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Abstract
Explainable artificial intelligence with natural001
language explanations (Natural-XAI) aims to002
produce human-readable explanations as evi-003
dence for AI decision-making. This evidence004
can enhance human trust and understanding of005
AI systems and contribute to AI explainabil-006
ity and transparency. However, the current ap-007
proaches focus on single explanation genera-008
tion only. In this paper, we conduct experi-009
ments with the state-of-the-art Transformer ar-010
chitecture and explore multiple explanations011
generation using a public benchmark dataset,012
e-SNLI (Camburu et al., 2018). We propose013
a novel deep generative Natural-XAI frame-014
work: INITIATIVE, standing for explaIn015
aNd predIcT wIth contextuAl condiTIonal016
Variational autoEncoder for generating natu-017
ral language explanations and making a pre-018
diction at the same time. Our method achieves019
competitive or better performance against the020
state-of-the-art baseline models on generation021
(4.7% improvement in the BLEU score) and022
prediction (4.4% improvement in accuracy)023
tasks. Our work can serve as a solid deep gen-024
erative model baseline for future Natural-XAI025
research. Our code will be publicly available026
on GitHub upon paper acceptance.027

1 Introduction028

With the advancement of modern AI techniques029

(LeCun et al., 2015), their ubiquitousness comes030

at the expense of interpretability. Hence, concerns031

have been raised on whether modern AI can make032

reasonable judgements (McAllister et al., 2017;033

Challen et al., 2019), which further triggered an034

increasing interest in Explainable Artificial Intelli-035

gence (XAI) research (Arrieta et al., 2020).036

Traditionally, natural language processing (NLP)037

models are built based on techniques that are in-038

herently more explainable. Examples of such ap-039

proaches are often referred to as ‘white box’ tech-040

niques, including rule-based heuristic systems, de-041

cision trees, hidden Markov models, conditional042

random fields, etc. In recent years, due to the ad- 043

vancement of data-driven modelling tools and the 044

big-data era, a ‘black box’ technique, deep neural 045

networks have become the dominant approach for 046

modern NLP applications (Danilevsky et al., 2020). 047

On applying XAI techniques to NLP applica- 048

tions, researchers first focused on feature-based- 049

(explanation via important features) (Voskarides 050

et al., 2015; Godin et al., 2018), model-based- (ex- 051

planation via surrogate models) (Ribeiro et al., 052

2016) and example-based (explanation via similar 053

examples) (Croce et al., 2019) explanation tech- 054

niques. However, even for experts working as data 055

scientists in industry, interpreting results from these 056

models was found to be hard, and bias-prone (Kaur 057

et al., 2020). To reduce human interpretation bias, 058

directly generating natural language explanations 059

seems a better medium for presentation. 060

This lead to XAI with natural language explana- 061

tions (or Natural-XAI), first proposed in (Camburu 062

et al., 2018), together with a dataset (e-SNLI), ex- 063

tending the Stanford natural language inference 064

(SNLI) dataset (Bowman et al., 2015). Natural lan- 065

guage inference (NLI) is the task of determining 066

whether a ‘hypothesis’ is true (entailment), false 067

(contradiction), or undetermined (neutral) given 068

a ‘premise’. NLI is an essential yet challenging 069

task in the natural language understanding field. It 070

requires common sense reasoning on the seman- 071

tic relationships between premise and hypothesis 072

sentence-pairs. However, as (Gururangan et al., 073

2018) shows, current NLI datasets contain anno- 074

tation artefacts, allowing the models to make pre- 075

dictions based on spurious correlations in data. A 076

simple neural network (here a fastText classifier 077

(Joulin et al., 2016)) can make correct predictions 078

67% of the time, when only having access to the 079

hypothesis. However, using the same information, 080

(Camburu et al., 2018) explained that spurious cor- 081

relations are much harder to be picked up from data 082

when generating explanations, other than predict- 083
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ing the correct label.084

Initially, a sequence-to-sequence (seq2seq) learn-085

ing framework was adopted for single-explanation086

generation (Camburu et al., 2018). When the beam087

search algorithm is applied, the algorithm can not088

produce multiple variations of sentences in a prin-089

cipled way (as the top k variations of the beam090

search list will be qualitatively worse than the first091

ranked variation) (Gupta et al., 2018). However,092

the same semantic content can often be expressed093

in various correct forms in natural language. Hence,094

this paper adopts deep generative models, to gener-095

ate multiple high-quality explanations via posterior096

analysis in the latent space. Additionally, this pa-097

per explores how to perform multiple explanations098

generation, while also making predictions.099

Our main contributions include: (i) a novel deep100

generative Natural-XAI framework, INITIATIVE,101

which can generate multiple instances of natural102

language explanations while making predictions;103

(ii) the first study on spurious correlation on the104

e-SNLI dataset with Transformer architecture; (iii)105

the first study on the Natural-XAI task with deep106

generative models; (iv) demonstrating the benefits107

of our framework, INITIATIVE, against the state-108

of-the-art baseline models with empirical experi-109

ments; (v) a solid deep generative model baseline110

for future Natural-XAI research.111

2 Related Work112

2.1 Explainable Artificial Intelligence for113

Natural Language Processing114

General XAI approaches can be categorised in two115

main ways: (Guidotti et al., 2018; Tjoa and Guan,116

2020): 1) Local vs Global, and 2) Self-Explaining117

vs Post-Hoc. Our work contributes to explainable118

artificial intelligence (XAI) from two perspectives:119

Local and Self-Explaining, as we provide explana-120

tions based on (fine-granularity) individual input,121

and our explanations are directly interpretable.122

In terms of explanation techniques and their ap-123

plications to NLP there are, in general, five dif-124

ferent types (Danilevsky et al., 2020): 1) feature125

importance, 2) surrogate model, 3) example-driven,126

4) provenance-based, and 5) declarative induction.127

The first three are more widely adopted and have128

already been described briefly in section 1. The129

provenance-based technique refers to visualising130

some or all of the prediction process, such as in131

(Zhou et al., 2018; Amini et al., 2019). Our work132

uses the declarative induction technique, which133

tackles the challenging task of providing human- 134

readable representations as a part of the results, 135

such as in (Camburu et al., 2018; Pröllochs et al., 136

2019). Our work further extends (Camburu et al., 137

2018) with a probabilistic treatment. We introduce 138

a novel deep generative framework for multiple 139

explanation generation and label prediction, simul- 140

taneously. 141

2.2 Supervised Deep Generative Models in 142

Natural Language 143

Our work is associated with deep generative mod- 144

els, which is based on neural variational inference 145

(NVI) (Kingma and Welling, 2013; Mnih and Gre- 146

gor, 2014; Rezende et al., 2014). NVI is also 147

known as amortised variational inference in the 148

literature and can be considered as an extension of 149

the mean-field variational inference (Jordan et al., 150

1999; Bishop, 2006). NVI technique uses data- 151

driven neural networks instead of more restrictive 152

statistical inference techniques. NVI allows us to 153

infer unobservable latent random variables that gen- 154

erate the observed data and are very efficient for 155

data with hidden structures, such as natural lan- 156

guage. 157

NVI has been successfully applied in various 158

NLP applications including topic modelling (Miao 159

et al., 2016; Srivastava and Sutton, 2017), machine 160

translation (Su et al., 2018; Pagnoni et al., 2018), 161

text classification (Miao et al., 2016), conversation 162

generation (Zhao et al., 2017; Gao et al., 2019), 163

and story generation (Fang et al., 2021). This paper 164

explores the potential for Natural-XAI explanation 165

generation via building a novel deep generative 166

framework. This paper is the first work to apply 167

NVI for the Natural-XAI task, to the best of our 168

knowledge. 169

3 Technical Background 170

This section provides a brief overview of the Con- 171

ditional Variational Autoencoder (CVAE) and the 172

Transformer architecture. Further, we define our 173

problem to be solved associated with the e-NLI 174

dataset. 175

3.1 Conditional Variational Autoencoder 176

CVAE (Sohn et al., 2015; Larsen et al., 2016) is 177

an extended version of the deep generative latent 178

variable model (LVM) based on the variational 179

autoencoder (VAE) model (Kingma and Welling, 180

2013; Rezende et al., 2014). Both the models allow 181
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learning rich, nonlinear representations for high-182

dimensional inputs. When compared with VAE183

(performing inferences for the latent representation184

z, based on the input x, only), CVAE performs185

inference for the latent representation z, based on186

both the input x and the output y, together. CVAE187

can be considered as a neural network framework188

based on supervised neural variational inference.189

Compared with a standard autoencoder (Good-190

fellow et al., 2016), which learns a deterministic191

mapping from input x to the latent space z, CVAE192

learns the posterior distribution for the latent space193

z, thus allowing sampling from p(z) and interpo-194

lation between two points, if they both come from195

p(z).196

CVAE generally includes two components: an197

encoder and a decoder. We consider the joint198

probability distribution and its factorisation, in the199

form of pθ(y, z|x) = pθ(y|z, x)pθ(z|x) as in200

(Miao et al., 2016; Zhao et al., 2017; Pagnoni et al.,201

2018; Gao et al., 2019; Fang et al., 2021). The202

encoder pθ(z|x) takes the observed input x and203

produces a corresponding latent vector z as the204

output with parameter θ. The decoder pθ(y|z, x)205

takes the observed input x and its corresponding206

latent vector sample z as the total input and pro-207

duces an output y with the parameter θ. The latent208

variable z in the joint probability pθ(y, z|x) can209

be marginalised out by taking samples from p(z).210

For CVAE, we optimise the following evidence211

lower bound (ELBO) for the log-likelihood during212

training:213

log pθ(y|x) ≥ L(ELBO)

= Eqφ(z)[log pθ(y|z, x)]
−DKL[qφ(z|x, y)||pθ(z|x)]

(1)214

The first term of ELBO is the reconstruction215

loss and is measured via cross-entropy match-216

ing between predicted versus real target y. The217

second term is the Kullback–Leibler (KL) diver-218

gence between two distributions pθ(z|x) and219

qφ(z|x, y). As the true posterior distribution220

pθ(z|x) is intractable to compute, a variational221

family distribution qφ(z|x, y) is introduced as its222

approximation. We consider both pθ(z|x) and223

qφ(z|x, y) are in the form of isotropic Gaus-224

sian distributions, as N (µθ(x), diag(σ2
θ(x)))225

and N (µφ(x, y), diag(σ2
φ(x, y))). Our work226

takes a similar assumption, but the key difference227

lies in the design of our novel model architectures228

(section 5), together with using the state-of-the- 229

art Transformer model (Vaswani et al., 2017) as a 230

building block. We provide a detailed explanation 231

of the Transformer model in the next section. 232

3.2 Transformer Architecture 233

The Transformer architecture was first proposed 234

in (Vaswani et al., 2017) and was the first neural 235

network architecture entirely built based on the 236

self-attention mechanism. It has been used as the 237

main building block for most of the current state- 238

of-the-art models in NLP, such as BERT (Devlin 239

et al., 2018), GPT3 (Brown et al., 2020), and BART 240

(Lewis et al., 2019). The Transformer architecture 241

can be divided into three main components: an 242

embedding part, an encoder and a decoder. 243

The embedding part takes the input x ∈ Rs1×1 244

in the form of a sequence with length s1 and uses 245

an input embedding to create E(x) ∈ Rs1×E , 246

where E is the embedded dimension size. Due to 247

the permutation-invariant self-attention mechanism, 248

(Vaswani et al., 2017) further introduced positional 249

encoding, to encode sequential order information, 250

as P (x) ∈ Rs1×E . The sum of positional encoding 251

and input embedding is used as the final embed- 252

ding of the input x. In (Vaswani et al., 2017), sine 253

and cosine functions of different frequencies are 254

adopted as the positional encoding method. Fur- 255

ther work for the state-of-the-art large transformers, 256

such as BERT, GPT3 and BART, used a learnt po- 257

sitional embedding, which we utilise in this paper. 258

For the encoder and decoder, we use precisely 259

the same Transformer architecture as in the original 260

paper (Vaswani et al., 2017). We use the official 261

implementation in the Pytorch library1. Because 262

the use of Transformers has become common and 263

our implementation is almost identical to the orig- 264

inal, we will omit a detailed background descrip- 265

tion of the model architecture and refer readers to 266

(Vaswani et al., 2017). In our experiments, if an en- 267

coder and a decoder are used simultaneously, they 268

each have a separate embedding part. 269

3.3 Problem Description 270

Our training data is in the form of N data quadru- 271

plets {x(p)n , x
(h)
n , y

(l)
n , y

(e)
n }Nn=1, with each quadru- 272

plet consisting of the premise (denoted by x(p)n ), 273

the hypothesis (denoted by x(h)n ) and their associ- 274

ated label (denoted by y(l)n ) and explanation (de- 275

1https://pytorch.org/docs/stable/nn.html#transformer-
layers

3



noted by y
(e)
n ). For the nth quadruplet, x(p)n =276

{w(p)
1 , ..., w

(p)
Lp
}, x(h)n = {w(h)

1 , ..., w
(h)
Lh
}, y(l)n =277

{w(l)}, and y(e)n = {w(e)
1 , ..., w

(e)
Le
} denote the set278

of Lp words from the premise sentence, Lh words279

from the hypothesis sentence, a single word w(l)280

from the label, and Le words from the explanation281

sentence, respectively.282

Our validation and testing data are similar to data283

quadruplets as the training data; however, we have284

three (y(e1), y(e2) and y(e3)) instead of one ex-285

planation y(e), created by human experts. During286

training, we update model parameters based on one287

explanation y(e); and during validation and testing,288

we perform model selection and inference based on289

the mean average loss of three explanations (y(e1),290

y(e2) and y(e3)). In the following descriptions, we291

will omit the data quadruplet index n and use bold292

characters to represent vector form representations,293

as x(p), x(h), y(l), and y(e). These representa-294

tions will be learnt in an end-to-end fashion.295

4 Preliminary Experiments296

We present two preliminary experiments in this297

section. In the first experiment, we select a suit-298

able Transformer architecture from two candidates299

and explore how easily the Transformer model can300

capture spurious correlations from data. The sec-301

ond experiment explores how much we can reduce302

spurious correlations from data, when using expla-303

nation as output, other than the label. Addition-304

ally, we compare the performance of explanation-305

generation in full and agnostic scenarios (section306

4.2).307

For all of our experiments, we use the archi-308

tecture setting similar to the base version of the309

Transformer model (Vaswani et al., 2017). We use310

a 6-layer model with 512 hidden units and 8 heads311

for encoder and decoder networks. Based on an312

inspection of token length statistics (Appendix A),313

we set the maximum length of 25 for positional en-314

coding. See Appendix F for a detailed description315

of all model complexity in this paper.316

We generally follow the vocabulary processing317

steps as in (Camburu et al., 2018) (see detailed318

pre-processing description in Appendix A) and re-319

place words that appeared less than 15 times with320

’< unk >’. We append ’< bos >’ and ’< eos >’321

at the beginning and the end of each sentence dur-322

ing the pre-processing. We report our experiments323

based on 3 random seeds (1000, 2000 and 3000)324

and report the average performance with its stan-325

dard deviation in parenthesis. 326

We use the maximum a posteriori (MAP) estima- 327

tion decoding for the conditional generation. MAP 328

decoding, whilst not always the optimal choice, 329

however, has a reasonably good performance, is 330

widely adopted and cheap to compute (Eikema and 331

Aziz, 2020). For the network optimisation, we use 332

Adam (Kingma and Ba, 2014) as our optimiser with 333

default hyper-parameters (β1 = 0.9, β2 = 0.999, 334

ε = 1e− 8). We conduct all the experiments with 335

a batch size of 16 and a learning rate of 1e − 5 336

for a total of 10 epochs on a machine with Ubuntu 337

operating system and a GTX 2080Ti GPU. 338

4.1 Transformer Architecture Selection and 339

Spurious Correlation Experiments 340

In the first experiment, we wish to answer two 341

questions: Q(i) What is a good Transformer model 342

architecture choice for the e-SNLI text classifica- 343

tion task? Q(ii) How easily can a Transformer 344

model pick up the spurious correlation, when only 345

a hypothesis sentence is observed? 346

Hypothesis

Premise Hypothesis Label

Label

( b )

( c )

Hypothesis
Label

Premise

( a )

Figure 1: Graphical overview of architectures used in
section 4.1. (a) is for Separate Transformer Encoder;
(b) is for Premise Agnostic Encoder; and (c) is for Mix-
ture Transformer Encoder.

To answer Q(i), we experiment on two candidate 347

model architectures: (1) Separate Transformer En- 348

coder: an architecture with two separate encoders, 349

each for premise and hypothesis sentence (Fig. 1a) 350

(2) Mixture Transformer Encoder: an architecture 351

with a mixture encoder for both premise and hy- 352

pothesis sentence together (Fig 1c). We choose 353

these two candidates for the following reasons: the 354

first candidate architecture is widely adopted in 355

early NLI literature (Parikh et al., 2016; Chen et al., 356

2017; Gong et al., 2017), where f here refers to 357

algorithmic operations (identity, subtraction, mul- 358

tiplication) as in (Conneau et al., 2017). The lat- 359

ter candidate architecture is adopted by the BERT 360

model (Devlin et al., 2018), where f here refers to 361
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an affine transformation operation and has achieved362

state-of-the-art performance for NLI tasks. To an-363

swer Q(ii), we perform the premise-agnostic pre-364

diction experiment on the Premise Agnostic En-365

coder model (Fig 1b), where f here refers to an366

affine transformation operation.367

For the above two experiments, results are pre-368

sented in Table 1. For the Separate Transformer369

Encoder, we use the encoder outputs at two sepa-370

rate ’< bos >’ positions for algorithmic operations371

(identity, subtraction and multiplication). For Mix-372

ture Transformer Encoder and Premise Agnostic373

Encoder, we use the output at the first ’< bos >’374

position. We apply an affine transformation oper-375

ation for predicting the label. The results suggest376

the Mixture Transformer Encoder outperforms the377

Separate Transformer Encoder in a statistically378

significant way (p < .05; Wilcoxon test). The379

Premise Agnostic Encoder achieves 82.84% (based380

on 65.43/78.98) of the Mixture Transformer En-381

coder performance, suggesting that Transformer382

models tend to capture spurious correlations very383

easily for NLI label prediction task.384

Model Accuracy (%)
Separate Transformer Encoder 73.97 (0.34)
Mixture Transformer Encoder 78.98 (1.44)
Premise Agnostic Encoder 65.43 (0.72)

Table 1: Architecture Selection and Spurious Correla-
tion Experiments.

4.2 Premise-Agnostic and Full Generation385

Experiments386

In the second experiment, we address two further387

questions: Q(iii) Is providing explanations as out-388

put reducing the impact of spurious correlation in389

a Transformer model, compared to predicting the390

label only? Q(iv) How much better are explana-391

tions based on premise and hypothesis, instead of392

hypothesis-only?393

Premise
( b )
Hypothesis

Hypothesis Explanation
( a )

Explanation

Figure 2: Graphical overview of architectures used in
section 4.2. (a) is for Agnostic Generation; (b) is for
Full Generation.

To answer Q(iii), we follow and extend the 394

’PremiseAgnostic’ experiment (Camburu et al., 395

2018). We use the model architecture in Fig. 2a, 396

and we are interested in evaluating how well the 397

Transformer architecture can generate an expla- 398

nation from the premise-agnostic scenario (only 399

premise observed). To answer Q(iv), we imple- 400

ment a standard seq2seq model (Sutskever et al., 401

2014) with Transformer architecture. We compare 402

the agnostic generation scenario with the full gen- 403

eration scenario (both premise and hypothesis ob- 404

served), the model architecture for complete infor- 405

mation is provided in Fig. 2b. 406

We evaluate the performance of these two mod- 407

els based on both quantitative and qualitative as- 408

sessments. For qualitative one, we follow (Cam- 409

buru et al., 2018) and evaluate based on the first 100 410

test examples only2 (Correct@100 in Table 2). The 411

qualitative results are calculated based on the high- 412

est BLUE score among all three seeds (see details 413

in Appendix B and C). For the quantitative one, we 414

use automatic evaluation metrics (Perplexity and 415

BLEU (Papineni et al., 2002)) over the entire test 416

data points. For evaluation, the lower the perplex- 417

ity, the higher the BLEU score and the higher the 418

Correct@100, the better the model performs. 419

Our results, presented in Table 2, suggest that 420

agnostic generation significantly reduces the abil- 421

ity to generate correct explanations, with only 422

56.9% (based on 35.0/61.5) for matching words 423

and 26.8% (based on 11/41) for correctness, based 424

on the first 100 test examples (compared with 425

82.84% in section 4.1). Selected examples are pre- 426

sented in Appendix D. 427

Model Perplexity BLEU Correct@100

Agnostic Generation 7.66 (0.03) 25.74 (0.8) 35.0/11/−
Full Generation 5.53 (0.05) 33.14 (0.5) 61.5/41/−

Table 2: Premise Agnostic Generation Experiments.

5 Deep Generative Natural-XAI 428

Framework for NLI 429

Our novel deep generative framework consists of 430

two components: an explanation generative model 431

and a label predictive model (Fig. 3). The gen- 432

erative model uses a novel contextual conditional 433

variational autoencoder (ConCVAE), based on a 434

Transformer-based encoder-decoder architecture. 435

2The three scores are related to matching words, correct-
ness and multiple generations.
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Explanation Generative Model

Premise Hypothesis Explanation

Label

Label Predictive Model

Figure 3: Graphical overview of our Natural-XAI
framework, INITIATIVE, introduced in section 5.

The predictive model shares the same Transformer436

encoder parameters with the generative model. Our437

framework can generate multiple explanations and438

make prediction, given a pair of premise and hy-439

pothesis sentence-pair. In this section, we explain440

our framework, called INITIATIVE, standing for441

explaIn aNd predIcT wIth contextuAl condiTIonal442

Variational autoEncoder, in detail.443

5.1 Neural Encoder444

Given a pair of premise x(p) and hypothesis x(h),445

with their associated explanation y(e), the encoder446

network outputs two sequences of representations:447

xh = Encoder([x(p);x(h)])

yh = Encoder([y(e)])
(2)448

Here Encoder refers to the Transformer Mix-449

ture Encoder, which we selected based on exper-450

iments in section 4.1. xh is the contextual rep-451

resentations for the premise x(p) and hypothesis452

x(h) pair. yh is the contextual representation for453

explanation y(e). We share the same encoder net-454

work parameters for producing xh and yh. xh has455

the same sequence length as the sum of premise456

and hypothesis length. yh has the same sequence457

length as the explanation length. [a; b] refers to458

the concatenation operation of vectors a and b.459

5.2 Neural Inferer460

The neural inferer can be divided into two separate461

components: the prior and the posterior networks.462

Both prior and posterior distributions are assumed463

to be isotropic multivariate Gaussians, following464

the CVAE assumption (Sohn et al., 2015; Larsen465

et al., 2016). As determined by the ELBO equa-466

tion 1, the parameters of the prior are computed467

by the prior network, which only takes the inputs:468

premise x(p) and hypothesis x(h). The posterior469

parameters are determined from both inputs and470

outputs: premise x(p), hypothesis x(h) and expla- 471

nation y(e). We restrict the variance matrices of the 472

prior and the posterior distributions to be diagonal. 473

5.2.1 Contextual Convolutional Neural 474

Encoder 475

Before introducing the neural prior and posterior, 476

we first present our novel approach of dealing with 477

various lengths of output from the Transformer en- 478

coder. We first adopt the 2d-convolution operations 479

(over the sequence length and hidden dimension) as 480

in (Kim, 2014) and apply it directly to the encoded 481

outputs xh and yh. For the convolution operations, 482

we use learnable filters with size of 1, 2 and 3 to 483

represent ’unigram’, ’bigram’ and ’trigram’ con- 484

textual information from the sequences. Then we 485

use a max-pooling operation over each filter output, 486

to alleviate various sequence-length issue and con- 487

catenate them as one single output vector. Finally, 488

we apply an affine transformation on the output 489

vector and return the original vector dimension, but 490

with a sequence length of 1. We name the whole 491

operations here as contextual convolutional neural 492

encoder (denoted as Concoder). 493

In contrast, a standard CVAE model takes a fixed 494

position (usually the last hidden state from the se- 495

quence, if implemented in the LSTM network) to 496

deal with various sequence-length issues. We im- 497

plement a standard CVAE with the < bos > posi- 498

tion output as the final output, denoted as CVAE 499

Generation. We use this as a comparison with our 500

novel solution (Concoder), denoted as ConC- 501

VAE Generation (with results shown in Table 3). 502

5.2.2 Neural Prior 503

The prior distribution, denoted as: 504

pθ(z|x) = N (z|µθ(x), diag(σ2
θ(x))) (3) 505

pθ(z|x) is an isotropic multivariate Gaussian 506

with mean and variance matrices parameterised by 507

neural networks. With variable-length sentence as 508

input, we first use a contextual convolutional neural 509

network, introduced in section 5.2.1, to retrieve a 510

fixed output xc. Then apply two additional affine 511

transformations, f1 and f2, to parameterise the 512

mean and variance matrices for the neural prior. 513

The tanh() function here introduces additional 514

non-linearity and also contributes to numerical sta- 515

bility during parameters optimisation. Thus, we 516
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have:517

xc = Concoder([xh])

µθ = f1([xc])

log σθ = tanh(f2([xc]))

(4)518

5.2.3 Neural Posterior519

During training, the latent variable will be sampled520

from the posterior distribution:521

qφ(z|x, y) = N (z|µφ(x, y), diag(σ2
φ(x, y)))

(5)522

qφ(z|x, y) is also an isotropic multivariate523

Gaussian with mean and variance matrices param-524

eterised by neural networks. However, the param-525

eters are inferred based on both inputs and out-526

puts. We use the same Concoder network to527

handle the various length of inputs and outputs528

(x(p), x(h), and y(e)). Similarly, as for the neural529

prior, we apply two additional affine transforma-530

tions, f3 and f4, to parameterise the mean and531

variance matrices. Thus, we have:532

yc = Concoder([yh])

µφ = f3([xc; yc])

log σφ = tanh(f4([xc; yc]))

(6)533

5.3 Neural Decoder534

The decoder models the probability of the expla-535

nation y(e) in an auto-regressive manner, given536

the predicted label yp, the encoded premise and537

hypothesis pair xh, and the latent vector z. We538

obtain the explanation sequence via:539

y(e) = Decoder([z;x(h)]) (7)540

Here, the Decoder refers to the Transformer541

decoder. Given an explanation with a total se-542

quence length of T , at time step j (j < T ), it543

produces the jth word with a softmax selection544

from the vocabulary based on all the past j − 1545

words.546

5.4 Neural Predictor547

In our INITIATIVE framework, the label can be548

predicted based on one of the three options: (i) M1549

Model: predicted based on the premise and hypoth-550

esis only. (ii) M2 Model: predicted based on the551

explanation only. (iii) M3 Model: predicted based 552

on the premise, hypothesis and explanation all to- 553

gether. With the transformer architecture, we first 554

concatenate the vector outputs of the information 555

at each first ’< bos >’ position to a single vector 556

for each model. Then apply an affine transforma- 557

tion operation f to the concatenated vector. We 558

jointly train the neural predictor together with the 559

generative model ConCVAE. We compare the per- 560

formance of these three models in our experiments 561

(Table 3). 562

6 Experiments 563

To evaluate our proposed framework INITIA- 564

TIVE, we conduct experiments to compare with 565

our baseline models. We are interested in the fol- 566

lowing question: Q(v) How can we generate mul- 567

tiple sentences from our INITIATIVE framework 568

and predict class labels at the same time? 569

6.1 Baseline Models 570

We define two types of baseline models: genera- 571

tive model and predictive model. We consider the 572

following works as baseline models: 573

• seq2seq (generative model, our implementa- 574

tion): a sequence to sequence learning frame- 575

work developed by (Sutskever et al., 2014). 576

We implement it with the Transformer archi- 577

tecture and denote the experiment results as 578

Full Generation in Table 3. 579

• CVAE (generative model, our implementa- 580

tion): a strong probabilistic conditional gen- 581

eration framework introduced by (Sohn et al., 582

2015; Larsen et al., 2016). We implement it 583

with the Transformer architecture and denote 584

results as CVAE Generation in Table 3. 585

• Transformer (predictive model, our imple- 586

mentation): a very strong baseline model for 587

NLI task developed by (Vaswani et al., 2017). 588

We denote the experiment results as Mixture 589

Transformer Encoder in Table 3. 590

6.2 Experiment Setup 591

To evaluate the explanation generative model of our 592

INITIATIVE framework, we implement our novel 593

ConCVAE model and compare it with the standard 594

CAVE model. We use the MAP decoding over the 595

latent variable during both training and testing. To 596

answer Q(v), we implement the INITIATIVE M1, 597

M2 and M3 models (as in section 5.4) and compare 598

7



Model Label Accuracy Perplexity BLEU Correct@100

Premise Agnostic Encoder (lower bound) 65.43 (0.72) − − −
Mixture Transformer Encoder (predictive model baseline) 78.98 (1.44) − − −
Full Generation (generative model baseline, non-probabilistic) − 5.53(0.05) 33.14 (0.50) 61.5/41/−
CVAE Generation (generative model baseline, probabilistic) − 7.58 (0.27) 25.70 (1.04) 47.0/32/12.0
ConCVAE Generation (our model, probabilistic) − 5.69 (0.03) 32.74 (0.09) 65.5/50/14.6
INITIATIVE M1 (our model) 83.42 (0.31) 6.73(0.16) 30.46(0.33) 54.5/44/14.2
INITIATIVE M2 (our model) 73.73(1.54) 5.75 (0.01) 32.68(0.64) 59.0/42/12.0
INITIATIVE M3 (our model) 79.85(0.35) 5.93(0.02) 32.70 (0.28) 60.5/48/13.8

Table 3: Natural-XAI explanation Generation Results ( ‘−’ refers to results not applicable). We use the same
evaluation method for Correct@100 as detailed in Appendix C.

their performance to our predictive and generative599

baseline models. Regarding neural network archi-600

tecture, vocabulary and training, we use the same601

experimental setting as in section 4.602

6.3 Interpolation in Latent Space603

To generate multiple explanations, we perform pos-604

terior analysis over the latent space. We choose to605

linearly interpolate the isotropic multivariate Gaus-606

sians over its 95.44% region (left and right of 2σ607

from µ). We produce 5 samples calculated based608

on µ−2σ, µ−σ, µ, µ+σ, and µ+2σ coordinates609

over the latent space. We check if different explana-610

tions can be generated with similar semantic mean-611

ing, based on the criterion detailed in Appendix612

C. Qualitative evaluation results for interpolations613

are presented in the Correct @100 column in Ta-614

ble 3. Examples of interpolation results from the615

ConCVAE Generation experiment are presented in616

Appendix E.617

7 Results and Discussion618

The main results are presented in Table 3. For619

explanation generation evaluation, we compare a620

deep generative model (CVAE Generation) with a621

standard neural network model (Full Generation),622

with similar model complexity (as in Appendix F).623

The results suggest that for the CVAE Generation624

model, for quantitative results, the perplexity is in-625

creased (2.05), the BLEU score is reduced (7.4%).626

We obtain a worse score for qualitative assessment627

in matching words (14.5 less) and correctness (9628

less), meaning the performance is worse than the629

Full Generation model. However, deep generative630

models such as CVAE Generation allow generat-631

ing multiple explanations via a posterior analysis632

over the latent space. With our novel contextual633

deep generative model ConCVAE, we can achieve634

competitive performance with the Full Generation635

model, with significant improvements in qualitative636

results (Correct @100), as shown in Table 3.637

We implement three variants of our INITIA- 638

TIVE framework (M1, M2 and M3) to perform 639

generation and prediction simultaneously. Results 640

suggest that generating a valid explanation from the 641

premise and hypothesis sentence-pair allows the 642

encoder to better understand the semantics mean- 643

ing of the words and hence further enhances the 644

accuracy of prediction. This leads to a boost in pre- 645

diction performance (83.42% for M1 and 79.85% 646

for M3), compared to the Mixture Transformer En- 647

coder (78.98%), with a prediction network with the 648

same number of parameters. However, as shown 649

in the M2 model, the prediction accuracy is worse 650

when using explanation-only to predict the label. 651

This makes sense, as the best performance gen- 652

erative model (ConCVAE) only finds 50% of the 653

correct explanation (based on the correctness score 654

of 50) in the first 100 test examples. We also ob- 655

serve that for the M3 model, the generation results 656

are much better than for the M1 model (perplexity 657

decrease of 0.8 and BLEU increase of 2.2%). For 658

Natural-XAI with label prediction and explanation 659

generation together, for prediction performance, 660

the M1 model fits better. However, for generation 661

performance, the M3 model fits better with our pur- 662

pose. Additionally, we observe that label prediction 663

results in decreasing generative performance, as op- 664

posed to the ConCVAE model. 665

8 Conclusion and Future Work 666

In this paper, we present our novel deep genera- 667

tive Natural-XAI framework, INITIATIVE. Our 668

framework can generate multiple explanations and 669

predict the label simultaneously, achieving compet- 670

itive or better performance against the state-of-the- 671

art baseline models on both the generation (4.7% 672

improvement in BLEU) and prediction (4.4% im- 673

provement in accuracy) tasks. Our method can 674

serve as a solid baseline for future Natural-XAI re- 675

search and suggests a more generative perspective 676

for future research in this field. 677

8



References678

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-679
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.680
2019. Mathqa: Towards interpretable math word681
problem solving with operation-based formalisms.682
arXiv preprint arXiv:1905.13319.683

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez,684
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-685
berto Barbado, Salvador García, Sergio Gil-López,686
Daniel Molina, Richard Benjamins, et al. 2020. Ex-687
plainable artificial intelligence (xai): Concepts, tax-688
onomies, opportunities and challenges toward re-689
sponsible ai. Information Fusion, 58:82–115.690

Christopher M Bishop. 2006. Pattern recognition. Ma-691
chine learning, 128(9).692

Samuel R Bowman, Gabor Angeli, Christopher Potts,693
and Christopher D Manning. 2015. A large anno-694
tated corpus for learning natural language inference.695
arXiv preprint arXiv:1508.05326.696

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie697
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind698
Neelakantan, Pranav Shyam, Girish Sastry, Amanda699
Askell, et al. 2020. Language models are few-shot700
learners. arXiv preprint arXiv:2005.14165.701

Oana-Maria Camburu, Tim Rocktäschel, Thomas702
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-703
ural language inference with natural language expla-704
nations. arXiv preprint arXiv:1812.01193.705

Robert Challen, Joshua Denny, Martin Pitt, Luke706
Gompels, Tom Edwards, and Krasimira Tsaneva-707
Atanasova. 2019. Artificial intelligence, bias and708
clinical safety. BMJ Quality & Safety, 28(3):231–709
237.710

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana711
Inkpen, and Si Wei. 2017. Neural natural language712
inference models enhanced with external knowledge.713
arXiv preprint arXiv:1711.04289.714

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic715
Barrault, and Antoine Bordes. 2017. Supervised716
learning of universal sentence representations from717
natural language inference data. arXiv preprint718
arXiv:1705.02364.719

Danilo Croce, Daniele Rossini, and Roberto Basili.720
2019. Auditing deep learning processes through721
kernel-based explanatory models. In Proceedings of722
the 2019 Conference on Empirical Methods in Nat-723
ural Language Processing and the 9th International724
Joint Conference on Natural Language Processing725
(EMNLP-IJCNLP), pages 4037–4046.726

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis727
Katsis, Ban Kawas, and Prithviraj Sen. 2020. A sur-728
vey of the state of explainable ai for natural language729
processing. arXiv preprint arXiv:2010.00711.730

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 731
Kristina Toutanova. 2018. Bert: Pre-training of deep 732
bidirectional transformers for language understand- 733
ing. arXiv preprint arXiv:1810.04805. 734

Bryan Eikema and Wilker Aziz. 2020. Is map de- 735
coding all you need? the inadequacy of the mode 736
in neural machine translation. arXiv preprint 737
arXiv:2005.10283. 738

Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen 739
Dong, and Changyou Chen. 2021. Transformer- 740
based conditional variational autoencoder for 741
controllable story generation. arXiv preprint 742
arXiv:2101.00828. 743

Jun Gao, Wei Bi, Xiaojiang Liu, Junhui Li, Guodong 744
Zhou, and Shuming Shi. 2019. A discrete cvae 745
for response generation on short-text conversation. 746
arXiv preprint arXiv:1911.09845. 747

Fréderic Godin, Kris Demuynck, Joni Dambre, Wesley 748
De Neve, and Thomas Demeester. 2018. Explaining 749
character-aware neural networks for word-level pre- 750
diction: Do they discover linguistic rules? arXiv 751
preprint arXiv:1808.09551. 752

Yichen Gong, Heng Luo, and Jian Zhang. 2017. Natu- 753
ral language inference over interaction space. arXiv 754
preprint arXiv:1709.04348. 755

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 756
2016. Deep learning. MIT press. 757

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, 758
Franco Turini, Fosca Giannotti, and Dino Pedreschi. 759
2018. A survey of methods for explaining black box 760
models. ACM computing surveys (CSUR), 51(5):1– 761
42. 762

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and 763
Piyush Rai. 2018. A deep generative framework for 764
paraphrase generation. In Proceedings of the AAAI 765
Conference on Artificial Intelligence, volume 32. 766

Suchin Gururangan, Swabha Swayamdipta, Omer 767
Levy, Roy Schwartz, Samuel R Bowman, and 768
Noah A Smith. 2018. Annotation artifacts in 769
natural language inference data. arXiv preprint 770
arXiv:1803.02324. 771

Michael I Jordan, Zoubin Ghahramani, Tommi S 772
Jaakkola, and Lawrence K Saul. 1999. An intro- 773
duction to variational methods for graphical models. 774
Machine learning, 37(2):183–233. 775

Armand Joulin, Edouard Grave, Piotr Bojanowski, and 776
Tomas Mikolov. 2016. Bag of tricks for efficient text 777
classification. arXiv preprint arXiv:1607.01759. 778

Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, 779
Rich Caruana, Hanna Wallach, and Jennifer Wort- 780
man Vaughan. 2020. Interpreting interpretability: 781
Understanding data scientists’ use of interpretability 782
tools for machine learning. In Proceedings of the 783
2020 CHI Conference on Human Factors in Com- 784
puting Systems, pages 1–14. 785

9



Yoon Kim. 2014. Convolutional neural networks786
for sentence classification. In Proceedings of the787
2014 Conference on Empirical Methods in Natural788
Language Processing (EMNLP), pages 1746–1751,789
Doha, Qatar. Association for Computational Lin-790
guistics.791

Diederik P Kingma and Jimmy Ba. 2014. Adam: A792
method for stochastic optimization. arXiv preprint793
arXiv:1412.6980.794

Diederik P Kingma and Max Welling. 2013. Auto-795
encoding variational bayes. arXiv preprint796
arXiv:1312.6114.797

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby,798
Hugo Larochelle, and Ole Winther. 2016. Autoen-799
coding beyond pixels using a learned similarity met-800
ric. In International conference on machine learn-801
ing, pages 1558–1566. PMLR.802

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.803
2015. Deep learning. nature, 521(7553):436–444.804

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-805
jan Ghazvininejad, Abdelrahman Mohamed, Omer806
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.807
Bart: Denoising sequence-to-sequence pre-training808
for natural language generation, translation, and809
comprehension. arXiv preprint arXiv:1910.13461.810

Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van811
Der Wilk, Amar Shah, Roberto Cipolla, and Adrian812
Weller. 2017. Concrete problems for autonomous813
vehicle safety: Advantages of bayesian deep learn-814
ing. International Joint Conferences on Artificial In-815
telligence, Inc.816

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural817
variational inference for text processing. In Interna-818
tional conference on machine learning, pages 1727–819
1736.820

Andriy Mnih and Karol Gregor. 2014. Neural vari-821
ational inference and learning in belief networks.822
In International Conference on Machine Learning,823
pages 1791–1799. PMLR.824

Artidoro Pagnoni, Kevin Liu, and Shangyan Li. 2018.825
Conditional variational autoencoder for neural ma-826
chine translation. arXiv preprint arXiv:1812.04405.827

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-828
Jing Zhu. 2002. Bleu: a method for automatic eval-829
uation of machine translation. In Proceedings of the830
40th annual meeting of the Association for Compu-831
tational Linguistics, pages 311–318.832

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and833
Jakob Uszkoreit. 2016. A decomposable attention834
model for natural language inference. arXiv preprint835
arXiv:1606.01933.836

Nicolas Pröllochs, Stefan Feuerriegel, and Dirk Neu-837
mann. 2019. Learning interpretable negation rules838

via weak supervision at document level: A reinforce- 839
ment learning approach. In Proceedings of the 2019 840
Conference of the North American Chapter of the 841
Association for Computational Linguistics: Human 842
Language Technologies, volume 1, pages 407–413. 843
Association for Computational Linguistics. 844

Danilo Jimenez Rezende, Shakir Mohamed, and Daan 845
Wierstra. 2014. Stochastic backpropagation and 846
approximate inference in deep generative models. 847
In International conference on machine learning, 848
pages 1278–1286. PMLR. 849

Marco Tulio Ribeiro, Sameer Singh, and Carlos 850
Guestrin. 2016. " why should i trust you?" explain- 851
ing the predictions of any classifier. In Proceed- 852
ings of the 22nd ACM SIGKDD international con- 853
ference on knowledge discovery and data mining, 854
pages 1135–1144. 855

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. 856
Learning structured output representation using 857
deep conditional generative models. Advances in 858
neural information processing systems, 28:3483– 859
3491. 860

Akash Srivastava and Charles Sutton. 2017. Autoen- 861
coding variational inference for topic models. arXiv 862
preprint arXiv:1703.01488. 863

Jinsong Su, Shan Wu, Deyi Xiong, Yaojie Lu, Xian- 864
pei Han, and Biao Zhang. 2018. Variational recur- 865
rent neural machine translation. In Proceedings of 866
the AAAI Conference on Artificial Intelligence, vol- 867
ume 32. 868

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. 869
Sequence to sequence learning with neural networks. 870
In Advances in neural information processing sys- 871
tems, pages 3104–3112. 872

Erico Tjoa and Cuntai Guan. 2020. A survey on ex- 873
plainable artificial intelligence (xai): Toward medi- 874
cal xai. IEEE Transactions on Neural Networks and 875
Learning Systems. 876

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 877
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 878
Kaiser, and Illia Polosukhin. 2017. Attention is all 879
you need. In Advances in neural information pro- 880
cessing systems, pages 5998–6008. 881

Nikos Voskarides, Edgar Meij, Manos Tsagkias, 882
Maarten De Rijke, and Wouter Weerkamp. 2015. 883
Learning to explain entity relationships in knowl- 884
edge graphs. In Proceedings of the 53rd Annual 885
Meeting of the Association for Computational Lin- 886
guistics and the 7th International Joint Conference 887
on Natural Language Processing (Volume 1: Long 888
Papers), pages 564–574. 889

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 890
2017. Learning discourse-level diversity for neural 891
dialog models using conditional variational autoen- 892
coders. arXiv preprint arXiv:1703.10960. 893

10

https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181


Mantong Zhou, Minlie Huang, and Xiaoyan Zhu.894
2018. An interpretable reasoning network for895
multi-relation question answering. arXiv preprint896
arXiv:1801.04726.897

A Dataset Statistics898

Model Mean Median Standard Deviation Min Max
Premise 17 15 7 4 84
Hypothesis 11 10 4 3 64
Explanation 16 15 7 2 189

Table 4: Token length statistics for the e-SNLI dataset,
all numbers round to integer.

Our detailed dataset statistics are presented in Ta-899

ble 4, to help reproduce the experiment results, we900

provide a detailed description of our pre-processing901

and tokenisation process. We start by stripping out902

any space in front of and behind the original sen-903

tence. And then tokenise it using the Spacy English904

tokeniser tool based on the ’en_core_web_sm’905

lexicon resource. The tokenised text is then used to906

create the complete vocabulary for training. We fol-907

low (Camburu et al., 2018) and remove tokens that908

appear less than 15 times. We additional include909

special tokens ’< unk >’, ’< pad >’, ’< bos >’910

and ’< eos >’ in the vocabulary. Before we use911

each sentence, we append ’< bos >’ at the begin-912

ning of this sentence and append ’< eos >’ at the913

end of this sentence, with a space in between.914

B Explanation Template Examples915

We provide the following list of explanation tem-916

plate examples as the guidelines to filter out non-917

informative explanations. Our templates are built918

based on the templates in (Camburu et al., 2018)919

and our own generated explanations.920

B.1 General Templates921

• <premise>922

• <hypothesis>923

B.2 Contradiction Templates924

• <XXX> is either <XXX> or <XXX>925

• <XXX> is not the same as <XXX>926

• <XXX> can not be both <XXX> and <XXX>927

at the same time928

• <XXX> is not <XXX>929

• <XXX> can not <XXX>930

• <XXX> is <XXX>, not <XXX>931

B.3 Entailment Templates 932

• <XXX> is the same as <XXX> 933

• <XXX> is a type of <XXX> 934

• <XXX> is a <XXX> 935

• <XXX> is a rephrasing of <XXX> 936

• <XXX> so <XXX> 937

B.4 Neutral Templates 938

• <XXX> does not mean <XXX> 939

• just because <XXX> does not mean <XXX> 940

• <XXX> is not necessarily <XXX> 941

• <XXX> does not imply <XXX> 942

• not all <XXX> are <XXX> 943

C Qualitative Evaluation 944

We provide a detailed qualitative evaluation crite- 945

rion here used for the first 100 testing examples 946

in this paper. Our evaluation results are calculated 947

based on the best BLEU score among the three 948

runs of the experiments, based on different random 949

seeds (1000, 2000 and 3000). The final results 950

are averaged based on three individuals’ opinions. 951

We first filter our the non-informative explanations 952

based on the templates provided in Appendix B 953

and then we evaluate the following aspects: 954

1. Matching words: we check if the generated ex- 955

planation contains the key matching words (or 956

phrases) from its associated premise and hy- 957

pothesis sentence pair (based on three golden 958

references). Each premise and hypothesis sen- 959

tence is assigned with a 0.5 score (hence a pair 960

of them have a score of 1, and the first 100 961

examples have a total of 100 score). We give 962

a score of either 0.5 or 0 for each premise or 963

hypothesis sentence. Matching words means 964

no word replacements hence only the exact 965

words taken from the premise and hypothesis 966

sentence are correct. In this case, ’car’ and 967

’vehicle’ are not matching words. Addition- 968

ally, partially correct words (or phrases) are 969

considered as incorrect. In this case, ’ red 970

car’ and ’yellow car’ are not matching words. 971

However, we accept change in grammatical 972

voice, such as ’walking’ is the same as ’walk’ 973

and grammatical articles such as ’a car’ is the 974

same as ’the car’. 975
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2. Correctness, we check if the generated expla-976

nation can be used as a reasonable and correct977

explanation for premise and hypothesis sen-978

tence pair when we get at least 0.5 score in979

the matching words check. Each explanation980

sentence is assigned with a score of 1 (hence981

we have a total of 100 score for the first 100982

examples). We either give a score of 1 or 0 for983

each explanation sentence based on evaluation984

against three golden explanation examples.985

3. Multiple Generation, we check if the model986

can generate multiple explanations based on987

interpolation when we get a 1 score in the988

correctness check. We produce 5 interpolation989

results based on the methods in section 6.3,990

and each resulting sentence is assigned with991

a 0.2 score (hence we have a total score of 1992

for each explanation and a total of 100 score993

for the first 100 examples). We give either 0.2994

or 0 for each explanation sentence based on995

evaluation against three golden explanation996

examples. If two of the sentence instances are997

exactly the same, we consider only one valid.998

However, we allow missing matching words999

and correctness for multiple generations as1000

long as semantic the instances are similar.1001

We present the evaluation results in order, sep-1002

arate with ’/’. For the non-probabilistic model,1003

the multiple generations are not applicable and are1004

marked as ’−.’1005

D Generated Explanations1006

In this section, we present examples taken from1007

the experiments in section 4.2, these examples are1008

from two scenarios (i) agnostic experiment where1009

the agnostic generation model can pick up spuri-1010

ous correlation to generate the correct explanations.1011

However, the premise information is not offered.1012

Hence, the explanations generation should ideally1013

be incorrect, as shown in Table 5 (ii) agnostic ex-1014

periment where the agnostic generation model is1015

not able to pick up the spurious correlation. While1016

the full generation model can generate the correct1017

explanations, as shown in Table 6. In the first 1001018

test examples, case (i) happens 11 times and (ii)1019

happens 41 times.1020

E Interpolation Explanations1021

In this section we presents examples taken from1022

the experiments in section 6 with our model Con-1023

Test Data Number 22
Premise one tan girl with a wool hat is running and leaning

over an object , while another person in a wool hat
is sitting on the ground .

Hypothesis a boy runs into a wall
Explanation 1 there are either two people - a girl and another

person - or there is a boy .
Explanation 2 a boy is not a tan girl .
Explanation 3 the person is either a girl or boy , not both
Agnostic Generation a boy is not a girl .
Full Generation a boy is not a girl .
Test Data Number 30
Premise a couple walk hand in hand down a street .
Hypothesis a couple is sitting on a bench .
Explanation 1 the couple can not be walking and sitting a the

same time .
Explanation 2 a couple ca n’t both be sitting and walking .
Explanation 3 sitting is not the same as walking .
Agnostic Generation a couple can not be sitting on a bench and walking

down a street at the same time .
Full Generation the couple can not be walking and sitting at the

same time .
Test Data Number 91
Premise a dog jumping for a frisbee in the snow .
Hypothesis a cat washes his face and whiskers with his front

paw .
Explanation 1 dogs and cats are not the same animal , and they

are performing different activities : the dog jumps
while the cat engages in cleaning himself .

Explanation 2 a dog is a different from a cat
Explanation 3 a dog is not a cat .
Agnostic Generation a dog is not a cat .
Full Generation a dog is not a cat .

Table 5: Selected spurious correlation examples.

TrCVAE, these examples are generated based on 1024

the linear interpolation methods presented in sec- 1025

tion 6.3. We only present the multiple generation 1026

results, which are different sentences and omit the 1027

same ones. 1028

F Model Complexity 1029

We present the model complexity in Table 8, with 1030

separate counts for prediction, generation and total 1031

network components, the one with the ‘−’ mark is 1032

denoted as not applicable. Since we share the same 1033

parameters for the Transformer encoder network 1034

in our EAP-ConTrCVAE framework, our frame- 1035

work can perform explanation generation and label 1036

prediction and keep the same model complexity as 1037

the generation model ConTrCVAE. 1038
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Test Data Number 4
Premise a woman with a green headscarf , blue shirt and a

very big grin .
Hypothesis the woman is young .
Explanation 1 the woman could ’ve been old rather than young
Explanation 2 there is no indication that the woman is young .
Explanation 3 not all women are young .
Agnostic Generation the woman is young is the same as the woman is

young .
Full Generation not all women are young .
Test Data Number 9
Premise an old man with a package poses in front of an

advertisement .
Hypothesis a man walks by an ad .
Explanation 1 the man poses in front of the advertisement there-

fore he did not walk by it .
Explanation 2 a man can not be walking by an ad while posing

in front of it .
Explanation 3 poses is different from walks .
Agnostic Generation a man walks by an ad is the same as a man walks

by an ad .
Full Generation the man either poses or walks by .
Test Data Number 26
Premise a young family enjoys feeling ocean waves lap at

their feet .
Hypothesis a family is out at a restaurant .
Explanation 1 one says the family is inside the restaurant , while

the other says they are feeling ocean waves .
Explanation 2 if a family enjoys ocean waves they are not out at

a restaurant .
Explanation 3 family ca n’t be at restraint if feeling ocean waves
Agnostic Generation a family is at a restaurant is a rephrasing of a family

is out at a restaurant .
Full Generation a family can not be at a restaurant and at the ocean

at the same time .
Test Data Number 69
Premise an older women tending to a garden .
Hypothesis the lady is cooking dinner
Explanation 1 the lady can not be cooking dinner if she is tending

to a garden
Explanation 2 a woman can not be gardening and cooking at the

same time .
Explanation 3 the woman is either tending to a garden or cooking

.
Agnostic Generation the lady can not be cooking dinner and sitting on a

bench at the same time .
Full Generation the lady can not be tending to a garden and cooking

dinner at the same time .
Test Data Number 77
Premise a man in a black shirt is looking at a bike in a

workshop .
Hypothesis a man is deciding which bike to buy
Explanation 1 or the man works in the work shop and is selling

the bike , or is inspecting the bike , looking for
issues rather than deciding .

Explanation 2 just because the man is looking at a bike does n’t
mean he is deciding which bike to buy .

Explanation 3 the man looking at the bike may not be deciding
to buy a bike at all .

Agnostic Generation a man is not a woman .
Full Generation looking at a bike does not imply deciding to buy .
Test Data Number 97
Premise a girl playing a violin along with a group of people
Hypothesis a girl is playing an instrument .
Explanation 1 playing an instrument is another less detailed way

to say playing a violin
Explanation 2 the violin is an instrument .
Explanation 3 the violin is an instrument .
Agnostic Generation a girl is playing an instrument is a rephrasing of a

girl is playing an instrument .
Full Generation a violin is an instrument .

Table 6: Selected none-spurious correlation examples.

Test Data Number 29
Premise a couple walk hand in hand down a street .
Hypothesis the couple is married .
Explanation 1 just because the couple is hand in hand does n’t

mean they are married .
Explanation 2 just because the couple is walking hand in hand

does n’t mean they ’re married .
Explanation 3 the couple walking down the street holding hands

does not mean that they are married .
Generated Explanation 1 not all couple walking down street are married .
Generated Explanation 2 not all couple in hand is married .
Generated Explanation 3 not all couples are married .
Test Data Number 50
Premise a little boy in a gray and white striped sweater

and tan pants is playing on a piece of playground
equipment .

Hypothesis the boy is sitting on the school bus on his way
home .

Explanation 1 school buses normally are not located on play-
grounds , so a child can not be playing with play-
ground equipment in a bus .

Explanation 2 the boy is either playing on a piece of playground
equipment or sitting on the school bus on his way
home .

Explanation 3 there ca n’t be a playground on a school bus .
Generated Explanation 1 the boy can not be playing on a playground and

sitting on his way home at the same time .
Generated Explanation 2 the boy can not be playing on a playground and

sitting on his way home simultaneously .
Generated Explanation 3 the boy can not be playing on a playground and

sitting on the bus at the same time .
Test Data Number 64
Premise people jump over a mountain crevasse on a rope .
Hypothesis people are jumping outside .
Explanation 1 the jumping over the mountain crevasse must be

outside .
Explanation 2 a mountain crevasses is usually located outside .
Explanation 3 the mountain is outside .
Generated Explanation 1 people jump over a mountain so they must be out-

side .
Generated Explanation 2 a mountain is outside .
Test Data Number 77
Premise a man in a black shirt is looking at a bike in a

workshop .
Hypothesis a man is deciding which bike to buy
Explanation 1 or the man works in the work shop and is selling

the bike , or is inspecting the bike , looking for
issues rather than deciding .

Explanation 2 just because the man is looking at a bike does n’t
mean he is deciding which bike to buy .

Explanation 3 the man looking at the bike may not be deciding
to buy a bike at all .

Generated Explanation 1 just because a man is looking at a bike in a work-
shop does n’t mean he is deciding to buy .

Generated Explanation 2 just because a man is looking at a bike in a work-
shop does n’t mean he is deciding what to buy
.

Table 7: Selected spurious correlation examples.

Model Prediction Generation Total
Separate Transformer Encoder 48.6M - 48.6M
Mixture Transformer Encoder 24.3M - 24.3M
Premise Agnostic Encoder 24.3M - 24.3M
Agnostic Generation - 63.6M 63.6M
Full Generation - 63.6M 63.6M
CVAE Generation - 65.9M 65.9M
ConTrCVAE Generation - 68.3M 68.3M
EAP-ConTrCVAE M1 24.3M 68.3M 68.3M
EAP-ConTrCVAE M2 24.3M 68.3M 68.3M
EAP-ConTrCVAE M3 24.3M 68.3M 68.3M

Table 8: Number of parameters for each model, with
separate counts for prediction and generation compo-
nent.
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