
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TABFLEX: SCALING TABULAR LEARNING TO MIL-
LIONS WITH LINEAR ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in the field of in-context learning (ICL) have demonstrated im-
pressive performance for tabular classification, exemplified by TABPFN’s success
on small datasets. However, the quadratic complexity of the attention mechanism
limits its applicability to larger datasets. To address this issue, we conduct a com-
prehensive comparison of popular scalable attention alternatives, including state-
space models (SSMs) and linear attention mechanisms, revealing that the inherent
causality of SSMs hinders ICL performance for large datasets, while linear atten-
tion preserves effectiveness. Leveraging these insights, we introduce TABFLEX,
a model based on linear attention that supports thousands of features and hun-
dreds of classes, capable of handling datasets with millions of samples. Extensive
experiments demonstrate that TABFLEX is significantly faster than most existing
methods while achieving top-two performance on small datasets among 25 base-
lines, with a 2× speedup over TABPFN and a 1.5× speedup over XGBoost. On
large datasets, TABFLEX remains efficient (e.g., approximately 5 seconds on the
poker-hand dataset, which consists of millions of samples), while achieving
relatively solid performance.

1 INTRODUCTION

In recent years, Large language Models (LLMs) have achieved breakthroughs not only in language
tasks (Achiam et al., 2023; Brown et al., 2020; Bai et al., 2023a; Dubey et al., 2024; Gemini Team
et al., 2023) but also in handling diverse data modalities, including vision (Bai et al., 2023b; Gem-
ini Team et al., 2023) and audio (Chu et al., 2023; 2024; Gemini Team et al., 2023). Their success
stems from the underlying transformer architecture, which uses attention mechanisms (Vaswani
et al., 2017) to capture complex patterns in data. Consequently, researchers have begun exploring
the potential of transformers in traditional machine learning tasks, particularly tabular classification.
Tabular data represents one of the most fundamental and critical types of information encountered
in real-world applications, spanning domains such as recommendation systems (Zhang et al., 2019),
finance (Arun et al., 2016), and medicine (Johnson et al., 2016).

Numerous efforts have been made to adapt Transformers for tabular classification tasks (Arik &
Pfister, 2021; Hollmann et al., 2023; Huang et al., 2020; Dinh et al., 2022; Gorishniy et al., 2021).
For instance, FT-Transformer (Gorishniy et al., 2021) introduces a feature tokenizer to convert each
example into a sequence of embeddings, then utilizes a Transformer to process these and make pre-
dictions via a special CLS token. TabTransformer (Huang et al., 2020) employs the Transformer
architecture to learn embeddings for categorical features, concatenating them with continuous fea-
tures for improved accuracy. LIFT (Dinh et al., 2022) converts tabular datasets into sentences that
include feature names and task descriptions, utilizing fine-tuned large language models for predic-
tions. Unfortunately, these aforementioned methods, along with non-Transformer neural network
approaches (e.g., Multilayer Perceptron (Rumelhart et al., 1986) and ResNet (He et al., 2016)), suf-
fer from a common inefficiency compared to gradient-boosted trees methods. Their large model
sizes result in longer training and inference times.

As a Transformer-based method, TABPFN (Hollmann et al., 2023) stands out for its superior perfor-
mance and efficiency on small datasets. It leverages a key capability of LLMs: in-context learning
(ICL) (Brown et al., 2020), which enables LLMs to learn from a few examples and make predic-
tions for new test instances without needing parameter updates. TABPFN employs a customized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ICL implementation that processes all training and testing samples in a single prompt, complet-
ing classification for all test samples in one forward pass. This approach enables rapid predictions
within seconds for simple, small tabular datasets, making it highly efficient and effective on such
tasks. However, TABPFN faces challenges with complex datasets that typically demand larger sam-
ple sizes for effective learning, primarily due to scalability limitations imposed by the quadratic
complexity of the attention mechanism. This constraint introduces difficulties in both scalable pre-
training and inference processes.

In this paper, we address the scalability limitations of TABPFN and enhance the competitiveness
of neural network-based methods for tabular classification. In doing so, we investigate scalable
alternatives to traditional attention mechanisms, focusing on state-space models (SSMs), includ-
ing the recently popular Mamba model (Gu & Dao, 2024), and linear attention (Katharopoulos
et al., 2020). Our analysis reveals that (Finding 1) the inherent causality of SSMs impedes ICL
performance compared to non-causal mechanisms. In contrast, (Finding 2) linear attention does
not suffer from this limitation, maintaining comparable performance while improving computational
efficiency. Based on these findings, we develop our model, TABFLEX, which leverages linear atten-
tion. It comprises three sub-models, each optimized for different scenarios, with the most suitable
one selected based on dataset characteristics (e.g., sample size). This model supports thousands of
features, hundreds of classes, and millions of samples. We conduct comprehensive experiments with
TABFLEX across a diverse range of datasets, including small, large, and high-dimensional datasets.
(Finding 3) TABFLEX demonstrates robust performance with impressive computational efficiency.
Notably, on the poker-hand dataset, which contains over one million samples, TABFLEX clas-
sifies all instances in less than 5 seconds while achieving competitive performance. Furthermore,
beyond traditional tabular datasets, TABFLEX can also label all samples of MNIST (LeCun et al.,
2010) and Fashion-MNIST (Xiao et al., 2017) in less than one second. This highlights TABFLEX
as a pioneering approach towards accelerating Transformer-based models for high-dimensional and
large-scale datasets, with promising potential for further advancements.

2 RELATED WORKS

Transformer-based Approaches for Tabular Classification. Recent years have witnessed nu-
merous attempts to employ Transformers for tabular classification (Arik & Pfister, 2021; Huang
et al., 2020; Gorishniy et al., 2021; Dinh et al., 2022; Hollmann et al., 2023). These methods uti-
lize Transformers in diverse ways to tackle tabular data. TabNet (Arik & Pfister, 2021), one of
the pioneering efforts, applies unsupervised pre-training on masked tabular datasets to infer miss-
ing features, thereby enhancing the model’s understanding of datasets and features. It then per-
forms supervised learning on feature selection to obtain the final decision boundary, akin to deci-
sion trees. Huang et al. (2020) introduced TabTransformer, which leverages Transformers to better
handle categorical features by concatenating their contextual embeddings with numerical features.
FT-Transformer (Gorishniy et al., 2021) introduces a feature tokenizer to convert each example into
a sequence of embeddings, enabling Transformers to process tabular datasets and make predictions.
LIFT (Dinh et al., 2022) utilizes a pre-trained language model with parameter-efficient fine-tuning,
incorporating task descriptions and converting each sample into a complete sentence with feature
names in the prediction prompt. TABPFN (Hollmann et al., 2023) is trained offline on synthetic
datasets derived from prior distributions and performs ICL rather than additional parameter tuning
for a given dataset, enabling it to solve small tabular classification tasks within seconds. Prior to
our work, TuneTable (Feuer et al., 2024) extended TABPFN to scale to large datasets by performing
prefix-tuning for each dataset to achieve better performance. Notably, while most of these methods
are computationally intensive due to the need for training large models, TABPFN achieves effi-
ciency through ICL. Our method builds upon TABPFN, extending its scalability to large datasets
while maintaining and even improving its efficiency.

Attention Mechanisms and Scalable Alternatives. While attention in Transformers (Vaswani
et al., 2017) is central to the strong performance of language models, it encounters scaling chal-
lenges for long sequences due to its quadratic computational and memory complexity. To overcome
these limitations, several scalable alternatives have been proposed (Gu & Dao, 2024; Dao & Gu,
2024; Katharopoulos et al., 2020; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023), all aiming
to achieve subquadratic time complexity. Classical RNNs offer one potential solution, providing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

efficient linear-time inference. However, they struggle with training efficiency and lack the paral-
lelization capabilities of Transformer architectures. Linear attention (Katharopoulos et al., 2020)
addresses both concerns by reformulating self-attention as a linear dot-product of kernel feature
maps, reducing the computational complexity from quadratic to linear time. Additionally, causal
linear attention can be interpreted as a form of RNN, as the model makes predictions based on a
current token and a “hidden state,” which summarizes information from the previous tokens. State-
space models (SSMs), another popular variant of RNNs, address the drawbacks of classical RNNs
by considering linear RNNs and proposing novel algorithms for efficient training (Gu et al., 2021;
2022; Gu & Dao, 2024; Dao & Gu, 2024; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023).

Dao et al. (2022) identified that another bottleneck in attention mechanisms’ speed stems from the
relatively slow access to high-bandwidth memory (HBM) in GPUs. To address this limitation,
FlashAttention (Dao et al., 2022; Dao, 2024; Shah et al., 2024) restructures attention computation
to optimize the utilization of high-speed on-chip SRAM while minimizing access to slower HBM,
thereby enhancing the efficiency of GPU-based attention operations. FlashAttention strategically
balances computational efficiency against memory bandwidth efficiency. Although the computa-
tional complexity in terms of sequence length remains quadratic, the optimizations introduced by
FlashAttention significantly accelerate attention computation in wall-clock time.

We provide extended related works in Sec. A, which offers an in-depth discussion of other base-
lines, encompassing classical machine learning methods, gradient-boosting decision trees, and non-
transformer neural network architectures tailored for tabular classification tasks.

3 BACKGROUND

This section elucidates the key concepts underpinning TABPFN and introduces two prominent scal-
able alternatives to standard attention mechanisms: SSMs and linear attention.

Input Feature
Projection ×12 Label Prediction

(x1, y1)

(x2, y2)

(xn, yn)

···

xtest,1

xtest,2

xtest,m

···

MLP

MLP

MLP

···

MLP

MLP

MLP

···

A
tte

nt
io

n

MLP

MLP

MLP

···

MLP

MLP

MLP

···

MLP

MLP

MLP

···

ŷtest,1

ŷtest,2

ŷtest,m

···

Figure 1: Illustration of TABPFN’s classifi-
cation approach for an entire dataset via one
single forward pass. In each layer, attention
outputs for training sample positions attend to all
other training samples, ensuring that predictions
are invariant to the order of training samples. Con-
versely, attention outputs for test sample positions
attend only to training samples, ensuring indepen-
dent predictions for each test instance, unaffected
by other test samples. The final classification for
each test sample is derived by applying an MLP
to the corresponding Transformer output at its re-
spective position.

Implementation of ICL in TabPFN (Holl-
mann et al., 2023). To elucidate the effi-
ciency of TABPFN and its ability to classify
all samples in a single forward pass, we first
describe its ICL implementation. Fig. 1 illus-
trates how TABPFN processes an entire dataset,
classifying all test samples simultaneously. The
key innovation lies in treating each sample as a
token. The input sequence begins with a con-
catenation of all training samples, where both
features and labels are projected into embed-
dings using MLPs. Following the training sam-
ples, all test samples (features only) are ap-
pended, with their features similarly embedded.
This concatenated sequence of embeddings is
then fed into multiple Transformer layers. Im-
portantly, the outputs corresponding to training
sample positions are computed by attending to
all other training samples, while the outputs for
test sample positions also attend to the train-
ing samples — enabling each test prediction to
leverage the full training set without being in-
fluenced by other test samples. Finally, predic-
tions of the test samples are generated by pro-
jecting the Transformer outputs at test positions
into probability distributions. This implementa-
tion is functionally equivalent to standard ICL
but significantly more efficient. Standard ICL would require m separate prompts (where m is the
number of test samples), each containing all training samples and one test sample, necessitating m
prediction passes. A notable feature of TABPFN’s architecture is its use of an encoder with non-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

causal attention. This allows outputs within training sample positions to interact freely, rendering
the order of training samples inconsequential.

State Space Models (SSMs). Recently, SSMs have emerged as highly promising alternatives to
the attention mechanism, exhibiting linear computational complexity and demonstrating excellent
performance in language modeling tasks. The SSM framework is based on a continuous system
that transforms a one-dimensional signal x(t) ∈ R into y(t) ∈ R through an intermediate H-
dimensional latent state h(t) ∈ RH , as shown in (1). Here, B ∈ RH×1 is the input transition
vector and A ∈ RH×H is the state transition matrix. The latent state h(t) is then projected into the
output y(t) using the output mapping vector C ∈ R1×H . For deep learning applications, discrete A
and B replace continuous A and B through discretization methods, such as zero-order hold. This
yields updated hidden state and output equations as shown in (2). While (2) is structured as linear
RNN, it can be reformulated as Convolutional Neural Network (CNN) as (3), enabling efficient
and parallelizable training. SSMs address the quadratic time complexity problem with respect to
sequence length, as the output for each new token depends solely on the hidden states and the current
token, in contrast to standard attention mechanisms that attend to all previous tokens. Consequently,
SSMs operate as a causal mechanism.

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

ht = Aht−1 +Bxt,

yt = Cht

(2)
K = (CB,CAB, . . . ,CA

t−1
B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K
(3)

Linear attention. Assume a sequence with length n ∈ N+ and embedding size d ∈ N+. We first
focus on non-causal cases. For the i-th position, let qi ∈ Rd, ki ∈ Rd, and vi ∈ Rd denote the
query, key, and value vectors, respectively, where i = 1, . . . , n. In softmax attention, the similarity
between qi and kj for any i ̸= j is computed as exp (q⊤

i kj). The attention output at the i-th
position, denoted as ai ∈ Rd, is obtained by averaging the values across all tokens weighted by
their similarities. This process requires O(n) complexity, as it necessitates computing similarities
with all n tokens. Linear attention reduces this complexity by replacing the similarity computation
from exp(q⊤

i kj) with ϕ(qi)
⊤ϕ(kj), where ϕ : Rd → Rd is a feature conversion function. For

linear attention outputs (4) across all positions, we identify two common terms:
∑n

j=1 ϕ (kj) · vj

and
∑n

j=1 ϕ (kj), which can be computed once. Consequently, for the linear output at position i, we
only need to compute ϕ(qi) and multiply it with these two statistics, resulting in O(1) complexity,
thus significantly reducing computational demands.

(Softma×) ai =
∑n

j=1 exp (q⊤
i kj)·vj∑n

j=1 exp (q⊤
i kj)

(Linear) ai =
∑n

j=1 ϕ(qi)
⊤ϕ(kj)·vj∑n

j=1 ϕ(qi)
⊤ϕ(kj)

=
ϕ(qi)

⊤ ∑n
j=1 ϕ(kj)·vj

ϕ(qi)
⊤ ∑n

j=1 ϕ(kj)

(4)

For causal cases, for position i, we simply replace the sum from j = 1 to n with j = 1 to i, as each
token attends only to previous tokens. The statistics then become

∑i−1
j=1 ϕ (kj)·vj and

∑i−1
j=1 ϕ (kj),

which can be viewed as hidden states in RNNs. Thus, causal linear attention can be conceptualized
as a linear RNN, which is also a variant of SSM.

4 ARCHITECTURAL EXPLORATION FOR SCALABLE TABULAR LEARNING

This section examines alternative model architectures to enhance the scalability of the standard
attention mechanism used in TABPFN. Among the various options, two primary contenders emerge:
(i) State-Space Models (SSMs) and (ii) linear attention. We note that linear attention with causal
masking can be viewed as a type of SSM. Our analysis focuses on determining which of these
approaches is most effective for tabular classification tasks within the framework of ICL.

4.1 CAUSAL MODEL VS. NON-CAUSAL MODEL

Ideally, the order of training samples (i.e., in-context demonstrations) provided in the prompt should
not influence the final prediction. However, SSMs are inherently causal, computing outputs based
on new inputs and hidden states derived from previous inputs. This characteristic suggests a po-
tential drawback for SSMs in this context. To validate our hypothesis regarding the suboptimal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 1000 2000 3000
Number of Training Samples

0.76
0.78
0.80
0.82

Ac
cu

ra
cy Non-causal Masked

Causal Masked

(a) Effect of causal masking on
performance. Non-causal model
shows better sample utilization and
accuracy as the number of samples
grows. In contrast, causal model’s
performance plateaus early and de-
clines as more samples are added.

0.00.51.0
Training Loss

0.0 0.5 1.0
Test Mean AUC

Tr
an

sf
or

m
er

M
am

ba

(b) ICL performance comparison
between Mamba and Transformer
models. Results show Transformer-
based models achieve lower train-
ing loss and higher AUC across 150
test datasets.

0.0 0.2 0.4 0.6
Runtime

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Softmax Attention Linear Attention

(c) Accuracy and runtime compar-
ison of softmax and linear atten-
tion. Replacing softmax with linear
attention preserves comparable ac-
curacy while significantly reducing
runtime.

Figure 2: Impact of model architecture on tabular classification performance.

performance of causal models in ICL, we conduct two experiments: (i) we compare the perfor-
mance of TABPFN with a modified version of the same model that uses causal attention, and (ii) we
evaluate TABPFN against both its original version and a model incorporating Mamba (specifically
Mamba-II), a leading SSM-based architecture.

Causal Attention vs. Non-Causal Attention. In our first experiment, we compare the ICL ca-
pabilities of non-causal and causal attention mechanisms using the same experimental setup as
TABPFN. We replicate TABPFN’s methodology for generating synthetic datasets from priors, train-
ing a modified version of TABPFN that employs causal attention instead. For the inference stage,
we generate 20 synthetic datasets. Each dataset maintains a consistent 1000 test samples while we
vary the number of training samples. We then calculate the classification accuracy for each dataset
and average the results across all 20 simulations. The results are visualized in Fig. 2a.

Our observations reveal that non-causal attention generally outperforms causal attention. As we
increase the number of training samples, the accuracy of the non-causal model continues to im-
prove. In contrast, the causal attention model shows accuracy improvements only within a very
small range of training samples, after which performance begins to decline with additional samples.
These findings indicate that TABPFN with non-causal attention functions as an effective ICL model,
adeptly leveraging context from a large number of samples. Conversely, the same model equipped
with causal attention fails to capitalize on the additional data, highlighting the superiority of the
non-causal approach in this tabular learning scenario.

Mamba vs. Transformer. In this experiment, we further investigate whether Mamba, the most
popular SSM-based model, is suitable for ICL. We replicate TABPFN’s training methodology pre-
cisely, substituting the transformer layer with a Mamba layer. To evaluate performance, we test the
modified model on the same 150 validation datasets used in the original TABPFN study (refer to
Section F.3 of their paper for details). Fig. 2b visualizes the training loss and test mean AUC for
both methods. We observe that the model with Mamba exhibits significantly higher training loss
compared to the original TABPFN, along with substantially lower test mean AUC. This experiment
with a popular SSM model further demonstrates that SSMs underperform non-causal models in our
specified tasks.

4.2 SOFTMAX ATTENTION VS. LINEAR ATTENTION

To address the quadratic complexity of standard attention mechanisms, linear attention has emerged
as a popular alternative (Katharopoulos et al., 2020). To investigate its impact on ICL in tabular
classification, we replaced TABPFN’s attention mechanism with linear attention and trained a model
following the same strategy as TABPFN. We then evaluated both TABPFN and this linear attention
model on 57 real datasets (used in Table 2 of McElfresh et al. (2023), where TABPFN achieved top
performance among 19 methods for tabular classification). Fig. 2c visualizes the test accuracy and
runtime. Our results demonstrate that linear attention does not decrease performance and signifi-
cantly improves speed, making it a suitable method for scaling TABPFN to larger datasets. To better
understand the strong performance of linear attention in in-context learning, we provide a detailed
discussion in Sec. A. Furthermore, in Sec. B, we investigate the use of sample selection to further
accelerate tabular classification. Finally, in Sec. C, we demonstrate that linear attention significantly
outperforms sliding window attention (Beltagy et al., 2020) in our setting.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Conditional Model Selection
Input: A dataset D with number of instances n and

number of features d
1 // Large dataset with few features;
2 if n ≥ 3K and d ≤ 100 then
3 return TABFLEX-L100(D);
4 // High-dimensional datasets;
5 else if d > 100 or (d/n ≥ 0.2 and n ≥ 3K) then
6 if d ≤ 1000 then
7 return TABFLEX-H1K(D);
8 else
9 Apply random projection to D to reduce the

number of features to 1000, yielding D′;
10 return TABFLEX-H1K(D′);

11 // Small datasets;
12 else
13 return TABFLEX-S100(D);

0

20

M
ea

n
Ru

nt
im

e

Tab
PFN

Tab
Fle

x
0.70

0.75

M
ea

n
AU

C

Figure 3: Runtime and AUC
comparison of TABPFN and
TABFLEX on validation datasets.

5 TABFLEX: SCALING TABPFN FOR LARGE DATASETS

Based on the empirical findings presented in Sec. 4, we identify non-causal linear attention as the
optimal candidate to replace standard softmax attention in TABPFN. This section proceeds in two
parts: first, we conduct a thorough analysis of the linear attention mechanism to ensure its effi-
cient implementation.; subsequently, we leverage this efficient implementation to train our proposed
model, TABFLEX. Our approach aims to enhance the scalability and performance of tabular learning
while maintaining computational efficiency.

Computation Analysis. Dao et al. (2022) demonstrates that significant wallclock speedup for soft-
max attention can be achieved by optimizing the number of memory reads/writes between GPU high
bandwidth memory (HBM) and GPU on-chip SRAM. Based on this criterion, Yang et al. (2024) pro-
posed FlashLinearAttention for speeding up causal linear attention. This raises a natural question:
can we further improve the speed of non-causal linear attention (we omit non-causal when it does not
cause further confusion) by reducing the number of memory reads/writes? Our results in Theorem 1
analyze the #HBM access and HBM memory usage of FlashLinearAttention and linear attention,
concluding that further optimization is not necessary. In Sec. D, we first propose an HBM-efficient
linear attention, and then show that the PyTorch implementation only incurs a marginal increase in
terms of #HBM access and HBM memory usage, with FLOPS remaining unchanged. We provide
more details, including the analysis of different attention mechanisms and actual memory usage and
runtime visualization of these mechanisms in Sec. D. The resulting theorem below demonstrates that
the straightforward PyTorch implementation of linear attention already achieves linear HBM access,
matching the performance of FlashLinearAttention after optimization. Consequently, we adopt the
straightforward implementation of linear attention in our model.

Theorem 1 (High Bandwidth Memory Efficiency of Linear Attention). Let Q,K,V ∈ RN×D

represent the query, key, and value matrices for a single attention head, where N is the sequence
length and D is the embedding size. Both causal FlashLinearAttention (Alg. 2) and non-causal
linear attention (Listing 1) require O(ND) HBM accesses, O(ND) HBM memory, and O(ND2)
FLOPS to compute the attention output.

TABFLEX. While TABPFN excels on small, simple datasets with fewer than 100 features and 10
classes, it struggles with more complex tasks, such as high-dimensional datasets or those with nu-
merous classes. Our objective is to extend the use cases by training a model that maintains compara-
ble speed to TABPFN while offering reasonable performance across a broader spectrum of datasets.
Since models trained with numerous features and long contexts often suffer from poor performance
in small regions due to optimization challenges, we develop three specialized models:

• TABFLEX-S100: Trained on prompts with 1152 length (same as TABPFN), 100 features, and
10 classes. Optimized for low-dimensional datasets. ‘S’ denotes standard configuration, ‘100’
indicates feature capacity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm Class Mean AUC Std. AUC Time / 1000 inst.
median mean mean median median mean

TabPFN (Hollmann et al., 2023) TF 0.97 0.84 0.15 0.08 0.56 0.74
CatBoost (Prokhorenkova et al., 2018) GBDT 0.97 0.92 0.15 0.07 1.95 20.51
TABFLEX (Ours) TF 0.96 0.90 0.15 0.08 0.22 0.37
XGBoost (Chen & Guestrin, 2016) GBDT 0.96 0.91 0.16 0.09 0.38 0.85
RandomForest (Liaw et al., 2002) Classical 0.95 0.90 0.16 0.09 0.32 0.47
SAINT (Somepalli et al., 2021) TF 0.94 0.86 0.16 0.11 146.15 170.56
HyperFast (Bonet et al., 2024) Non-TF NN 0.94 0.87 0.15 0.09 53.45 89.75
LightGBM (Ke et al., 2017) GBDT 0.93 0.85 0.18 0.09 0.29 0.90
ResNet (He et al., 2016) Non-TF NN 0.93 0.85 0.16 0.10 8.83 15.99
DANet (Chen et al., 2022) Non-TF NN 0.92 0.85 0.16 0.08 57.18 64.29
NODE (Popov et al., 2019) Non-TF NN 0.91 0.83 0.16 0.11 131.73 160.76
FTTransformer (Gorishniy et al., 2021) TF 0.89 0.81 0.17 0.11 18.04 27.91
SVM (Cortes, 1995) Classical 0.89 0.78 0.19 0.09 2.06 61.18
MLP-rtdl (Gorishniy et al., 2021) Non-TF NN 0.88 0.75 0.18 0.11 7.09 15.21
DeepFM (Guo et al., 2017) Non-TF NN 0.87 0.77 0.19 0.12 4.89 6.05
TabNet (Arik & Pfister, 2021) TF 0.85 0.68 0.26 0.14 29.34 35.12
STG (Yamada et al., 2020) Non-TF NN 0.82 0.71 0.20 0.14 15.98 18.58
TuneTables (Feuer et al., 2024) TF 0.81 0.70 0.25 0.16 32.96 73.40
LinearModel (Cox, 1958) Classical 0.78 0.67 0.19 0.14 0.03 0.04
MLP (Rumelhart et al., 1986) Non-TF NN 0.76 0.68 0.20 0.13 11.23 18.31
DecisionTree (Quinlan, 1986) Classical 0.74 0.63 0.24 0.18 0.01 0.03
TabTransformer (Huang et al., 2020) TF 0.72 0.61 0.17 0.13 13.45 22.05
KNN (Cover & Hart, 1967) Classical 0.70 0.61 0.21 0.14 0.03 0.05
VIME (Yoon et al., 2020) Non-TF NN 0.60 0.54 0.25 0.15 15.60 17.98
NAM (Agarwal et al., 2021) Non-TF NN 0.39 0.44 0.27 0.19 97.99 233.77

Table 1: Performance comparison of algorithms across 98 simple datasets (as used in Table
1 of McElfresh et al. (2023)). The reported AUC values are normalized. The “Time/1000 inst.”
column represents the combined training and test time for all datasets, divided by the total number of
samples. Notably, TABFLEX achieves top 3 performance, with faster runtimes compared to baselines
of similar performance, and a 2× speedup relative to TABPFN.

• TABFLEX-L100: Utilizes prompts of 50K length, 100 features, and 10 classes. Designed for
large low-dimensional datasets. ‘L’ signifies larger sample size, ‘100’ represents feature count.

• TABFLEX-H1K: Employs prompts of 50K length, 1K features, and 100 classes. Suited for large
high-dimensional datasets. ‘H’ indicates high-dimensional capabilities, ‘1K’ denotes 1K features.

We use a conditional model selection strategy, as shown in the Alg. 1, to choose the appropriate
model based on the target dataset’s size and dimensionality, ensuring optimal performance across di-
verse data characteristics. Our code is publicably accessible at https://anonymous.4open.
science/r/tabflex. Additional training details, including training loss, hyperparameters, and
other relevant information, are provided in Sec. E.1.

In Fig. 3, we visualize the mean runtime and mean AUC comparison of TABPFN and TABFLEX on
the validation datasets, comprising 40 datasets with varying sample sizes (up to 100K), dimensions
(up to 3K), and number of classes (up to 100). Detailed information about these datasets is provided
in Sec. E.2. Our analysis reveals that TABFLEX not only exhibits superior performance but also
demonstrates faster execution times compared to TABPFN.

6 EXPERIMENTS

In this section, we evaluate TABFLEX’s performance and speed across 115 OpenML tabular
datasets (Vanschoren et al., 2013). Our results show that TABFLEX achieves comparable perfor-
mance to TABPFN on small datasets while offering significant speedup, and substantially outper-
forms it on high-dimensional and large datasets. TABFLEX exhibits competitive performance among
23 common baselines while maintaining high efficiency, notably processing the largest dataset with
over one million samples in just 4.88 seconds.

6.1 EXPERIMENTAL SETUP

Unless otherwise stated, we follow the identical experiment setup of McElfresh et al. (2023) for
benchmarking all baselines.

7

https://anonymous.4open.science/r/tabflex
https://anonymous.4open.science/r/tabflex

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm Class Mean AUC Std. AUC Time / 1000 inst.
median mean mean median median mean

TabPFN (Hollmann et al., 2023) TF 0.97 0.90 0.21 0.15 0.82 1.04
TABFLEX (Ours) TF 0.96 0.89 0.22 0.16 0.29 0.48
CatBoost (Prokhorenkova et al., 2018) GBDT 0.95 0.89 0.23 0.16 2.59 19.51
ResNet (He et al., 2016) Non-TF NN 0.93 0.84 0.24 0.16 13.90 23.40
SAINT (Somepalli et al., 2021) TF 0.93 0.84 0.24 0.20 173.63 195.16
RandomForest (Liaw et al., 2002) Classical 0.92 0.86 0.24 0.17 0.45 0.61
XGBoost (Chen & Guestrin, 2016) GBDT 0.91 0.86 0.24 0.18 0.49 0.95
HyperFast (Bonet et al., 2024) Non-TF NN 0.91 0.83 0.22 0.17 64.38 136.74
DANet (Chen et al., 2022) Non-TF NN 0.89 0.80 0.25 0.19 67.70 78.21
SVM (Cortes, 1995) Classical 0.87 0.75 0.28 0.22 0.71 87.84
NODE (Popov et al., 2019) Non-TF NN 0.86 0.80 0.24 0.18 157.18 194.07
DeepFM (Guo et al., 2017) Non-TF NN 0.86 0.79 0.28 0.27 5.48 5.95
FTTransformer (Gorishniy et al., 2021) TF 0.84 0.78 0.25 0.21 25.40 33.34
LightGBM (Ke et al., 2017) GBDT 0.83 0.76 0.28 0.21 0.25 0.67
MLP-rtdl (Gorishniy et al., 2021) Non-TF NN 0.83 0.74 0.26 0.20 12.65 22.97
LinearModel (Cox, 1958) Classical 0.81 0.71 0.27 0.21 0.05 0.06
TuneTables (Feuer et al., 2024) TF 0.80 0.72 0.32 0.24 53.48 113.49
STG (Yamada et al., 2020) Non-TF NN 0.79 0.67 0.29 0.23 18.46 21.26
TabTransformer (Huang et al., 2020) TF 0.79 0.64 0.24 0.16 19.04 32.84
MLP (Rumelhart et al., 1986) Non-TF NN 0.72 0.65 0.29 0.25 17.83 27.67
DecisionTree (Quinlan, 1986) Classical 0.63 0.55 0.35 0.31 0.01 0.02
KNN (Cover & Hart, 1967) Classical 0.62 0.56 0.30 0.25 0.03 0.03
TabNet (Arik & Pfister, 2021) TF 0.56 0.50 0.42 0.40 34.66 42.09
VIME (Yoon et al., 2020) Non-TF NN 0.49 0.48 0.37 0.27 18.43 20.11
NAM (Agarwal et al., 2021) Non-TF NN 0.33 0.38 0.38 0.31 147.30 341.58

Table 2: Performance of algorithms across 57 datasets of size less than or equal to 1250 (used
in Table 2 of McElfresh et al. (2023)). The reported AUC values are normalized. The “Time/1000
inst.” column represents the combined training and test time for all datasets, divided by the total
number of samples. Notably, TABFLEX achieves top 2 performance, with significant faster runtimes
compared to baselines of similar performance, and a 2× speedup relative to TABPFN.

Datasets. For simple datasets, we use two sets of datasets, the first one include 98 datasets reported
in Table 1 of McElfresh et al. (2023), while the second one include 57 datasets reported in Table 2 of
McElfresh et al. (2023). Lastly, we evaluate the methods on the TabZilla hard benchmark (McElfresh
et al., 2023), which comprises 36 challenging datasets, including 11 high-dimensional (with 100 ≤
features ≤ 2000) and large (containing ≥ 50K instances) datasets. Detailed information about the
datasets, including their names and characteristics, is provided in Sec. F.1. Furthermore, we consider
additional datasets, with details and results presented in Sec. F.2.

Baselines. We evaluate our approach against a comprehensive set of baselines, as considered
by McElfresh et al. (2023). These include: (i) classical methods: Random Forest (Liaw et al.,
2002), SVM (Cortes, 1995), LinearModel (Cox, 1958), KNN (Cover & Hart, 1967) and Decision
Tree (Quinlan, 1986); (ii) Gradient Boosted Decision Trees (GBDT) methods: XGBoost (Chen &
Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017); (iii) Non-
Transformer Neural Network (Non-TF NN) methods: SAINT (Somepalli et al., 2021), ResNet (He
et al., 2016), DANet (Chen et al., 2022), NODE (Popov et al., 2019), MLP (Rumelhart et al., 1986),
MLP-rtdl (Gorishniy et al., 2021), DeepFM (Guo et al., 2017), STG (Yamada et al., 2020), VIME
(Yoon et al., 2020), and NAM (Agarwal et al., 2021); (iv) Transformer (TF) methods: TABPFN
(Hollmann et al., 2023), FTTransformer (Gorishniy et al., 2021), TabNet (Arik & Pfister, 2021), and
TabTransformer (Huang et al., 2020). The results for these methods, except TABPFN, are taken di-
rectly from McElfresh et al. (2023), who conducted their experiments using a V100 GPU, while our
experiments are run on an A100 GPU, which may introduce slight variations in performance. Addi-
tionally, we incorporate two recent methods designed for scaling tabular classification: TuneTables
(Feuer et al., 2024), a TF method, and HyperFast (Bonet et al., 2024), a Non-TF NN method.

Note that not all baselines successfully ran on all datasets. Many methods face constraints and en-
counter issues, particularly with the TabZilla hard benchmark, often due to poor scalability. We
explicitly indicate which methods failed to run smoothly across all datasets. Originally, TABPFN
was limited to datasets with no more than 100 features and 10 classes. To facilitate a fair compar-
ison between TABFLEX and TABPFN, we implemented workarounds to prevent TABPFN from
encountering errors. For datasets exceeding 100 features, we performed random feature selec-
tion. For those with more than 10 classes, we evaluated the accuracy of the nine most prevalent
classes and marked all other classes as other, and incorrect. For TuneTables, we directly import

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

TuneTablesClassifier from their Python package tunetables. Note that our results dif-
fer from those reported in their paper, as their study involved more extensive hyperparameter search,
which significantly increased runtime. We also compare our methods with TuneTables using the
dataset split specified in their paper’s setting, with results deferred to Sec. F.3. Similarly, for Hy-
perFast, we utilize HyperFastClassifier directly from their Python package hyperfast
default parameters. Notably, HyperFast is meta-trained on many datasets we use for evaluation.

6.2 EVALUATION ON SIMPLE DATASETS

We evaluate TABFLEX’s tabular classification performance on two sets of datasets: 98 simple
datasets from Table 1 and 57 small datasets from Table 2 of McElfresh et al. (2023). The results are
reported in Table 1 and Table 2, respectively. For each dataset, we consider ten different train/test
splits, computing the mean and standard deviation of AUC, as well as the total runtime per 1000 in-
stances. We then calculate the median and mean of these values across the entire set of datasets: 98
simple datasets for Table 1 and 57 small datasets for Table 2. Algorithms are ranked based on AUC
and time. Our results demonstrate that TABFLEX achieves nearly identical performance to TABPFN
on small, simple datasets while offering more than a 2x speedup. Compared to faster methods, such
as Decision Tree and Linear Model in Table 1, and Decision Tree, Linear Model, LightGBM, and
KNN in Table 2, their performance is significantly inferior to TABFLEX.

6.3 EVALUATION ON HARD DATASETS

0.0 0.1 0.2 0.3 0.4 0.5
Time per 1000 instances

0.4

0.6

0.8

1.0

M
ed

ia
n

AU
C

XGBoost LightGBM

RandomForestTabFlex
TabPFN

LinearModel

DecisionTree
KNN

Dataset Coverage
Completed all datasets
Completed subset of datasets

Figure 4: Visualization of tabular clas-
sification methods with processing times
under 0.5 seconds per 1000 instances on
the TabZilla hard benchmark (McElfresh
et al., 2023). For methods that only com-
pleted experiments on a subset of datasets,
we report the median AUC across these com-
pleted datasets. Compared to two other
methods (XGBoost and TABPFN) that suc-
cessfully ran on all datasets, TABFLEX
achieves a 2× speedup while maintaining
relatively good performance.

In this experiment, we compare TABFLEX to base-
lines on the TabZilla hard benchmark (McElfresh
et al., 2023), which includes 36 datasets. However,
due to the challenging nature of the datasets in the
TabZilla hard benchmark, many baselines fail to exe-
cute successfully. In Fig. 4, we visualize the Median
AUC and the runtime per 1000 instances across the
36 datasets, with methods that successfully executed
on all datasets marked as stars, and methods that
failed to execute on some datasets marked as circles.
This figure focuses on efficient methods, excluding
those slower than 0.5 seconds per 1000 instances.
We observe that only TABFLEX, TABPFN, and XG-
Boost successfully run on all datasets. Notably,
TABFLEX is faster and achieves better performance
than TABPFN, and is faster than XGBoost while
sacrificing only a small margin of performance.

Next, we focus on 11 high-dimensional and large
datasets within the TabZilla hard benchmark. Since
most baselines do not obtain complete results for all
datasets, instead of comparing TABFLEX to a spe-
cific baseline, we report the 5th-best AUC and 5th-best runtime, using these values to summarize
the general performance distribution of the baselines. The results are presented in Table 3. We
observe that, for these datasets, TABFLEX substantially outperforms TABPFN. While TABPFN fol-
lows McElfresh et al. (2023)’s strategy of using only 3000 training samples, TABFLEX utilizes all
available training data, achieving superior performance with comparable or slightly higher process-
ing times. TABFLEX exhibits competitive performance among baselines while maintaining high
efficiency. Notably, on large datasets with more than 50K instances, TABFLEX is significantly faster
than the baselines. For instance, on the largest dataset, poker-hand, containing over one million
samples, TABFLEX significantly outperforms other baselines, classifying all samples in just 4.88
seconds, while the fifth fastest method requires more than 500 seconds.

6.4 EXTENDING TABFLEX FOR IMAGE CLASSIFICATION

We explore the application of TABFLEX to image classification tasks, comparing it against MLP
and ResNet architecture. Our evaluation uses straightforward configurations without extensive

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset #Classes #Features #Instances AUC Time (seconds)
5th Best TABPFN TABFLEX 5th Best TABPFN TABFLEX

SpeedDating 2 120 8378 0.86 0.55 0.85 1.58 1.58 1.89
higgs 2 28 98050 0.79 0.72 0.76 3.46 2.82 4.92
cnae-9 9 856 1080 1.00 0.48 0.96 0.51 0.51 3.80
albert 2 78 425240 0.71 0.69 0.70 33.98 9.39 13.46
audiology 24 69 226 0.92 0.82 0.81 0.13 0.23 0.26
jasmine 2 144 2984 0.86 0.70 0.86 0.68 1.27 0.99
nomao 2 118 34465 0.99 0.76 0.99 4.03 1.82 5.34
Bioresponse 2 1776 3751 0.85 0.50 0.75 2.49 1.29 12.38
MiniBooNE 2 50 130064 0.98 0.98 0.97 10.80 3.19 7.22
airlines 2 7 539383 0.70 0.63 0.64 6.53 9.73 4.20
poker-hand 10 10 1025009 0.54 0.72 0.84 504.52 15.36 4.88

Table 3: Performance comparison of TABFLEX, TABPFN, and other baselines on large, high-
dimensional datasets from the TabZilla hard benchmark (McElfresh et al., 2023). Baseline
results are summarized by the 5th highest AUC and 5th lowest runtime for each dataset. TABFLEX
significantly outperforms TABPFN on these datasets, achieving comparable performance to other
baselines while maintaining exceptional speed.

hyperparameter optimization to maintain reasonable computational costs. The MLP implementa-
tions include both two-layer and three-layer variants, each configured with 10 hidden neurons and
trained for 70 epochs at a fixed learning rate of 0.001. The ResNet architecture employs 2 resid-
ual blocks with main and hidden dimension sizes of 128 and 256, respectively. The experimental
results demonstrate that TABFLEX achieves remarkable efficiency gains, operating 30× faster than
the MLP and 400× faster than the ResNet while maintaining competitive performance. This repre-
sents a significant advancement in image classification efficiency, particularly noteworthy given that
previous approaches like TABPFN were constrained to small, low-dimensional datasets. Although
our validation on MNIST represents a preliminary step, it establishes a promising foundation for
extending these techniques to more complex image classification tasks.

Dataset Two-Layer MLP Three-Layer MLP ResNet TABFLEX (Ours)
AUC Time (s) AUC Time (s) AUC Time (s) AUC Time (s)

MNIST 0.924 23.547 (30.5×) 0.959 23.060 (29.9×) - - 0.948 0.771
Fashion-MNIST 0.793 23.340 (28.8×) 0.853 23.604 (29.1×) .990 398.45 (491.1×) 0.979 0.810

Table 4: Performance comparison of TABFLEX against baseline models on image datasets.

7 CONCLUSION & DISCUSSION

Conclusion. To extend TABPFN for ICL on larger and more challenging tabular classification
tasks, in this paper, we conduct a comprehensive exploration of scalable alternatives to attention,
ultimately selecting non-causal linear attention. Through computational analysis for algorithmic op-
timization of the implementation of linear attention, we develop our model, TABFLEX. We demon-
strate that TABFLEX achieves comparable performance to TABPFN on small datasets with more
than 2× speedup, while outperforming most other baselines with significantly reduced computa-
tional time. Moreover, TABFLEX significantly outperforms TABPFN on larger and more complex
datasets, becoming much faster than most other baselines on datasets larger than 100K samples,
while maintaining performance on par with state-of-the-art methods. We posit that TABFLEX fur-
ther elevates the performance ceiling of neural network-based models on tabular classification tasks.

Limitations & Future Works. While our work achieves fast inference and relatively well perfor-
mance on datasets with approximately two thousand features, extending it to scale to more features
remains an intriguing research direction. Notably, image classification tasks typically involve a large
number of features. Adapting our work for image classification could lead to broader applications,
given its extremely fast inference and ability to simultaneously output labels for all test samples,
making this a promising avenue for future research. For image classification, one potential approach
could involve using a visual encoder to preprocess the images before feeding them into our model —
a strategy that may prove effective. Beyond image datasets, extending our work to other modalities
such as audio classification is also of interest. This expansion might necessitate developing novel
methods for generating synthetic datasets for model pretraining, as well as conducting comprehen-
sive analyses on the impact of various hyperparameters such as the number of layers and embedding
size. Such investigations would optimize the model architecture to effectively handle an increased
number of features, potentially broadening the applicability of our approach across diverse domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699–4711, 2021.

Md Atik Ahamed and Qiang Cheng. Mambatab: A simple yet effective approach for handling
tabular data. arXiv preprint arXiv:2401.08867, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Kumar Arun, Garg Ishan, and Kaur Sanmeet. Loan approval prediction based on machine learning
approach. IOSR J. Comput. Eng, 18(3):18–21, 2016.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023b.

Iz Beltagy, Matthew E Peters, and Arman Cohan. LongFormer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. Openml benchmarking suites.
arXiv:1708.03731v2 [stat.ML], 2019.

David Bonet, Daniel Mas Montserrat, Xavier Giró-i Nieto, and Alexander G Ioannidis. Hyper-
fast: Instant classification for tabular data. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11114–11123, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–
1901, 2020.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z Chen, and Jian Wu. Danets: Deep abstract networks
for tabular data classification and regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 3930–3938, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. arXiv preprint arXiv:2407.10759,
2024.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 20(2):215–232, 1958.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=ztn8FCR1td.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast and
memory-efficient exact attention with IO-awareness. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=H4DqfPSibmx.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. LIFT: Language-interfaced fine-tuning
for non-language machine learning tasks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=s_PJMEGIUfa.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter,
Micah Goldblum, Niv Cohen, and Colin White. Tunetables: Context optimization for scalable
prior-data fitted networks. arXiv preprint arXiv:2402.11137, 2024.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG], 2021.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Google Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of
highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Zhiqiang Gong, Ping Zhong, and Weidong Hu. Diversity in machine learning. Ieee Access, 7:
64323–64350, 2019.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher
Re. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=yWd42CWN3c.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

12

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=s_PJMEGIUfa
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In International Conference on Machine Learning,
pp. 1929–1938, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A trans-
former that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=cp5PvcI6w8_.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pp. 5156–5165. PMLR, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. 2, 2010.

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news, 2(3):
18–22, 2002.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792. PMLR,
2021.

Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrish-
nan, Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabu-
lar data? In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=CjVdXey4zT.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bider-
man, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. Rwkv: Rein-
venting rnns for the transformer era. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

13

https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=CjVdXey4zT

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 7025–7041, 2022.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Burr Settles. Active learning literature survey. 2009.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Arik Reuter, Benjamin Säfken,
and Soheila Samiee. Mambular: A sequential model for tabular deep learning. arXiv preprint
arXiv:2408.06291, 2024.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked science
in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. 2017.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
stochastic gates. In International conference on machine learning, pp. 10648–10659. PMLR,
2020.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, 2024.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the suc-
cess of self-and semi-supervised learning to tabular domain. Advances in Neural Information
Processing Systems, 33:11033–11043, 2020.

Haoran You, Yichao Fu, Zheng Wang, Amir Yazdanbakhsh, and Yingyan Celine Lin. When linear
attention meets autoregressive decoding: Towards more effective and efficient linearized large
language models. In Forty-first International Conference on Machine Learning, 2024.

Yuchen Zeng, Kristjan Greenewald, Kangwook Lee, Justin Solomon, and Mikhail Yurochkin.
Outlier-robust group inference via gradient space clustering. arXiv preprint arXiv:2210.06759,
2022.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the porcu-
pine: Expressive linear attentions with softmax mimicry. In The Twelfth International Conference
on Learning Representations, 2024.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey
and new perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
A Extended Related Works 15

B Accelerating Computation through Sample Selection 17

C Evaluating Other Attention Mechanisms 18

D Computation Analysis of Various Attention Mechanism 18

D.1 HBM-Efficient Linear Attention . 19

D.2 Simplified PyTorch Implementation of Linear Attention 20

E Details of TABFLEX 21

E.1 Model Training . 22

E.2 Validation Datasets . 23

F Supplementary Experimental Details and Results 23

F.1 TabZilla Datasets . 23

F.2 Evaluation on Additional Datasets . 26

F.3 Additional Comparison with TuneTables . 26

A EXTENDED RELATED WORKS

Classical Machine Learning Approaches for Tabular Classification. Classical machine learn-
ing algorithms have long been the foundation of tabular data classification. These methods in-
clude k-Nearest Neighbors (KNN) (Cover & Hart, 1967), Logistic Regression (Cox, 1958), Decision
Trees (Quinlan, 1986), and Support Vector Machines (SVM) (Cortes, 1995). These classical mod-
els, while effective, often struggle to handle complex, high-dimensional tabular datasets, motivating
the development of more sophisticated approaches.

Gradient-Boosting Decision Trees for Tabular Classification Gradient-boosting decision trees
(GBDTs) (Friedman, 2001) have emerged as a cornerstone in tabular classification, owing to their
exceptional ability to capture intricate patterns in structured data. By iteratively combining predic-
tions from weak learners, GBDTs refine their outputs to minimize errors, resulting in high predic-
tive accuracy. XGBoost (Chen & Guestrin, 2016) introduced weighted quantile sketching, advanced
regularization techniques, and sparsity-awareness, achieving state-of-the-art performance. Light-
GBM (Ke et al., 2017), a computationally efficient GBDT implementation, employs Gradient-based
One-Side Sampling and a leaf-wise tree growth strategy. CatBoost (Prokhorenkova et al., 2018)
leverages symmetric trees and introduces ordered boosting, with a particular emphasis on effec-
tively handling categorical features. These advancements have rendered GBDTs not only powerful
but also versatile tools in the domain of tabular data, dominating tabular classification in terms of
both speed and performance until the advent of TABPFN.

Transformer-based Approaches for Tabular Classification. Recent years have witnessed nu-
merous attempts to employ Transformers for tabular classification (Arik & Pfister, 2021; Huang
et al., 2020; Gorishniy et al., 2021; Dinh et al., 2022; Hollmann et al., 2023). These methods uti-
lize Transformers in diverse ways to tackle tabular data. TabNet (Arik & Pfister, 2021), one of
the pioneering efforts, applies unsupervised pre-training on masked tabular datasets to infer miss-
ing features, thereby enhancing the model’s understanding of datasets and features. It then per-
forms supervised learning on feature selection to obtain the final decision boundary, akin to decision
trees. Huang et al. (2020) introduced TabTransformer, which leverages Transformers to better handle

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

categorical features by concatenating their contextual embeddings with numerical features. While
TabTransformer processes categorical and continuous features separately, SAINT (Somepalli et al.,
2021) projects both feature types into a shared embedding space before passing them through trans-
former blocks, thereby enhancing overall performance. FT-Transformer (Gorishniy et al., 2021)
introduces a feature tokenizer to convert each example into a sequence of embeddings, enabling
Transformers to process tabular datasets and make predictions. LIFT (Dinh et al., 2022) utilizes
a pre-trained language model with parameter-efficient fine-tuning, incorporating task descriptions
and converting each sample into a complete sentence with feature names in the prediction prompt.
TABPFN (Hollmann et al., 2023) is trained offline on synthetic datasets derived from prior distri-
butions and performs ICL rather than additional parameter tuning for a given dataset, enabling it to
solve small tabular classification tasks within seconds. Prior to our work, TuneTable (Feuer et al.,
2024) extended TABPFN to scale to large datasets by performing prefix-tuning for each dataset to
achieve better performance. Notably, while most of these methods are computationally intensive due
to the need for training large models, TABPFN achieves efficiency through ICL. Our method builds
upon TABPFN, extending its scalability to large datasets while maintaining and even improving its
efficiency.

Attention Mechanisms and Scalable Alternatives. While attention in Transformers (Vaswani
et al., 2017) is central to the strong performance of language models, it encounters scaling chal-
lenges for long sequences due to its quadratic computational and memory complexity. To overcome
these limitations, several scalable alternatives have been proposed (Gu & Dao, 2024; Dao & Gu,
2024; Katharopoulos et al., 2020; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023), all aim-
ing to achieve subquadratic time complexity. In contrast, classical RNNs provide the advantage of
efficient linear-time inference but suffer from limitations in training efficiency, lacking the paral-
lelization capabilities of Transformer architectures. Linear attention (Katharopoulos et al., 2020)
addresses both concerns by reformulating self-attention as a linear dot-product of kernel feature
maps, reducing the computational complexity from quadratic to linear time. Additionally, causal
linear attention can be interpreted as a form of RNN, as the model makes predictions based on a
current token and a “hidden state,” which summarizes information from the previous tokens. State-
space models (SSMs), another popular variant of RNNs, address the drawbacks of classical RNNs
by considering linear RNNs and proposing novel algorithms for efficient training (Gu et al., 2021;
2022; Gu & Dao, 2024; Dao & Gu, 2024; Peng et al., 2023; Orvieto et al., 2023; Sun et al., 2023).

Dao et al. (2022) identified that another bottleneck in attention mechanisms’ speed stems from the
relatively slow access to high-bandwidth memory (HBM) in GPUs. To address this limitation,
FlashAttention (Dao et al., 2022; Dao, 2024; Shah et al., 2024) restructures attention computation
to optimize the utilization of high-speed on-chip SRAM while minimizing access to slower HBM,
thereby enhancing the efficiency of GPU-based attention operations. FlashAttention strategically
balances computational efficiency against memory bandwidth efficiency. Although the computa-
tional complexity in terms of sequence length remains quadratic, the optimizations introduced by
FlashAttention significantly accelerate attention computation in wall-clock time.

Non-Transformer Neural Network-based Approaches for Tabular Classification. Non-
Transformer neural networks, such as Multi-Layer Perceptrons (MLP) (Rumelhart et al., 1986),
were explored for tabular classification long before Transformer-based methods, but their perfor-
mance was limited. In recent years, several novel neural network techniques have been developed for
this task, including ResNet (He et al., 2016), DANet (Chen et al., 2022), NODE (Popov et al., 2019),
DeepFM (Guo et al., 2017), STG (Yamada et al., 2020), VIME (Yoon et al., 2020), and NAM (Agar-
wal et al., 2021). DeepFM (Guo et al., 2017) employs a factorization machine-based neural network
to learn from categorical data. Drawing inspiration from CatBoost, Popov et al. (2019) present a
novel neural network architecture designed specifically for tabular data, named Neural Oblivious
Decision Ensembles (NODE). While self- and semi-supervised learning have demonstrated effec-
tiveness in the domains of computer vision and natural language processing, Yoon et al. (2020) pro-
posed Value Imputation and Mask Estimation (VIME), which represents the first attempt to address
tabular tasks using a self- and semi-supervised learning framework. Agarwal et al. (2021) proposed
the Neural Additive Model (NAM), an interpretable neural network that maintains strong perfor-
mance on tabular data. Yamada et al. (2020) proposed a feature selection method using stochastic
gates (STG), which is a neural network-based and effective approach for tabular data. Chen et al.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(2022) designed an abstract layer, a specialized neural component for tabular data, and proposed
Deep Abstract Networks (DANets) by stacking these layers.

Some approaches even replace Transformers with SSMs for tabular learning (Ahamed & Cheng,
2024; Thielmann et al., 2024). However, these methods require training on a per-dataset basis, lead-
ing to high computational costs, and they are generally slower than GBDTs for tabular classification
tasks.

Linear Attention for In-Context Learning. Although linear attention has been reported to un-
derperform in some language modeling tasks (You et al., 2024; Zhang et al., 2024; Qin et al., 2022),
recent theoretical work demonstrates its effectiveness in in-context learning scenarios, where it can
emulate gradient descent to achieve learning during inference (Ahn et al., 2023).

B ACCELERATING COMPUTATION THROUGH SAMPLE SELECTION

Test-Specific Sample Selection. We conducted additional experiments on three datasets where
TabPFN with standard random sample selection underperformed. To enhance efficiency, we em-
ployed TabPFN with 1000 nearest-neighbor (KNN) sample selections (instead of 300) and eval-
uated results based on 100 test samples. Our findings show that sample selection improves ICL
performance.

Dataset #Classes #Features #Instances TABPFN TABFLEX
Random Sample Selection KNN Sample Selection

SpeedDating 2 120 8378 0.55 0.73 0.85
Bioresponse 2 1776 3751 0.50 0.51 0.75
nomao 2 118 34465 0.76 0.99 0.99

Table 5: Results of TabPFN with different test-specific sample selection methods across three
datasets.

However, there are significant challenges in using this method for large datasets, primarily due to
high computational overhead caused by two factors:

• Inability to use batch inference: Since the in-context samples vary for each test instance, we need
to recompute the attention outputs for every test sample individually. Our experiments demon-
strate that without batch inference, inference times can increase by 1000× or more in practice.
For example, with 1000 test samples, our method requires 1000 separate forward passes, com-
pared to batch processing which can classify all of them in a single forward pass.

• Additional time complexity from sample selection: Identifying and selecting the nearest sam-
ples introduces an extra computational burden, further impacting efficiency.

Global Sample Selection. It is also feasible to select important samples from the entire dataset.
Methods for selecting significant samples are commonly used in various domains, such as active
learning (Settles, 2009; Ren et al., 2021) and addressing subpopulation shifts (Zeng et al., 2022;
Hashimoto et al., 2018; Liu et al., 2021). However, these approaches often involve training a model
first before selecting key samples (Zeng et al., 2022; Hashimoto et al., 2018; Liu et al., 2021). The
key idea is, a model can be trained initially to identify important samples near the decision bound-
ary. However, these approaches introduces significant computational overhead, which contradicts
our goal of efficiency. Therefore, we conduct a more simplified sample selection, which perform
clustering on samples, and then sample the samples from different clusters for increasing the diver-
sity of dataset, and this is a commonly-known way to help machine learning performance (Gong
et al., 2019).

In this experiment, we perform K-means on the training dataset with k = 10, and then select 300
samples from each, resulting in total 3000 training samples. The results are presented below. We
observe that performance remains largely unchanged.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Dataset #Classes #Features #Instances TABPFN TABFLEX
Random Sample Selection KNN Sample Selection

airlines 2 7 539383 0.63 0.63 0.64
poker-hand 10 10 1025009 0.72 0.71 0.84

Table 6: Results of TABPFN with different global sample selection methods across two datasets.

C EVALUATING OTHER ATTENTION MECHANISMS

In addition to the broad categories of all linear RNN variant models we studied in this paper, we also
consider another mechanism that enjoys linear complexity: sliding window attention (Beltagy et al.,
2020). We show that TABFLEX achieves significantly better performance.

Method #Class #Features #Instances Sliding Window Linear (Ours)
Poker-Hand 10 10 1,025,009 0.48 0.84
Airlines 2 7 539,383 0.48 0.64
Higgs 2 28 98,050 0.39 0.76

Table 7: Performance comparison of TABFLEX with Sliding Window attention.

D COMPUTATION ANALYSIS OF VARIOUS ATTENTION MECHANISM

In this section, we provide a computational analysis of various attention mechanisms, comparing
standard attention, FlashAttention (specifically FlashAttention-I (Dao et al., 2022)), causal Flash-
LinearAttention (referred to as FlashLinearAttention in Yang et al. (2024)), and non-causal linear
attention. To clarify, FlashLinearAttention is designed to reduce HBM access specifically for causal
linear attention. For notational simplicity, we use the term “linear attention” to refer to non-causal
linear attention.

Algorithm 2: Causal FlashLinearAttention Implementation (Yang et al., 2024)

Input: Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M
1 Set block size B;
2 Initialize O = (0)N×D ∈ RN×D in HBM;
3 Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size B ×D each, and divide K,V into

T = ⌈NB ⌉ blocks K1, . . . ,KT and V1 . . .VT of size B ×D each;
4 Divide O into T blocks O1, . . . ,OT of size B ×D each;
5 On on-chip SRAM, construct causal mask, M ∈ RB×B ;
6 On SRAM, initialize S = (0)D×D ∈ RD×D;
7 for 1 ≤ j ≤ T do
8 Load Kj ,Vj ,Qj ,Oj from HBM to on-chip SRAM;
9 Write Oj ← QjS + ((QjK

⊤
j)⊙M) · Vj to HBM;

10 On chip, compute S ← S +K⊤
j Vj ;

11 end
Output: O

We evaluate these mechanisms based on their High Bandwidth Memory (HBM) access, memory
requirements, and floating-point operations per second (FLOPS) when computing attention outputs
given query, key, and value inputs. While Dao et al. (2022) have provided computations for standard
attention and FlashAttention, we focus our analysis on causal FlashLinearAttention (detailed in
Alg. 2) and HBM-efficient non-causal linear attention (developed by us and detailed in Alg. 3)
in Sec. D.1. In practice, we employ a simplified PyTorch implementation of linear attention and
demonstrate its efficiency, as it only causes marginal increases in HBM access and memory usage
as we demonstrate in Sec. D.2. Furthermore, we present visualizations in Sec. D.2 that illustrate

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the time and CUDA memory consumption of these attention mechanisms across various sequence
lengths and scenarios.

Algorithm 3: HBM-Efficient Implementation of Linear Attention

Input: Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M
1 Set block size B;
2 Initialize O = (0)N×D ∈ RN×D in HBM;
3 Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size B ×D each, and divide K,V into

T = ⌈NB ⌉ blocks K1, . . . ,KT and V1, . . . ,VT of size B ×D each;
4 Divide O into T blocks O1, . . . ,OT of size B ×D each;
5 On on-chip SRAM, initialize S = (0)D×D ∈ RD×D;
6 for 1 ≤ i ≤ T do
7 Load Ki,Vi;
8 On chip, compute S ← S +K⊤

i Vi;
9 for 1 ≤ j ≤ T do

10 Load Qj ,Oj ;
11 Write Oj ← QjS to HBM;

Output: O

D.1 HBM-EFFICIENT LINEAR ATTENTION

In this section, we analyze the number of HBM accesses, HBM memory, and FLOPS required by
FlashLinearAttention (Alg. 2) and linear attention (Alg. 3).
Lemma 2. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require 5ND HBM accesses to compute the attention output.

Proof of Lemma 2. For causal FlashLinearAttention (Alg. 2):

• Line 8: Loading Kj ,Vj ,Qj ,Oj necessitates 4BD HBM accesses.

• Line 9: Writing Oj requires BD HBM accesses.

These operations are executed T times, where T = ⌈NB ⌉. Thus, the total HBM accesses are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

For non-causal linear attention (Alg. 3):

• Line 7: Loading Ki,Vi requires 2BD HBM accesses.

• Line 10: Loading Qj ,Oj demands 2BD HBM accesses.

• Line 11: Writing Oj necessitates BD HBM accesses.

These operations are also repeated T times, where T = ⌈NB ⌉. Consequently, the total HBM accesses
are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

Therefore, we conclude that both causal FlashLinearAttention and non-causal linear attention re-
quire 5ND HBM accesses to compute the attention output.

Lemma 3. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require 4ND HBM memory to compute the attention output.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof of Lemma 3. For both algorithms:

• Storing Q,K,V requires 3ND memory.

• Storing O requires ND memory.

Total HBM memory usage: 4ND.

Lemma 4. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require O(ND2) FLOPS to compute the attention output.

Proof of Lemma 4. For causal FlashLinearAttention (Alg. 2):

• Computing (QjK
⊤
j)⊙M requires B2(2D − 1) +B2 FLOPs.

• The result of step 1 multiplied by Vj requires B2(2D − 1) +BD(2B − 1) FLOPs.

• Computing QjS requires B ·D(2D − 1) FLOPs.

• Computing K⊤
j Vj (line 10) requires (2B − 1) ·D2 FLOPs.

The total number of FLOPs for one iteration is:

B2(2D − 1) +B2 +B2(2D − 1) +BD(2B − 1) +B ·D(2D − 1) + (2B − 1) ·D2

= 4B2D −BD + 4BD2 −D2.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(4B2D −BD + 4BD2 −D2) · T = O(ND2).

For non-causal linear attention (Alg. 3):

• Computing K⊤
i Vi (line 8) requires D2(2B − 1) FLOPs.

• Computing QjS (line 11) requires (2D − 1)BD FLOPs.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(2BD2 −D2 + 2BD2 −BD) · T = O(ND2).

Thus, we conclude that both algorithms require O(ND2) FLOPs to compute the attention output.

D.2 SIMPLIFIED PYTORCH IMPLEMENTATION OF LINEAR ATTENTION

In our implementation, we adopt a straightforward PyTorch approach to linear attention rather than
an HBM-efficient method. We employ the concise two-line implementation presented in Listing 1.
In the following lemma, we demonstrate that this straightforward implementation only incurs a
marginal increase in HBM accesses and HBM memory usage.

1 def linear_attn(q, k, v):
2 """
3 q: (batch, heads, seq_q, dim_qk)
4 k: (batch, heads, seq_kv, dim_qk)
5 v: (batch, heads, seq_kv, dim_v)
6 """
7 kv = torch.einsum("bhnd,bhnm->bhdm", k, v)
8 o = torch.einsum("bhld,bhdm->bhlm", q, kv)
9 return o.contiguous()

Listing 1: Straightforward PyTorch implementation of linear attention (Katharopoulos et al., 2020).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Theorem 1. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single atten-
tion head, where N is the sequence length and D is the embedding size. Both causal FlashLinearAt-
tention (Alg. 2) and non-causal linear attention (Listing 1) require O(ND) HBM accesses, O(ND)
HBM memory, and O(ND2) FLOPS to compute the attention output.

Proof. Let us consider the implementation in Listing 1 and compare it to Alg. 3. PyTorch’s op-
timized tensor computation ensures efficiency, with the primary distinction between Listing 1 and
Alg. 3 being the storage of kv in the former, which is equivalent to S ∈ RD×D in Alg. 3. This
results in the following changes:

• HBM Accesses: By Lemma 2, Alg. 3 requires 5ND HBM accesses. Due to the additional write
and load operations for S ∈ RD×D, Listing 1 requires 5ND + 2D2 HBM accesses.

• HBM Memory Usage: By Lemma 3, Alg. 3 requires 4ND HBM memory usage. Due to the
additional storage requirements for S ∈ RD×D, Listing 1 requires 4ND + D2 HBM memory
usage.

The number of FLOPS remains unaffected. The analysis above, in conjunction with Lemmas 2, 3,
and 4, yields the desired outcome.

In Table 8, we summarize the #HBM access, HBM memory, and FLOPS required by standard at-
tention (with naive PyTorch implementation), FlashAttention-I, FlashLinearAttention (causal), and
linear attention with both implementations.

Standard Attention FlashAttention FlashLinearAttention Linear Attention
(Dao et al., 2022) (Yang et al., 2024) Alg. 3 Listing 1

HBM access 4N2 + 4ND 12N2D2

M + 16N2D
M + 2ND 5ND 5ND 5ND + 2D2

Memory 2N2 + 4ND 2N + 4ND 4ND 4ND 4ND +D2

FLOPS O(N2D) O(N2D) O(ND2) O(ND2) O(ND2)

Table 8: Comparison of memory and computational costs across different attention mecha-
nisms. FlashAttention improves the speed of standard attention by optimizing # HBM access.
Flash causal linear attention takes a similar approach, achieving linear # HBM access. However, we
show that non-causal linear attention already achieves linear # HBM access, matching the efficiency
of flash causal linear attention without requiring any additional optimization on # HBM access.

Subsequently, we visualize the empirical execution time and CUDA memory utilization of
FlashAttention-2, FlashLinearAttention, and linear attention in Fig. 5a and Fig. 5b, respectively.
We vary the head dimension ∈ {32, 64, 128, 256}, the number of heads ∈ {2, 4, 8, 16}, and the se-
quence length ∈ {24, 25, . . . , 215}. We focus on the self-attention case, randomly generating input
(serving as key, query, and values) with a batch size of 10, and replicate the experiment 5 times.
The final values presented are aggregated across these 5 simulations. Notably, we were unable to
obtain results for FlashLinearAttention in two configurations: (1) head dimension 256 with 8 heads,
and (2) head dimension 256 with 16 heads, due to illegal memory access error incurred by the Py-
Torch package fla (Yang et al., 2024). Our observations from the figures indicate that both runtime
and CUDA memory usage of FlashLinearAttention and linear attention exhibit linear growth with
respect to sequence length, aligning with the predictions of Theorem 1.

E DETAILS OF TABFLEX

In this section, we elucidate the finer details of TABFLEX, encompassing our model training details
and validation dataset selection process.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 20000
0

5000

2 Heads

FlashAttention
Linear Attention (Non-Causal)

FlashLinearAttention (Causal)

0 20000

4 Heads

0 20000

8 Heads

0 20000

16 Heads

0 20000
0

5000

0 20000 0 20000 0 20000

0 20000
0

5000

0 20000 0 20000 0 20000

0 20000
0

5000

0 20000 0 20000 0 20000

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

Sequence Length

(a) Time

0 20000
0

1

1e10 2 Heads

FlashAttention
Linear Attention (Non-Causal)

FlashLinearAttention (Causal)

0 20000

4 Heads

0 20000

8 Heads

0 20000

16 Heads

0 20000
0

1

1e10

0 20000 0 20000 0 20000

0 20000
0

1

1e10

0 20000 0 20000 0 20000

0 20000
0

1

1e10

0 20000 0 20000 0 20000

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

Sequence Length

(b) CUDA Memory

Figure 5: Time and CUDA memory usage comparison of FlashAttention-2 (Dao, 2024), causal
FlashLinearAttention (Yang et al., 2024), and linear attention (Katharopoulos et al., 2020) (imple-
mented as in Listing 1). Results for FlashLinearAttention in two configurations: (1) head dimension
256 with 8 heads, and (2) head dimension 256 with 16 heads are missing, due to illegal memory
access error incurred by the PyTorch package fla (Yang et al., 2024).

E.1 MODEL TRAINING

We implement linear attention with the feature function elu(·) + 1, adhering to the default im-
plementation proposed by Katharopoulos et al. (2020). Unless otherwise specified, we adopt the
training setup of TABPFN for TABFLEX-S100, TABFLEX-L100, and TABFLEX-H1K. Each model
is trained on a single Nvidia A100 80GB PCIe GPU.

Hyperparameters Batch Size Epoch Learning Rate #Steps/epoch
TABFLEX-S100 1210 8 3e-5 8192
TABFLEX-L100 110 4 3e-5 8192
TABFLEX-H1K 1410 4 3e-5 1024

Table 9: Hyperparameters used for training TABFLEX models. The number of steps per epoch
indicates the quantity of synthetic datasets generated and used for training within each epoch.

0 50 100
Epoch

0.4

0.6

0.8

1.0

Lo
ss

0 250000 500000
Wallclock Time

0.4

0.6

0.8

1.0 TabFlex-S100
TabFlex-L100
TabFlex-H1K

Figure 6: Visualization of training loss for
TABFLEX models as a function of epoch and wall-
clock time.

Table 9 summarizes the hyperparameters se-
lected for training TABFLEX-S100, TABFLEX-
L100, and TABFLEX-H1K. For all three meth-
ods, we utilize the same embedding size of 512,
consistent with TABPFN. We extend the fea-
ture capacity by modifying the first linear layer,
which projects the features into embeddings –
specifically, we increase the number of neurons
responsible for receiving the features.

The training loss curves are illustrated in Fig. 6.
We observe that as the number of features
and the length of training dataset sequences
increase, the training process becomes more

time-consuming. In fact, training a robust TABFLEX-H1K model requires more than three weeks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.2 VALIDATION DATASETS

We select the validation datasets from the OpenML AutoML Benchmark (Feurer et al., 2021) by
choosing 10 datasets from each of the following sample size intervals: [0.1K, 1K), [1K, 10K), and
[10K, 100K). To ensure diversity in the validation set, we also vary the number of classes and fea-
tures within each interval. The details of all datasets used in validation are summarized in Table 10.

OpenML did Dataset #Features #Instances #Classes
279 meta-stream-intervals.arff 75 45164 11
311 oil-spill 50 937 2
742 fri-c4-500-100 101 500 2
825 boston-corrected 21 506 2
833 bank32nh 33 8192 2
841 stock 10 950 2
920 fri-c2-500-50 51 500 2
940 water-treatment 37 527 2
981 kdd-internet-usage 69 10108 2
1039 hiva-agnostic 1618 4229 2
1491 one-hundred-plants-margin 65 1600 100
1492 one-hundred-plants-shape 65 1600 100
1503 spoken-arabic-digit 15 263256 10
1515 micro-mass 1301 571 20
1536 volcanoes-b6 4 10130 5
1541 volcanoes-d4 4 8654 5
1549 autoUniv-au6-750 41 750 8
40645 GAMETES-Epistasis-2-Way-1000atts-0.4H-EDM-1-

EDM-1-1
1001 1600 2

40672 fars 30 100968 8
40677 led24 25 3200 10
40693 xd6 10 973 2
40705 tokyo1 45 959 2
40922 Run-or-walk-information 7 88588 2
40985 tamilnadu-electricity 4 45781 20
41082 USPS 257 9298 10
41144 madeline 260 3140 2
41986 GTSRB-HOG01 1569 51839 43
41988 GTSRB-HOG02 1569 51839 43
41989 GTSRB-HOG03 2917 51839 43
41990 GTSRB-HueHist 257 51839 43
41991 Kuzushiji-49 785 270912 49
42193 compas-two-years 14 5278 2
42206 porto-seguro 38 595212 2
42343 KDD98 478 82318 2

Table 10: Characteristics of datasets in our diverse validation set.

F SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

In this section, we present the details of the test datasets and additional experiment results.

F.1 TABZILLA DATASETS

The results of our experiments on TabZilla-related datasets are reported in Table 1, 2, and 3. (McEl-
fresh et al., 2023) presents the details of the datasets used in their hard benchmark (Table 3) in Table
4 of their paper. We provide the specifications of the datasets used for our evaluation in Table 1 and
Table 2 in Table 11 and Table 12, respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Dataset D N C Dataset D N C Dataset D N C

cmc 9 1473 3 socmob 5 1156 1 adult-census 14 32561 2

kc1 21 2109 1 vehicle 18 846 4 breast-cancer 9 286 2

kc2 21 522 1 heart-h 13 294 1 mfeat-factors 216 2000 10

pc3 37 1563 1 jasmine 144 2984 1 mfeat-zernike 47 2000 10

pc4 37 1458 1 phoneme 5 5404 1 dresses-sales 12 500 2

pc1 21 1109 1 semeion 256 1593 10 mfeat-fourier 76 2000 10

cjs 33 2796 6 heart-c 13 303 1 balance-scale 4 625 3

car 6 1728 4 kr-vs-kp 36 3196 1 bank-marketing 16 45211 2

tae 5 151 3 spambase 57 4601 1 car-evaluation 21 1728 4

jm1 21 10885 1 satimage 36 6430 6 cylinder-bands 37 540 2

dna 180 3186 3 mushroom 22 8124 1 mfeat-karhunen 64 2000 10

musk 167 6598 1 diabetes 8 768 1 credit-approval 15 690 2

wdbc 30 569 1 rabe 266 2 120 1 ozone-level-8hr 72 2534 2

wilt 5 4839 1 breast-w 9 699 1 analcatdata dmft 4 797 6

ilpd 10 583 1 elevators 18 16599 1 monks-problems-
2

6 601 2

sick 28 3772 1 Satellite 36 5100 1 cardiotocography 35 2126 10

iris 4 150 3 fertility 9 100 1 PhishingWebsites 30 11055 2

lymph 18 148 4 ionosphere 34 351 1 synthetic control 60 600 6

churn 20 5000 1 transplant 3 131 1 steel-plates-fault 27 1941 7

colic 22 368 1 eucalyptus 19 736 5 mfeat-
morphological

6 2000 10

ecoli 7 336 8 Australian 14 690 1 acute-
inflammations

6 120 2

autos 25 205 6 hayes-roth 4 160 3 analcatdata boxing1 3 120 2

scene 299 2407 1 dermatology 34 366 6 analcatdata chlamydia 3 100 2

profb 9 672 1 MiceProtein 77 1080 8 wall-robot-
navigation

24 5456 4

colic 26 368 1 SpeedDating 120 8378 1 visualizing livestock 2 130 2

labor 16 57 1 tic-tac-toe 9 958 1 Click prediction small11 39948 2

irish 5 500 1 hill-valley 100 1212 1 analcatdata authorship70 841 4

glass 9 214 6 page-blocks 10 5473 5 banknote-
authentication

4 1372 2

yeast 8 1269 4 lung-cancer 56 32 3 LED-display-
domain-7digit

7 500 10

sonar 60 208 1 qsar-biodeg 41 1055 1 visualizing-
environmental

3 111 2

splice 60 3190 3 fri c3 100 5 5 100 1 postoperative-
patient-data

8 88 2

libras 104 360 10 ada agnostic 48 4562 1 blood-
transfusion-
service-center

4 748 2

anneal 38 898 5 fri c0 100 5 5 100 1

Table 11: Datasets utilized in the evaluation presented in Table 1. Here D, N , and C denote the
number of features, instances, and classes, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Dataset #Features #Instances #Classes
Australian 14 690 2
LED-display-domain-7digit 7 500 10
MiceProtein 77 1080 8
acute-inflammations 6 120 2
analcatdata authorship 70 841 4
analcatdata boxing1 3 120 2
analcatdata chlamydia 3 100 2
analcatdata dmft 4 797 6
anneal 38 898 5
autos 25 205 6
balance-scale 4 625 3
blood-transfusion-service-center 4 748 2
blood-transfusion-service-center 4 748 2
breast-cancer 9 286 2
breast-w 9 699 2
colic 26 368 2
colic 22 368 2
credit-approval 15 690 2
cylinder-bands 37 540 2
dermatology 34 366 6
diabetes 8 768 2
dresses-sales 12 500 2
ecoli 7 336 8
eucalyptus 19 736 5
fertility 9 100 2
fri c0 100 5 5 100 2
fri c3 100 5 5 100 2
glass 9 214 6
hayes-roth 4 160 3
heart-c 13 303 2
heart-h 13 294 2
hill-valley 100 1212 2
ilpd 10 583 2
ionosphere 34 351 2
iris 4 150 3
irish 5 500 2
kc2 21 522 2
labor 16 57 2
lung-cancer 56 32 3
lymph 18 148 4
monks-problems-2 6 601 2
pc1 21 1109 2
postoperative-patient-data 8 88 2
profb 9 672 2
qsar-biodeg 41 1055 2
rabe 266 2 120 2
socmob 5 1156 2
sonar 60 208 2
synthetic control 60 600 6
tae 5 151 3
tic-tac-toe 9 958 2
transplant 3 131 2
vehicle 18 846 4
visualizing environmental 3 111 2
visualizing livestock 2 130 2
wdbc 30 569 2
yeast 8 1269 4

Table 12: Datasets utilized in the evaluation presented in Table 2.
25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F.2 EVALUATION ON ADDITIONAL DATASETS

In this section, we provide additional evaluation of TABFLEX on eight large datasets randomly
selected from OpenML-CC18 Benchmarks (Bischl et al., 2019), after excluding the datasets con-
tained in TabZilla’s evaluation. As shown in Table 13, TABFLEX consistently outperforms TABPFN
in terms of speed and achieves superior performance on the majority of the datasets.

Dataset #Features #Instances #Classes Mean AUC Mean Time (seconds)
TABPFN TABFLEX TABPFN TABFLEX

kick 33 72983 2 0.663 0.684 13.330 3.096
Click-prediction-small-1220 10 39948 2 0.652 0.659 3.663 0.887
house-8L 9 22784 2 0.947 0.945 1.383 0.536
okcupid-stem 20 50789 3 0.825 0.828 6.152 1.511
volcanoes-b1 4 10176 5 0.660 0.663 0.349 0.202
volcanoes-b2 4 10668 5 0.651 0.652 0.375 0.217
kdd-internet-usage 69 10108 2 0.932 0.932 1.021 0.851
BNG(tic-tac-toe) 10 39366 2 0.836 0.835 3.626 1.111

Table 13: Performance comparison between TABPFN and TABFLEX on an additional large
dataset. We observe that TABFLEX is consistently faster than TABPFN and outperforms it on the
majority of the datasets.

F.3 ADDITIONAL COMPARISON WITH TUNETABLES

As mentioned in Sec. 6, the results of TuneTables presented in Table 14 of our main experiments
use TuneTablesClassifier. However, we note that the original paper reported results after
30 iterations of hyperparameter tuning. They also applied this process to TABPFN, using a different
subset of datasets as training samples at each iteration. In Table 14, we compare the performance
of TABFLEX without any hyperparameter tuning to the results reported in their paper. TABFLEX
remains competitive, particularly when the number of samples is limited. While TuneTables tends
to perform better with larger sample sizes due to its ability to update model parameters based on
training data, TABFLEX maintains comparable performance while being significantly faster.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Dataset Size TABPFN TuneTables TABFLEX

Acc. Runtime (sec.) Acc. Runtime (sec.) Acc. Runtime (sec.)

breast-cancer 286 .765 29 .770 65 .793 1
heart-c 303 .848 40 .903 66 .903 0
ecoli 336 .848 30 .843 66 .882 0
colic 368 .856 39 .892 66 .892 0
dresses-sales 500 .578 41 .580 122 .580 0
cylinder-bands 540 .800 41 .846 82 .796 0
climate 540 .959 59 .951 97 .963 0
balance-scale 625 .990 29 .995 55 1.000 0
blood-transfusion 748 .801 25 .782 56 .840 0
cmc 1473 .554 91 .556 109 .605 0
kc-1 2109 .862 168 .856 187 .867 0
bioresponse 3151 .797 638 .798 3012 .720 13
christine 5418 .742 666 .755 3920 .721 11
robert 10000 .250 964 .414 2397 .333 17
dilbert 10000 .922 761 .992 3749 .802 17
har 10299 .936 370 .981 2657 .918 9
eeg-eye-state 14980 .940 178 .986 1929 .837 1
elevators 16599 .902 186 .902 1297 .907 1
riccardo 20000 .922 1395 .995 5247 .773 31
volkert 58310 .567 459 .693 6331 .561 12
higgs 67557 .671 931 .714 4084 .691 1
connect-4 98050 .668 931 .817 5395 .692 1
BNG (vote) 131072 .968 1976 .974 2493 .974 1
albert 425240 .642 2363 .658 17518 .637 1
airlines 539383 .600 2602 .653 44434 .597 2
BNG (labor) 1000000 .937 5518 .967 7717 .950 8
agrawall 1000000 .948 5158 .950 45504 .948 3
poker-hand 1025009 .531 2423 1.000 10471 .542 15
click-prediction-small 1997410 .833 10421 .837 33148 .833 5

Table 14: Accuracy comparison of TABPFN, TuneTables, and TABFLEX on test datasets from
Feuer et al. (2024). Results for TABPFN and TuneTables are directly sourced from Feuer et al.
(2024), where hyperparameter tuning was performed 30 times for both methods. For TABPFN,
hyperparameters determine the subset of the dataset used in ICL. TABFLEX results are reported
without hyperparameter tuning.

27

	Introduction
	Related Works
	Background
	Architectural Exploration for Scalable Tabular Learning
	Causal Model vs. Non-Causal Model
	Softmax Attention vs. Linear Attention

	TabFlex: Scaling TabPFN for Large Datasets
	Experiments
	Experimental Setup
	Evaluation on Simple Datasets
	Evaluation on Hard Datasets
	Extending TabFlex for Image Classification

	Conclusion & Discussion
	Extended Related Works
	Accelerating Computation through Sample Selection
	Evaluating Other Attention Mechanisms
	Computation Analysis of Various Attention Mechanism
	HBM-Efficient Linear Attention
	Simplified PyTorch Implementation of Linear Attention

	Details of TabFlex
	Model Training
	Validation Datasets

	Supplementary Experimental Details and Results
	TabZilla Datasets
	Evaluation on Additional Datasets
	Additional Comparison with TuneTables

