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Abstract

Explainable artificial intelligence with natural
language explanations (Natural-XAI) aims to
produce human-readable explanations as evi-
dence for Al decision-making. This evidence
can enhance human trust and understanding of
Al systems and contribute to Al explainabil-
ity and transparency. However, the current ap-
proaches focus on single explanation genera-
tion only. In this paper, we conduct experi-
ments with the state-of-the-art Transformer ar-
chitecture and explore multiple explanations
generation using a public benchmark dataset,
e-SNLI (Camburu et al., 2018). We propose
a novel deep generative Natural-XAlI frame-
work: INITIATIVE, standing for explaln
aNd predIlcT wlth contextuAl condiTlonal
Variational autoEncoder for generating natu-
ral language explanations and making a pre-
diction at the same time. Our method achieves
competitive or better performance against the
state-of-the-art baseline models on generation
(4.7% improvement in the BLEU score) and
prediction (4.4% improvement in accuracy)
tasks. Our work can serve as a solid deep gen-
erative model baseline for future Natural-XAI
research. Our code will be publicly available
on GitHub upon paper acceptance.

1 Introduction

With the advancement of modern Al techniques
(LeCun et al., 2015), their ubiquitousness comes
at the expense of interpretability. Hence, concerns
have been raised on whether modern Al can make
reasonable judgements (McAllister et al., 2017;
Challen et al., 2019), which further triggered an
increasing interest in Explainable Artificial Intelli-
gence (XAI) research (Arrieta et al., 2020).
Traditionally, natural language processing (NLP)
models are built based on techniques that are in-
herently more explainable. Examples of such ap-
proaches are often referred to as ‘white box’ tech-
niques, including rule-based heuristic systems, de-
cision trees, hidden Markov models, conditional

random fields, etc. In recent years, due to the ad-
vancement of data-driven modelling tools and the
big-data era, a ‘black box’ technique, deep neural
networks have become the dominant approach for
modern NLP applications (Danilevsky et al., 2020).

On applying XAI techniques to NLP applica-
tions, researchers first focused on feature-based-
(explanation via important features) (Voskarides
et al., 2015; Godin et al., 2018), model-based- (ex-
planation via surrogate models) (Ribeiro et al.,
2016) and example-based (explanation via similar
examples) (Croce et al., 2019) explanation tech-
niques. However, even for experts working as data
scientists in industry, interpreting results from these
models was found to be hard, and bias-prone (Kaur
et al., 2020). To reduce human interpretation bias,
directly generating natural language explanations
seems a better medium for presentation.

This lead to XAl with natural language explana-
tions (or Natural-XAl), first proposed in (Camburu
et al., 2018), together with a dataset (e-SNLI), ex-
tending the Stanford natural language inference
(SNLI) dataset (Bowman et al., 2015). Natural lan-
guage inference (NLI) is the task of determining
whether a ‘hypothesis’ is true (entailment), false
(contradiction), or undetermined (neutral) given
a ‘premise’. NLI is an essential yet challenging
task in the natural language understanding field. It
requires common sense reasoning on the seman-
tic relationships between premise and hypothesis
sentence-pairs. However, as (Gururangan et al.,
2018) shows, current NLI datasets contain anno-
tation artefacts, allowing the models to make pre-
dictions based on spurious correlations in data. A
simple neural network (here a fastText classifier
(Joulin et al., 2016)) can make correct predictions
67% of the time, when only having access to the
hypothesis. However, using the same information,
(Camburu et al., 2018) explained that spurious cor-
relations are much harder to be picked up from data
when generating explanations, other than predict-



ing the correct label.

Initially, a sequence-to-sequence (seg2seq) learn-
ing framework was adopted for single-explanation
generation (Camburu et al., 2018). When the beam
search algorithm is applied, the algorithm can not
produce multiple variations of sentences in a prin-
cipled way (as the top k variations of the beam
search list will be qualitatively worse than the first
ranked variation) (Gupta et al., 2018). However,
the same semantic content can often be expressed
in various correct forms in natural language. Hence,
this paper adopts deep generative models, to gener-
ate multiple high-quality explanations via posterior
analysis in the latent space. Additionally, this pa-
per explores how to perform multiple explanations
generation, while also making predictions.

Our main contributions include: (i) a novel deep
generative Natural-X Al framework, INITIATIVE,
which can generate multiple instances of natural
language explanations while making predictions;
(ii) the first study on spurious correlation on the
e-SNLI dataset with Transformer architecture; (iii)
the first study on the Natural-XAlI task with deep
generative models; (iv) demonstrating the benefits
of our framework, INITIATIVE, against the state-
of-the-art baseline models with empirical experi-
ments; (v) a solid deep generative model baseline
for future Natural-XAlI research.

2 Related Work

2.1 Explainable Artificial Intelligence for
Natural Language Processing

General XAl approaches can be categorised in two
main ways: (Guidotti et al., 2018; Tjoa and Guan,
2020): 1) Local vs Global, and 2) Self-Explaining
vs Post-Hoc. Our work contributes to explainable
artificial intelligence (XAI) from two perspectives:
Local and Self-Explaining, as we provide explana-
tions based on (fine-granularity) individual input,
and our explanations are directly interpretable.

In terms of explanation techniques and their ap-
plications to NLP there are, in general, five dif-
ferent types (Danilevsky et al., 2020): 1) feature
importance, 2) surrogate model, 3) example-driven,
4) provenance-based, and 5) declarative induction.
The first three are more widely adopted and have
already been described briefly in section 1. The
provenance-based technique refers to visualising
some or all of the prediction process, such as in
(Zhou et al., 2018; Amini et al., 2019). Our work
uses the declarative induction technique, which

tackles the challenging task of providing human-
readable representations as a part of the results,
such as in (Camburu et al., 2018; Prollochs et al.,
2019). Our work further extends (Camburu et al.,
2018) with a probabilistic treatment. We introduce
a novel deep generative framework for multiple
explanation generation and label prediction, simul-
taneously.

2.2 Supervised Deep Generative Models in
Natural Language

Our work is associated with deep generative mod-
els, which is based on neural variational inference
(NV]) (Kingma and Welling, 2013; Mnih and Gre-
gor, 2014; Rezende et al., 2014). NVI is also
known as amortised variational inference in the
literature and can be considered as an extension of
the mean-field variational inference (Jordan et al.,
1999; Bishop, 2006). NVI technique uses data-
driven neural networks instead of more restrictive
statistical inference techniques. NVI allows us to
infer unobservable latent random variables that gen-
erate the observed data and are very efficient for
data with hidden structures, such as natural lan-
guage.

NVI has been successfully applied in various
NLP applications including topic modelling (Miao
et al., 2016; Srivastava and Sutton, 2017), machine
translation (Su et al., 2018; Pagnoni et al., 2018),
text classification (Miao et al., 2016), conversation
generation (Zhao et al., 2017; Gao et al., 2019),
and story generation (Fang et al., 2021). This paper
explores the potential for Natural-XAlI explanation
generation via building a novel deep generative
framework. This paper is the first work to apply
NVI for the Natural-XAI task, to the best of our
knowledge.

3 Technical Background

This section provides a brief overview of the Con-
ditional Variational Autoencoder (CVAE) and the
Transformer architecture. Further, we define our
problem to be solved associated with the e-NLI
dataset.

3.1 Conditional Variational Autoencoder

CVAE (Sohn et al., 2015; Larsen et al., 2016) is
an extended version of the deep generative latent
variable model (LVM) based on the variational
autoencoder (VAE) model (Kingma and Welling,
2013; Rezende et al., 2014). Both the models allow



learning rich, nonlinear representations for high-
dimensional inputs. When compared with VAE
(performing inferences for the latent representation
z, based on the input x, only), CVAE performs
inference for the latent representation z, based on
both the input & and the output y, together. CVAE
can be considered as a neural network framework
based on supervised neural variational inference.

Compared with a standard autoencoder (Good-
fellow et al., 2016), which learns a deterministic
mapping from input « to the latent space z, CVAE
learns the posterior distribution for the latent space
z, thus allowing sampling from p(z) and interpo-
lation between two points, if they both come from
p(2).

CVAE generally includes two components: an
encoder and a decoder. We consider the joint
probability distribution and its factorisation, in the
form of pe(y, z|x) = pe(y|z, x)pe(z|x) as in
(Miao et al., 2016; Zhao et al., 2017; Pagnoni et al.,
2018; Gao et al., 2019; Fang et al., 2021). The
encoder pg(z|x) takes the observed input « and
produces a corresponding latent vector z as the
output with parameter 6. The decoder pg(y|z, )
takes the observed input x and its corresponding
latent vector sample z as the total input and pro-
duces an output y with the parameter 6. The latent
variable z in the joint probability pg(y, z|x) can
be marginalised out by taking samples from p(z).

For CVAE, we optimise the following evidence
lower bound (ELBO) for the log-likelihood during
training:

log po(y|z) > L(ELBO)
= Eg,(»)[logpo(y|z, )] (1)
—DkL[ge (2|, y)||pe(z|T)]

The first term of ELBO is the reconstruction
loss and is measured via cross-entropy match-
ing between predicted versus real target y. The
second term is the Kullback—Leibler (KL) diver-
gence between two distributions pg(z|x) and
qe(z|z,y). As the true posterior distribution
po(z|x) is intractable to compute, a variational
family distribution g4 (2|2, y) is introduced as its
approximation. We consider both pg(z|x) and
g¢(z|x,y) are in the form of isotropic Gaus-
sian distributions, as N (pe(x), diag(oa(x)))
and N (po(z, y), diag(aé(m, v))). Our work
takes a similar assumption, but the key difference
lies in the design of our novel model architectures

(section 5), together with using the state-of-the-
art Transformer model (Vaswani et al., 2017) as a
building block. We provide a detailed explanation
of the Transformer model in the next section.

3.2 Transformer Architecture

The Transformer architecture was first proposed
in (Vaswani et al., 2017) and was the first neural
network architecture entirely built based on the
self-attention mechanism. It has been used as the
main building block for most of the current state-
of-the-art models in NLP, such as BERT (Devlin
etal., 2018), GPT3 (Brown et al., 2020), and BART
(Lewis et al., 2019). The Transformer architecture
can be divided into three main components: an
embedding part, an encoder and a decoder.

The embedding part takes the input € R51*!
in the form of a sequence with length s; and uses
an input embedding to create E(z) € R51*F,
where F is the embedded dimension size. Due to
the permutation-invariant self-attention mechanism,
(Vaswani et al., 2017) further introduced positional
encoding, to encode sequential order information,
as P(x) € R***¥F, The sum of positional encoding
and input embedding is used as the final embed-
ding of the input . In (Vaswani et al., 2017), sine
and cosine functions of different frequencies are
adopted as the positional encoding method. Fur-
ther work for the state-of-the-art large transformers,
such as BERT, GPT3 and BART, used a learnt po-
sitional embedding, which we utilise in this paper.

For the encoder and decoder, we use precisely
the same Transformer architecture as in the original
paper (Vaswani et al., 2017). We use the official
implementation in the Pytorch library!. Because
the use of Transformers has become common and
our implementation is almost identical to the orig-
inal, we will omit a detailed background descrip-
tion of the model architecture and refer readers to
(Vaswani et al., 2017). In our experiments, if an en-
coder and a decoder are used simultaneously, they
each have a separate embedding part.

3.3 Problem Description

Our training data is in the form of N data quadru-
plets {xﬁf’ ), :m(lh), yg ),yT(f) nN:p with each quadru-
plet consisting of the premise (denoted by ac,(lp )),
the hypothesis (denoted by xglh)) and their associ-
ated label (denoted by yg )) and explanation (de-

"https://pytorch.org/docs/stable/nn.html#transformer-
layers



noted by y'¢). For the n* quadruplet, z) =

h h h l
{wgp),...,w(f;)}, M = {w§ ),...,wéh)}, yﬁl) =

{w®}, and y = {wl?, ., w(Lee)} denote the set
of L, words from the premise sentence, L;, words
from the hypothesis sentence, a single word w(")
from the label, and L. words from the explanation
sentence, respectively.

Our validation and testing data are similar to data
quadruplets as the training data; however, we have
three (y(€1), y(€2) and y(€3)) instead of one ex-
planation y(®), created by human experts. During
training, we update model parameters based on one
explanation y(®); and during validation and testing,
we perform model selection and inference based on
the mean average loss of three explanations (y(€1),
y(€2) and y(€3)). In the following descriptions, we
will omit the data quadruplet index n and use bold
characters to represent vector form representations,
as (P, p(h) y(l), and y(e). These representa-
tions will be learnt in an end-to-end fashion.

4 Preliminary Experiments

We present two preliminary experiments in this
section. In the first experiment, we select a suit-
able Transformer architecture from two candidates
and explore how easily the Transformer model can
capture spurious correlations from data. The sec-
ond experiment explores how much we can reduce
spurious correlations from data, when using expla-
nation as output, other than the label. Addition-
ally, we compare the performance of explanation-
generation in full and agnostic scenarios (section
4.2).

For all of our experiments, we use the archi-
tecture setting similar to the base version of the
Transformer model (Vaswani et al., 2017). We use
a 6-layer model with 512 hidden units and 8 heads
for encoder and decoder networks. Based on an
inspection of token length statistics (Appendix A),
we set the maximum length of 25 for positional en-
coding. See Appendix F for a detailed description
of all model complexity in this paper.

We generally follow the vocabulary processing
steps as in (Camburu et al., 2018) (see detailed
pre-processing description in Appendix A) and re-
place words that appeared less than 15 times with
"< unk >’. We append < bos >’ and < eos >’
at the beginning and the end of each sentence dur-
ing the pre-processing. We report our experiments
based on 3 random seeds (1000, 2000 and 3000)
and report the average performance with its stan-

dard deviation in parenthesis.

We use the maximum a posteriori (MAP) estima-
tion decoding for the conditional generation. MAP
decoding, whilst not always the optimal choice,
however, has a reasonably good performance, is
widely adopted and cheap to compute (Eikema and
Aziz, 2020). For the network optimisation, we use
Adam (Kingma and Ba, 2014) as our optimiser with
default hyper-parameters (5, = 0.9, 82 = 0.999,
e = le — 8). We conduct all the experiments with
a batch size of 16 and a learning rate of le — 5
for a total of 10 epochs on a machine with Ubuntu
operating system and a GTX 2080Ti GPU.

4.1 Transformer Architecture Selection and
Spurious Correlation Experiments

In the first experiment, we wish to answer two
questions: Q(i) What is a good Transformer model
architecture choice for the e-SNLI text classifica-
tion task? Q(ii) How easily can a Transformer
model pick up the spurious correlation, when only
a hypothesis sentence is observed?

Premise

H HHHH

f Label Hypothesis f Label

Hypothesis
(a) (b)
Premise Hypothesis  f Label

(¢)

Figure 1: Graphical overview of architectures used in
section 4.1. (a) is for Separate Transformer Encoder;
(b) is for Premise Agnostic Encoder; and (c) is for Mix-
ture Transformer Encoder.

To answer Q(i), we experiment on two candidate
model architectures: (1) Separate Transformer En-
coder: an architecture with two separate encoders,
each for premise and hypothesis sentence (Fig. 1a)
(2) Mixture Transformer Encoder: an architecture
with a mixture encoder for both premise and hy-
pothesis sentence together (Fig 1c). We choose
these two candidates for the following reasons: the
first candidate architecture is widely adopted in
early NLI literature (Parikh et al., 2016; Chen et al.,
2017; Gong et al., 2017), where f here refers to
algorithmic operations (identity, subtraction, mul-
tiplication) as in (Conneau et al., 2017). The lat-
ter candidate architecture is adopted by the BERT
model (Devlin et al., 2018), where f here refers to



an affine transformation operation and has achieved
state-of-the-art performance for NLI tasks. To an-
swer Q(ii), we perform the premise-agnostic pre-
diction experiment on the Premise Agnostic En-
coder model (Fig 1b), where f here refers to an
affine transformation operation.

For the above two experiments, results are pre-
sented in Table 1. For the Separate Transformer
Encoder, we use the encoder outputs at two sepa-
rate *< bos >’ positions for algorithmic operations
(identity, subtraction and multiplication). For Mix-
ture Transformer Encoder and Premise Agnostic
Encoder, we use the output at the first < bos >’
position. We apply an affine transformation oper-
ation for predicting the label. The results suggest
the Mixture Transformer Encoder outperforms the
Separate Transformer Encoder in a statistically
significant way (p < .05; Wilcoxon test). The
Premise Agnostic Encoder achieves 82.84% (based
on 65.43/78.98) of the Mixture Transformer En-
coder performance, suggesting that Transformer
models tend to capture spurious correlations very
easily for NLI label prediction task.

Model

Separate Transformer Encoder
Mixture Transformer Encoder
Premise Agnostic Encoder

Accuracy (%)
73.97 (0.34)
78.98 (1.44)
65.43 (0.72)

Table 1: Architecture Selection and Spurious Correla-
tion Experiments.

4.2 Premise-Agnostic and Full Generation
Experiments

In the second experiment, we address two further
questions: Q(iii) /s providing explanations as out-
put reducing the impact of spurious correlation in
a Transformer model, compared to predicting the
label only? Q(iv) How much better are explana-
tions based on premise and hypothesis, instead of

hypothesis-only?

Explanation

(a)

Hypothesis

Premise Hypothesis

(b)

Explanation

Figure 2: Graphical overview of architectures used in
section 4.2. (a) is for Agnostic Generation; (b) is for
Full Generation.

To answer Q(ii), we follow and extend the
"PremiseAgnostic’ experiment (Camburu et al.,
2018). We use the model architecture in Fig. 2a,
and we are interested in evaluating how well the
Transformer architecture can generate an expla-
nation from the premise-agnostic scenario (only
premise observed). To answer Q(iv), we imple-
ment a standard seq2seq model (Sutskever et al.,
2014) with Transformer architecture. We compare
the agnostic generation scenario with the full gen-
eration scenario (both premise and hypothesis ob-
served), the model architecture for complete infor-
mation is provided in Fig. 2b.

We evaluate the performance of these two mod-
els based on both quantitative and qualitative as-
sessments. For qualitative one, we follow (Cam-
buru et al., 2018) and evaluate based on the first 100
test examples only? (Correct@100 in Table 2). The
qualitative results are calculated based on the high-
est BLUE score among all three seeds (see details
in Appendix B and C). For the quantitative one, we
use automatic evaluation metrics (Perplexity and
BLEU (Papineni et al., 2002)) over the entire test
data points. For evaluation, the lower the perplex-
ity, the higher the BLEU score and the higher the
Correct@100, the better the model performs.

Our results, presented in Table 2, suggest that
agnostic generation significantly reduces the abil-
ity to generate correct explanations, with only
56.9% (based on 35.0/61.5) for matching words
and 26.8% (based on 11/41) for correctness, based
on the first 100 test examples (compared with
82.84% in section 4.1). Selected examples are pre-
sented in Appendix D.

Model Perplexity BLEU Correct@100
Agnostic Generation  7.66 (0.03) 25.74 (0.8)  35.0/11/—
Full Generation 5.53(0.05) 33.14(0.5) 61.5/41/—

Table 2: Premise Agnostic Generation Experiments.

5 Deep Generative Natural-XAI
Framework for NLI

Our novel deep generative framework consists of
two components: an explanation generative model
and a label predictive model (Fig. 3). The gen-
erative model uses a novel contextual conditional
variational autoencoder (ConCVAE), based on a
Transformer-based encoder-decoder architecture.

The three scores are related to matching words, correct-
ness and multiple generations.
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Figure 3: Graphical overview of our Natural-XAl
framework, INITIATIVE, introduced in section 5.

The predictive model shares the same Transformer
encoder parameters with the generative model. Our
framework can generate multiple explanations and
make prediction, given a pair of premise and hy-
pothesis sentence-pair. In this section, we explain
our framework, called INITIATIVE, standing for
explaln aNd predIcT wlth contextuAl condiTIonal
Variational autoEncoder, in detail.

5.1 Neural Encoder

Given a pair of premise x(®) and hypothesis x(h),
with their associated explanation y(€), the encoder
network outputs two sequences of representations:

xp, = Encoder([z®; ™)) @
yn = Encoder([y®)])

Here Encoder refers to the Transformer Mix-
ture Encoder, which we selected based on exper-
iments in section 4.1. xp is the contextual rep-
resentations for the premise () and hypothesis
(M) pair. yp, is the contextual representation for
explanation y(®). We share the same encoder net-
work parameters for producing xp, and yp. xp has
the same sequence length as the sum of premise
and hypothesis length. yp has the same sequence
length as the explanation length. [a; b] refers to
the concatenation operation of vectors a and b.

5.2 Neural Inferer

The neural inferer can be divided into two separate
components: the prior and the posterior networks.
Both prior and posterior distributions are assumed
to be isotropic multivariate Gaussians, following
the CVAE assumption (Sohn et al., 2015; Larsen
et al., 2016). As determined by the ELBO equa-
tion 1, the parameters of the prior are computed
by the prior network, which only takes the inputs:
premise () and hypothesis (). The posterior
parameters are determined from both inputs and

outputs: premise P), hypothesis (") and expla-
nation y(€). We restrict the variance matrices of the
prior and the posterior distributions to be diagonal.

5.2.1 Contextual Convolutional Neural
Encoder

Before introducing the neural prior and posterior,
we first present our novel approach of dealing with
various lengths of output from the Transformer en-
coder. We first adopt the 2d-convolution operations
(over the sequence length and hidden dimension) as
in (Kim, 2014) and apply it directly to the encoded
outputs xp, and yp,. For the convolution operations,
we use learnable filters with size of 1, 2 and 3 to
represent ‘unigram’, ’bigram’ and ’trigram’ con-
textual information from the sequences. Then we
use a max-pooling operation over each filter output,
to alleviate various sequence-length issue and con-
catenate them as one single output vector. Finally,
we apply an affine transformation on the output
vector and return the original vector dimension, but
with a sequence length of 1. We name the whole
operations here as contextual convolutional neural
encoder (denoted as Concoder).

In contrast, a standard CVAE model takes a fixed
position (usually the last hidden state from the se-
quence, if implemented in the LSTM network) to
deal with various sequence-length issues. We im-
plement a standard CVAE with the < bos > posi-
tion output as the final output, denoted as CVAE
Generation. We use this as a comparison with our
novel solution (Concoder), denoted as ConC-
VAE Generation (with results shown in Table 3).

5.2.2 Neural Prior

The prior distribution, denoted as:

po(z|x) = N (z|pa(x),diag(cg(x))) (3)

po(z|x) is an isotropic multivariate Gaussian
with mean and variance matrices parameterised by
neural networks. With variable-length sentence as
input, we first use a contextual convolutional neural
network, introduced in section 5.2.1, to retrieve a
fixed output x.. Then apply two additional affine
transformations, f; and fa, to parameterise the
mean and variance matrices for the neural prior.
The tanh() function here introduces additional
non-linearity and also contributes to numerical sta-
bility during parameters optimisation. Thus, we



have:

x. = Concoder([xp])
po = f1([zc]) )
log o9 = tanh(f2([z.]))

5.2.3 Neural Posterior

During training, the latent variable will be sampled
from the posterior distribution:

q¢(Z|£c, y) = N(z|“¢'(w’ y)’ diag(”?p(ma y)))
&)
d4(z|z,y) is also an isotropic multivariate
Gaussian with mean and variance matrices param-
eterised by neural networks. However, the param-
eters are inferred based on both inputs and out-
puts. We use the same Concoder network to
handle the various length of inputs and outputs
(x(p), ™ and y(e)). Similarly, as for the neural
prior, we apply two additional affine transforma-
tions, fs and f4, to parameterise the mean and
variance matrices. Thus, we have:

ye. = Concoder([yn])
Koy = fS([mdyc]) (0)
log oy = tanh(fa([Tc;yel))

5.3 Neural Decoder

The decoder models the probability of the expla-
nation %(®) in an auto-regressive manner, given
the predicted label y,,, the encoded premise and
hypothesis pair x, and the latent vector z. We
obtain the explanation sequence via:

y(® = Decoder(|z; x(n)]) (N

Here, the Decoder refers to the Transformer
decoder. Given an explanation with a total se-
quence length of 7', at time step j (j < 1), it
produces the j* word with a softmax selection
from the vocabulary based on all the past j — 1
words.

5.4 Neural Predictor

In our INITIATIVE framework, the label can be
predicted based on one of the three options: (i) M1
Model: predicted based on the premise and hypoth-
esis only. (ii) M2 Model: predicted based on the

explanation only. (iii) M3 Model: predicted based
on the premise, hypothesis and explanation all to-
gether. With the transformer architecture, we first
concatenate the vector outputs of the information
at each first < bos >’ position to a single vector
for each model. Then apply an affine transforma-
tion operation f to the concatenated vector. We
jointly train the neural predictor together with the
generative model ConCVAE. We compare the per-
formance of these three models in our experiments
(Table 3).

6 Experiments

To evaluate our proposed framework INITIA-
TIVE, we conduct experiments to compare with
our baseline models. We are interested in the fol-
lowing question: Q(v) How can we generate mul-
tiple sentences from our INITIATIVE framework
and predict class labels at the same time?

6.1 Baseline Models

We define two types of baseline models: genera-
tive model and predictive model. We consider the
following works as baseline models:

* seq2seq (generative model, our implementa-
tion): a sequence to sequence learning frame-
work developed by (Sutskever et al., 2014).
We implement it with the Transformer archi-
tecture and denote the experiment results as
Full Generation in Table 3.

* CVAE (generative model, our implementa-
tion): a strong probabilistic conditional gen-
eration framework introduced by (Sohn et al.,
2015; Larsen et al., 2016). We implement it
with the Transformer architecture and denote
results as CVAE Generation in Table 3.

Transformer (predictive model, our imple-
mentation): a very strong baseline model for
NLI task developed by (Vaswani et al., 2017).
We denote the experiment results as Mixture
Transformer Encoder in Table 3.

6.2 Experiment Setup

To evaluate the explanation generative model of our
INITIATIVE framework, we implement our novel
ConCVAE model and compare it with the standard
CAVE model. We use the MAP decoding over the
latent variable during both training and testing. To
answer Q(v), we implement the INITTATIVE M1,
M2 and M3 models (as in section 5.4) and compare



Model Label Accuracy  Perplexity BLEU Correct@100
Premise Agnostic Encoder (lower bound) 65.43 (0.72) — — —
Mixture Transformer Encoder (predictive model baseline) 78.98 (1.44) — — —

Full Generation (generative model baseline, non-probabilistic) - 5.53(0.05) 33.14(0.50) 61.5/41/—
CVAE Generation (generative model baseline, probabilistic) — 7.58 (0.27) 25.70(1.04) 47.0/32/12.0
ConCVAE Generation (our model, probabilistic) - 5.69 (0.03) 32.74 (0.09) 65.5/50/14.6
INITIATIVE M1 (our model) 83.42 (0.31) 6.73(0.16) 30.46(0.33) 54.5/44/14.2
INITIATIVE M2 (our model) 73.73(1.54) 5.75(0.01) 32.68(0.64) 59.0/42/12.0
INITIATIVE M3 (our model) 79.85(0.35) 5.93(0.02) 32.70 (0.28)  60.5/48/13.8

Table 3: Natural-XAI explanation Generation Results ( ‘—

>

refers to results not applicable). We use the same

evaluation method for Correct@100 as detailed in Appendix C.

their performance to our predictive and generative
baseline models. Regarding neural network archi-
tecture, vocabulary and training, we use the same
experimental setting as in section 4.

6.3 Interpolation in Latent Space

To generate multiple explanations, we perform pos-
terior analysis over the latent space. We choose to
linearly interpolate the isotropic multivariate Gaus-
sians over its 95.44% region (left and right of 2o
from ). We produce 5 samples calculated based
onu—20, u—o, i, p+o,and p+ 20 coordinates
over the latent space. We check if different explana-
tions can be generated with similar semantic mean-
ing, based on the criterion detailed in Appendix
C. Qualitative evaluation results for interpolations
are presented in the Correct @100 column in Ta-
ble 3. Examples of interpolation results from the
ConCVAE Generation experiment are presented in
Appendix E.

7 Results and Discussion

The main results are presented in Table 3. For
explanation generation evaluation, we compare a
deep generative model (CVAE Generation) with a
standard neural network model (Full Generation),
with similar model complexity (as in Appendix F).
The results suggest that for the CVAE Generation
model, for quantitative results, the perplexity is in-
creased (2.05), the BLEU score is reduced (7.4%).
We obtain a worse score for qualitative assessment
in matching words (14.5 less) and correctness (9
less), meaning the performance is worse than the
Full Generation model. However, deep generative
models such as CVAE Generation allow generat-
ing multiple explanations via a posterior analysis
over the latent space. With our novel contextual
deep generative model ConCVAE, we can achieve
competitive performance with the Full Generation
model, with significant improvements in qualitative
results (Correct @100), as shown in Table 3.

We implement three variants of our INITIA-
TIVE framework (M1, M2 and M3) to perform
generation and prediction simultaneously. Results
suggest that generating a valid explanation from the
premise and hypothesis sentence-pair allows the
encoder to better understand the semantics mean-
ing of the words and hence further enhances the
accuracy of prediction. This leads to a boost in pre-
diction performance (83.42% for M1 and 79.85%
for M3), compared to the Mixture Transformer En-
coder (78.98%), with a prediction network with the
same number of parameters. However, as shown
in the M2 model, the prediction accuracy is worse
when using explanation-only to predict the label.
This makes sense, as the best performance gen-
erative model (ConCVAE) only finds 50% of the
correct explanation (based on the correctness score
of 50) in the first 100 test examples. We also ob-
serve that for the M3 model, the generation results
are much better than for the M1 model (perplexity
decrease of 0.8 and BLEU increase of 2.2%). For
Natural-X Al with label prediction and explanation
generation together, for prediction performance,
the M1 model fits better. However, for generation
performance, the M3 model fits better with our pur-
pose. Additionally, we observe that label prediction
results in decreasing generative performance, as op-
posed to the ConCVAE model.

8 Conclusion and Future Work

In this paper, we present our novel deep genera-
tive Natural-XAI framework, INITIATIVE. Our
framework can generate multiple explanations and
predict the label simultaneously, achieving compet-
itive or better performance against the state-of-the-
art baseline models on both the generation (4.7%
improvement in BLEU) and prediction (4.4% im-
provement in accuracy) tasks. Our method can
serve as a solid baseline for future Natural-XAlI re-
search and suggests a more generative perspective
for future research in this field.
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A Dataset Statistics

Model Mean Median Standard Deviation Min Max
Premise 17 15 7 4 84
Hypothesis 11 10 4 3 64
Explanation 16 15 7 2 189

Table 4: Token length statistics for the e-SNLI dataset,
all numbers round to integer.

Our detailed dataset statistics are presented in Ta-
ble 4, to help reproduce the experiment results, we
provide a detailed description of our pre-processing
and tokenisation process. We start by stripping out
any space in front of and behind the original sen-
tence. And then tokenise it using the Spacy English
tokeniser tool based on the ’en_core_web_sm’
lexicon resource. The tokenised text is then used to
create the complete vocabulary for training. We fol-
low (Camburu et al., 2018) and remove tokens that
appear less than 15 times. We additional include
special tokens *< unk >, < pad >, < bos >’
and < eos >’ in the vocabulary. Before we use
each sentence, we append *< bos >’ at the begin-
ning of this sentence and append ’< eos >’ at the
end of this sentence, with a space in between.

B Explanation Template Examples

We provide the following list of explanation tem-
plate examples as the guidelines to filter out non-
informative explanations. Our templates are built
based on the templates in (Camburu et al., 2018)
and our own generated explanations.

B.1 General Templates

* <premise>
* <hypothesis>

B.2 Contradiction Templates
o <XXX> is either <XXX> or <XXX>

e <XXX> is not the same as <XXX>

¢ <XXX> can not be both <XXX> and <XXX>
at the same time

o <XXX> is not <XXX>
¢ <XXX> can not <XXX>
o <XXX>1s <XXX>, not <XXX>
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B.3
e <XXX> is the same as <XXX>

Entailment Templates

o <XXX> is a type of <XXX>

o <XXX>is a <XXX>

* <XXX> is a rephrasing of <XXX>
o <XXX>s0 <XXX>

Neutral Templates
¢ <XXX> does not mean <XXX>

* just because <XXX> does not mean <XXX>
* <XXX> is not necessarily <XXX>

* <XXX> does not imply <XXX>

* not all <XXX> are <XXX>

C Qualitative Evaluation

We provide a detailed qualitative evaluation crite-
rion here used for the first 100 testing examples
in this paper. Our evaluation results are calculated
based on the best BLEU score among the three
runs of the experiments, based on different random
seeds (1000, 2000 and 3000). The final results
are averaged based on three individuals’ opinions.
We first filter our the non-informative explanations
based on the templates provided in Appendix B
and then we evaluate the following aspects:

1. Matching words: we check if the generated ex-
planation contains the key matching words (or
phrases) from its associated premise and hy-
pothesis sentence pair (based on three golden
references). Each premise and hypothesis sen-
tence is assigned with a 0.5 score (hence a pair
of them have a score of 1, and the first 100
examples have a total of 100 score). We give
a score of either 0.5 or 0 for each premise or
hypothesis sentence. Matching words means
no word replacements hence only the exact
words taken from the premise and hypothesis

sentence are correct. In this case, 'car’ and

vehicle’ are not matching words. Addition-
ally, partially correct words (or phrases) are
considered as incorrect. In this case, ~ red
car’ and ’yellow car’ are not matching words.

However, we accept change in grammatical

voice, such as ’walking’ is the same as 'walk’

and grammatical articles such as ’a car’ is the
same as 'the car’.
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2. Correctness, we check if the generated expla-
nation can be used as a reasonable and correct
explanation for premise and hypothesis sen-
tence pair when we get at least 0.5 score in
the matching words check. Each explanation
sentence is assigned with a score of 1 (hence
we have a total of 100 score for the first 100
examples). We either give a score of 1 or O for
each explanation sentence based on evaluation
against three golden explanation examples.

Multiple Generation, we check if the model
can generate multiple explanations based on
interpolation when we get a 1 score in the
correctness check. We produce 5 interpolation
results based on the methods in section 6.3,
and each resulting sentence is assigned with
a 0.2 score (hence we have a total score of 1
for each explanation and a total of 100 score
for the first 100 examples). We give either 0.2
or O for each explanation sentence based on
evaluation against three golden explanation
examples. If two of the sentence instances are
exactly the same, we consider only one valid.
However, we allow missing matching words
and correctness for multiple generations as
long as semantic the instances are similar.

We present the evaluation results in order, sep-
arate with */’. For the non-probabilistic model,
the multiple generations are not applicable and are
marked as *—

D Generated Explanations

In this section, we present examples taken from
the experiments in section 4.2, these examples are
from two scenarios (i) agnostic experiment where
the agnostic generation model can pick up spuri-
ous correlation to generate the correct explanations.
However, the premise information is not offered.
Hence, the explanations generation should ideally
be incorrect, as shown in Table 5 (ii) agnostic ex-
periment where the agnostic generation model is
not able to pick up the spurious correlation. While
the full generation model can generate the correct
explanations, as shown in Table 6. In the first 100
test examples, case (i) happens 11 times and (ii)
happens 41 times.

E Interpolation Explanations

In this section we presents examples taken from
the experiments in section 6 with our model Con-
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Test Data Number 22

Premise one tan girl with a wool hat is running and leaning
over an object , while another person in a wool hat
is sitting on the ground .

Hypothesis a boy runs into a wall

Explanation 1

Explanation 2
Explanation 3

there are either two people - a girl and another
person - or there is a boy .

a boy is not a tan girl .

the person is either a girl or boy , not both

Agnostic Generation

a boy is not a girl .

Full Generation

a boy is not a girl .

Test Data Number

30

Premise

a couple walk hand in hand down a street .

Hypothesis

a couple is sitting on a bench .

Explanation 1

Explanation 2
Explanation 3

the couple can not be walking and sitting a the
same time .

a couple ca n’t both be sitting and walking .
sitting is not the same as walking .

Agnostic Generation

a couple can not be sitting on a bench and walking
down a street at the same time .

Full Generation

the couple can not be walking and sitting at the
same time .

Test Data Number 91

Premise a dog jumping for a frisbee in the snow .

Hypothesis a cat washes his face and whiskers with his front
paw .

Explanation 1 dogs and cats are not the same animal , and they

Explanation 2
Explanation 3

are performing different activities : the dog jumps
while the cat engages in cleaning himself .

a dog is a different from a cat

adogisnotacat.

Agnostic Generation

adog is not a cat .

Full Generation

adog is not a cat .

Table 5: Selected spurious correlation examples.

TrCVAE, these examples are generated based on
the linear interpolation methods presented in sec-
tion 6.3. We only present the multiple generation
results, which are different sentences and omit the
same ones.

F Model Complexity

We present the model complexity in Table 8, with
separate counts for prediction, generation and total
network components, the one with the ‘—’ mark is
denoted as not applicable. Since we share the same
parameters for the Transformer encoder network
in our EAP-ConTrCVAE framework, our frame-
work can perform explanation generation and label
prediction and keep the same model complexity as
the generation model ConTrCVAE.



Test Data Number 4

Premise a woman with a green headscarf , blue shirt and a
very big grin .

Hypothesis the woman is young .

Explanation 1
Explanation 2
Explanation 3

the woman could "ve been old rather than young
there is no indication that the woman is young .
not all women are young .

Agnostic Generation

the woman is young is the same as the woman is

Test Data Number 29
Premise a couple walk hand in hand down a street .
Hypothesis the couple is married .

Explanation 1
Explanation 2

Explanation 3

just because the couple is hand in hand does n’t
mean they are married .

just because the couple is walking hand in hand
does n’t mean they 're married .

the couple walking down the street holding hands
does not mean that they are married .

Generated Explanation 1

not all couple walking down street are married .

youns . Generated Explanation 2 not all couple in hand is married .
Full Generation not all women are young . Generated Explanation 3 not all couples are married .
Test Data Number 9 Test Data Number 50
Premise an old man with a package poses in front of an Premise a little boy in a gray and white striped sweater
advertisement . and tan pants is playing on a piece of playground
Hypothesis a man walks by an ad . quif t .
Explanation 1 the man poses in front of the advertisement there- Hypothesis the boy is sitting on the school bus on his way

Explanation 2

Explanation 3

fore he did not walk by it .

a man can not be walking by an ad while posing
in front of it .

poses is different from walks .

Agnostic Generation

aman walks by an ad is the same as a man walks

by an ad .

Full Generation the man either poses or walks by .

Test Data Number 26

Premise a young family enjoys feeling ocean waves lap at
their feet .

Hypothesis a family is out at a restaurant .

Explanation 1
Explanation 2

Explanation 3

one says the family is inside the restaurant , while
the other says they are feeling ocean waves .

if a family enjoys ocean waves they are not out at
arestaurant .

family ca n’t be at restraint if feeling ocean waves

Agnostic Generation

afamily is at a restaurant is a rephrasing of a family
is out at a restaurant .

Full Generation

a family can not be at a restaurant and at the ocean
at the same time .

Test Data Number 69
Premise an older women tending to a garden .
Hypothesis the lady is cooking dinner

Explanation 1
Explanation 2

Explanation 3

the lady can not be cooking dinner if she is tending
to a garden
a woman can not be gardening and cooking at the
same time .
the woman is either tending to a garden or cooking

Agnostic Generation

the lady can not be cooking dinner and sitting on a
bench at the same time .

Full Generation

the lady can not be tending to a garden and cooking
dinner at the same time .

home .

Explanation 1

Explanation 2

Explanation 3

school buses normally are not located on play-
grounds , so a child can not be playing with play-
ground equipment in a bus .

the boy is either playing on a piece of playground
equipment or sitting on the school bus on his way
home .

there ca n’t be a playground on a school bus .

Generated Explanation 1

the boy can not be playing on a playground and
sitting on his way home at the same time .

Generated Explanation 2

the boy can not be playing on a playground and
sitting on his way home simultaneously .

Generated Explanation 3

the boy can not be playing on a playground and
sitting on the bus at the same time .

Test Data Number 64
Premise people jump over a mountain crevasse on a rope .
Hypothesis people are jumping outside .

Explanation 1

Explanation 2
Explanation 3

the jumping over the mountain crevasse must be
outside .

a mountain crevasses is usually located outside .
the mountain is outside .

Generated Explanation 1

people jump over a mountain so they must be out-
side .

Generated Explanation 2

a mountain is outside .

Test Data Number 77

Premise a man in a black shirt is looking at a bike in a
workshop .

Hypothesis a man is deciding which bike to buy

Explanation 1

Explanation 2

Explanation 3

or the man works in the work shop and is selling
the bike , or is inspecting the bike , looking for
issues rather than deciding .

just because the man is looking at a bike does n’t
mean he is deciding which bike to buy .

the man looking at the bike may not be deciding
to buy a bike at all .

Test Data Number 77

Premise a man in a black shirt is looking at a bike in a
workshop .

Hypothesis a man is deciding which bike to buy

Explanation 1

Explanation 2

Explanation 3

or the man works in the work shop and is selling
the bike , or is inspecting the bike , looking for
issues rather than deciding .

just because the man is looking at a bike does n’t
mean he is deciding which bike to buy .

the man looking at the bike may not be deciding
to buy a bike at all .

Agnostic Generation

a man is not a woman .

Full Generation

looking at a bike does not imply deciding to buy .

Test Data Number

97

Premise

a girl playing a violin along with a group of people

Hypothesis

a girl is playing an instrument .

Explanation 1

Explanation 2
Explanation 3

playing an instrument is another less detailed way
to say playing a violin

the violin is an instrument .

the violin is an instrument .

Agnostic Generation

a girl is playing an instrument is a rephrasing of a
girl is playing an instrument .

Full Generation

a violin is an instrument .

Generated Explanation 1

just because a man is looking at a bike in a work-
shop does n’t mean he is deciding to buy .

Generated Explanation 2

just because a man is looking at a bike in a work-
shop does n’t mean he is deciding what to buy

Table 7: Selected spurious correlation examples.

Model Prediction Generation  Total

Separate Transformer Encoder 48.6M - 48.6M
Mixture Transformer Encoder 24.3M - 24.3M
Premise Agnostic Encoder 24.3M - 24.3M
Agnostic Generation - 63.6M 63.6M
Full Generation - 63.6M 63.6M
CVAE Generation - 65.9M 65.9M
ConTrCVAE Generation - 68.3M 68.3M
EAP-ConTrCVAE M1 24.3M 68.3M 68.3M
EAP-ConTrCVAE M2 24.3M 68.3M 68.3M
EAP-ConTrCVAE M3 24.3M 68.3M 68.3M

Table 8: Number of parameters for each model, with
separate counts for prediction and generation compo-
nent.

Table 6: Selected none-spurious correlation examples.

13



