
Deep Anomaly Detection with Deviation Networks
Guansong Pang

∗

Australian Institute for Machine

Learning

The University of Adelaide

Adelaide, Australia

guansong.pang@adelaide.edu.au

Chunhua Shen

Australian Institute for Machine

Learning

The University of Adelaide

Adelaide, Australia

chunhua.shen@adelaide.edu.au

Anton van den Hengel

Australian Institute for Machine

Learning

The University of Adelaide

Adelaide, Australia

anton.vandenhengel@adelaide.edu.au

ABSTRACT
Although deep learning has been applied to successfully address

many data mining problems, relatively limited work has been done

on deep learning for anomaly detection. Existing deep anomaly

detection methods, which focus on learning new feature represen-

tations to enable downstream anomaly detection methods, perform

indirect optimization of anomaly scores, leading to data-inefficient

learning and suboptimal anomaly scoring. Also, they are typically

designed as unsupervised learning due to the lack of large-scale

labeled anomaly data. As a result, they are difficult to leverage prior

knowledge (e.g., a few labeled anomalies) when such information

is available as in many real-world anomaly detection applications.

This paper introduces a novel anomaly detection framework and

its instantiation to address these problems. Instead of representation

learning, our method fulfills an end-to-end learning of anomaly

scores by a neural deviation learning, in which we leverage a few

(e.g., multiple to dozens) labeled anomalies and a prior probability

to enforce statistically significant deviations of the anomaly scores

of anomalies from that of normal data objects in the upper tail.

Extensive results show that our method can be trained substantially

more data-efficiently and achieves significantly better anomaly

scoring than state-of-the-art competing methods.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; Neural
networks; Semi-supervised learning settings.

KEYWORDS
Anomaly Detection, Deep Learning, Representation Learning, Neu-

ral Networks, Outlier Detection

ACM Reference Format:
Guansong Pang, Chunhua Shen, and Anton van den Hengel. 2019. Deep

Anomaly Detection with Deviation Networks. In The 25th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’19), August
4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3292500.3330871

∗
Guansong Pang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330871

1 INTRODUCTION
Anomalies are referred to as data objects that deviate significantly

from the majority of data objects. Anomaly detection is the task

of identifying these anomalies, which has important applications

in broad domains, e.g., to detect network attacks in cybersecurity,

to detect fraudulent transactions in finance, and to detect diseases

in healthcare. Numerous anomaly detection methods have been

introduced, but they often fail to detect anomalies in data with

high dimensionality and/or intricate relations due to the curse of

dimensionality and highly non-linear feature relations [19, 20].

In recent years, deep learning [11] has gained exceptional suc-

cesses in discovering such intricate relations in high-dimensional

data. However, deep learning for anomaly detection has been insuf-

ficiently explored due to the following two major challenges: (i) it

is very difficult to obtain large-scale labeled data to train anomaly

detectors due to the prohibitive cost of collecting such data in many

anomaly detection application domains; and (ii) anomalies often

demonstrate different anomalous behaviors, and as a result, they

are dissimilar to each other, which poses significant challenges to

widely-used optimization objectives that generally assume the data

objects within each class are similar to each other.

Existing deep anomaly detection
1
methods [2, 7, 19, 20, 22, 29, 30]

address these two challenges by using unsupervised deep learning

to model the normal class in a two-step approach (i.e., the pipeline

(a) in Figure 1): they first learn to represent data with new rep-

resentations, e.g., intermediate representations in autoencoders

[2, 7, 30], latent spaces in generative adversarial networks (GANs)

[22, 29], or distance metric spaces in [19, 20]; and then they use the

learned representations to define anomaly scores using reconstruc-

tion errors [2, 7, 22, 29, 30] or distance-based measures [19, 20].

However, in most of these methods [2, 7, 22, 29, 30], the represen-

tation learning is separate from anomaly detection methods, so it

may yield representations that are suboptimal or even irrelevant

w.r.t. specific anomaly detection methods. The very recent efforts

[19, 20] address this problem by incorporating traditional anomaly

scoring measures into the feature learning objective, which substan-

tially improves the expressiveness of the feature representations.

However, they still focus on optimizing the representations, which

is an indirect optimization of anomaly scoring. This can lead to

inefficient use of training data and low-quality anomaly scoring.

Also, they are mainly focused on unsupervised learning, which

may lead to a common problem of unsupervised anomaly detec-

tion that many of the anomalies they identify are data noises or

uninteresting data objects due to the lack of prior knowledge of the

1
Deep anomaly detection refers to any methods that exploit deep learning techniques

to learn feature representations or anomaly scores for anomaly detection.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

353

https://doi.org/10.1145/3292500.3330871
https://doi.org/10.1145/3292500.3330871
https://doi.org/10.1145/3292500.3330871

Figure 1: (a) Learning Features for Subsequent Anomaly Measures
vs. (b) Direct Learning of Anomaly Scores

anomalies of interest [1, 19, 24]. A potential solution to this problem

is to leverage a limited number of labeled anomalies as the prior

knowledge to learn anomaly-informed models, since such prior

knowledge is often available in many real-world anomaly detection

applications. Those labeled anomalies may originally come from

a deployed detection system, e.g., a few successfully detected net-

work intrusion records, or they may be from users, such as a small

number of fraudulent credit card transactions that are reported by

clients and confirmed by the banks.

In this paper, we introduce a novel anomaly detection framework

to fill these gaps by leveraging a few labeled anomalies to fulfill

an end-to-end differentiable learning of anomaly scores. That is,

as shown in the pipeline (b) in Figure 1, with the original data as

inputs, we directly learn and output the anomaly scores rather than

the feature representations. Specifically, as shown in Figure 2, given

a training data object, the proposed framework first uses a neural

anomaly score learner to assign it an anomaly score, and then de-

fines the mean of the anomaly scores of some normal data objects

based on a prior probability to serve as a reference score for guid-

ing the subsequent anomaly score learning. Lastly, the framework

defines a loss function, called deviation loss, to enforce statistically

significant deviations of the anomaly scores of anomalies from that

of normal data objects in the upper tail.

We further instantiate the framework into a method called de-

viation networks (DevNet). DevNet leverages multiple to dozens

of labeled anomalies, accounting for only 0.005%-1% of all train-

ing data objects and 0.08%-6% of all anomalies per data set, and a

Gaussian prior to perform a direct optimization of anomaly scores

using a Z-Score-based deviation loss. By doing so, DevNet can not

only achieve very data-efficient learning of the anomaly scores but

also accommodate anomalies with different anomalous behaviors.

Additionally, in contrast to most methods that produce hardly in-

terpretable anomaly scores [10], the Z-Score-based deviation loss

also allows DevNet to produce easily interpretable anomaly scores.

Accordingly, this paper makes the following major contributions.

• We introduce a novel framework to learn anomaly scores

in an end-to-end fashion. In contrast to the current indirect

optimization approach, our framework fulfills a direct opti-

mization of anomaly scores. As far as we know, this is the

first framework for leveraging limited labeled anomaly data

to achieve end-to-end anomaly score learning.

• A novel anomaly detection method, namely deviation net-

works (DevNet
2
), is instantiated from the framework. De-

vNet synthesizes neural networks, Gaussian prior and Z-

Score-based deviation loss to perform data-efficient and ef-

fective learning of the anomaly scores, resulting in well op-

timized and easily interpretable anomaly scores.

Extensive empirical results on nine large and/or high-dimensional

real-world data sets show that (i) DevNet significantly outperforms

four state-of-the-art competing methods in terms of both the Area

Under Receiver Operating Characteristic Curve (AUC-ROC) and

Precision-Recall curve (AUC-PR), with 3%-29% average AUC-ROC

improvement and 21%-309% average AUC-PR improvement; and

(ii) DevNet obtains a substantially better data efficiency than the

competing methods, e.g., it can use 75%-88% less labeled anomalies

to achieve the accuracy that is comparably good to, or substantially

better than, the best contenders.

2 RELATEDWORK
2.1 Traditional Anomaly Detection
Most traditional anomaly detection approaches, e.g., distance-based

approach and density-based approach, are ineffective in handling ir-

relevant features or non-linear separable classes due to the curse of

dimensionality and the deficiency in capturing the non-linear rela-

tions. Recently ensemblemethods (e.g., iForest [14] andmany others

[9, 18]) showed some large improvement over these approaches by

working on selected feature subspaces, but how to efficiently and

effectively identify the relevant subspaces and model the intricate

relations is still an open problem in anomaly detection.

2.2 Deep Anomaly Detection
Current popular deep anomaly detection methods are unsupervised

approach, including autoencoder-based methods and GANs-based

methods. Autoencoder-based methods [2, 7, 30] use a bottleneck

network architecture to learn a low-dimensional representation

space, and then use the learned representations to define recon-

struction errors as anomaly scores. GANs-based methods [22, 29]

also use the reconstruction error as anomaly score, but they lever-

age two competing networks, a generator and a discriminator, to

adversarially learn a latent space of the training data and use this

latent space to compute the reconstruction errors. These deep meth-

ods can capture more complex feature interactions than traditional

shallow methods such as random projection [12], but they learn

the representations separately from the subsequent anomaly de-

tection, leading to suboptimal or unstable detection performance

[19, 20]. To address this issue, very recent work [19, 20] focuses

on unifying the representation learning and anomaly detection.

The REPEN method [19] exploits triplet networks to integrate the

representation learning with distance-based detectors, while deep

Support Vector Data Description (SVDD) [20] aims to learn rep-

resentations for the one-classifier, SVDD [27]. Both REPEN and

deep SVDD achieve substantial improvement over the previous

methods. However, their optimization objective still focuses on

2
Our code is made available at https://sites.google.com/site/gspangsite/sourcecode.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

354

feature representations, so they optimize the anomaly scoring in

an indirect manner. DevNet is fundamentally different from these

methods in that DevNet performs a direct differentiable learning of

the anomaly scores in an end-to-end fashion.

2.3 Anomaly Detection with Limited Data
Only a few studies have been done on performing anomaly de-

tection with a few labeled anomalies. In [16, 26], a small set of

labeled anomalies is incorporated into a belief propagation pro-

cess to achieve more reliable anomaly scoring, but they are only

applicable to graph data. In [19], REPEN leverages a few labeled

anomalies to learn more application-relevant feature representa-

tions, resulting in over 30% accuracy improvement compared to its

fully unsupervised version.

This research line is relevant to few-shot classification [5, 25]

and PU learning (i.e., learning from positive and unlabeled exam-

ples) [4, 13, 21]. Few-shot classification is relevant because it also

aims to leverage a few labeled examples to identify incoming ob-

jects of the same class. However, they are very different because

(i) in few-shot classification, we have a large number of labeled

data of the seen classes during training, but we do not know any

class information of the training data in anomaly detection; and

(ii) few-shot classification implicitly assumes that the few labeled

objects and incoming objects of each of the unseen classes share

the same manifold, whereas the few labeled anomalies and the

unseen anomalies may be from very different manifolds. The sec-

ond difference is also the key difference between our task and PU

learning, because PU learning also has the same assumption as

few-shot classification since they are both focused on classification.

Also, most PU learning techniques typically require a substantially

large percentage of positive examples to work well, e.g., 45% in

[13], 20%-50% in [4] and 20% in [21], which is often not practical

or too costly to collect that much anomaly data in many anomaly

detection applications. Therefore, both few-shot and PU learning

techniques are significantly challenged by the studied problem.

3 END-TO-END ANOMALY SCORE LEARNING
3.1 Problem Statement
Instead of taking the current two-step approach that first learns

new representations and then applies some anomaly measures to

the new representations to compute anomaly scores, we aim to

leverage a small number of labeled anomalies to directly learn

the anomaly scores. Specifically, given a set of N + K training

data objects X = {x1, x2, · · · , xN , xN+1, xN+2, · · · , xN+K } with
xi ∈ RD , in which U = {x1, x2, · · · , xN } is unlabeled data and

K = {xN+1, xN+2, · · · , xN+K } with K ≪ N is a very small set of

labeled anomalies that provide some prior knowledge of anomalies,

our goal is to learn an anomaly scoring function ϕ : X 7→ R
that assigns anomaly scores to data objects in a way that we have

ϕ(xi) > ϕ(xj) if xi is an anomaly and xj is a normal data object.

3.2 The Proposed Framework
To solve this problem, we introduce a novel framework that synthe-

sizes neural networks, a prior probability distribution of anomaly

scores, and a new loss function to train a deep anomaly detector in

an end-to-end fashion, with an objective to assign statistically sig-

nificantly larger anomaly scores to anomalies than normal objects.

The resulting model is expected to yield more optimized anomaly

scores and be more data-efficient than the two-step approach.

3.2.1 The Procedure of the Framework. As shown in Figure 2, our

framework consists of three major modules:

(1) We first use an anomaly scoring network, i.e., a function ϕ,
to yield a scalar anomaly score for every given input x.

(2) To guide the learning of anomaly scores, we then use a

reference score generator to generate another scalar score

termed as reference score, which is defined as the mean of

the anomaly scores {r1, r2, · · · , rl } for a set of l randomly

selected normal objects, denoted as µR . The reference score
µR may be either learned from a model or determined by a

prior probability F . The latter one is chosen so as to efficiently

generate µR and obtain interpretable anomaly scores.

(3) Lastly ϕ(x), µR and its associated standard deviation σR are

input to the deviation loss function L to guide the optimiza-

tion, in which we aim to optimize the anomaly scores so

that the scores of anomalies statistically significantly deviate

from µR in the upper tail while at the same time having the

scores of normal objects as close as possible to µR .

Figure 2: The Proposed Framework. ϕ(x;Θ) is an anomaly score
learnerwith the parametersΘ. µR is themean of the anomaly scores
of some normal objects, which is determined by a prior F . σR is a
standard deviation associated with µR . The loss L

(
ϕ(x;Θ), µR, σR

)
is

defined to guarantee that the anomaly scores of anomalies statisti-
cally significantly deviate from µR in the upper tail while enforce
normal objects have anomaly scores as close as possible to µR .

One problem here is how to effectively obtain a sufficient number

of normal objects to train our model, since we only have a few

labeled anomalies inK but do not know the class label of the objects

inU. We will discuss how to address this problem in Section 4.3.

3.2.2 How Does The Proposed Framework Address the Aforemen-
tioned Two Main Challenges of Deep Anomaly Detection? The de-

viation loss-based optimization in our framework forces the nor-

mal objects cluster around F in terms of their anomaly scores but

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

355

pushes anomalies statistically far away F , which well optimizes

the anomaly scores and also empowers the intermediate repre-

sentation learning to discriminate normal objects from the rare

anomalies with different anomalous behaviors. In other words, our

deep anomaly detector leverages a few labeled anomalies and the

prior of anomaly scores to learn a high-level abstraction of normal

behaviors, enabling it to assign a large anomaly score to an object as

long as the object’s behaviors significantly deviate from the learned

abstraction of being normal. This offers an effective detection of

dissimilar anomalies, e.g., anomalies due to different reasons or

previously unknown anomalies; and in turn the optimization also

requires substantially less labeled anomalies to train the detector.

4 DEVIATION NETWORKS
The proposed framework is instantiated into a method called De-

viation Networks (DevNet), which defines a Gaussian prior and a

Z-Score-based deviation loss to enable the direct optimization of

anomaly scores with an end-to-end neural anomaly score learner.

4.1 End-to-end Anomaly Scoring Network
Let Q ∈ RM be an intermediate representation space, an anomaly

scoring networkϕ(·;Θ) : X 7→ R can be defined as a combination of

a feature representation learnerψ (·;Θt) : X 7→ Q and an anomaly

scoring function η(·;Θs) : Q 7→ R, in which Θ = {Θt ,Θs }.

Specifically,ψ (·;Θt) is a neural feature learner with H ∈ N hid-

den layers and their weight matrices Θt = {W1,W2, · · · ,WH },

which can be represented as

q = ψ (x;Θt), (1)

where x ∈ X and q ∈ Q. Different hidden network structures can

be used here based on the type of data inputs, such as multilayer

perceptron networks for multidimensional data, convolutional net-

works for image data, or recurrent networks for sequence data.

η(·,Θs) : Q 7→ R is defined as an anomaly score learner which
uses a single linear neural unit in the output layer to compute the

anomaly scores based on the intermediate representations:

η(q;Θs) =

M∑
i=1

wo
i qi +w

o
M+1, (2)

where q ∈ Q and Θs = {wo } (wo
M+1 is the bias term).

Thus, ϕ(·;Θ) can be formally represented as

ϕ(x;Θ) = η(ψ (x;Θt);Θs), (3)

which directly maps data inputs to scalar anomaly scores and can

be trained in an end-to-end fashion.

4.2 Gaussian Prior-based Reference Scores
Having obtained the anomaly scores using ϕ(x;Θ), a reference score
µR ∈ R, which is defined as the mean of the anomaly scores of

a set of some randomly selected normal objects R, is fed into the

network output to guide the optimization. There are two main ways

to generate µR : data-driven and prior-driven approaches. Data-

driven methods involve a model to learn µR based on X, while

prior-driven methods generate µR from a chosen prior probability

F . The prior-based approach is chosen here because (i) the chosen

prior allows us to achieve good interpretability of the predicted

anomaly scores and (ii) it can generate µR constantly, which is

substantially more efficient than the data-driven approach.

The specification of the prior is the main challenge of the prior-

based approach. Fortunately, extensive results in [10] show that

Gaussian distribution fits the anomaly scores very well in a range

of data sets. This may be due to that the most general distribution

for fitting values derived from Gaussian or non-Gaussian variables

is the Gaussian distribution according to the central limit theorem.

Motivated by this, we define a Gaussian prior-based reference score:

r1, r2, · · · , rl ∼ N(µ,σ
2), (4)

µR =
1

l

l∑
i=1

ri , (5)

where each ri is drawn from N(µ,σ 2) and represents an anomaly

score of a random normal data object. We found empirically that

DevNet was not sensitive to the choices of µ and σ as long as σ was

not too large. We set µ = 0 and σ = 1 in our experiments, which

help DevNet to achieve stable detection performance on different

data sets. DevNet is also not sensitive to l when l is sufficiently

large due to the central limit theorem. l = 5000 is used here.

4.3 Z-Score-based Deviation Loss
A deviation loss is then defined to optimize the anomaly scoring

network, with the deviation specified as a Z-Score

dev(x) =
ϕ(x;Θ) − µR

σR
, (6)

where σR is the standard deviation of the prior-based anomaly

score set, {r1, r2, · · · , rl }. The deviation can then be plugged into

the contrastive loss [6] to specify our deviation loss as follows

L
(
ϕ(x;Θ), µR ,σR

)
= (1 − y)|dev(x)| + ymax

(
0,a − dev(x)

)
, (7)

where y = 1 if x is an anomaly and y = 0 if x is a normal object,

and a is equivalent to a Z-Score confidence interval parameter. This

loss enables DevNet to push the anomaly scores of normal objects

as close as possible to µR while enforce a deviation of at least a
between µR and the anomaly scores of anomalies. Note that if x
is an anomaly and it has a negative dev(x), the loss is particularly
large, which encourages large positive deviations for all anomalies.

Therefore, the deviation loss is equivalent to enforcing a statistically

significant deviation of the anomaly score of all anomalies from that

of normal objects in the upper tail. We use a = 5 to achieve a very

high significance level (i.e., 5.73303e-07) for all labeled anomalies.

Similar to the contrastive loss, the deviation loss is monotonically

increasing in |dev(x)| and is monotonically deceasing inmax

(
0,a−

dev(x)
)
, so it is convex w.r.t. both cases. However, they are also very

different, because the contrastive loss uses pairs of intra-class/inter-

class data objects as training samples to learn a similarity metric,

whereas our deviation loss is built upon the deviation function and

dedicated to the direct learning of anomaly scores.

One problem for using Eqn. (7) is that we do not have the la-

beled normal objects. We address this problem by simply treating

the unlabeled training data objects in U as normal objects. Our

empirical results showed that DevNet and also its competing deep

methods performed very well by using this simple strategy, even

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

356

when there was a large anomaly contamination level (i.e., the pro-
portion of anomalies in the unlabeled training data set U). This

may be because anomalies are rare data objects and their impacts

become very limited on the stochastic gradient descent-based opti-

mization in these deep detectors. Therefore, this training strategy

is used by DevNet and its competing deep methods throughout our

experiments. This can be seen as training the model with noisy

data sets. We will evaluate the impact of different noise levels on

the detection performance in Sections 5.7.

4.4 The DevNet Algorithm
Algorithm 1 presents the procedure of DevNet. After a random

weight initialization in Step 1, DevNet performs stochastic gradient

descent-based optimization to learn the weights in Θ in Steps 2-10.

Particularly, Step 4 first samples a mini-batch B of size b using

stratified random sampling, followed by sampling the anomaly

scores of l normal objects from the prior N(µ,σ 2) in Step 5. After

obtaining µR and σR in Step 6, Step 7 performs the forward propa-

gation of the anomaly scoring network and computes the loss. Step

8 then performs gradient descent steps w.r.t. the parameters in Θ.
We finally obtain the optimized scoring network ϕ.

Algorithm 1 Training DevNet

Input: X ∈ RD - training data objects, i.e., X = U ∪ K and ∅ = U ∩ K

Output: ϕ : X 7→ R - an anomaly scoring network

1: Randomly initialize Θ
2: for i = 1 to n_epochs do
3: for j = 1 to n_batches do
4: B ← Randomly sample b data objects with a half of objects from

K and another half from U

5: Randomly sample l anomaly scores from N(µ, σ 2)

6: Compute µR and σR of the l anomaly scores: {r1, r2, · · · , rl }
7: loss← 1

b
∑

x∈B L
(
ϕ(x;Θ), µR, σR

)
8: Perform a gradient descent step w.r.t. the parameters in Θ
9: end for
10: end for
11: return ϕ

The core computation of training DevNet is the forward and

backward propagation of the anomaly scoring network ϕ, so the

time complexity of DevNet depends on the network architecture

used. For example, for multilayer perceptron networks, both the

forward and backward propagation have the same complexity of

O(Dh1+h1h2+ · · ·+hH ∗1), where hi is the number of neural units

in the i-th hidden layer, so DevNet has an overall time complexity

of O
(
n_epochs ∗ n_batches ∗ b ∗ (Dh1 + h1h2 + · · · + hH)

)
for its

training andO
(
I (Dh1 + h1h2 + · · · + hH)

)
for its testing, where I is

the data size of the test set.

4.5 Interpretability of Anomaly Scores
At the testing stage, like other anomaly detection methods, DevNet

uses the optimized ϕ to produce an anomaly score for every test

object and returns an anomaly ranking of the data objects based on

the anomaly scores, in which the top-ranked objects are anomalies.

However, the anomaly scores returned by most anomaly detectors

are often not easily interpretable [10]. As a result, given a data

object’s anomaly score, it is not clear what is the probability of

this object being an anomaly, and it is also difficult to determine

a specific threshold to select the appropriate top-ranked objects.

Therefore, if users need more than an anomaly ranking in practice,

some types of separate anomaly score unification methods [10]

are required for those methods to transform their scores into more

interpretable ones. However, the anomaly scoring and the score

unification are two independent modules in such cases, which

may lead to untrustworthy explanation of the scores. By contrast,

DevNet directly yields highly interpretable anomaly scores.

Proposition 4.1. Let x ∈ X and zp be the quantile function of
N(µ,σ 2), thenϕ(x) lies outside the interval µ±zpσ with a probability
2(1 − p).

This proposition of DevNet is due to the Gaussian prior and Z-

Score-based deviation loss. The probability 2(1−p) offers a straight-
forward explanation to the anomalousness of any given score ϕ(x).
Particularly, we have the probability (1 − p) when only focusing

on the upper tail µ + zpσ , e.g., by applying p = 0.95, we have

z0.95 = 1.96, which states that having anomaly scores over 1.96

(as µ = 0 and σ = 1 are used in DevNet) indicates the object only

has a probability of 0.05 generated from the same mechanism as

the normal data objects. Users can also easily choose a threshold

to determine anomalies with a desired confidence level, e.g., given

the anomaly score distribution shown in Figure 1(b), it is easy to

use z0.95 to identify the anomalies with a 95% confidence level.

5 EXPERIMENTS
5.1 Data Sets
As shown in Table 1, nine publicly available real-world data sets

are used, which are from diverse critical domains, e.g., intrusion

detection, fraud detection, malicious URL detection, and disease

detection. Five data sets contain real anomalies, i.e., exceptionally

exciting projects in donors, fraudulent credit card transactions in
fraud, backdoor network attacks in backdoor, malicious URLs inURL,
and hypothyroid patients in thyroid. The other four data sets contain
semantically real anomalies, i.e., they are rare or very different from

the majority of data objects. The detailed information of accessing

and preprocessing the data sets can be found in Appendix A.1.

5.2 Competing Methods
DevNet is compared with four methods, including REPEN [19],

adaptive Deep SVDD (DSVDD) [20], prototypical networks (de-

noted as FSNet) [25], and iForest [14]. These four methods are

chosen because they are the state-of-the-art in the relevant areas,

i.e., REPEN in deep anomaly detection with limited labeled data,

DSVDD in feature learning for anomaly detection, FSNet in few-

shot classification, and iForest in unsupervised anomaly detection.

The original DSVDD is designed to minimize the distance be-

tween a fixed one-class center vector c and the training data in

the projected space, in which the labeled anomalies cannot be

used. To have a fair comparison to DevNet, we modified DSVDD

to fully leverage the labeled anomalies based on [27], by adding

an additional term into its objective function to guarantee a large

margin between normal objects and anomalies in the new space

while minimizing the c-based hypersphere’s volume. This adaption

significantly enhances the original DSVDD.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

357

Table 1: AUC-ROC and AUC-PR Performance (with ± standard deviation) of DevNet and Four Competing Methods. #obj. is the overall data
size, D is the dimensionality size, f1 and f2 denote the percentage that the labeled anomalies respectively comprise in the training data and the
total anomalies. D inURL and news20, i.e., ‘3M’ and ‘1M’, are short for 3,231,961 and 1,355,191, respectively. The best performance is boldfaced.

Data Characteristic AUC-ROC Performance AUC-PR Performance
Data #obj. D f1 f2 DevNet REPEN DSVDD FSNet iForest DevNet REPEN DSVDD FSNet iForest
donors 619,326 10 0.01% 0.08% 1.000±0.000 0.975±0.005 0.995±0.005 0.997±0.002 0.874±0.015 1.000±0.000 0.508±0.048 0.846±0.114 0.994±0.002 0.221±0.025

census 299,285 500 0.01% 0.16% 0.828±0.008 0.794±0.005 0.835±0.014 0.732±0.020 0.624±0.020 0.321±0.004 0.164±0.003 0.291±0.008 0.193±0.019 0.076±0.004

fraud 284,807 29 0.01% 6.10% 0.980±0.001 0.972±0.003 0.977±0.001 0.734±0.046 0.953±0.002 0.690±0.002 0.674±0.004 0.688±0.004 0.043±0.021 0.254±0.043

celeba 202,599 39 0.02% 0.66% 0.951±0.001 0.894±0.005 0.944±0.003 0.808±0.027 0.698±0.020 0.279±0.009 0.161±0.006 0.261±0.008 0.085±0.012 0.065±0.006

backdoor 95,329 196 0.04% 1.29% 0.969±0.004 0.878±0.007 0.952±0.018 0.928±0.019 0.752±0.021 0.883±0.008 0.116±0.003 0.856±0.016 0.573±0.167 0.051±0.005

URL 89,063 3M 0.04% 1.69% 0.977±0.004 0.842±0.006 0.908±0.027 0.786±0.047 0.720±0.032 0.681±0.022 0.103±0.003 0.475±0.040 0.149±0.076 0.066±0.012

campaign 41,188 62 0.10% 0.65% 0.807±0.006 0.723±0.006 0.748±0.019 0.623±0.024 0.731±0.015 0.381±0.008 0.330±0.009 0.349±0.023 0.193±0.012 0.328±0.022

news20 10,523 1M 0.37% 5.70% 0.950±0.007 0.885±0.003 0.887±0.000 0.578±0.050 0.328±0.016 0.653±0.009 0.222±0.004 0.253±0.001 0.082±0.010 0.035±0.002

thyroid 7,200 21 0.55% 5.62% 0.783±0.003 0.580±0.016 0.749±0.011 0.564±0.017 0.688±0.020 0.274±0.011 0.093±0.005 0.241±0.009 0.116±0.014 0.166±0.017

Average 0.916±0.004 0.838±0.006 0.888±0.011 0.750±0.028 0.708±0.018 0.574±0.008 0.263±0.010 0.473±0.025 0.270±0.037 0.140±0.015

P-value - 0.004 0.023 0.004 0.004 - 0.004 0.004 0.004 0.004

All methods are implemented in Python: DevNet, DSVDD and

FSNet are implemented using Keras [3], REPEN is taken from its

authors and is also built upon Keras, and iForest is taken from the

scikit-learn package.

5.3 Parameter Settings
Since our experiments focus on unordered multidimensional data,

multilayer perceptron (MLP) network architectures are used. Specif-

ically, we tested two architectures for all neural methods. Motivated

by the success of REPEN [19], our first network uses the same archi-

tecture as REPEN, i.e., one hidden layer with 20 neural units. The

second architecture consists of three hidden layers to learn more

intricate data interactions, with 1,000 units in the first hidden layer,

followed by 250 and 20 units in the second and third hidden layers,

respectively. The ReLu function д(z) = max(0, z) is used because of
its efficient computation and gradient propagation, and an ℓ2-norm

regularizer is applied to every hidden layer to avoid overfitting.

All DevNet, REPEN, DSVDD and FSNet were tested using these

two architectures on all the data sets, and we found all of them

performed best with the one hidden layer structure. This may be due

to the limit of the available labeled data. Due to the page limitation,

we report the results based on the architecture with one hidden

layer by default. We show the results of DevNet using the three

hidden layers in our ablation study in Section 5.8.

In training, DevNet, DSVDD and FSNet use the RootMean Square

propagation (RMSprop) optimizer [8] to perform gradient descents,

and they are trained using 50 epochs, with 20 min-batches in each

epoch. These settings enable the three deep detectors to achieve

stable performance across the data sets. iForest is a non-neural

ensemble method. It is used with the recommended settings, i.e.,

subsampling size set to 256 and ensemble size set to 100 [14]. iFor-

est cannot work in data with millions of features, so we use the

sparse random projection [12] to map URL and news20 into a 1,000-

dimensional space before applying iForest, which obtains better

performance than other projection options.

5.4 Performance Evaluation Methods
We use two popular and complementary performance metrics, the

Area Under Receiver Operating Characteristic Curve (AUC-ROC)

and the Area Under Precision-Recall Curve (AUC-PR), to have a

comprehensive evaluation of anomaly detectors. AUC-ROC summa-

rizes the ROC curve of true positives against false positives, while

AUC-PR is a summarization of the curve of precision against recall.

Specifically, an AUC-ROC value of one indicates the best perfor-

mance, while a value close to 0.5 indicates a random ranking of the

objects. AUC-ROC is widely used due to its good interpretability.

However, AUC-PR is more suitable than AUC-ROC in many

anomaly detection applications which require excellent perfor-

mance on the positive class and do not care much of the perfor-

mance on the negative class. This is because AUC-ROC is affected

by the performance on both anomaly and normal classes and the

performance on the normal class can bias AUC-ROC due to the class-

imbalance nature of anomaly detection data. By contrast, AUC-PR

evaluates how many positive predictions are correct (precision),

and how many of the positive predictions that are truly positive

compose the positive class (recall). We use a widely-used method,

known as average precision in [23], to calculate AUC-PR. Large

AUC-PR indicates better performance, but it is often very challeng-

ing to achieve large AUC-PR due to the skewed and heterogeneous

distributions of anomalies.

The reported AUC-ROC, AUC-PR, and runtimes are averaged

results over 10 independent runs. The paired Wilcoxon signed rank

test [28] is used to examine the significance of the performance of

DevNet against its competing methods. All runtimes are calculated

at a node in a 2.4GHz Phoenix cluster with 64GB dedicated memory

using 8 cores and 1 Tesla K80 GPU accelerator.

5.5 Effectiveness in Real-world Data Sets
5.5.1 Experiment Settings. This section examines the performance

of DevNet on common real-life application scenarios where there

are a large number of unlabeled data objects with a very small set

of labeled anomalies. To replicate such scenarios, the anomalies and

normal objects in each data set are first splitted into two subsets,

with 80% data as training data and the other 20% data as test set.

To have controlled experiments w.r.t. anomaly contamination, we

then randomly add/remove the anomalies in each training data set

such that the anomalies account for 2% of the training data, i.e.,

2% anomaly contamination (other contamination levels are further

examined in Section 5.7). The resulted data forms the unlabeled

training data set U. We further randomly sample 30 anomalies

from the anomaly class as the prior knowledge of the anomalies of

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

358

interest, i.e., the labeled anomaly set K , which accounts for only

0.005%-1% of all training data objects and 0.08%-6% of the anomaly

class (see f1 and f2 in Table 1 for detail). Since only the class label

ofK is used during training, the task is equivalent to unsupervised

anomaly detection with a few additional labeled anomalies available

as prior knowledge. We will investigate the detection performance

w.r.t. different amount of the prior knowledge in Section 5.6.

5.5.2 Findings - The direct optimization of anomaly scores enables
DevNet to achieve significant improvement over other deep methods.
The AUC-ROC and AUC-PR performance of DevNet and four com-

peting methods are shown in Table 1. DevNet performs best on

eight and nine data sets in the respective AUC-ROC and AUC-PR

performance, and it performs comparably well to the best performer

on census in AUC-ROC where it ranks in second. In terms of AUC-

ROC, DevNet obtains substantially better average improvement

than REPEN (9%), DSVDD (3%), FSNet (22%) and iForest (29%) and

the improvement is statistically significant at the 95% or 99% con-

fidence interval; in terms of AUC-PR, the improvement DevNet

achieves is much more substantial than REPEN (118%), DSVDD

(21%), FSNet (113%) and iForest (309%), which is all statistically

significant at the 99% confidence interval. These results are due

to the reason that DevNet efficiently leverages the limited avail-

able anomalies to well optimize the anomaly scores, resulting in

high-quality anomaly rankings, i.e., substantially high precision

and recall of detecting anomalies; while the competing methods

have an indirect learning of anomaly scores, resulting in weak ca-

pability of discriminating some intricate anomalies from normal

objects and thus high false positives and low recall rates.

5.6 Data Efficiency
5.6.1 Experiment Settings. This section examines the data effi-

ciency of the deep methods, which is a critical factor as it is very

difficult to obtain labeled anomalies in most anomaly detection ap-

plications. The number of available labeled anomalies varies from 5

to 120, with the anomaly contamination level fixed to be 2%. iForest

is used as the baseline, which is an unsupervised method and thus

insensitive to the amount of the labeled data. We aim to answer the

following two key questions:

• How data-efficient are the DevNet and other deep methods?

• How much improvement can the deep methods gain from

the labeled anomalies compared to the unsupervised iForest?

5.6.2 Findings - DevNet is the most data-efficient method; and the
improvement due to the limited labeled anomalies is very substan-
tial. Figure 3 shows the AUC-PR results w.r.t. different number of

labeled anomalies available. Similar results can also be observed in

AUC-ROC. The performance of these four deep methods generally

increases with increasing number of labeled anomalies, since more

labeled data generally helps train the model better. However, the

AUC-PR of some competing deep detectors drops with more la-

beled data in some cases, e.g., FSNet in census and backdoor, REPEN
in celeba and news20, DSVDD in backdoor and thyroid. This may

be due to the scattered and dissimilar distributions of anomalies,

because when the added labeled anomalies have very different

anomalous behaviors and carry information conflicting to the other

labeled anomalies for the optimization, they may then downgrade

the detection performance. Compared to the counterparts, DevNet

is more stable in such cases.

Figure 3: AUC-PR w.r.t. No. Labeled Anomalies. The results on URL
are omitted due to prohibitively expensive computation.

DevNet is the most data-efficient method, which obtains the best

average performance w.r.t. different number of labeled anomalies

and achieves the fastest increase rate of AUC-PR against the number

of labeled anomalies. Impressively, DevNet needs 75%-88% less

labeled data to achieve comparably better performance to the best

competing method in several cases, e.g., DevNet requires 83% less

labeled data to achieve comparably good performance to the best

contender FSNet on donors, and outperforms the best contender

DSVDD on news20 and thyroid using respective 88% and 75% less

labeled data. The DevNet’s superiority is due to its end-to-end

differentiable learning of the anomaly scores, because it allows

DevNet to directly optimize the anomaly scores with the limited

labeled data, which can leverage the data much more efficiently

than the counterpart two-step approach.

Compared to the unsupervised method iForest, even when only a

very few labeled anomalies (e.g., 5 or 15) are used, the improvement

of the prior knowledge-driven deepmethods, especially DevNet and

DSVDD, is very substantial on most data sets, such as donors, census,
fraud, celeba, backdoor, news20 and thyroid; for example, the average

improvement of DevNet and DSVDD using 5 labels over iForest

is more than 400%. In the case of campaign that may have very

intricate distributions of anomalies, the deep methods need slightly

more labeled data to achieve the similarly large improvement.

5.7 Robustness w.r.t. Anomaly Contamination
5.7.1 Experiment Settings. Recall that we use a simple training

strategy to train DevNet and the other deep methods, i.e., all unla-

beled training data objects inU are used as normal data objects and

we sample negative data objects from this set of objects to comprise

a half of data objects in each mini-batch (see Step 4 in Algorithm 1).

This section investigates the robustness of DevNet w.r.t. different

anomaly contamination levels in the unlabeled training data. We

vary the contamination level from 0% up to 20%, with the number

of available labeled anomalies fixed to be 30. We aim to examine

the following two key questions:

• How robust are the deep anomaly detectors?

• Can the deep methods still substantially beat the unsuper-

vised method iForest when the contamination level is high?

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

359

5.7.2 Findings - DevNet is consistently more robust than the other
deep methods; and the substantially better improvement of DevNet
over iForest persists even when a very large anomaly contamination is
presented in the unlabeled training data. The AUC-PR results w.r.t.

different anomaly contamination levels are presented in Figure

4. Similar results can also be observed in AUC-ROC. The perfor-

mance of all deep anomaly detectors decreases with increasing

contamination levels. This is because the probability of falsely sam-

pling anomalies from the unlabeled data as normal objects gets

larger in the mini-batch construction, which can mislead the sto-

chastic gradient descent-based optimization and downgrade the

detection accuracy. Nevertheless, it is clear that DevNet performs

consistently better and achieves remarkably better average AUC-PR

performance than REPEN (200%), DSVDD (28%) and FSNet (336%)

over the different contamination levels. This demonstrates a strong

capability of DevNet in tapping the limited prior knowledge to well

optimize the anomaly scores in challenging noisy environments.

Figure 4: AUC-PR w.r.t. Different Contamination Rates. The results
on URL are omitted due to prohibitively expensive computation.

Compared to iForest, the four deep methods obtain substantially

better average AUC-PR improvement across the eight data sets, e.g.,

DevNet and DSVDD have respectively more than 800% and 600%

average improvement. This is because although the large anomaly

contamination in the unlabeled data presents many noises to the

deep model training, the small set of labeled anomalies empowers

the deep methods and help them to largely defy the noises. By

contrast, the unsupervised method iForest does not have any prior

knowledge of anomalies and thus returns many noisy or uninter-

esting objects as anomalies, leading to very large false positives;

also, its performance still decreases with increasing anomaly con-

tamination rate, because the unsupervised methods like iForest

typically assume that anomalies are rare in the unlabeled data and

thus they perform less effectively when the increasing anomaly

contamination violates the assumption.

5.8 Ablation Study
5.8.1 Experiment Settings. We examine the importance of the key

components of DevNet by comparing DevNet to its three variants.

Recall that the default DevNet (denoted as Def) has one hidden

layer with 20 ReLu units and a linear unit in the output layer.

• The first variant is DevNet-Rep, which removes the output

layer of Def and uses our deviation loss to learn the represen-

tations only. In this case, the reference in the loss function

is a 20-dimensional vector rather than a scalar.

• The second variant is DevNet-Linear, which removes the

non-linear learning hidden layer of Def, making it equivalent

to learning a direct linear mapping from the original data

space to the anomaly score space.

• The third variant is DevNet-3HL, in which three hidden

layers with respective 1000, 250 and 20 ReLu units are used.

5.8.2 Findings - The end-to-end learning of anomaly scores, devi-
ation loss, and learning of non-linear features all have some major
contributions to the superior performance of DevNet. Table 2 shows
the performance of DevNet and its three variants. The end-to-end

learning of anomaly scores enables Def to obtain more accurate

and stable performance than Rep that focuses on feature learning.

Def performs less effectively than Rep in census. This may be due to

that some normal objects and anomalies in census are quite similar,

which can mislead the score learning in Def more severely than the

representation learning in Rep.

Table 2: AUC-ROC and AUC-PR Results of DevNet and Its Variants.

AUC-ROC Performance AUC-PR Performance
Data Def Rep Linear 3HL Def Rep Linear 3HL

donors 1.000 0.999 0.978 1.000 1.000 0.976 0.827 1.000
census 0.828 0.858 0.832 0.686 0.321 0.338 0.297 0.241

fraud 0.980 0.975 0.937 0.926 0.690 0.684 0.659 0.701
celeba 0.951 0.949 0.949 0.877 0.279 0.283 0.281 0.239

backdoor 0.969 0.913 0.928 0.968 0.883 0.846 0.555 0.843

URL 0.977 0.954 0.872 0.941 0.681 0.687 0.347 0.595

campaign 0.807 0.759 0.757 0.679 0.381 0.371 0.357 0.259

news20 0.950 0.953 0.819 0.817 0.653 0.552 0.447 0.421

thyroid 0.783 0.729 0.717 0.787 0.274 0.216 0.205 0.383
Average 0.916 0.899 0.865 0.853 0.574 0.550 0.442 0.520

P-value - 0.129 0.012 0.023 - 0.106 0.008 0.133

Note that Rep and DSVDD actually share a similar objective, but

Rep uses the deviation loss while DSVDD uses the SVDD-based

loss. Compared to DSVDD in Table 1, Rep performs slightly better

in AUC-ROC (1% improvement) and substantially better in AUC-PR

(16% improvement). This indicates that our deviation loss offers a

much better capability in capturing different anomalous behaviors.

Compared to Linear, Def obtains significantly better average

AUC-ROC (6%) and AUC-PR (30%) improvement, indicating a sig-

nificant role of the intermediate non-linear feature learning before

the learning of the anomaly scores. However, as illustrated by the

substantial average improvement of Def over 3HL, deepening the

hidden layers from one layer to three layers is not always beneficial,

because we have only a few labeled anomalies, which are often not

sufficient to well train a deeper model.

5.9 Scalability Test
5.9.1 Experiment Settings. We examine the scalability w.r.t. data

size by generating four synthetic 1,000-dimensional data sets with

varying data sizes. Similarly, the scaleup test w.r.t. dimension uses

a fixed data size (i.e., 5,000) and varying dimensions. Each detector

is trained and tested in a data set of the same size. The runtime

below includes both training and testing execution time.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

360

5.9.2 Findings - DevNet has a linear time complexity w.r.t. both data
size and dimension. The scaleup test results are presented in Figure

5. These results show that the overall runtime of DevNet increases

linearly w.r.t. both data size and dimension, which justifies the com-

plexity analysis w.r.t. multilayer perceptron networks in Section 4.4.

Particularly, although REPEN, FSNet and iForest also have linear

time complexity, DevNet runs considerably faster than them by a

factor of 10 to 20 on the large data sets. This is because the loss func-

tion in DevNet is very computationally efficient, whereas REPEN

and FSNet involves extensive distance computation in both training

and testing, and iForest needs much time on constructing isolation

trees. On the high-dimensional data, DevNet runs comparably fast

to REPEN and DSVDD but slightly slower than FSNet. This may

be due to the fact that the computation in the bottom layers that

project original very high-dimensional data into low-dimensional

space dominates the overall runtime, as it is much more costly than

the top layer that calculates the loss. As a result, FSNet, which uses

a much smaller mini-batch size, requires less time to process each

batch data and obtains a better computation efficiency than other

methods like DevNet and DSVDD. iForest requires considerable

time to perform random data space partition when the dimension

is large, leading to the most costly method here.

Figure 5: Scalability Test w.r.t. Data Size and Dimensionality.

6 CONCLUSIONS
This paper introduces a novel framework and its instantiation De-

vNet for leveraging a few labeled anomalies with a prior to fulfill

an end-to-end differentiable learning of anomaly scores. By a di-

rect optimization of anomaly scores, DevNet can be trained much

more data-efficiently, and performs significantly better in terms

of both AUC-ROC and AUC-PR, compared to the two-step deep

anomaly detectors that focus on optimizing feature representations.

We also find empirically that deep anomaly detectors can be well

trained by randomly sampling negative examples from the anomaly-

contaminated unlabeled data and positive examples from the small

labeled anomaly set. Even when the anomaly contamination level

is high, the deep detectors, especially DevNet, can still perform

very well and achieve significant improvement over the state-of-

the-art unsupervised anomaly detectors. This may provide a new

perspective for optimizing anomaly detection methods.

We are testing DevNet on image and sequence data using con-

volutional/recurrent network architectures, and plan to extend De-

vNet by a hybrid of data-driven and prior-driven reference score

generation approach for extremely challenging real-world applica-

tions where only one or two labeled anomalies are available.

ACKNOWLEDGEMENTS
This work is partially supported by the ARC Discovery Project

DP180103023.

REFERENCES
[1] Charu C Aggarwal. 2017. Supervised outlier detection. In Outlier Analysis.

Springer, 219–248.

[2] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. 2017. Outlier

detection with autoencoder ensembles. In SDM. SIAM, 90–98.

[3] François Chollet et al. 2015. Keras. https://keras.io.

[4] Charles Elkan and Keith Noto. 2008. Learning classifiers from only positive and

unlabeled data. In KDD. ACM, 213–220.

[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2006. One-shot learning of object

categories. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 4
(2006), 594–611.

[6] R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning

an Invariant Mapping. In CVPR, Vol. 2. 1735–1742.
[7] SimonHawkins, HongxingHe, GrahamWilliams, and Rohan Baxter. 2002. Outlier

detection using replicator neural networks. In DaWaK. Springer, 170–180.
[8] Geoffrey Hinton. 2012. Overview of mini-batch gradient descent. (2012). https:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[9] Fabian Keller, Emmanuel Muller, and Klemens Bohm. 2012. HiCS: High contrast

subspaces for density-based outlier ranking. In ICDE. IEEE, 1037–1048.
[10] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. 2011. Inter-

preting and unifying outlier scores. In SDM. SIAM, 13–24.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

[12] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random

projections. In KDD. ACM, 287–296.

[13] Xiaoli Li and Bing Liu. 2003. Learning to classify texts using positive and unlabeled

data. In IJCAI, Vol. 3. 587–592.
[14] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly

detection. ACM Transactions on Knowledge Discovery from Data 6, 1 (2012), 3.
[15] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2009. Identi-

fying suspicious URLs: An application of large-scale online learning. In ICML.
ACM, 681–688.

[16] Mary McGlohon, Stephen Bay, Markus G Anderle, David M Steier, and Christos

Faloutsos. 2009. SNARE: A link analytic system for graph labeling and risk

detection. In KDD. ACM, 1265–1274.

[17] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set). InMilitary
Communications and Information Systems Conference, 2015. 1–6.

[18] Guansong Pang, Longbing Cao, Ling Chen, Defu Lian, and Huan Liu. 2018. Sparse

modeling-based sequential ensemble learning for effective outlier detection in

high-dimensional numeric data. In AAAI. AAAI press, 3892–3899.
[19] Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. 2018. Learning Repre-

sentations of Ultrahigh-dimensional Data for Random Distance-based Outlier

Detection. In KDD. 2041–2050.
[20] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert Van-

dermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep

one-class classification. In ICML. 4390–4399.
[21] Emanuele Sansone, Francesco GB De Natale, and Zhi-Hua Zhou. 2018. Efficient

training for positive unlabeled learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2018).

[22] Thomas Schlegl, Philipp Seeböck, SebastianMWaldstein, Ursula Schmidt-Erfurth,

and Georg Langs. 2017. Unsupervised anomaly detection with generative adver-

sarial networks to guide marker discovery. In IPMI. Springer, Cham, 146–157.

[23] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[24] Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, Ryan Wright, Alec The-

riault, and David W. Archer. 2018. Feedback-Guided Anomaly Discovery via

Online Optimization. In KDD. ACM, 2200–2209.

[25] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NeurIPS. 4077–4087.
[26] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association:

Large scale malware detection bymining file-relation graphs. InKDD. 1524–1533.
[27] David MJ Tax and Robert PW Duin. 2004. Support vector data description.

Machine Learning 54, 1 (2004), 45–66.

[28] RF Woolson. 2007. Wilcoxon signed-rank test. Wiley Encyclopedia of Clinical
Trials (2007), 1–3.

[29] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay

Chandrasekhar. 2018. Adversarially Learned Anomaly Detection. In ICDM. IEEE,

727–736.

[30] Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep

autoencoders. In KDD. ACM, 665–674.

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

361

https://keras.io
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

A SUPPLEMENTARY MATERIAL FOR
REPRODUCIBILITY

A.1 Data Accessing and Preprocessing
The donors data is taken from KDD Cup 2014 for predicting ex-

citement of projects proposed by K-12 school teachers, in which

exceptionally exciting projects are used as anomalies (5.92% data).

The census data is extracted from the US census bureau database,

in which we aim to detect the rare high-income person (i.e., the

person who earns over 50K dollars a year), which is about 6% of

the data. The fraud data is for fraudulent credit card transaction

detection, in which the fraudulent transactions are used as anom-

alies. The celeba data is a large-scale image data set which contains

more than 200K celebrity images, each with 40 attribute annota-

tions. We use the bald attribute as our detection target, in which

the scarce bald celebrities, less than 3% celebrities, are treated as

anomalies, and the other 39 attributes form the learning feature

space. The backdoor data is a backdoor attack detection data set

with the attacks as anomalies against the ‘normal’ class, which is

extracted from the UNSW-NB 15 data set [17]. The URL data is

for malicious URL detection, which consists of 120-day collection

of malicious and benign URLs [15]. Following [19], the first-week

subset of this collection is used and the malicious URLs are used

as anomalies. The campaign data is a data set of direct bank mar-

keting campaigns via phone calls, in which the rarely successful

campaigning records, accounting for about 10% records, are used

as anomalies. The news20 data is a balanced text classification data

set. Following the literature [9, 19], news20 is converted to anom-

aly detection data with 5% anomalies by downsampling the small

class. The thyroid data is a disease detection data set, in which the

anomalies are the patients diagnosed with hypothyroid. All these

data sets can be publicly accessed via the links provided in Table 3.

Table 3: Links for Accessing the Data Sets

Data Link
donors https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-

at-donors-choose

census https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

fraud https://www.kaggle.com/mlg-ulb/creditcardfraud

celeba http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

backdoor https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-Datasets/

URL http://www.sysnet.ucsd.edu/projects/url/

campaign https://archive.ics.uci.edu/ml/datasets/bank+marketing

news20 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary/

thyroid http://archive.ics.uci.edu/ml/datasets/thyroid+disease

For these data sets, missing values are replaced with the mean

value in the corresponding feature, and categorical features are

encoded by one-hot encoding.

A.2 Algorithm Implementation
This section provides the detailed information of our implementa-

tion of algorithms. Relevant key information is also presented in

Section 5.3.

A.2.1 Implementation of Competing Methods. We use the imple-

mentation of iForest available at the scikit-learn Python package.

REPEN is directly taken from the authors. Its codes are publicly

accessible at https://sites.google.com/site/gspangsite/sourcecode.

We implement and further enhance DSVDD by adding an additional

margin term into the one-class SVDD objective to enforce a margin

between the center c and the labeled anomalies in the new repre-

sentation space. Similar to DevNet, the contrastive loss [6] is used

in DSVDD to fulfill this margin-based optimization. The anomaly

score is defined as the distance to the one-class center c, which is

exactly the same as in its original paper. Due to the incorporating

of the few labeled anomalies, the modified DSVDD substantially

improves the original DSVDD by more than 30% detection accuracy.

For FSNet, since we do not have the finer-grained class information

in the training data, we cannot construct the training episodes in

the same way as in [25]. Instead we randomly sample the same

number of data objects from the unlabeled training data and from

the limited labeled anomalies to form the desired episodes for train-

ing FSNet. The anomaly score is then calculated as a softmax over

distances to the respective normal and anomaly prototypes.

A.2.2 Optimization Settings. In optimizing the deep anomaly de-

tection methods, the default settings of the layers or optimizer in

Keras are used, and they are as described in Section 5.3 otherwise.

Particularly, for the hidden layer, we use the dense layer with an

uniform Glorot weight initialization and an ℓ2-norm weight decay

regularizer (as recommended in Keras, the hyperparameter setting

λ = 0.01 is used in the regularizer). No constraints are applied to

the kernels or biases. The activation function is the default ReLu

function. The Root Mean Square propagation (RMSprop) optimizer

is used with the recommended settings in Keras, i.e., lr = 0.001,

ρ = 0.9, ϵ = None, and decay = 0.0. The mini-batch size is probed

using a set of commonly used options, {8, 16, 32, 64, 128, 256, 512}.

The best fits, 512 in DevNet and DSVDD, and 256 in FSNet, are

used by default. Since REPEN was designed for a similar problem

scenario as DevNet, it is used with the recommended optimization

settings as in [19].

A.2.3 Packages Used in Our Implementation. The relevant pack-
ages and their versions used in our algorithm implementation are

listed as follows:

• python==3.6.6

• keras==2.2.4

• keras-applications==1.0.6

• keras-preprocessing==1.0.5

• tensorflow-gpu==1.10.0

• scikit-learn==0.20.0

• numpy==1.14.5

• pandas==0.23.4

• scipy==1.1.0

• tensorboard==1.10.0

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

362

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Anomaly Detection
	2.2 Deep Anomaly Detection
	2.3 Anomaly Detection with Limited Data

	3 End-to-end Anomaly Score Learning
	3.1 Problem Statement
	3.2 The Proposed Framework

	4 Deviation Networks
	4.1 End-to-end Anomaly Scoring Network
	4.2 Gaussian Prior-based Reference Scores
	4.3 Z-Score-based Deviation Loss
	4.4 The DevNet Algorithm
	4.5 Interpretability of Anomaly Scores

	5 Experiments
	5.1 Data Sets
	5.2 Competing Methods
	5.3 Parameter Settings
	5.4 Performance Evaluation Methods
	5.5 Effectiveness in Real-world Data Sets
	5.6 Data Efficiency
	5.7 Robustness w.r.t. Anomaly Contamination
	5.8 Ablation Study
	5.9 Scalability Test

	6 Conclusions
	References
	A supplementary Material for Reproducibility
	A.1 Data Accessing and Preprocessing
	A.2 Algorithm Implementation

