})[ωyx′ exp(−U(x′))]

where we introduced the weighting term ωyx′ = K ′
y/Kx′ .

C.5 Consistency of our Approximation

The following proof is similar to Schröder et al. (2023). We first restate the consistency result:

Theorem 2. For every ε>0 there exist N,M ∈N such that |Lq,M,w(U)−EDq(pdata, U)|<ε a.s..

Proof. For N data points xi
+ ∼ pdata and perturbed points yi ∼ q(·|xi

+) denote the M corresponding
negative samples by xi,j

− ∼ pneg,q,yi . Notice that the distribution of the negative samples depends on
yi. Using the triangle inequality, we can upper bound the difference |EDq(pdata, U)− Lq,M,w(U)|
by upper bounding the following two terms, individually:∣∣∣∣∣EDq(pdata, U)− 1

N

N∑
i=1

logE
[
exp(U(xi

+)− U(xi,j
− )
∣∣∣xi

+,y
i
] ∣∣∣∣∣

+

∣∣∣∣∣ 1N
N∑
i=1

logE
[
exp(U(xi

+)− U(xi,j
− )
∣∣∣xi

+,y
i
]
− Lq,M,w(U)

∣∣∣∣∣
The conditioning expresses that the expectation is only taken in xi,j

− ∼ pneg,q,yi while keeping
the values of the random variables xi

+ and yi fixed. The first term can be bounded by a sequence
εN

a.s.−−→ 0 due to the normal strong law of large numbers. For the second term one needs to consider
that the distribution pneg,q,yi depends on the random variable yi. For this reason, we notice that xi,j

−
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are conditionally indepedent given xi
+,y

i and employ a conditional version of the strong law of large
numbers (Majerek et al., 2005, Theorem 4.2) to obtain

1

M

M∑
j=1

exp
(
U(xi

+)− U(xi,j
− )
)

a.s.−−→ E
[
exp(U(xi

+)− U(xi,j
− )
∣∣∣xi

+,y
i
]

Next, we have that the deterministic sequence w/M → 0. Thus, adding the stabilisation w/M does
not change the limit in M . Furthermore, since the logarithm is continuous, the limit also holds after
applying the logarithm. Finally, the estimate translates to the sum by another application of the
triangle inequality: For each i = 1, 2, . . . , N there exists a sequence εi,M

a.s.−−→ 0 such that∣∣∣∣∣ 1N
N∑
i=1

logE
[
exp(U(xi

+)− U(xi,j
− )
∣∣∣xi

+,y
i
]
− Lq,M,w(U)

∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣∣∣∣∣logE
[
exp(U(xi

+)− U(xi,j
− )
∣∣∣xi

+,y
i
]
− log

1

M

M∑
j=1

exp
(
U(xi

+)− U(xi,j
− )
)∣∣∣∣∣∣

<
1

N

N∑
i=1

εi,M ≤ max(ε1,M , . . . , εN,M ) .

Hence, for each ε > 0 there exists an N ∈ N and an M(N) ∈ N such that |EDq(pdata, U) −
Lq,M(N),w(U)| < ε almost surely.

D Related Work

Contrastive loss functions Our work is based on an unpublished work on energy discrepancies
in the continuous case (Schröder et al., 2023). The motivation for such constructed loss functions
lies in the data processing inequality. A similar loss has been suggested before as KL contraction
divergence (Lyu, 2011), however, only for its theoretical properties. Interestingly, the structure of the
stabilised energy discrepancy loss shares similarities with other contrastive losses such as Ceylan &
Gutmann (2018); Gutmann & Hyvärinen (2010); van den Oord et al. (2018). This poses the question
of possible classification-based interpretations of energy discrepancy and of the w-stabilisation.

Contrastive divergence and Sampling. Discrete training methods for energy-based models largely
rely on contrastive divergence methods, thus motivating a lot of work on discrete sampling and
proposal methods. Improvements of the standard Gibbs method were proposed by Zanella (2020)
through locally informed proposals. The method was extended to include gradient information
(Grathwohl et al., 2021) to drastically reduce the computational complexity of flipping bits of binary
valued data and to flipping bits in several places (Sun et al., 2022b; Emami et al., 2023; Sun et al.,
2022a). Finally, discrete versions of Langevin sampling have been introduced based on this idea
(Zhang et al., 2022b; Rhodes & Gutmann, 2022; Sun et al., 2023). Consequently, most current
implementations of contrastive divergence use multiple steps of a gradient based discrete sampler.
Alternatively, energy-based models can be trained using generative flow networks which learns a
Markov chain to construct data by optimising a given reward function. The Markov chain can be used
to obtain samples for contrastive divergence without MCMC from the EBM (Zhang et al., 2022a).

Other training methods for discrete EBMs. There also exist some MCMC free approaches
for training discrete EBMs. Our work is most similar to concrete score matching (Meng et al.,
2022) which uses neighbourhood structures to define a replacement of the continuous score function.
Another sampling free approach for training discrete EBMs is ratio matching (Hyvärinen, 2007;
Lyu, 2012). However is has been found that also for ratio matching, gradient information drastically
improves the performance (Liu et al., 2023). Moreover, Dai et al. (2020) proposed to apply variational
approaches to train discrete EBMs instead of MCMC. Eikema et al. (2022) replaced the widely-
used Gibbs algorithms with quasi-rejection sampling to trade off the efficiency and accuracy of the
sampling procedure. The perturb-and-map (Papandreou & Yuille, 2011) is also recently utilised to
sample and learn in discrete EBMs (Lazaro-Gredilla et al., 2021).
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2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Figure 3: Visualization of the energy function. Top to bottom: ED-Bern, ED-Pool, ED-Grid.

2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Figure 4: Visualization of samples for discrete density estimation from ground truth.

E More about Experiments

E.1 Training Ising Models

Table 3: Mean negative log-RMSE (higher is better) between
the learned connectivity matrix Jϕ and the true matrix J for
different values of D and σ. The results of baselines are
directly taken from Zhang et al. (2022a).

D = 102 D = 92

Method \ σ 0.1 0.2 0.3 0.4 0.5 −0.1 −0.2

Gibbs 4.8 4.7 3.4 2.6 2.3 4.8 4.7
GWG 4.8 4.7 3.4 2.6 2.3 4.8 4.7
EB-GFN 6.1 5.1 3.3 2.6 2.3 5.7 5.1
ED-Bern (ours) 5.1 4.0 2.9 2.5 2.3 5.1 4.3
ED-Pool (ours) 4.9 3.6 3.2 2.6 2.3 4.9 3.6
ED-Grid (ours) 4.6 4.0 3.1 2.6 2.3 4.5 4.0

Experimental Details. As in Grath-
wohl et al. (2021); Zhang et al.
(2022a,b), we train a learnable connec-
tivity matrix Jϕ to estimate the true
matrix J in the Ising model. To gen-
erate the training data, we simulate
Gibbs sampling with 1, 000, 000 steps
for each instance to construct a dataset
of 2, 000 samples. For energy discrep-
ancy, we choose w = 1,M = 32 for
all variants, ϵ = 0.1 in ED-Bern, and
the window side is

√
D ×

√
D in ED-

Pool. The parameter Jϕ is learned by
the Adam (Kingma & Ba, 2014) opti-
mizer with a learning rate of 0.0001 and a batch size of 256. Following Zhang et al. (2022a), all
models are trained with an l1 regularization with a coefficient in {10, 5, 1, 0.1, 0.01} to encourage
sparsity. The other setting is basically the same as Section F.2 in Grathwohl et al. (2021). We report
the best result for each setting using the same hyperparameter searching protocol for all methods.

Quantitative Results. We consider D = 10× 10 grids with σ = 0.1, 0.2, . . . , 0.5 and D = 9× 9
grids with σ = −0.1,−0.2. The methods are evaluated by computing the negative log-RMSE
between the estimated Jϕ and the ture matrix J . As shown in Table 3, our methods demonstrate
comparable results to the baselines and, in certain settings, even outperform Gibbs and GWG,
indicating that energy discrepancy is able to discover the underlying structure within the data.

E.2 Discrete Density Estimation

Experimental Details. This experiment keeps a consistent setting with Dai et al. (2020). We
first generate 2D floating-points from a continuous distribution p̂ which lacks a closed form but
can be easily sampled. Then, each sample x̂ := [x̂1, x̂2] ∈ R2 is converted to a discrete data
point x ∈ {0, 1}32 using Gray code. To be specific, given x̂ ∼ p̂, we quantise both x̂1 and x̂2

into 16-bits binary representations via Gray code (Gray, 1953), and concatenate them together
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Figure 5: Density estimation results of ED-Bern on the pinwheel with different ϵ,M and w = 1.
to obtain a 32-bits vector x. As a result, the probabilistic mass function in the discrete space
is p(x) ∝ p̂ ([GrayToFloat(x1:16),GrayToFloat(x17:32)]). It is noteworthy that learning on this
discrete space presents challenges due to the highly non-linear nature of the Gray code transformation.

The energy function is parameterised by a 4 layer MLP with 256 hidden dimensions and Swish
(Ramachandran et al., 2017) activation. We train the EBM for 105 steps and adopt an Adam optimiser
with a learning rate of 0.002 and a batch size of 128 to update the parameter. For the energy
discrepancy, we choose w = 1,M = 32 for all variants, ϵ = 0.1 in ED-Bern, and the window
size is 32× 1 in ED-Pool. After training, we quantitatively evaluate all methods using the negative
log-likelihood (NLL) and the maximum mean discrepancy (MMD). To be specific, the NLL metric is
computed based on 4, 000 samples drawn from the data distribution, and the normalisation constant
is estimated using importance sampling with 1, 000, 000 samples drawn from a variational Bernoulli
distribution with p = 0.5. For the MMD metric, we follow the setting in Zhang et al. (2022a), which
adopts the exponential Hamming kernel with 0.1 bandwidth. Moreover, the reported performances
are averaged over 10 repeated estimations, each with 4, 000 samples, which are drawn from the
learned energy function via Gibbs sampling.

Qualitative Results. We qualitatively visualise the learned energy functions of our proposed
approaches in Figure 3. To provide further insights into the oracle energy landscape, we also plot the
ground truth samples in Figure 4. The results clearly demonstrate that energy discrepancy effectively
fits the data distribution, validating the efficacy of our methods.

The Effect of ϵ in Bernoulli Perturbation. Perhaps surprisingly, we find that the pro-
posed energy discrepancy loss with Bernoulli perturbation is very robust to the noise scalar ϵ.

Figure 6: Density estimation results of ED-Bern on the pin-
wheel with different ϵ and M = 32, w = 1.

In Figure 6, w visualise the learned en-
ergy landscapes with different ϵ. The
results demonstrate that ED-Bern is
able to learn faithful energy functions,
even with extreme values of ϵ, such
as ϵ ∈ {0.999, 0.001}. This high-
lights the robustness and effectiveness of our approach. In Figure 5, we further show that, with
ϵ ∈ {0.9999, 0.0001}, ED-Bern can still learn a faithful energy landscape using a large value of M .
However, when ϵ ∈ {1, 0}, ED-Bern fails to work. It is noteworthy that the choice of ϵ is highly
dependent on the specific structure of the dataset. While ED-Bern exhibits robustness to different
values of ϵ in the synthetic data, we have observed that a large value of ϵ (ϵ ≥ 0.1) is not effective for
discrete image modeling.

Figure 7: Density estimation results of ED-
Pool on the pinwheel with different window
sizes, M and w = 1.

The Effect of Window Size in Deterministic Trans-
formation. To investigate the effectiveness of the
window size in ED-Pool, we conduct experiments
in Figure 7 with different window sizes. The results
indicate that employing a small window size (e.g.,
2× 1) does not provide sufficient information for en-
ergy discrepancy to effectively learn the underlying
data structure. Furthermore, our empirical findings
suggest that solely increasing the value of M is not
a viable solution to address this issue. Again, the
choice of the window size should depend on the un-
derlying data structure. In the discrete image mod-
elling, we find that even with a small window size
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Figure 8: Density estimation results of ED-Bern on the pinwheel with different w,M and ϵ = 0.1.

Figure 9: Density estimation results of ED-Pool on the pinwheel with different w,M and the window
size is 32× 1.

(i.e., 4 × 4), energy discrepancy yields an energy with low values on the data-support but rapidly
diverging values outside of it. Therefore, it fails to learn a faithful energy landscape.

Qualitatively Understanding the Effect of w and M . The hyperparameters w and M play a crucial
role in the estimation of energy discrepancy. Increasing M can reduce the variance of the Monte Carlo
estimation of the contrastive potential in (1), while a proper value of w can improve the stabilisation
of training. Here, we evaluate the effect of w and M on the variants of energy discrepancy in
Figures 8 to 10. Based on empirical observations, we observe that when w = 0 and M is small (e.g.,
M ≤ 32 for ED-Bern and M ≤ 64 for ED-Pool and ED-Grid), energy discrepancy demonstrates
rapid divergence and fails to converge. Additionally, we find that increasing M can address this issue
to some extent and introducing a non-zero value for w can significantly stabilize the convergence,
even with M = 1. Moreover, larger w tends to produce a flatter estimated energy landscapes, which
also aligns with the findings in continuous scenarios of energy discrepancy Schröder et al. (2023).

E.3 Discrete Image Modelling

Experimental Details. In this experiment, we parametrise the energy function using ResNet (He
et al., 2016) following the settings in Grathwohl et al. (2021); Zhang et al. (2022b), where the network
has 8 residual blocks with 64 feature maps. Each residual block has 2 convolutional layers and uses
Swish activation function (Ramachandran et al., 2017). We choose M = 32, w = 1 for all variants
of energy discrepancy, ϵ = 0.001 for ED-Bern, and the window size is 2 × 2 for ED-Pool. Note
that here we choose a relatively small ϵ and window size, since we empirically find that the loss of
energy discrepancy converges to a constant rapidly with larger ϵ and window size, which can not
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Figure 10: Density estimation results of ED-Grid on the pinwheel with different w,M .

Figure 11: Generated samples on discrete image modelling. Left to right: Static MNIST, Dynamic
MNIST, Omniglot, Caltech Silhouettes. Top to bottom: ED-Bern, ED-Pool, ED-Grid.

provide meaningful gradient information to update the parameters. All models are trained with Adam
optimiser with a learning rate of 0.0001 and a batch size of 100 for 50, 000 iterations. We perform
model evaluation every 5, 000 iterations by conducting Annealed Importance Sampling (AIS) with a
discrete Langevin sampler for 10, 000 steps. The reported results are obtained from the model that
achieves the best performance on the validation set. After training, we finally report the negative
log-likelihood by running 300, 000 iterations of AIS.

Qualitative Results. We show the generated images in Figure 11, which are the samples in the
final step of AIS. We see that our methods can generate realistic images on the Omniglot dataset but
mediocre images on Caltech Silhouette. We hypothesise that improving the design of the affinity
structure in the neighborhood-based transformation can lead to better results. On both the static and
dynamic MNIST datasets, ED-Bern and ED-Grid generate diverse and high-quality images. However,
ED-Pool experiences mode collapse, resulting in limited variation in the generated samples.
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