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ABSTRACT
It is increasingly common in digital environments to use A/B tests
to compare the performance of recommendation algorithms. How-
ever, such experiments often violate the stable unit treatment value
assumption (SUTVA), particularly SUTVA’s “no hidden treatments”
assumption, due to the shared data between algorithms being com-
pared. This results in a novel form of bias, whichwe term “symbiosis
bias,” where the performance of each algorithm is influenced by the
training data generated by its competitor. In this paper, we investi-
gate three experimental designs–cluster-randomized, data-diverted,
and user-corpus co-diverted experiments–aimed at mitigating sym-
biosis bias. We present a theoretical model of symbiosis bias and
simulate the impact of each design in dynamic recommendation
environments. Our results show that while each design reduces
symbiosis bias to some extent, they also introduce new challenges,
such as reduced training data in data-diverted experiments. We
further validate the existence of symbiosis bias using data from a
large-scale A/B test conducted on a global recommender system,
demonstrating that symbiosis bias affects treatment effect estimates
in the field. Our findings provide actionable insights for researchers
and practitioners seeking to design experiments that accurately
capture algorithmic performance without bias in treatment effect
estimates introduced by shared data.
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1 INTRODUCTION
As algorithmic recommendations and personalization have become
increasingly ubiquitous in digital settings, it has become more and
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more common for both researchers and practitioners to conduct
randomized experiments in which the “control" and “treatment"
interventions that are being compared are algorithmic in nature. For
instance, A/B tests are used to compare the efficacy of algorithms
for recommending content [22], suggesting social media contacts
[41], and setting prices [1]. Obtaining unbiased treatment estimates
from simple, user-randomized experiments relies on the stable unit
treatment value assumption (SUTVA) [40, 42], which states both
that there is no interference between units, and that there are no
“hidden treatments.” However, many experiments that compare
the efficacy of different algorithms violate SUTVA’s no hidden
treatments assumption, due to the fact that each unit’s potential
outcomes are a function not just of the algorithm that it is exposed
to, but also of the data that the algorithm has been trained on. In
many cases, algorithmic recommendations are updated over the
course of an experiment using newly-generated training data, and
no distinction is made between data that is produced by subjects
exposed to different treatment interventions. As a result, simple
experiments meant to evaluate the impact of different algorithmic
interventions are often not able to observe the actual counterfactual
quantities of interest. We refer to bias in Total Treatment Effect
(TTE) estimates arising due to this phenomenon as “symbiosis bias.”

In this paper, we use theory and simulation to investigate the
efficacy of three different experiment designs at reducing symbiosis
bias in experimental comparisons of recommendation algorithms:

• Cluster-randomized experiments: In cluster-randomized
experiments, users are first assigned to different clusters
(typically based on historical actions and/or other observ-
ables). Treatment is then randomized at the cluster-level, as
opposed to the user-level.
• Data-diverted experiments: In data-diverted experiments,
treatment is randomized at the user-level. However, during
the experiment, the treatment (control) algorithm is only up-
dated with data produced by users assigned to the treatment
(control).
• User-corpus co-diverted experiments: In user-corpus co-
diverted experiments, both users and items are randomly
assigned to treatment or control. During the experiment,
treatment (control) users are only able to see/interact with
treatment (control) items.

Insofar as symbiosis bias arises from the treatment (control) algo-
rithm having access to training data that would not have existed
under the counterfactual where all units were exposed to the treat-
ment (control), the three experiment designs are similar in that they
aim to restrict the pool of data available to each algorithm to that
which would be available under the relevant counterfactual.

Both our theoretical model and our simulation framework estab-
lish a number of important facts that can guide both practitioners
and researchers when assessing if and how to address symbiosis
bias through experiment design. First, symbiosis bias does exist
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in experimental comparisons of recommender algorithms, and the
severity of symbiosis bias depends on factors, including the par-
ticular set of algorithms being. Second, symbiosis bias is often
asymmetric, i.e., in a comparison of two algorithms, one algorithm
benefits more from data produced by its competitor than vice versa.
Finally, while designs like data-diverted experimentation has the
potential to reduce symbiosis bias, such experiment designs can
introduce their own type of bias stemming from the fact that for
many algorithms, performance degrades with access to less training
data and/or a smaller corpus of items to recommend.

We also contribute to the emerging research literature on sym-
biosis bias by demonstrating the existence of this novel form of
bias (and the efficacy of cluster randomization at reducing said
bias) using data from a country-randomized A/B test conducted
on a large industrial recommender system. In the experiment, the
treatment algorithm boosted recently published content relative to
the control algorithm. Our analysis shows that control countries
with higher pre-experiment content overlap with treated countries
had higher engagement with boosted content during the experi-
ment. This suggests that exploration data generated by users in
treated countries influenced recommendations to users in control
countries, thus introducing symbiosis bias into the experiment.

Our results extend a number of recent papers focused on bias aris-
ing from data-related spillovers, including Musgrave et al. [38], Goli
et al. [17], and Si [49]. While each of these papers make valuable
contributions, they also all have important limitations. For instance,
Musgrave et al. [38] considers data-related spillovers in settings
where users issue search queries (e.g., web search) and proposes
query-randomized experiments. However, not all products that is-
sue algorithmic content recommendations involve explicit queries
from the user. Goli et al. [17] proposes a bias correction approach
for ranking experiments, but makes a number of strong assump-
tions (e.g., that demand for each item is independent the ranking
of other items) and focuses exclusively on the steady state reached
after repeated interactions between algorithms. The weighted train-
ing approach proposed by Si [49] requires the experiment designer
to estimate the probability that each item will be recommended
in both the control and treatment, which may be difficult to do in
practice. In contrast, we evaluate the efficacy of multiple different
parsimonious experiment designs that require minimal assump-
tions, can be used in cases where recommender systems have not
yet reached equilibrium, and do not require users to, for example,
issue search queries.

The remainder of this article is organized as follows. In Section
2, we review the related research literature on A/B testing in the
presence of feedback loops. Section 3 puts forth two potential out-
come models: a dynamic potential outcomes model, which extends
Neyman’s finite population causal model to depend not just on the
treatment assignment, but also on the available data, and a more
tractable equilibrium model, under which we can get intuition for
the amount of symbiosis bias present under different experiment de-
signs. Section 4 uses a simulation framework to explore the amount
of symbiosis bias present under different experiment designs in a
dynamic setting. In section 5, we analyze data from a field experi-
ment conducted on a production scale recommender system used
by millions of users, and identify evidence of symbiosis bias. Finally,
Section 6 concludes.

2 RELATED LITERATURE
Recommendation algorithms power online platforms used daily by
billions of people, and there exists an extensive literature [36, 44, 46,
51, 59, 61, 63] studying the biases that arise during their evaluation,
covered recently in a comprehensive survey by Chen et al. [10]. Of
these biases, we focus our efforts on the “symbiosis bias” that arises
from two or more recommendation algorithms sharing data in a
live experiment. This focus on comparisons made in live experi-
ments distinguishes our work from previous investigations into the
biases that plague offline evaluation methods [26, 28], from inves-
tigations into the biases of an algorithm’s past recommendation
on its future self [32, 50, 53], or from investigations that explore
the ecosystem impact of feedback loops, separate from A/B testing
concerns [9]. We adopt the perspective that feedback loops within a
given algorithm should be measured by an A/B test, while feedback
loops between two algorithms are a source of bias and should be
suppressed. Accurate TTE measurement thus requires breaking
some feedback loops and not others, which distinguishes it from
related works.

A/B testing is the statistical foundation of causal inference on
web systems [33], providing valid causal inference under the stable
unit treatment value assumption (SUTVA) [42]. This assumption is
violated when the outcome of one unit depends on the treatment
assignment of another unit and/or there are “hidden treatments.”
When two arms of an experiment share a common data pool, both of
SUTVA’s requirements fail to hold. More generally, the challenges
of A/B testing under feedback loops have been recognized across
a variety of web applications including ad placement systems at
Microsoft [6], recommender systems at Netflix [54] and Google [11,
52], and ranking systems at Meta [20], LinkedIn [39] and Tencent
[62].

A variety of solutions have been proposed to address the problem
of symbiosis bias, some of which are experiment design-based and
some of which are analysis-based. In this paper, we use theory and
simulation to compare three different design-based approaches to
reducing symbiosis bias: data-diversion, user-corpus co-diversion,
and cluster randomization.1

Perhaps the most straightforward design-based approach is data-
diversion, in which each algorithm trains on only its own data.
Data-diverted experiments are considered by several priorworks [19,
27, 49, 52, 58]: Jeunen [27] (under the name data-siloed) cites the in-
crease in variance from using less data as a barrier to implementing
data-diverted experiments in practice. Si [49] identifies the data-
inefficiency of the approach as a barrier to adoption. Our work
identifies a third reason to be wary of data-diverted experiments:
using less data to train a recommendation model degrades the per-
formance of eachmodel, but this degradationmay be unequal across
the two arms, and especially so if the two arms are unequally sized.
This introduces a new bias into the treatment effect estimate. The

1Another related experiment design is the switchback design [5], which attempts to
mitigate network interference by alternating between two states: all units in treatment
and all units in control. Switchback designs incur no interference between units
during a given time period but suffer from carryover effects [25] between experimental
periods. Glynn et al. [16] use switchback experiments to measure feedback loops in
data collection for inventory constrained Markov Decision Processes under the name
“temporal interference,” further studied by Farias et al. [14]. In practice, these solutions
require large amounts of experimental traffic for short amounts of time. This makes
them unpalatable in practical settings similar to the one presented in Section 5.
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Figure 1: Four experimental designs for A/B tests of recom-
mendation algorithms. User engagement data is depicted by
a graph whose nodes represent users and edges represent
the extent to which one user’s engagement data informs an-
other user’s recommendations. In the naive experiment all
data is used to train both models. In the data-diverted experi-
ment data from one arm is not used to train the other; this is
represented by the removal of edges in the graph, reducing
the information available to make recommendations in each
arm. In the cluster-randomized experiment the users are first
clustered into𝐾 clusters (𝐾 = 2 shown here) and then clusters
are randomized to treatment or control; if data is perfectly
clustered this method removes bias-inducing cross-cluster
edges without degrading recommendations by forcibly re-
moving edges. In the user-corpus co-diverted experiment,
both users and items are randomized into treatment and con-
trol, and treatment (control) users can only consume treat-
ment (control) items, causing even more edges between users
to disappear relative to the data-diverted design.

problem of unequal sizes can be mitigated by splitting the data into
three parts: two equally-sized treated and control arms, and one
non-involved arm that receives the control but does not participate
in the analysis [52]. Wu et al. [58] propose a form of data-diversion
called the “fair bucket” design to estimate the long-term benefit of
exploration using a short-term experiment.

Another design-based approach is the user-corpus co-diverted
experiment [11, 52]. This approach refines the data-diverted exper-
iment using a multiple randomization design [2, 31] that presents
a randomized subset of content to treated users and another ran-
domized subset to control users. This work gets around the bias
inherent in data-diverted experiments by assuming the existence of
a scaling law by which the system’s behavior is reliably predicted
from random corpus ablations.

A third design-based approach that has not previously been con-
sidered in the literature on symbiosis is the cluster-randomized
experiment [56]. Cluster-randomized experiments first cluster
users according to some similarity graph, then randomize all units
in each cluster to either treatment or control. Cluster randomiza-
tion reduces interference when the graph accurately captures the
mechanism of interference by ensuring that units are influenced
by other units with their same treatment assignment. We apply the
one-sided bipartite experiment framework of [7], which captures
A/B testing on recommendation systems represented by a bipartite
graph between users and items.

In addition to these design-based approaches, there are also mul-
tiple analysis-based approaches to reducing symbiosis bias. The
weighted training approach [49] modifies the loss function of
each recommendation algorithm to downweight data collected by
the alter arm if it was unlikely to be collected by the ego arm. This
prevents the ego from free-riding on exploration performed by
the alter. The weighted training approach requires the platform to
estimate the probability that each arm produces each recommenda-
tion. It is similar in spirit to off-policy evaluation, including using
random exploration to debias offline evaluation as suggested by
Jadidinejad et al. [26]. Another approach is to model the interfer-
ence mechanism and correct for symbiosis bias with a modified
estimator. Zhan et al. [60] propose the “recommender choice model”
of item recommendation in a creator-randomized experiment on a
video-sharing platform. Under this model, whose parameters can
be estimated from known item features and a known score given
by each algorithm to each item, the authors derive a doubly-robust
estimator of the TATE.

Beyond the literature focused specifically on symbiosis bias,
there is also a growing body of research studying the closely related
problem of A/B testing under feedback loops in ranking systems.
Musgrave et al. [38] study a ranking system in which treatment and
control contribute to shared features; they identify how to lever-
age the search queries in a query-diverted experiment that isolates
these feedback loops. Another approach to mitigate interference
in ranking experiments is the counterfactual interleaving design
[20, 39, 62], in which both the treatment and control arms produce a
ranked list of recommendations and the design merges the two lists
in a way that minimizes interference. The counterfactual interleav-
ing design is not applicable to recommender systems in which only
one item is recommended. Finally, Goli et al. [17] develop a method
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to de-bias ranking algorithms subject to interference by identifying
items which are ranked near their counterfactual ranking.

In this paper, we contribute to the growing literature on sym-
biosis bias by providing both theory- and simulation-based com-
parisons of three different design-based approaches to reducing
this bias, including one design (cluster randomization) that has not
previously been considered in the context of symbiosis bias. Fur-
thermore, we use data from a large-scale field experiment to both
document the existence of symbiosis bias in the field and provide a
preliminary evaluation of the efficacy of cluster randomization at
reducing said bias.

3 A THEORETICAL MODEL
Large recommender systems are in practice built from many inter-
connected components. The complexity and specificity of each
implementation means that data scientists who study the perfor-
mance of these systems often treat them as a “black box”. To for-
mally define symbiosis bias, we briefly introduce a time-indexed
model in potential outcome notation. Because this dynamic model
is largely intractable without further assumptions, we then propose
an equilibrium model, which we find more practical for capturing
the intuition of different solutions to the symbiosis bias problem.

We follow an extension of Neyman’s finite population causal
model in which the outcome of interest for unit 𝑖 at time 𝑡 is a
function of just unit 𝑖’s (time-invariant) treatment assignment 𝑧𝑖 ,
but also of the training data available at time 𝑡 , 𝑑𝑡 .

Y𝑡 (z, 𝑑𝑡 ) = {𝑌𝑖𝑡 (𝑧𝑖 , 𝑑𝑡 )}𝑖 .
The data that is available to the algorithm at time 𝑡 is a function

of the data available at time 𝑡 − 1, as well as the observed outcomes
at time 𝑡−1:𝑑𝑡 (Y𝑡−1, 𝑑𝑡−1) = 𝑑𝑡 (Yt−1 (z, 𝑑𝑡−1), 𝑑𝑡−1) = 𝑑𝑡 (z, 𝑑𝑡−1) .
Since the treatment assignments z do not change over the course
of the experiment, this suggests that the data available at any time
𝑡 can be expressed as 𝑑∗𝑡 (z, 𝑑1) := 𝑑𝑡 (z, 𝑑𝑡−1 (z, ...𝑑2 (z, 𝑑1))) . Hence,
the observed outcome for unit 𝑖 at time 𝑡 , 𝑌𝑖𝑡 = 𝑌𝑖𝑡 (𝑧𝑖 , 𝑑∗𝑡 (z, 𝑑1)) is a
function of unit 𝑖’s treatment, 𝑍𝑖 , as well as the training data avail-
able at time 𝑡 , 𝑑∗𝑡 (z), which is itself a function of the full treatment
assignment vector z and the data available at the beginning of the
experiment 𝑑1. In this notation, the total treatment effect at time 𝑡
of switching all recommendations from one algorithm to another
for each unit 𝑖 can be expressed as

𝜏𝑇𝑇𝐸𝑖𝑡 (𝑑1) = 𝑌𝑖𝑡 (1, 𝑑∗𝑡 (1, 𝑑1)) − 𝑌𝑖𝑡 (0, 𝑑∗𝑡 (0, 𝑑1)) .
Under naive experiment designs, neither quantity in this expres-

sion is observable, since for each unit of analysis we either observe
𝑌𝑖𝑡 (1, 𝑑∗𝑡 (z, 𝑑1)) or𝑌𝑖𝑡 (0, 𝑑∗𝑡 (z, 𝑑1)) and in a randomized experiment
z will not be 0 or 1. This presents a more severe obstacle to causal
inference than the typical fundamental problem of causal inference.

In practical settings, and at the scale of global recommender sys-
tems, it is improbable for the action of each user to have a meaning-
ful impact on the recommendations served to every other user. We
postulate the existence of a network between units through which
learning happens. It captures the intuition that the more similar two
units are, the more the actions from one will inform the recommen-
dations of the other. On the other hand, if two units are dissimilar,
and are never or rarely liable to receive the same recommendations,
their actions (and non-actions) will have negligible influence on

the other. The formalization of interference through a network is
common in the relevant literature [4, 7, 12, 13, 18, 30, 47, 55, 57]. In
our setting, this network is unobservable but can be approximated
from the historical actions that units have taken, though we expect
some bias in this approximation [10]. We briefly discuss how to
conduct this approximation.

Unlike the majority of the interference literature, a recommender
system setting may not have a directly observable graph between
units; instead, the majority of interactions are between users and
items, or users and creators. A subset of the literature [2, 7, 15, 21,
23, 31, 52, 64] focuses specifically on this bipartite graph setting,
and assume the existence of a bipartite graph between units of
two types (e.g. users and items), which is more easily observed
(e.g. previous interactions of a user for a given recommended item).
Brennan et al. [7] and Holtz et al. [23] propose approximating the
unit-unit graph as a folding of the observed bipartite graph. The
method of approximation of the underlying learning network is not
the primary focus of this work, and the solutions discussed below
do not assume that we know the graph exactly, as we do not expect
unbiasedness. Instead, we show both theoretically and empirically
that the bias under each design improves with properties of the
unit-unit graph. In particular, the clustering solution can be made
less biased than other baselines with only approximate knowledge
of the unit-unit graph.

We now present an equilibrium network-based potential out-
come model, which we find helpful to build intuition.2 In particular,
we no longer assume that outcomes are indexed by the data 𝑑 avail-
able to them; instead, the dependence is captured by the treatment
assignment vector z = {𝑧𝑖 }. Let W = {𝑤𝑖 𝑗 }𝑖, 𝑗 denote the (possibly
unobserved) weighted network through which learning happens,
and 𝑀 denote the size of the corpus of items available to each
recommender system, such that unit 𝑖’s outcome is given by

𝑌𝑖 (z) = 𝛽𝑧𝑖 + 𝛿𝑧𝑖𝑀 +
∑︁
𝑗

𝑤𝑖 𝑗𝛾𝑧𝑖𝑧 𝑗 (1)

where 𝛽𝑧 is a base treatment effect of algorithm 𝑧, 𝛿𝑧 is the positive
effect of giving algorithm 𝑧 access to a larger corpus of content to
recommend, and 𝛾𝑧𝑖𝑧 𝑗 is an additional average effect of allocating a
user to algorithm 𝑧 𝑗 on the treatment effect of algorithm 𝑧𝑖 (a.k.a.
an indirect effect).

The direct effect is captured by the coefficient 𝛽𝑧𝑖 . The indirect
effect of unit 𝑗 on 𝑖 is captured by 𝑤𝑖 𝑗𝛾𝑧𝑖𝑧 𝑗 . The 𝛿𝑧𝑖𝑀 parameter
captures the linear relation observed in ablation studies between
corpus size and outcomes [52, Fig. 5]. We could also consider a mul-
tiplicative model, whereby 𝑌𝑖 (z) = 𝛿𝑧𝑖𝑀

(
𝛽𝑧𝑖 +

∑
𝑗 𝑤𝑖 𝑗𝛾𝑧𝑖𝑧 𝑗

)
. The

formulation of the bias of the user-corpus co-diverted framework
would change, but the conclusions would stay the same.

In practice, there may be many different (versions of) algorithms
evaluated at any one time. We assume that the “treatment” (𝑧𝑖 = 1)

2Other potential outcomemodels have been considered in the literature [7, 8, 13, 18, 34].
For example, Brennan et al. [7] propose an alternative model directly on the bipartite
user-item graph, where 𝑌𝑖 = 𝛼𝑖 + 𝛽𝑖𝑍𝑖 + 𝛾𝑖

∑
𝑗

∑
𝑘 𝑣𝑖𝑘 𝑣𝑗𝑘𝑍 𝑗 . In fact,

∑
𝑗

∑
𝑘 𝑣𝑖𝑘 𝑣𝑗𝑘

postulates a possible parameterization for the learning network 𝑤𝑖 𝑗 , such that their
model becomes𝑌𝑖 = 𝛽𝑧𝑖 +

∑
𝑗 𝛾𝑖𝑍 𝑗 , where 𝛽𝑧𝑖 := 𝛼𝑖+𝛽𝑖𝑍𝑖 . In this model, the indirect

effect is unit-level heterogeneous, but does not depend on the treatment assignment.
We find evidence for assignment-dependent indirect effects in our real data experiment
in Section 5. We explore in Appendix A.2 an extension of their model to incorporate
this additional heterogeneity. The takeaways do not change significantly.
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algorithm is the one we are interested in evaluating, and all other
algorithms are considered the “control” (𝑧𝑖 = 0), such that the total
treatment effect is given by

𝜏𝑇𝑇𝐸 = (𝛽1 − 𝛽0) +𝑀 (𝛿1 − 𝛿0) +
1
𝑁

∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗 (𝛾11 − 𝛾00)

While many estimators are possible, we focus on the naive
sample-mean estimator, which is often used by practitioners.3

𝜏 =

∑
𝑖 𝑌𝑖1{𝑍𝑖 = 1}∑
𝑖 1{𝑍𝑖 = 1} −

∑
𝑖 𝑌𝑖1{𝑍𝑖 = 0}∑
𝑖 1{𝑍𝑖 = 0}

This is in line with previous work [7, 13, 29, 48] which also aims to
study simple but possibly biased estimators through experimental
designs, over more complex unbiased estimators. There are several
reasons why one might want to adopt this strategy: firstly, unbiased
estimators are more difficult to implement and often rely on addi-
tional assumptions about the network effects [18, 30, 37]; secondly,
the sampling and design variances may be the dominant factor in
the root mean-squared error of these unbiased estimators; finally,
it is harder to “game” an analysis by emphasizing design over anal-
ysis [43]: design-first investigations lead to increased confidence in
the results from non-experts, which has led to a strong tradition
of using simple estimators and sophisticated designs in the tech
industry. We now investigate the bias of this estimator under the
different solutions proposed. Proofs and further discussions can be
found in Appendix A.1.

Independent assignment. We first investigate the bias of a naive
assignment that assigns units to treatment individually and iden-
tically. To ease the exposition, we will suppose the probability of
treatment is exactly 1

2 for each unit, but these results extend triv-
ially to the general setting. The bias of the sample-mean estimator
in this case is

𝐵𝑖𝑎𝑠𝑖𝑛𝑑 (𝜏) ≈
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(−𝛾11 + 𝛾10 − 𝛾01 + 𝛾00)

where the equality is given within 𝑂 (𝑁 −2) terms. In particular, If
𝛾11 = 𝛾01 := 𝛾1, 𝛾00 = 𝛾10 := 𝛾0, then this expression simplifies to
𝐵𝑖𝑎𝑠𝑖𝑛𝑑 (𝜏) = 1

𝑁

∑
𝑖

∑
𝑗≠𝑖 𝑤𝑖 𝑗 (𝛾0 − 𝛾1). As expected, if algorithm 0

is better at generating useful information for learning, there is a
positive bias in the estimated treatment effect, i.e. we over-estimate
the effectiveness of algorithm 1.

Bias of clustering. If the treatment is assigned in a clustered way,
with 𝐶 (.) being the cluster assignment function, this bias improves
with a measure of clustering quality below, which is a variation of
prior graph cut results [7, 13]:

𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≈
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(−𝛾11 +𝛾10−𝛾01 +𝛾00)1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

3The expectation of the sample-mean estimator under Bernoulli assignments is not
immediately straightforward, due to the non-constant but highly concentrated normal-
izing constants

∑
𝑖 1{𝑍𝑖 = 1} and∑𝑖 1{𝑍𝑖 = 0}. One option to express these results

“cleanly” is to consider the non-individualistic completely randomized assignment,
for which these are constant, or to consider the Horvitz-Thompson estimator [24],
which normalizes each sum by 2/𝑁 here. In large samples, these considerations do not
matter much, and lead to equal results within𝑂 (𝑁 −2 ) terms. For ease of exposition,
we ignore these terms here.

In particular, if 𝛾11 = 𝛾01 := 𝛾1, 𝛾00 = 𝛾10 := 𝛾0, the expression
above reduces to:

𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≈
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗 (𝛾0 − 𝛾1)1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

In other words, even if the learning effect is large (|𝛾1 −𝛾0 | ≫ 0),
if cross-cluster dependence is small (𝑤𝑖 𝑗 ≈ 0 for 𝐶 (𝑖) ≠ 𝐶 ( 𝑗)), the
bias will be small.

Bias of data-diversion. In a data-diverted experiment, each unit
receives only a portion of the training data. For simplicity, we
assume the cohort is split into two equal parts, which each receive
half the training data. The resulting bias can also be easily expressed
with our notation:

𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏) ≈
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
𝛾00 − 𝛾11

2

The bias arises because each algorithm only learns from half of
the sample. In some implementations [19, 52], each cohort shares a
common core of data, to which is added a smaller share of exclusive
traffic. In that case, the bias is an interpolation between the bias
under the independent assignment and the formula above.

Bias of user-corpus co-diversion. In a user-corpus co-diverted
experiment, both users and items are randomized to treatment
or control, and treated (control) users only have access to treated
(control) items. Again for simplicity, we assume that both users
and items are split into two equal parts. The resulting bias can be
expressed with our notation as:

𝐵𝑖𝑎𝑠𝑐𝑜𝑑𝑖𝑣 (𝜏) ≈
1
𝑁

©­«
∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
𝛾00 − 𝛾11

2
ª®¬ +𝑀

(
𝛿0 − 𝛿1

2

)
The bias arises both because each algorithm only learns from half
as much data, and because each algorithm only has access to half
as many items.

Comparison of bias. The design leading to the smallest amount
of bias depends on the quality of clusters, the strength of learn-
ing effects, and the extent to which each algorithm’s performance
scales with the size of the item corpus. For the sake of expositional
simplicity, we compare the bias of clustering and data-diversion,
but both designs can also easily be compared to user-corpus co-
diversion. The difference between the bias of the data-diverted and
clustered treatment effect estimates is:

𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏) − 𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≈
1
2𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗 (−𝛾11 + 𝛾00)1{𝐶 (𝑖) = 𝐶 ( 𝑗)}

− 1
2𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗 (𝛾10 − 𝛾01)1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

Since the sign of the biases cannot be determined, it is difficult to
ascertain which bias is smaller. If 𝛾11 = 𝛾01 := 𝛾1, 𝛾00 = 𝛾10 := 𝛾0,
i.e. the information generated by one algorithm benefits both al-
gorithms equally, then 𝑠𝑖𝑔𝑛(𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏)) = 𝑠𝑖𝑔𝑛(𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏)). Un-
der this assumption, without loss of generality, we can assume



WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

Treatment Algorithm = User−based CF

Treatment Algorithm = Item−based CF

Item−based CF Oracle Random

Oracle Random User−based CF
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

Control Algorithm

A
bs

. B
ia

s 
in

 T
re

at
m

en
t E

ffe
ct

 E
st

im
at

e

Cluster−randomized

Data−diverted

Naive

User−corpus co−diverted

Figure 2: The estimated absolute bias of treatment effect
estimates for different algorithm pairs across various exper-
imental designs. The results use 𝛾𝑝𝑟𝑒 𝑓 = 10, with all other
simulation parameters set to their default values.

𝛾0 − 𝛾1 = 1. In that case, the bias simplifies further,

𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏) − 𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≈
1
2𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗1{𝐶 (𝑖) = 𝐶 ( 𝑗)}

− 1
2𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

In other words, the information generated by one algorithm benefits
both algorithms equally, and if the clusters are of high-quality (low
cross-cluster dependence), then the clustering experiment performs
better than the data-diverted experiment. Another possible setting
is that the information generated and used by the two algorithms
is orthogonal, i.e. 𝛾10 = 𝛾01 = 0. In that case,

𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏) −𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≈
1
2𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗 (𝛾00−𝛾11)1{𝐶 (𝑖) = 𝐶 ( 𝑗)}

Here, if 𝛾00 > 𝛾11, then the clustering algorithm is always preferred;
otherwise, the data-diverted solution is preferred.

In addition to bias, an important consideration when choosing
amongst these experimental designs is the variance of the resulting
treatment effect estimate. We provide a brief discussion of this
matter in Appendix B.

4 SIMULATING SYMBIOSIS BIAS
Although the theoretical model analyzed in this paper provides
useful insight into the efficacy of different experiment designs at
reducing symbiosis bias, one might worry that the model abstracts
away the complex inter-temporal dynamics that cause symbiosis
bias. To address this concern, we use a simple simulation framework
to document the existence of symbiosis bias in naive experiments,
characterize the efficacy of different experiment designs at reducing
symbiosis bias, and conduct a preliminary exploration into the
conditions under which symbiosis bias may be more or less severe.

What follows is a high-level description of our simulation frame-
work that captures its important elements. A more comprehensive
description of this framework, which is inspired by the simulation
framework presented in Chaney et al. [9], is offered in Appendix C.
We consider a community of 100 users interacting with 1,000 items
over the course of 100 time periods. All 1,000 items are not initially
available to users; instead, items are made available in increments
of 10 items per time period, so that there are 10 items available at
𝑡 = 1 and 1,000 items available at 𝑡 = 100. The staggered release of
items ensures that there are always new items about which a data-
based recommender system will have limited information. User
preferences and item attributes are represented by 10-dimensional
vectors 𝜌𝑢 and 𝜈𝑖 , respectively, that are both drawn from nearly-
symmetric Dirichlet distributions that are distorted so as to create
some natural clustering in both the preferences of users and the
attributes of items. User 𝑢’s actual utility from consuming item 𝑖

is 𝐵𝑒𝑡𝑎(𝜇 = 𝜌𝑇𝑢 𝛼𝑖 , 𝜎 = 10−5). However, user 𝑢 places a premium
on consuming objects that are more highly recommended by the
platform’s recommendation algorithm. At each time interval 𝑡 , all
items available to a user 𝑢 are ranked and presented to them. The
user either interacts the item that they perceive will bring them the
highest utility, or they interact with no item at all if no item in the
consideration set provides higher than the median utility offered
across all items (including those not in the present consideration
set). Each user can consume each item 𝑖 at most once. Each user’s
potential outcome is the rate at which he or she chooses to interact
with items, taken over the 𝑇 = 100 time periods.

After the first 𝑡𝑖𝑛𝑖𝑡 = 10 periods of the simulation, during which
all recommendations are random, the user population is randomized
into an experiment that compares two different recommendation
algorithms. We consider four different experiment designs, all of
which have been discussed previously in this paper: naive experi-
mentation, cluster-randomized experimentation, data-diverted ex-
perimentation, and user-corpus co-diverted experimentation. Using
these designs, we consider pairwise combinations of four possible
recommendation algorithms:

• Oracle: An algorithm that recommends the available content
to each user that will give them the highest utility.
• Random: An algorithm that randomly recommends content
to users.
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Figure 3: The estimated take-up rate for different treatment algorithms when tested against different control algorithms under
different experiment designs at different levels of treatment-control. Error bars indicate 95% confidence intervals. The black line
indicates the “true” take-up rate for each control algorithm, which the shaded area representing the 95% confidence interval.

• Item-based collaborative filter: An algorithm that rec-
ommends items most similar to the items that a user has
previously consumed.
• User-based collaborative filter: An algorithm that recom-
mends items consumed by the users most similar to the focal
user.

We also use our simulation framework to measure the “true” coun-
terfactual take-up rate under each of these recommendation algo-
rithms.4

Figure 2 shows the estimated absolute bias in the treatment effect
estimate obtained when comparing different pairs of algorithms
under different experiment designs. The results use𝛾𝑝𝑟𝑒 𝑓 = 10, with
all other simulation parameters set to the default values described
in Appendix C. All three experiment designs reduce the absolute
bias of treatment effect estimates relative to the naive experiment
design, with the relative efficacy of the different designs varying
depending on the particular pair of algorithms being compared.
However, at least for this particular value of 𝛾𝑝𝑟𝑒 𝑓 , it appears to be
the case that user-corpus co-diversion is the most effective design
for reducing symbiosis bias, whereas clustering is the least. The
relative efficacy of each experiment design also varies as a function
of 𝛾𝑝𝑟𝑒 𝑓 ; this is discussed in more detail in Appendix D.

We can also use our framework to decompose the TTE bias into
bias in individual treatment arms’ take-up rates. Figure 3 shows

4This is achieved by conducting a naive experiment in whicb the treatment and control
algorithms are the same.

the estimated take-up rate for each algorithm when compared to
different competitor algorithms, under different experiment designs,
under different levels of treatment-control split, along with the
true counterfactual take-up rate for each algorithm. A number of
interesting insights emerge. Firstly, in the majority of cases, naive
experimentation does lead to symbiosis bias, and in the most severe
cases, the magnitude of this bias can be large (e.g., exaggerating
the take-up rate by nearly an order of magnitude). Second, the
fact that the magnitude of this bias decreases as the percentage of
units treated increases indicates that in many (but not all) cases,
symbiosis bias arises because one algorithm benefits from the “free”
exploration provided by the other algorithm. Third, while clustering
is not as effective as data-diversion and user-corpus co-diversion at
reducing absolute bias, it does not introduce new, opposite-signed
bias arising from less data and/or a smaller item corpus. Finally, it
is worth noting that clustering does indeed come at the expense
of lower precision, as evidenced by the wider confidence intervals
around clustered take-up rate estimates.

5 REAL DATA APPLICATION: A
COUNTRY-DIVERTED EXPLORATION
EXPERIMENT

While prior work has used data to empirically evaluate the efficacy
of data-diverted and user-corpus co-diverted experiments [11, 52],
cluster randomization has as of yet not been evaluated as a method
for symbiosis bias reduction. In this section, we demonstrate the
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presence of symbiosis bias with evidence from a large industrial
recommender system, and use this same data to gain insight into
the extent to which cluster randomization can mitigate symbiosis
bias. We study a 25% country-diverted A/B test described by Lin
et al. [35], in which the treatment increased exploration by boosting
recommendations of recently published content to treated users.
Countries act as natural clusters to the extent that users engage
with similar content as others in their country. These clusters are
imperfect, since users in different countries do engage with some
of the same content.

Our hypothesis for the mechanism of symbiosis bias in this
experiment is as follows: treated users are recommended more
recently published content. This results in more training data on
this content in the shared training data pool, as the algorithm learns
which recently published content is appealing to users. Users in the
control condition who have similar interests to those in the treated
condition are recommended recently published content because
of the training data generated by the treated condition. This leads
to an increase in the consumption of recently published content
for control users, with a greater increase for control users whose
interests overlap strongly with treated users.

To test this hypothesis, we study the correlation between the
amount of recently published content each country views and its
aggregate exposure to treated countries. This data is shown in Fig-
ure 4. Our definition of exposure uses the co-engagement metric
introduced in [7], which approximates the unit-unit graph as de-
scribed in the footnote of Section 3. We observe that engagement
with recently published content correlates positively with a control
country’s exposure to treatment. This correlation supports the hy-
pothesis that exploration data from treated countries “leaks” into
the training data for similar control countries, causing the recom-
mender system to recommend more recently published content
to users in these countries. This correlation also highlights to po-
tential for cluster randomization to reduce symbiosis bias, and the
extent to which cluster randomization’s efficacy as a bias reduction
technique is dependent on cluster quality. We also observe that the
correlation is near zero for treated countries. This negligible impact
of exposure on treated countries further illustrates the asymmetric
nature of symbiosis bias.

Overall, these results align with our potential outcomes model
from Equation 1, supporting both the linear effect of exposure on
the outcome and the interaction between exposure and treatment
status.

6 DISCUSSION
In this paper, we have used theory and simulation to explore the
efficacy of three different experiment designs at reducing symbiosis
bias, a novel form of bias in A/B test treatment effect estimates that
arises when two algorithms share a common pool of training data.
Our results reveal that each of the three approaches considered (clus-
ter randomization, data-diversion, and user-corpus co-diversion)
have benefits and drawbacks. The extent to which symbiosis bias
impacts a given experiment, and the relative efficacy of different
experiment designs at reducing this bias, depends on a number
of factors, including the specific algorithms being compared, the
percentage of site traffic available for enrollment in an experiment,
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Figure 4: Country-level differences in pre-period vs experi-
mental outcomes are linear in exposure for control and for
treated countries, matching our potential outcomes model of
symbiosis bias. Small countries omitted for readability. Error
bars represent 95% confidence intervals. Y-axis is normalized
so the average treated outcome equals 1.

the quality of clusters that can be inferred using available data, and
the size of the corpus of items being recommended.

Our work has a number of important limitations. For instance,
our theoretical model does not account for heterogeneity. Further-
more, our simulation framework and the analyses conducted using
this framework can be expanded in numerous ways (i.e., looking at
a larger set of recommendation algorithms and simulation parame-
ters). Finally, our analysis of real data relies on pre-post analysis of
a country-diverted experiment, and does not provide fully rigorous
well-identified evidence of the relationship between cluster quality
and symbiosis bias reduction. Nonetheless, we believe our analyses
provide useful insights on a research topic that is still nascent.

We also see numerous promising areas for future work, including
the development of more intelligent methods for splitting data and
items under data-diverted and user-corpus co-diverted designs,
making further comparisons between the approaches considered
in this paper and other, analysis-based approaches to reducing
symbiosis bias (e.g., Goli et al. [17] and Si [49]), and/or conducting
meta-experiments in the style of Holtz et al. [23] or Saveski et al.
[45].

In conclusion, this paper has provided a detailed investigation
of symbiosis bias in A/B testing of recommendation algorithms,
examining three experimental designs—cluster randomization, data-
diversion, and user-corpus co-diversion. Through theoretical mod-
els, simulations, and real-world data, we have demonstrated that
each approach has its own strengths and limitations, depending on
the context and algorithms being tested. While our findings offer
practical insights for mitigating symbiosis bias, future research
is needed to further refine these methods and explore other bias-
reduction strategies for A/B tests that compare recommendation
algorithms.
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A THEORY RESULTS
A.1 Proofs of Results in Section 3
For all results, we ignore the 𝑂 (𝑁 −2) terms that result from the∑
𝑖 1{𝑍𝑖 = 1} and ∑

𝑖 1{𝑍𝑖 = 0} being non-constant. Recall the
potential outcome model:

𝑌𝑖 (z) = 𝛽𝑧𝑖 + 𝛿𝑧𝑖𝑀 +
∑︁
𝑗

𝑤𝑖 𝑗𝛾𝑧𝑖𝑧 𝑗

The average total treatment effect is given by:

𝜏𝑇𝑇𝐸 = E[𝑌𝑖2 |Z = 1] − E[𝑌𝑖2 |Z = 0]

= (𝛽1 − 𝛽0) +𝑀 (𝛿1 − 𝛿0) +
1
𝑁

∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗 (𝛾11 − 𝛾00)

The expression of the sample-mean estimator is given by:

𝜏 =

∑
𝑖 𝑌𝑖21{𝑍𝑖 = 1}∑
𝑖 1{𝑍𝑖 = 1} −

∑
𝑖 𝑌𝑖21{𝑍𝑖 = 0}∑
𝑖 1{𝑍𝑖 = 0}

For an independent assignment with prob 1
2 ,

E𝑖𝑛𝑑 [𝜏] =(𝛽1 − 𝛽0) +𝑀 (𝛿1 − 𝛿0)

+ 1
𝑁

∑︁
𝑖

𝑤𝑖𝑖 (𝛾11 − 𝛾00)

+ 1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(𝛾11 + 𝛾10 − 𝛾01 − 𝛾00)

The bias then becomes:

𝐵𝑖𝑎𝑠𝑖𝑛𝑑 (𝜏) ≡ E𝑖𝑛𝑑 [𝜏] − 𝜏𝑇𝑇𝐸2

=
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(−𝛾11 + 𝛾10 − 𝛾01 + 𝛾00)

Wenow consider a clustering experiment with𝐶 (.) being the cluster
assignment function. We have:

E𝑐𝑙𝑢 [𝜏] = (𝛽1 − 𝛽0) +𝑀 (𝛿1 − 𝛿0)

+ 1
𝑁

∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗 (𝛾11 − 𝛾00)1{𝐶 (𝑖) = 𝐶 ( 𝑗)}

+ 1
𝑁

∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗
1
2
(𝛾11 + 𝛾10 − 𝛾00 − 𝛾01)1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

The bias is then given by:

𝐵𝑖𝑎𝑠𝑐𝑙𝑢 (𝜏) ≡ E𝑐𝑙𝑢 [𝜏] − 𝜏𝑇𝑇𝐸2

=
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(−𝛾11 + 𝛾10 − 𝛾01 + 𝛾00)1{𝐶 (𝑖) ≠ 𝐶 ( 𝑗)}

We now consider a data-diverted experiment:

E𝑑𝑖𝑣 [𝜏] = (𝛽1 − 𝛽0) +𝑀 (𝛿1 − 𝛿0)

+ 1
𝑁

∑︁
𝑖

𝑤𝑖𝑖 (𝛾11 − 𝛾00)

+ 1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(𝛾11 − 𝛾00)

The bias is then given by:

𝐵𝑖𝑎𝑠𝑑𝑖𝑣 (𝜏) ≡ E𝑑𝑖𝑣 [𝜏] − 𝜏𝑇𝑇𝐸2 =
1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(−𝛾11 + 𝛾00)

Finally, we consider a user-corpus co-diverted framework. The
expectation is given by:

E𝑐𝑜𝑑𝑖𝑣 [𝜏] =(𝛽1 − 𝛽0) +
1
𝑁

∑︁
𝑖

𝑤𝑖𝑖 (𝛾11 − 𝛾00)+

1
𝑁

∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
1
2
(𝛾11 − 𝛾00) +𝑀

(
𝛿1 − 𝛿0

2

)
As a result, the bias is given by:

𝐵𝑖𝑎𝑠codiv (𝜏) ≈
1
𝑁

©­«
∑︁
𝑖

∑︁
𝑗≠𝑖

𝑤𝑖 𝑗
𝛾00 − 𝛾11

2
ª®¬ +𝑀

(
𝛿0 − 𝛿1

2

)
A.2 Alternative Potential Outcome Model
[7] propose the following potential outcome model in a bipartite
graph:

[B] 𝑌𝑖 = 𝛼𝑖 + 𝛽𝑖𝑍𝑖 + 𝛾𝑖
∑︁
𝑗

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘𝑍 𝑗

[B] is not a suitable model in our real data setting: whether a unit is
treated or controlled affects howmuch interference they receive, e.g.
a random algorithm does not learn from other algorithms’ findings.
We can extend this model by adding an additional 𝛿𝑖𝑍𝑖 term (the
corpus-dependence term is irrelevant for the computations below).

[C] 𝑌𝑖 = 𝛼𝑖 + 𝛽𝑖𝑍𝑖 + (𝛾𝑖 + 𝛿𝑖𝑍𝑖 )
∑︁
𝑗

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘𝑍 𝑗

We answer two questions: (1) Is this parameterization as ex-
pressive as the model in Eq. 1? (2) What is the bias-minimizing
clustering (given fixed cluster cardinalities)? To answer the first
question, we rewrite our model (1) as a polynomial in 𝑍𝑖 and 𝑍 𝑗 :

𝑌𝑖 =𝛼
′
𝑖 + 𝛿00

∑︁
𝑗

𝑤𝑖 𝑗︸             ︷︷             ︸
𝛼𝑖

+
𝛽′𝑖 + (𝛿10 − 𝛿00)

∑︁
𝑗

𝑤𝑖 𝑗

︸                           ︷︷                           ︸
𝛽𝑖

𝑍𝑖

+
∑︁
𝑗

𝑍 𝑗 𝑤𝑖 𝑗 (𝛿01 − 𝛿00)︸            ︷︷            ︸
𝛾𝑖

∑
𝑘 𝑣𝑖𝑘 𝑣𝑗𝑘

+𝑍𝑖
∑︁
𝑗

𝑍 𝑗 𝑤𝑖 𝑗 (𝛿11 − 𝛿10 − 𝛿01 + 𝛿00)︸                            ︷︷                            ︸
𝛿𝑖

∑
𝑘 𝑣𝑖𝑘 𝑣𝑗𝑘

We can solve for 𝛿00, 𝛿01, 𝛿10, 𝛿11:

𝛿00 = (𝛼𝑖 − 𝛼 ′𝑖 )
©­«
∑︁
𝑗

𝑤𝑖 𝑗
ª®¬
−1

𝛿10 =
(
𝛽𝑖 − 𝛽′𝑖 + 𝛼𝑖 − 𝛼

′
𝑖

) ©­«
∑︁
𝑗

𝑤𝑖 𝑗
ª®¬
−1

𝛿01 = 𝛾𝑖𝑤
−1
𝑖 𝑗

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘 + 𝛿00, ∀ 𝑗

𝛿11 = 𝛿10 + 𝛿01 − 𝛿00 + 𝛿𝑖𝑤−1𝑖 𝑗

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘

= 𝛿10 + (𝛿𝑖 + 𝛾𝑖 )𝑤−1𝑖 𝑗

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘

If we maintain that 𝛿00, 𝛿01, 𝛿10, 𝛿11 are constants with respect to
𝑗 , then it follows from the𝛿01 or the𝛿11 equations that𝑤−1𝑖 𝑗

∑
𝑘 𝑣𝑖𝑘𝑣 𝑗𝑘

is constant with respect to 𝑗 , such that
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∃𝑐𝑖 ,∀𝑗, 𝑤𝑖 𝑗 = 𝑐𝑖

∑︁
𝑘

𝑣𝑖𝑘𝑣 𝑗𝑘 .

In that case, the above equations for 𝛿10, 𝛿11 simplify to:

𝛿01 = 𝛾𝑖𝑐
−1
𝑖 + 𝛿00

𝛿11 = 𝛿10 + (𝛿𝑖 + 𝛾𝑖 ) 𝑐−1𝑖

If we also maintain that 𝛿00, 𝛿01, 𝛿10, 𝛿11 are constant with respect
to 𝑖 and 𝑗 , then:

∃𝐶0,∀𝑖, 𝛼𝑖 − 𝛼 ′𝑖 = 𝐶0
∑︁
𝑗

𝑤𝑖 𝑗 (from 𝛿00)

∃𝐶1,∀𝑖, 𝛽𝑖 − 𝛽′𝑖 = 𝐶1
∑︁
𝑗

𝑤𝑖 𝑗 (from 𝛿00 and 𝛿10)

∃𝐶3,∀𝑖, 𝛾𝑖 = 𝐶3𝑐𝑖 (from 𝛿01)
∃𝐶4,∀𝑖, 𝛿𝑖 = 𝐶4𝑐𝑖 (from 𝛿01 and 𝛿11)

This means that our model (1) can be re-written in the following
way:

𝑌𝑖 = 𝛼𝑖 + 𝛽𝑖𝑍𝑖 + (𝐶3 +𝐶4𝑍𝑖 )
∑︁
𝑗

𝑤𝑖 𝑗𝑍 𝑗

In particular, this means that the ratio of the indirect effect on a
treated unit and the indirect effect on a controlled unit is constant
across all units and equal to 1 + 𝐶4

𝐶3
, which is a strong assumption.

This assumption is clearly present in the original [YT] model. To
answer question 1, [𝑌𝑇𝐵1] is more expressive than [𝑌𝑇 ].

To answer the second question, we take the expectation of the
model under a cluster-randomized experiment with fixed cardinal-
ity, and isolate its bias relative to the Total Treatment Effect. To
simplify the notation, we will denote:𝑤𝑖 𝑗 =

∑
𝑘 𝑣𝑖𝑘𝑣 𝑗𝑘 . Recall that

the total treatment effect of [YTB1] is given by:

𝑇𝑇𝐸 = 𝛽𝑖 + (𝛾𝑖 + 𝛿𝑖 )
∑︁
𝑗

𝑤𝑖 𝑗

Let C𝑖 denote unit 𝑖’s cluster.

E
[
𝑌𝑖𝑍𝑖𝑝

−1��C] = 𝛼𝑖 + 𝛽𝑖 +∑︁
𝑗

𝑤𝑖 𝑗 (𝛾𝑖 + 𝛿𝑖 )P(𝑍𝑖𝑍 𝑗 = 1)𝑝−1

E[𝑌𝑖 (1 − 𝑍𝑖 ) (1 − 𝑝)−1 |C] = 𝛼𝑖 +
∑︁
𝑗

𝑤𝑖 𝑗𝛾𝑖P((1 − 𝑍𝑖 )𝑍 𝑗 = 1) (1 − 𝑝)−1

Furthermore, let ⌊𝑝𝐾⌋ be the number of treated clusters. For sim-
plicity, we will assume ⌊𝑝𝐾⌋ = 𝑝𝐾 . We have:

P(𝑍𝑖𝑍 𝑗 = 1)𝑝−1 = 1𝐶𝑖=𝐶 𝑗
+ 1𝐶𝑖≠𝐶 𝑗

𝑝 (1 − 𝐾−1)
P((1 − 𝑍𝑖 )𝑍 𝑗 = 1) (1 − 𝑝)−1 = 𝑝1𝐶𝑖≠𝐶 𝑗

Assuming 𝐾 >> 1, the expectation and bias of the diff-in-means
estimator is:

E[𝜏] =
∑︁
𝑖

©­«𝛽𝑖 +
∑︁
𝑗

𝑤𝑖 𝑗

[
𝛾𝑖1𝐶𝑖=𝐶 𝑗

+ 𝛿𝑖
(
1𝐶𝑖=𝐶 𝑗

+ 1𝐶𝑖≠𝐶 𝑗
𝑝

)]ª®¬
𝑇𝑇𝐸 − E[𝜏] =

∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗

(
𝛾𝑖1𝐶𝑖≠𝐶 𝑗

+ 𝛿𝑖 (1 − 𝑝)1𝐶𝑖≠𝐶 𝑗

)
=
∑︁
𝑖

∑︁
𝑗

𝑤𝑖 𝑗 (𝛾𝑖 + 𝛿𝑖 (1 − 𝑝)) 1𝐶𝑖≠𝐶 𝑗

The answer to the second question is that it is again a graph cut,
where the edge weights are reweighted by 𝛾𝑖 + 𝛿𝑖 (1 − 𝑝). As a
result, the conclusions around the effectiveness of clustering do not
change much with this alternative model. The same holds for other
designs.

B VARIANCE OF TREATMENT EFFECT
ESTIMATORS

An important consideration when choosing amongst these experi-
mental designs is the variance of the chosen estimator. It is surpris-
ingly non-straightforward and verbose to compute each variance
under linear interference models [3, 8, 34]. We provide some intu-
ition on the variance of each mechanism where the indirect effects
are second-order to the first-order effects, such that we can rea-
sonably assume that the variance behaves as though SUTVA holds.
The Bernoulli assignment, the user-corpus co-diverted experiment,
and the data diversion mechanism all consider an equal number
of unit-level outcomes. As a result, we expect each of these three
designs to have roughly similar RMSE. The cluster-randomized
assignment can be framed as a Bernoulli assignment where indi-
vidual outcomes are replaced with cluster-level outcomes5 . The
effective number of units goes from 𝑁 to 𝐶 , the number of clus-
ters. Under SUTVA, the standard deviation of our estimate under
a Bernoulli assignment decreases roughly at a rate of 𝑁 −1/2, such
that, if the indirect effects are second-order to the direct effects,
we expect the RMSE to grow roughly at a rate of 𝑁 1/2𝐶−1/2 when
going from a Bernoulli assignment with 𝑁 to a cluster-randomized
assignment with 𝐶 balanced clusters. The standard deviation is
expected to grow even further with unbalanced clusters. In practice,
the variance of our estimators is often dominated by the sampling
variance of outcomes, and not by the treatment effects, such that
practitioners can use the variance of each estimator in an A/A test
as a reasonable estimate of each variance.

C SIMULATION FRAMEWORK DESCRIPTION
In the following subsections, we provide a detailed description
of each component of our simulation framework. In our paper’s
simulations, the default values of the simulation parameters are as
follows: 𝑝 = 0.5, 𝑁𝐶𝑖

= 4, 𝑁𝐶𝑢
= 10, 𝛼𝑢 = 1, 𝛼𝑖 = 0.01, 𝛾𝑖𝑡𝑒𝑚 = 1,

𝛾𝑝𝑟𝑒 𝑓 = 1, 𝑇 = 100, 𝑡𝑖𝑛𝑖𝑡 = 10, 𝑑 = 0.8, 𝑓 = 1, 𝑛𝑖𝑡𝑒𝑚𝑠 = 1,000, and
𝑛𝑢𝑠𝑒𝑟𝑠 = 100.

C.1 User Preferences
We represent user preferences as 10-dimensional vectors, 𝜌𝑢 , whose
entries sum to 1. These vectors are drawn from a modified sym-
metric Dirichlet distribution, where one out of 𝑁𝐶𝑢

possible com-
ponents is scaled by a random parameter, 𝛾𝑝𝑟𝑒 𝑓 . Specifically, we
begin with a Dirichlet distribution for vectors of length 10 with
concentration parameters (𝛼1, 𝛼2, . . . , 𝛼10). Initially, the distribu-
tion is symmetric with all concentration parameters equal, i.e.,
(𝛼1 = 𝛼2 = · · · = 𝛼10 = 𝛼𝑢 ). We then select 𝑁𝐶𝑢

of the con-
centration parameters, which correspond to the “clusters” in our

5In other words, 𝑌𝑖 ← 𝑌 +𝑐 := 𝛽+𝑧𝑐 +
∑

𝑐′ 𝑤𝑐𝑐′𝛾𝑧𝑐𝑧𝑐′ , where 𝛽𝑧𝑖 ← 𝛽+𝑧𝑐 := | {𝑖 ∈
𝐶 } | · 𝛽𝑧𝑐 and 𝑤𝑖 𝑗 ← 𝑤𝑐𝑐′ :=

∑
𝑖∈𝑐,𝑗 ∈𝑐′ 𝑤𝑖 𝑗 .
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Figure 5: Bias in the estimated take-up rate (relative to the mean “true” take-up rate) for different treatment algorithms when
tested against different control algorithms under different experiment designs and under different values of 𝛾𝑝𝑟𝑒 𝑓 (which
determines how easily clustered user preferences are). Error bars indicate 95% confidence intervals.

data-generating process (for instance, if 𝑁𝐶𝑖
were 3, the three se-

lected concentration parameters might be 𝛼1, 𝛼7, and 𝛼10). Each
user randomly draws one of the 𝑁𝐶𝑢

“clusters”, and then draws
their preferences from a modified Dirichlet distribution where the
selected concentration parameter is equal to 𝛾𝑝𝑟𝑒 𝑓 · 𝛼𝑢 , rather than
𝛼𝑢 .

C.2 Item Attributes
We represent item attributes as 10-dimensional vectors, 𝜈𝑖 , whose
entries sum to 1. These vectors are drawn from a modified sym-
metric Dirichlet distribution, where one out of 𝑁𝐶𝑢

possible com-
ponents is scaled by a random parameter, 𝛾𝑖𝑡𝑒𝑚 . Specifically, we
begin with a Dirichlet distribution for vectors of length 10 with
concentration parameters (𝛼1, 𝛼2, . . . , 𝛼10). Initially, the distribu-
tion is symmetric with all concentration parameters equal, i.e.,
(𝛼1 = 𝛼2 = · · · = 𝛼10 = 𝛼𝑖 ). We then select 𝑁𝐶𝑖

of the concentra-
tion parameters, which correspond to the “clusters” in our data-
generating process (for instance, if 𝑁𝐶𝑢

were 3, the three selected
concentration parameters might be 𝛼1, 𝛼7, and 𝛼10). Each user
randomly draws one of the 𝑁𝐶𝑢

“clusters”, and then draws their
preferences from a modified Dirichlet distribution where the se-
lected concentration parameter is equal to 𝛾𝑖𝑡𝑒𝑚 · 𝛼𝑖 , rather than
𝛼𝑖 .

C.3 User Consumption Decisions
User 𝑢’s true utility from consuming item 𝑖 is drawn from

𝑢𝑡𝑖𝑙 (𝜌𝑢 , 𝜈𝑖 ) ∼ 𝐵𝑒𝑡𝑎(𝜇 = 𝜌𝑇𝑢 𝜈𝑖 , 𝜎 = 10−5)

However, user 𝑢 does not know how much utility they will derive
from consuming item 𝑖 prior to consumption. User 𝑢’s perceived
utility from consuming item 𝑖 , 𝑢𝑡𝑖𝑙𝑝 (𝜌𝑢 , 𝜈𝑖 ), depends on item 𝑖’s
ranking 𝑟 in the set of results presented to user 𝑢, with 𝑟 = 1
corresponding to the most highly ranking item. This perceived
utility is equal to:

𝑢𝑡𝑖𝑙𝑝 (𝜌𝑢 , 𝜈𝑖 ) = 𝑢𝑡𝑖𝑙 (𝜌𝑢 , 𝜈𝑖 ) · 𝑟𝑑

In other words, users expect more highly ranked items to be of
higher quality.

C.4 Simulated Experiment Design
In each simulation, we begin with 𝑛𝑖𝑡𝑒𝑚𝑠 items and 𝑛𝑢𝑠𝑒𝑟𝑠 users,
with item attributes and user preferences generated as described in
the previous sections. Each user also has a reserve utility, 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑢 ,
which is equal to the median of the true utilities associated user 𝑢
consuming each of all 𝑛𝑖𝑡𝑒𝑚𝑠 items.

The simulation lasts 𝑇 time periods. At the beginning of the
simulation, no items are available for consumption by users. In
each period, beginning with period 𝑡 = 1, 𝑛𝑖𝑡𝑒𝑚𝑠

𝑡 randomly selected
items are made available for user consumption, and are available to
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be consumed in all subsequent periods. Each user 𝑢 can consume
each item 𝑖 a maximum of one time.

For the first 𝑡𝑖𝑛𝑖𝑡 time periods, all available items are suggested to
users according to a random ranking. After 𝑡𝑖𝑛𝑖𝑡 time periods, users
(and items in the case of the user-item co-diverted experiment)
are randomized into two different ranking algorithms according to
one of four experiment designs: naive experimentation, clustered
experimentation, data-diverted experimentation, or user-corpus
co-diverted experimentation, with 𝑝 × 𝑛𝑢𝑠𝑒𝑟𝑠 being allocated to
the treatment and (1 − 𝑝) × 𝑛𝑢𝑠𝑒𝑟𝑠 being allocated to the control.6
In each subsequent time period, all previously available items are
ranked according to the user’s assigned ranking algorithm. The
𝑛𝑖𝑡𝑒𝑚𝑠

𝑡 new items, for which there is no historical data, are then
randomly ordered and interleaved into the ranking algorithm’s
ordered list. Each ranking algorithm is re-trained using the newest
available every 𝑓 time periods.

At the end of each simulated experiment, we calculate the av-
erage rate at which users consumed items in each treatment arm,

as well as the difference between these consumption rates, i.e., the
treatment effect.

D BIAS IN TAKE-UP RATE ESTIMATES AS A
FUNCTION OF 𝛾𝑝𝑟𝑒 𝑓

Figure 5 shows how the amount of symbiosis bias changes under
each experiment design as a function of 𝛾𝑝𝑟𝑒 𝑓 , which is a parameter
in our simulation that dictates how easily clustered user preferences
are. Higher values of 𝛾𝑝𝑟𝑒 𝑓 correspond to more separated user
preferences and better clusters. The amount of symbiosis bias in
estimates of each algorithm’s take-up rate is highly dependent on
not only the combination of algorithms being compared, but also
the value of 𝛾𝑝𝑟𝑒 𝑓 . For instance, for low-values of 𝛾𝑝𝑟𝑒 𝑓 , naive and
clustered randomization lead to the highest bias in estimates of
the user-based CF take-up rate when compared to the item-based
CF, whereas for high values of 𝛾𝑝𝑟𝑒 𝑓 , the user-corpus co-diverted
experiment is the most biased.
6In the case of cluster-randomized experimentation, these user-level treatment assign-
ment probabilities are approximate.
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