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The well-known Density Peak Clustering algorithm (DPC) proposed a heuristic center detection 
idea, i.e., to find density peaks as cluster centers. Nevertheless, such a center detection idea cannot 
work well on multi-peak clusters of complex shapes. Besides, DPC needs the distances between 
data, making it prohibitively time-consuming. To overcome these problems, a Main Density Peak 
Clustering algorithm (MDPC+)—clustering by fast detection of main density peaks within a peak 
digraph—is proposed, where a main density peak is the highest density peak in a cluster. MDPC+ 
can easily detect the real centers of multi-peak clusters based on its new center assumption. In 
MDPC+, the clustering problem is viewed as a graph cut problem and a specific graph structure is 
designed for non-peak and density peak allocation, respectively, so it can reasonably reconstruct 
clusters of complex shapes. Meanwhile, a satellite peak attenuation technique is embedded into 
MDPC+ to give it a high resistance to the interference of satellite peaks (i.e., non-center density 
peaks). Besides, MDPC+ only needs kNN distances of data as its input, so it is suitable for 
large datasets. Experimental results on both synthetic and real-world datasets demonstrate the 
superiority of MDPC+ in center detection, complex shape reconstruction, and running speed.

1. Introduction

Clustering that aims to group similar objects is critical for the extraction of potential and valuable knowledge from data, which 
has been applied to pattern recognition [1,2], image processing [3–5], machine learning [6], computer vision [7], etc.

Different clustering methods have been developed based on specific assumptions of a “cluster” [8,6]. For the popular K-centers 
methods [9], [10], a cluster is a group of points with minimum distances to a single center. Different center initializations are 
used to rerun the K-centers to find a relatively good clustering result, because it requires presetting the number of centers and is 
usually sensitive to its center initialization. To remedy this, the Affinity Propagation algorithm [11] devised an “affinity propagation” 
strategy to adaptively find high-quality exemplars as centers. Although K-centers and AP are efficient in partitioning hyper-spherical 
clusters, they are not applicable to arbitrary-shaped clusters.

Density-based clustering methods can work well for arbitrary shape reconstruction. DBSCAN [12], following its assumption that 
a cluster is a set of maximum density-connected points, can detect arbitrary-shaped clusters with sufficient density. Its parameters 
(𝜖 and 𝑀𝑖𝑛𝑃 𝑡𝑠) need to be well-tuned to obtain a reasonable density-connectivity criterion, which is usually a tedious process. Late 
works, e.g., [13], [14], managed to do automatic parameter tuning. Still, they may merge highly overlapping clusters [15].

✩ The source code of this paper is available at https://github .com /Guanjunyi /MDPCplus.
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In 2014, Science published the clustering by fast search and find of density peaks–Density Peak Clustering (DPC) [16]. Its center 
assumption—cluster centers are density peaks that are surrounded by low-density neighbors and are far away from points of 
higher densities—enables it to easily divide highly overlapping clusters by finding appropriate density peaks as centers. But DPC 
cannot well capture multi-peak clusters of complex shapes [17,18], for its center assumption provides no criterion to distinguish the 
correct density peaks (that can represent the true cluster centers), misleading the center selection and resulting in a poor clustering 
result. Although improved works were proposed [17–23], but still following DPC’s center assumption. Also, DPC is prohibitively 
time-consuming [18], and its allocation strategy may rudely associate points without considering density connectivity, leading to 
wrong allocations [17].

To achieve successful clustering without encountering the above-mentioned issues, a Main Density Peak Clustering algorithm 
(MDPC+) is proposed, which follows a new center assumption: a cluster center is a main density peak (hereinafter, a main peak) 
that should have a relatively higher density than surrounding points and have a path with a relatively large density deviation cost 
towards higher density peaks. So, MDPC+ can achieve the easy detection of real cluster centers of multi-peak clusters, and fast 
reconstruct complex shapes. The main contributions of MDPC+ are as follows:

1. A cluster center is herein regarded as a main peak, which helps to precisely distinguish the correct cluster centers (main 
peaks) from non-center density peaks (satellite peaks). Besides, a satellite peak attenuation technique is designed to resist the 
interference of satellite peaks, easing the detection of main peaks in the decision graph;

2. The clustering problem is regarded as a graph clustering problem, and two graph structures with specific weight functions are 
designed to allocate non-peaks and density peaks, respectively. Based on this, MDPC+ can well reconstruct complex shape 
clusters;

3. MDPC+ only needs kNN distances of data as its input, so it is suitable for large datasets.

The rest paper is composed as follows: Section 2 introduces the related works. Section 3 mainly focuses on the proposed method. 
Section 4 presents the experiments and discussion. Section 5 gives the final conclusion.

2. Related works

2.1. The DPC algorithm

Given a dataset of 𝑛 points 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛 ∣ 𝑥𝑖 ∈ ℝ𝑚}, 𝑋 ∈ ℝ𝑚×𝑛, for each point 𝑥𝑖, DPC first estimates its local density 𝜌𝑖
as in Eq. (1), and then calculates its distance 𝛿𝑖 from the nearest higher density point as in Eq. (2). Where 𝑑𝑖𝑗 is the Euclidean 
distance between point 𝑥𝑖 and 𝑥𝑗 , and “cutoff distance” 𝑑𝑐 is a user-specified parameter. For the highest density point 𝑥𝑖, DPC gives 
𝛿𝑖 = max

𝑥𝑖≠𝑥𝑗

(
𝑑𝑖𝑗

)
.

𝜌𝑖 =
∑
𝑥𝑗∈𝑋

𝜒(𝑑𝑖𝑗 − 𝑑𝑐), 𝜒(Δ) =
{

1 Δ < 0
0 Δ ⩾ 0 (1)

𝛿𝑖 = min
𝑥𝑗∶𝜌𝑗>𝜌𝑖

(
𝑑𝑖𝑗

)
(2)

According to DPC’s cluster center assumption, by observing the decision graph, density peaks with the top largest 𝛾 (𝛾 = 𝜌 ⋅ 𝛿) are 
manually selected as centers and given unique labels. Subsequently, the remaining points directly inherit the labels of their nearest 
higher density points. Once each point obtains a label, clustering is done.

From the perspective of graph clustering, let 𝐺(𝑋, �⃗�) be complete digraph of dataset 𝑋 according to density boosting, where 
�⃗� =

{
𝑒𝑖𝑗 |𝜌𝑗 > 𝜌𝑖, 𝑥𝑗 , 𝑥𝑖 ∈𝑋

}
.

𝑤(𝑒𝑖𝑗 ) = 𝑑𝑖𝑗 ⋅ 𝜌𝑖, 𝑒𝑖𝑗 ∈ �⃗� (3)

DPC gives a weight to each directed edge 𝑒𝑖𝑗 as in Eq. (3) and cuts 𝐺(𝑋, �⃗�) into 𝑛𝑐 clusters 𝐶𝑙 =
{
𝐶𝑙1, 𝐶𝑙2, ..., 𝐶𝑙𝑛𝑐

}
with minimum 

weight, where a cluster 𝐶𝑙𝑖 is connected subgraph 𝐺𝐶𝑙𝑖
(𝐶𝑙𝑖, �⃗�𝐶𝑙𝑖

) of 𝐺, i.e., 𝐶𝑙𝑖 ⊂ 𝑋 and �⃗�𝐶𝑙𝑖
⊂ �⃗�. That is, to solve the following 

problem:

min
𝐶𝑙

𝑛𝑐∑
𝑖=1

∑
𝑒𝑎𝑏∈�⃗�𝐶𝑙𝑖

𝑤(𝑒𝑎𝑏) s.t. 𝑛𝑐 < 𝑛 (4)

To solve Problem (4) needs to first reserve the minimum weight edge (𝛿 path) projected from each point: to get the minimum 
spanning tree with the highest density point as the root node; and then, to cut off 𝑛𝑐 − 1 edges of the top largest weight values: to 
search for density peaks with the top largest 𝛾 values as centers.

2.2. DPC’s limitations and improvements

The simplicity and efficiency of DPC in capturing non-spherical shapes make it a promising and concerning clustering algorithm 
505

[24]. Nevertheless, as mentioned in [25], density peaks with the top largest 𝛾 values are not necessarily centers. DPC may select 
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Fig. 1. The performance of DPC on different one-dimensional datasets with multi-peak clusters, where “★” marks a main peak, blue “■” marks a satellite peak, and 
red “▾” marks a boundary location between two single-peak clusters. Error results are framed in red dashed.

inappropriate density peaks as cluster centers. Besides, DPC may connect non-center density peaks to irrelevant points beyond their 
local areas, for giving no distance constraint to edge 𝑒 ∈ �⃗�, resulting in the misallocation of points [17].

To better demonstrate DPC’s limitation on the dataset of multi-peak clusters, twelve one-dimensional simple datasets of multi-peak 
clusters (i.e., datasets of two clusters with three density peaks) are presented in Fig. 1. The permutations of these datasets are 
𝑃 (3, 3) = 6. Being divided into two categories according to the distance between the two density peaks of the multi-peak cluster, the 
twelve datasets are obtained with each dataset being given a Gaussian density estimation function. As shown, the two density peaks 
of the multi-peak cluster in the left-side six datasets (A1, B1,. . . , F1) are relatively close, while in the right-side datasets (A2, B2,. . . , 
F2) are far apart.

Note that DPC actually cuts all twelve datasets into two clusters at a local minimum point (i.e., a boundary point, marked with 
a red “▾”) on their density estimation functions, which is only workable for the left-side six datasets, as shown in Fig. 1. For the 
right-side datasets, the cutting boundary points are mischoosen due to the long distance between two density peaks in the multi-peak 
cluster. So, the non-center density peaks (blue “■”) get large 𝛿 values, resulting in the wrong cluster center selections in A2, B2, 
D2, and E2. For the same reason, the non-center density peaks are connected to wrong areas in datasets C2 and F2. As verified, DPC 
is not robust in detecting cluster centers from density peaks or assigning the remaining density peaks. Also, DPC’s assumption pays 
more attention to the width of the valley between density peaks rather than the depth, which violates the principle of density-based 
methods that clusters are separated by low-density gaps [26,12].

Although improvement methods were proposed, they all follow DPC’s core center assumption without discussing the effective 
detection of the correct cluster centers among multiple density peaks. For example, Du et al. [19] applied kNN-based density to 
help discover density peaks within the sparse cluster. [20] designed a fuzzy kNN-based allocation strategy to ensure that each 
non-center point is assigned within the neighborhood; Liu, et al. [23] designed a shared-nearest-neighbor-based allocation strategy 
that associates points according to shared nearest neighbor information; Abbas, et al. [21] designed a robust allocation strategy that 
fully takes mutual nearest neighbor information into account; Du, et al. [22] and Pizzagalli, et al. [17] used geodesic distance instead 
of Euclidean distance for the allocation of non-center points.

MDPC+ inherits the main idea of DPC to search for cluster centers, but, based on our new assumption, it narrows down the 
search range of cluster centers by only searching for main peaks. Our method can effectively distinguish true cluster centers from 
density peaks, and accurately assign non-center density peaks.

3. The proposed MDPC+ algorithm
506

In this section, a detailed introduction to MDPC+ is given.
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Fig. 2. The Venn diagram of cluster centers, density peaks, and data points.

3.1. The assumption of MDPC+

In density-based clustering methods, clusters are normally defined as high-density areas separated by low-density gaps [12], and 
the highest density point within a cluster is regarded as the cluster center [27]. Nevertheless, the density peak attribute (i.e., local 
density maxima) is a necessary but insufficient condition for cluster centers. Because a cluster usually has multiple density peaks, 
i.e., 𝐶 ⊆ 𝑃 ⊂ 𝑋, where 𝐶 is a set of cluster centers, 𝑃 is a set of density peaks, and 𝑋 is a set of data points. Only and if only all 
clusters are single-peak clusters, then 𝐶 = 𝑃 ⊂𝑋.

Fig. 2 demonstrates the Venn diagram of cluster centers, density peaks, and data points in a dataset. As shown, non-peaks (i.e., 
𝑃 =𝑋 ⧵ 𝑃 ) shall never be cluster centers, thus the cluster center selection region can be narrowed down to density peaks. To detect 
density peaks, a clear definition of a density peak is needed. According to the local density maxima characteristic of a density peak, 
the k-nearest neighbors 𝑁𝑘(𝑥𝑖) of a point 𝑥𝑖 is defined as its local area, as in Definition 1. A kNN-based density estimation method 
[20] (as in Eq. (5)) is herein applied to reduce computational complexity.

𝜌𝑖 =
∑

𝑥𝑗∈𝑁𝑘(𝑥𝑖)
𝑒−𝑑𝑖𝑗 (5)

To effectively distinguish cluster centers from density peaks, the highest density peaks in clusters are defined as main peaks (i.e., 
main peaks are cluster centers) and the remaining density peaks as satellite peaks, as in Definition 2.

Definition 1. Point 𝑥𝑖 is a density peak, denoted as 𝑝, if it has highest density within its 𝑘 nearest neighbors 𝑁𝑘(𝑥𝑖), i.e., 𝜌𝑖 >
max

𝑥𝑗∈𝑁𝑘(𝑥𝑖)
(𝜌𝑗 ).

Definition 2. A density peak 𝑝𝑖 ∈ 𝐶𝑙𝑎 is the main peak of cluster 𝐶𝑙𝑎, if 𝜌𝑝𝑖 = max
𝑝𝑗∈𝐶𝑙𝑎

(𝜌𝑝𝑗 ), otherwise, 𝑝𝑖 is a satellite peak.

In a cluster, all satellite peaks can find a higher density peak within the cluster; while the main peak needs to walk through a 
path with at least one low-density gap between clusters to find higher density peaks. The path will have a deep density drop that 
should have a large density deviation cost. Inspired by this, a new assumption of a main peak is proposed to help distinguish main 
peaks from satellite peaks, as in Assumption 1.

Assumption 1. Cluster centers are main peaks that have a relatively high density than surrounding neighbors and have a path with 
a relatively large density deviation cost towards density peaks of higher densities.

To perform clustering, based on Assumption 1, adjacent points of similar density are grouped into a cluster, ensuring that only 
the main peak has a path with a relatively large density deviation cost towards a higher density peak, which constructs our clustering 
idea. In what follows, the corresponding graph clustering problem is proposed.

3.2. The graph clustering problem of MDPC+

MDPC+ aims to assign each point to a denser area in proximity, like Mean-Shift [27]. By classifying dataset 𝑋 into density 
peaks 𝑃 =

{
𝑝1, 𝑝2, ..., 𝑝𝑛𝑝

}
and non-peaks 𝑃 , 𝑋 = 𝑃 ∪ 𝑃 , we note that non-peaks can always find the best adjacent higher density 

point of similar density within local areas, while density peaks cannot. In other words, non-peaks can be assigned within local areas, 
while density peaks cannot. So, to assign non-peaks, a 𝑘𝑁𝑁 digraph of dataset 𝑋 is only required, denoted as 𝐺𝑘𝑁𝑁 (𝑋, �⃗�𝐾 ), where 
�⃗�𝐾 =

{
𝑒𝑖𝑗 |𝜌𝑗 > 𝜌𝑖, 𝑥𝑗 ∈𝑁𝑘(𝑥𝑖), 𝑥𝑖, 𝑥𝑗 ∈𝑋

}
. To assign density peaks, a complete digraph of density peaks should be constructed, called 

peak digraph, and denoted as 𝐺𝑃 (𝑃 , 𝐸∗), where 𝐸∗ =
{
𝑒∗𝑝𝑖𝑝𝑗 |𝜌𝑝𝑗 > 𝜌𝑝𝑖 , 𝑝𝑖, 𝑝𝑗 ∈ 𝑃

}
.

Based on our clustering idea, specific edge-weight functions are introduced to quantitatively describe the relationship between 
507

data points. So, the clustering problem of MDPC+ can be executed as two graph-cut problems.
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First, MDPC+ cuts 𝐺𝑘𝑁𝑁 (𝑋, �⃗�𝐾 ) into 𝑛𝑝 sub-clusters 𝐶𝑙𝑠 =
{
𝐶𝑙𝑠1, 𝐶𝑙

𝑠
2, ..., 𝐶𝑙

𝑠
𝑛𝑝

}
with minimum weight, where a sub-cluster 𝐶𝑙𝑠

𝑖
is 

connected subgraph 𝐺𝐶𝑙𝑠
𝑖
(𝐶𝑙𝑠

𝑖
, �⃗�𝐶𝑙𝑠

𝑖
) of 𝐺𝑘𝑁𝑁 , i.e., 𝐶𝑙𝑠

𝑖
⊂ 𝑋 and �⃗�𝐶𝑙𝑠

𝑖
⊂ �⃗�𝐾 . That is, to solve Problem (6), where 𝑤𝑃 (⋅) is a edge-weight 

function.

min
𝐶𝑙𝑠

𝑛𝑝∑
𝑖=1

∑
𝑒𝑎𝑏∈�⃗�𝐶𝑙𝑠

𝑖

𝑤𝑃 (𝑒𝑎𝑏) s.t. 𝑛𝑝 = |𝑃 | (6)

Then, MDPC+ detects 𝑛𝑝 density peaks to build peak digraph 𝐺𝑃 (𝑃 , 𝐸∗), and cuts 𝐺𝑃 (𝑃 , 𝐸∗) into 𝑛𝑐 clusters 𝐶𝑙∗ ={
𝐶𝑙∗1 , 𝐶𝑙

∗
2 , ..., 𝐶𝑙

∗
𝑛𝑐

}
with minimum weight, where a cluster 𝐶𝑙∗

𝑖
is connected subgraph 𝐺𝐶𝑙∗

𝑖
(𝐶𝑙∗

𝑖
, �⃗�∗

𝐶𝑙𝑖
) of 𝐺𝑃 , i.e., 𝐶𝑙∗

𝑖
⊂ 𝑃 and 

�⃗�∗
𝐶𝑙𝑖

⊂ �⃗�∗. That is, to solve Problem (7), where 𝑤𝑃 (⋅) is an edge-weight function, and 𝑛𝑐 is the number of selected main peaks.

min
𝐶𝑙∗

𝑛𝑐∑
𝑖=1

∑
𝑒∗𝑝𝑎𝑝𝑏∈�⃗�𝐶𝑙∗

𝑖

𝑤𝑃 (𝑒∗𝑝𝑎𝑝𝑏 ) s.t. 𝑛𝑐 ⩽ 𝑛𝑝 (7)

3.3. The clustering of MDPC+

In what follows, a detailed illustration of MDPC+’s two steps: 1) the local allocation of non-peaks in a kNN digraph; 2) the global 
clustering of density peaks in a peak digraph, will be given.

3.3.1. The allocation of non-peaks in a kNN digraph

Based on 𝐺𝑘𝑁𝑁 (𝑋, �⃗�𝐾 ), a weight function 𝑤𝑃 (⋅) is designed to make sure that each non-peak is associated with a reasonable 
adjacent higher density point of similar density, as in Eq. (8). Where 𝜙𝑑 (𝑒𝑖𝑗 ) and 𝜙𝜌(𝑒𝑖𝑗 ) are the relative influence of distance and 
density deviation from 𝑥𝑗 to 𝑥𝑖, as in Eq. (9) and (10), and 𝜇𝑖𝑗 is the density deviation value between 𝑥𝑗 and 𝑥𝑖, as in Eq. (11).

𝑤𝑃 (𝑒𝑖𝑗 ) = 𝜙𝑑 (𝑒𝑖𝑗 ) + 𝜙𝜌(𝑒𝑖𝑗 ), 𝑒𝑖𝑗 ∈ �⃗�𝐾 (8)

𝜙𝑑 (𝑒𝑖𝑗 ) =

𝑑𝑖𝑗 − min
𝑒𝑖𝑡∈�⃗�𝐾

(
𝑑𝑖𝑡

)
max
𝑒𝑖𝑡∈�⃗�𝐾

(
𝑑𝑖𝑡

)
− min

𝑒𝑖𝑡∈�⃗�𝐾

(
𝑑𝑖𝑡

) , 𝑒𝑖𝑗 ∈ �⃗�𝐾 (9)

𝜙𝜌(𝑒𝑖𝑗 ) =

𝜇𝑖𝑗 − min
𝑒𝑖𝑡∈�⃗�𝐾

(𝜇𝑖𝑡)

max
𝑒𝑖𝑡∈�⃗�𝐾

(𝜇𝑖𝑡) − min
𝑒𝑖𝑡∈�⃗�𝐾

(𝜇𝑖𝑡)
, 𝑒𝑖𝑗 ∈ �⃗�𝐾 (10)

𝜇𝑖𝑗 =
|𝜌𝑖 − 𝜌𝑗 |

max(𝜌𝑖, 𝜌𝑗 )
, 𝑒𝑖𝑗 ∈ �⃗�𝐾 (11)

To best allocate non-peaks (i.e., to solve Problem (6)), we need to reserve the minimum weight edges projected from all non-peaks 
in 𝑃 , that is to say, to get 𝑛𝑝 minimum spanning trees with unique density peaks in 𝑃 as root nodes in graph 𝐺𝑘𝑁𝑁 (𝑋, �⃗�𝐾 ).

As a result, a strong association forest 𝐹 (𝑋, �⃗�𝐹 ) of 𝑛𝑝 trees (sub-clusters) is obtained, where all points are connected with adjacent 
points with similar density through edges in �⃗�𝐹 .

3.3.2. The grouping of density peaks in a peak digraph

In forest 𝐹 (𝑋, �⃗�𝐹 ), each non-peak 𝑥𝑖 ∈ 𝑃 has only one association path, denoted as 𝜃∗
𝑥𝑖𝑝(𝑥𝑖)

, to its density peak 𝑝(𝑥𝑖) (root node), 
thus, by adding bridge-edges 𝐸𝐵 that cross trees (i.e., sub-clusters) to 𝐹 (𝑋, �⃗�𝐹 ), as in Definition 3, 𝐹 (𝑋, �⃗�𝐹 ) is transferred into an 
association graph 𝐺𝐴(𝑋, 𝐸𝐴), 𝐸𝐴 = 𝐸𝐹 ∪ 𝐸𝐵 (𝐸𝐹 is the undirected version of �⃗�𝐹 ), where associated density peaks are connected 
through paths.

Definition 3. A bridge-edge 𝑒𝑖𝑗 ∈ 𝐸𝐵 connects points 𝑥𝑖 and its mutual neighbors 𝑥𝑗 of another sub-cluster, and the bridge-edge set 
𝐸𝐵 is defined in Eq. (12), where 𝑘𝑏 =min(2⌊ln(𝑛)⌋, 𝑘) (symbol ⌊⋅⌋ is a floor function), and Label(𝑥) returns the label of point 𝑥. Note 
that, 𝑘𝑏 is set to 𝑘𝑏 < 𝑘 to better detect the proximal mutual neighbors between intersecting sub-clusters.

𝐸𝐵 =
{
𝑒𝑖𝑗 |𝑥𝑖 ∈𝑁𝑘𝑏

(𝑥𝑗 ) ∧ 𝑥𝑗 ∈𝑁𝑘𝑏
(𝑥𝑖),Label(𝑥𝑖) ≠ Label(𝑥𝑗 )

}
(12)

According to Assumption 1, the calculation of the density deviation cost between density peaks is needed to find main peaks as 
centers. Since each non-peak has a path to its density peak, the density deviation cost between them can be calculated during its 
allocation. Therefore, an adjacent graph matrix 𝐴𝑃 ∈ ℝ𝑛𝑝×𝑛𝑝 about the minimum density deviation cost between density peaks of 
intersecting sub-clusters can be fast obtained as in Eq. (13). Function Γ(𝑥𝑖, 𝑥𝑗 , 𝜆) outputs the minimum density deviation cost along 
the path between points 𝑥𝑖 and 𝑥𝑗 in association graph 𝐺𝐴(𝑋, 𝐸𝐴), as in Eq. (14), where Θ𝑥𝑖𝑥𝑗

is a set of paths (denoted as 𝜃) from 𝑥𝑖
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to 𝑥𝑗 in association graph 𝐺𝐴(𝑋, 𝐸𝐴), and 𝜆 ∈ [1, 5] is the attenuation coefficient (discussed in Section 3.4).
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𝐴𝑃 (𝑖, 𝑗) = min
𝑥𝑎∈𝐶𝑙𝑠𝑖 ,𝑥𝑏∈𝐶𝑙

𝑠
𝑗
,𝑒𝑎𝑏∈𝐸𝐵

(
Γ(𝑥𝑎, 𝑝𝑖, 𝜆) + Γ(𝑥𝑏, 𝑝𝑗 , 𝜆) + 𝜇𝜆

𝑎𝑏

)
(13)

Γ(𝑥𝑖, 𝑥𝑗 , 𝜆) =
⎧⎪⎨⎪⎩

min
𝜃∈Θ𝑥𝑖𝑥𝑗

( ∑
𝑒𝑎𝑏∈𝜃

𝜇𝜆
𝑎𝑏

)
Θ𝑥𝑖𝑥𝑗

≠∅

+∞ Θ𝑥𝑖𝑥𝑗
=∅

(14)

Eq. (13) tells that only when density peaks 𝑝𝑖 and 𝑝𝑗 are in intersected sub-clusters, 𝐴𝑝(𝑖, 𝑗) = Γ(𝑝𝑖, 𝑝𝑗 , 𝜆), otherwise, 𝐴𝑝(𝑖, 𝑗) = +∞.

Notably, the shortset path between point 𝑥𝑖 and its density peak 𝑝(𝑥𝑖) in 𝐺𝐴(𝑋, 𝐸𝐴) is actually their association path 𝜃∗
𝑥𝑖𝑝(𝑥𝑖)

in 
forest 𝐹 (𝑋, �⃗�𝐹 ). Therefore, during the building of forest 𝐹 (𝑋, �⃗�𝐹 ), the value of Γ(𝑥𝑖, 𝑝(𝑥𝑖), 𝜆) can be simultaneously calculated, as in 
Eq. (15). This greatly reduces computational complexity, making MDPC+ run fast.

Γ(𝑥𝑖, 𝑝(𝑥𝑖), 𝜆) =
∑

𝑒𝑎𝑏∈𝜃∗𝑥𝑖𝑝(𝑥𝑖 )

𝜇𝜆
𝑎𝑏

(15)

According to 𝐴𝑃 , the minimum density deviation cost between each pair of density peaks in 𝑃 can be fast calculated by applying 
the Dijkstra algorithm [28]. Based on Assumption 1, the weight function 𝑤𝑃 (⋅) of a edge 𝑒∗𝑝𝑖,𝑝𝑗 in peak digraph 𝐺𝑃 (𝑃 , 𝐸∗) is defined 
as in Eq. (16).

𝑤𝑃 (𝑒∗𝑝𝑖𝑝𝑗 ) = 𝜌𝑝𝑖 ⋅ Γ(𝑝𝑖, 𝑝𝑗 , 𝜆) (16)

For each density peak 𝑝𝑖 ∈ 𝑃 , the minimum weight 𝛿𝑝𝑖 towards a higher density peak is recorded, as in Eq. (17). Density peaks 
that have no path to higher density peaks in association graph 𝐺𝐴(𝑋, 𝐸𝐴), i.e., 𝛿 = +∞ are usually defined as main peaks, given 
𝛿 = 1.2 × max

𝑝𝑖∶𝛿𝑝𝑖≠+∞
(𝛿𝑝𝑖 ). Where constant “1.2” is used to highlight the main peaks in the decision graph. In addition, as discussed in 

Section 3.1, non-peaks shall never be cluster centers, thus set 𝛿𝑖 = 0 for each non-peak 𝑖 ∈ 𝑃 .

To solve the grouping problem of density peaks (Problem (7)), 𝑛𝑐 main peaks should be selected with the top largest 𝛾 values as 
centers with unique cluster labels; and then, each remaining satellite peak 𝑝𝑖 ∈ 𝑃 inherits the label of the higher density peak along 
its 𝛿𝑝𝑖 path.

𝛿𝑝𝑖 = min
𝑝𝑗∶𝜌𝑝𝑖 <𝜌𝑝𝑗

Γ(𝑝𝑖, 𝑝𝑗 , 𝜆) (17)

Once each density peak owns a cluster label, all non-peaks of its sub-cluster are given the same cluster label. After each point gets 
a cluster label, clustering is done.

3.3.3. The learning of confidence

In a sub-cluster, a density peak (sub-cluster center) with local density maxima should have top confidence, while a non-peak with 
a large density deviation cost should have low confidence. In MDPC+, each point has a short path towards a density peak, thus, for 
each point 𝑥𝑖, its confidence can be learned as in Eq. (18).

𝜉𝑖 =
1

Γ(𝑥𝑖, 𝑝(𝑥𝑖), 𝜆)
(18)

According to Eq. (18), since a density peak 𝑝𝑖’s most associated density peak 𝑝(𝑝𝑖) is itself, Γ(𝑝𝑖, 𝑝(𝑝𝑖), 𝜆) = 0, therefore, 𝜉𝑝𝑖 = +∞.

Noise (outliers) that are usually along the borders of clusters tends to have relatively low confidence. Thus, good confidence 
learning can realize high-efficiency denoising (i.e., cutting out low-confidence data as noise), thereby, greatly improving the 
clustering precision. It is of great significance in real-world applications (see experiment Section 4.3.1 and 4.3.2).

3.4. The effect of attenuation-coefficient 𝜆

As shown in Eq. (14), Γ(𝑝𝑖, 𝑝𝑗 , 𝜆) indicates the total density deviation cost of edges along the shortest path between 𝑝𝑖 and 𝑝𝑗 . 
According to Eq. (11), density deviation 𝜇 ∈ (0, 1). Therefore, 𝜆 ∈ [1, 5] can be used to attenuate the influence (i.e., the density 
deviation 𝜇) of edges: when 𝜆 > 1, the larger the influence 𝜇 of an edge, the smaller it will be attenuated, and vice versa. It effectively 
retains the strong-influence (i.e., high density deviation) edge while attenuating the weak-influence edge. In MDPC+, 𝜆 = 2 is set as 
the default, and 𝜆 can be adjusted to change the attenuation strength.

For a main peak, it has to cross at least a low-density gap to find a higher density peak, and such a cross-cluster path usually 
has strong-influence edges; while, for a satellite peak, it can find a higher density peak within its cluster along a path that consists 
of similar density points, such an inter-cluster path usually has weak-influence edges. Therefore, the attenuation-coefficient 𝜆 is to 
amplify the difference between main peaks and satellite peaks, thereby highlighting main peaks in the decision graph. In this way, 
the accurate selection of cluster centers can be achieved (discussed in Section 4.4.1).

3.5. The overall clustering process of MDPC+

In this section, our clustering idea is visualized on one-dimensional datasets, and our real clustering algorithm is demonstrated 
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on a two-dimensional synthetic dataset.
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Fig. 3. The core clustering idea of MDPC+ on two different one-dimensional datasets of multi-peak clusters. F(x)-space is the transform space of x-space based on 
density deviation rate.

3.5.1. The one-dimensional display of our clustering idea

Fig. 3 illustrates the main clustering idea of MDPC+. Based on the density distribution function, MDPC+ theoretically changes 
the lengths of segments on the x-axis according to their density deviation rates. It elongates segments with a large density deviation 
rate and squeezes segments with a low density deviation rate. As a result, the distance between a satellite peak and its main peak 
is greatly squeezed, while the deep valley (i.e., the low-density gap) with a large density drop is elongated. It not only reduces the 
interference of satellite peaks on the cluster center selection but also ensures a reasonable allocation of satellite peaks.

As in Fig. 3, unlike DPC’s assumption that focuses on wide valleys between density peaks, our assumption pays more attention to 
the depth of the valleys following the principle that clusters are separated by low-density gaps. Under our new assumption, MDPC+ 
can accurately find main peaks and reasonably allocate the remaining data points even when dealing with datasets of multi-peak 
clusters.

Fig. 4 shows the performance of MDPC+ in processing the twelve datasets of multi-peak clusters (as in Fig. 1). Obviously, MDPC+ 
is superior to DPC, since it can easily identify main peaks as centers to achieve perfect clustering in all situations.

3.5.2. The clustering process on a two-dimensional dataset

Fig. 5 presents the process of MDPC+ on a two-dimensional synthetic dataset with a spherical multi-peak cluster and a crescent 
multi-peak cluster.

According to Eq. (8), by inputting a kNN matrix of the dataset with 𝑘 = 20, the dataset is constructed into an association graph 
of 21 sub-clusters (sub-trees) with 21 density peaks as centers (root nodes); and then, after searching for minimum weight paths 
between adjacent peaks, MDPC+ obtains an adjacent graph of density peaks. On the basis of the adjacent graph, the peak digraph 
is fast built by applying the Dijkstra algorithm [28]; subsequently, MDPC+ cuts the peak digraph into a minimum spanning tree by 
searching 𝛿 paths in the peak digraph. With the 𝜌-𝛿 decision graph, the two real cluster centers (density peak 13 and 21) with main 
peak characteristics are successfully selected as cluster centers; followed, MDPC+ cuts the edge projected from density peak 13 to 
cut the graph into two clusters with minimum weight, and assigns the cluster labels to sub-clusters; finally, after the dataset being 
perfectly separated into two clusters, the clustering is done.

Although the Geodetic distance along path “13–21” is shorter than path “13–4”, its density deviation cost is much higher. Because 
path “13–21” crosses a low-density gap between clusters, it has a relatively higher density deviation cost; while path “13–4” passes 
within one cluster of similar density, so it has a low density deviation cost. As a result, only main peak 13 with the highest density 
of the crescent cluster has to cross the low-density gap between clusters to find a higher density peak, so it has a relatively larger 𝛿
value.

These examples demonstrate the effectiveness of MDPC+ in identifying cluster centers from density peaks and assigning 
non-center density peaks.

3.6. Complexity analysis

Algorithm 1 shows the pseudocode of the proposed MDPC+ algorithm.

Line 1~4: the kNN-based density estimation 𝜌 of data points, needs 𝑂(𝑛 log(𝑛)).
Line 5~19: the identification of density peaks 𝑃 and the generation of sub-clusters 𝐶𝑙𝑠, needs 𝑂(𝑛𝑘).
Line 20~27: the acquisition of adjacent graph matrix 𝐴𝑃 , needs 𝑂(𝑛𝑘𝑏).
Line 28~37: the fast calculation of 𝛿 by using the Dijkstra algorithm, overall needs 𝑂(𝑛𝑝 log(𝑛𝑝) + 𝑛𝑒𝐴𝑝

), where 𝑛𝑒𝐴𝑝 indicates the 
total number of adjacent edges in the adjacency matrix 𝐴𝑃 .

Line 38~49: the generation of clusters 𝐶𝑙, needs 𝑂(𝑛).
So, the overall time complexity of MDPC+ is 𝑂(𝑛 log(𝑛) + 𝑛𝑘 + 𝑛𝑘𝑏 + 𝑛𝑝 log(𝑛𝑝) + 𝑛𝑒𝐴𝑝

+ 𝑛) = 𝑂(𝑛 log(𝑛) + 𝑛𝑘), since 𝑘𝑏 < 𝑘, 𝑛𝑝 ≪ 𝑛, 
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and 𝑛𝑒𝐴𝑝 ≪ 𝑛.
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Fig. 4. The performance of MDPC+ on different types of one-dimensional datasets of multi-peak clusters. F(x)-space is the transform space of x-space based on 
density deviation rate.

Fig. 5. The overall clustering process of MDPC+ on a synthetic dataset, where black numbers are the density ascending order of density peaks, and blue numbers are 
weight values.

4. Experiment

4.1. Experimental set up

Datasets: nine popular synthetic datasets of different shapes and eight real-world datasets are selected to benchmark the proposed 
algorithm. The detailed summarization of these datasets is displayed in Table 1.

Algorithms and settings: K-means [9], a popular K-centers clustering technique; AP [11] a classic partition clustering technique; 
the Self-tuning Spectral Clustering algorithm (SSC) [41], a widely used Spectral Clustering technique; DBSCAN [12], the classic 
density-based clustering technique; DPC [16] and three state-of-the-art DPC variations: SSSP-DPC [17], SNN-DPC [23], and PGDPC 
[18]; the proposed MDPC+.

For K-means and SSC, we report the mean results of 10 runs on each dataset; while for all DPC-based algorithms, we manually 
select appropriate density peaks as cluster centers via their own decision graphs.

Parameter requirements: K-means (𝑁𝑐), AP (𝑑𝑎𝑚𝑝𝑓𝑎𝑐𝑡), SSC (𝑁𝑐∕𝑘), DBSCAN (𝜖∕𝑀𝑖𝑛𝑃 𝑡𝑠), DPC(𝑝), SSSP-DPC (𝑝), SNN-DPC 
(𝑘), PGDPC (𝑘), and MDPC (𝑘), where parameter 𝑁𝑐 is the pre-set number of clusters, and 𝑝 is the cutoff percentile for setting 𝑑𝑐
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[16]. These required parameters are shown as PAR in the subsequent experimental results tables (Table 2, Table 3).
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Algorithm 1 The MDPC+ algorithm.

Input: dataset 𝑋 = {𝑥1 , 𝑥2 , … , 𝑥𝑛 ∣ 𝑥𝑖 ∈ℝ𝑚}, and the number of neighbors 𝑘, and attenuation-coefficient 𝜆
Output: cluster result 𝐶𝑙 = {

𝐶𝑙1 , 𝐶𝑙2 , ..., 𝐶𝑙𝑛𝑐

}
.

1: fast obtain kNN matrix of data with number 𝑘 of nearest neighbors
2: for each point 𝑥𝑖 ∈𝑋 do

3: 𝜌𝑖 =
∑

𝑥𝑗∈𝑁𝑘 (𝑥𝑖 )
𝑒−𝑑𝑖𝑗 // Eq. (5)

4: end for

5: for each point 𝑥𝑖 ∈𝑋 do

6: Γ(𝑥𝑖, 𝑝(𝑥𝑖), 𝜆) = 0 // initialize the density deviation cost.

7: end for

8: order the dataset 𝑋 as 𝑋′ in descending order of density 𝜌
9: for each point 𝑥𝑖 ∈𝑋′ do

10: if 𝜌𝑖 > max
𝑥𝑗∈𝑁𝑘 (𝑥𝑖 )

(𝜌𝑗 ) then

11: 𝑥𝑖 is a density peak 𝑝, 𝑃 = 𝑃 ∪ 𝑥𝑖// Definition 1

12: Label(𝑥𝑖) ← a unique sub-cluster label

13: else

14: find the higher density neighbor 𝑥𝑗 ∈𝑁𝑘(𝑥𝑖) with minimum weight 𝑤𝑃 (𝑒𝑖𝑗 ), according to Eq. (8)

15: Label(𝑥𝑖) ← Label(𝑥𝑗 )
16: Γ(𝑥𝑖, 𝑝(𝑥𝑖), 𝜆) = Γ(𝑥𝑗 , 𝑝(𝑥𝑗 ), 𝜆) + 𝜇𝜆

𝑖𝑗 // here 𝑝(𝑥𝑖) = 𝑝(𝑥𝑗 ).
17: end if

18: end for

19: points with same sub-cluster label form 𝑛𝑝 clusters 𝐶𝑙𝑠 =
{
𝐶𝑙𝑠1 , 𝐶𝑙

𝑠
2 , ..., 𝐶𝑙

𝑠
𝑛𝑝

}
.

20: for each pair of density peaks 𝑝𝑖, 𝑝𝑗 ∈ 𝑃 do

21: if 𝑝𝑖, 𝑝𝑗 are in intersecting sub-clusters then

22: 𝐴𝑃 (𝑖, 𝑗) =𝐴𝑃 (𝑗, 𝑖) = Γ(𝑝𝑖, 𝑝𝑗 , 𝜆) // Eq. (13)

23: else

24: 𝐴𝑃 (𝑖, 𝑗) =𝐴𝑃 (𝑗, 𝑖) = +∞
25: end if

26: end for

27: obtain adjacent graph matrix 𝐴𝑃 of density peaks

28: order the density peak set 𝑃 as 𝑃 ′ in descending order of density 𝜌
29: for each density peak 𝑝𝑖 ∈ 𝑃 (from high-𝜌 to low-𝜌) do

30: apply the Dijkstra algorithm to find density peak 𝑝𝑖 ’s nearest higher density peak 𝑝𝑗 in adjacent graph 𝐴𝑃

31: if 𝑝𝑗 ≠∅ then

32: 𝛿𝑝𝑖 = Γ(𝑝𝑖, 𝑝𝑗 , 𝜆)
33: else

34: 𝛿𝑝𝑖 = +∞
35: end if

36: end for

37: find all density peaks with 𝛿 = +∞, and set them 𝛿 = 1.2 × max
𝑝𝑖∶𝛿𝑝𝑖 ≠+∞

(𝛿𝑝𝑖 )

38: select the number 𝑛𝑐 of cluster centers 𝐶 with large 𝛾 in decision graph

39: for each 𝑝𝑖 ∈ 𝑃 do

40: if 𝑝𝑖 ∈ 𝐶 then

41: density peak 𝑝𝑖 is a center

42: Label(𝑝𝑖) ← an unique cluster label

43: else

44: Label(𝑝𝑖) ← Label(𝑝𝑗 ) // 𝑝𝑗 is the higher density peak with minimum density deviation cost path 𝛿𝑝𝑖 from 𝑝𝑖
45: end if

46: end for

47: all points inherit the cluster label from their density peak.

48: points with same cluster label form 𝑛𝑐 clusters 𝐶𝑙 = {
𝐶𝑙1 , 𝐶𝑙2 , ..., 𝐶𝑙𝑛𝑐

}
.

49: return cluster result 𝐶𝑙 = {
𝐶𝑙1 , 𝐶𝑙2 , ..., 𝐶𝑙𝑛𝑐

}
.

Data preprocessing: the min-max normalization [33] is applied to preprocess datasets to avoid the influence of different 
dimensional metrics.

Machine configuration: Matlab (r2017b) on Mac-Book Pro with 2.9 GHz Intel Core i5, 8G RAM.

Evaluation metric: the popular Adjusted Rand Index (ARI) [42], Adjusted Mutual Information (AMI) [42], and the 
Fowlkes-Mallows index (FMI) [43] are used to evaluate the clustering performance of comparison algorithms.

4.2. Experiments on synthetic datasets

A quantitative evaluation of MDPC+ is presented on eight common synthetic datasets, consisting of heterogeneous clusters that 
lie in proximity and are difficult to be detected. Fig. 6 presents the comparison results.

The DPC, SSSP-DPC, SNN-DPC, and MDPC+ were compared in terms of cluster center detection and non-center data allocation. 
As shown, the proposed MDPC+ almost perfectly identified the real cluster centers and divided the remaining non-center points. 
SNN-DPC did satisfying jobs on most datasets except for the Impossible dataset, but some small flaws existed in its border recognitions 
of the Agg, Compound, and Pathbased datasets; DPC and SSSP-DPC well recognized the Agg and S3 datasets, but they failed on the 
Jain, Compound, Pathbased, and Impossible datasets due to the inaccurate identification of cluster centers and the wrong allocation of 
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non-center points. By contrast, PGDPC is only more robust on the Jain dataset. DBSCAN successfully reconstructed all shapes, but 
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Table 1

Datasets.

Dataset Instances Attributes Clusters Source

Agg 788 2 7 [29]

Compound 399 2 6 [30]

Jain 373 2 2 [31]

Pathbased 300 2 3 [32]

S3 5000 2 15 [33]

Impossible 3673 2 7 [26]

R15 600 2 15 [34]

D31 3100 2 31 [34]

Birchrg1 100000 2 100 [35]

Iris 150 4 3 [36]

Wine 178 13 3 [36]

Breastcancer 569 30 2 [36]

Parkin 195 22 2 [36]

YTF 10000 10 41 [37]

USPS 11000 10 10 [38]

OlivettiFaces 400 92 × 112 40 [39]

MNIST 10000 500 10 [40]

Fig. 6. The clustering results of different algorithms on synthetic datasets, where gray “★” marks the detected cluster centers, and black “×” marks identified noise. 
The datasets from top to bottom are: Agg, Compound, Jain, Pathbased, S3, and Impossible.

failed to identify the cluster number of the Pathbased, Jain, and Impossible datasets, and misrecognized lots of non-noise points as 
noise in the Pathbased and S3 datasets.

As shown, only MDPC+ accurately recognized the seven complex-shaped clusters of the Impossible dataset [26], verifying the 
superiority of our cluster assumption.

Table 2 presents the AMI, ARI, and FMI scores with highlighted best results. As shown, MDPC+ shows itself with high scores 
on almost all datasets; while K-means and SSC seemed inferior in the identification of arbitrarily shaped clusters. As verified, the 
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proposed MDPC+ algorithm has an excellent performance in identifying cluster centers and shape reconstruction.
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Table 2

The comparison of AMI, ARI, and FMI on synthetic datasets. PAR represents the parameter setting.

Dataset Metric K-means AP SSC DBSCAN DPC SSSP-DPC SNN-DPC PGDPC MDPC+

Agg AMI 0.80 (±0.01) 0.61 0.94 (±0.01) 0.96 0.99 0.97 0.93 0.99 0.99

ARI 0.72 (±0.03) 0.40 0.95 (±0.01) 0.98 0.99 0.97 0.94 0.99 0.99

FMI 0.78 (±0.02) 0.54 0.96 (±0.01) 0.98 0.99 0.98 0.95 0.99 0.99

PAR 7 0.5 7/20 0.004/7 2 2 18 25 10

Compound AMI 0.66(±0.06) 0.50 0.71 (±0.01) 0.86 0.76 0.84 0.81 0.82 0.84

ARI 0.58 (±0.14) 0.33 0.49 (±0.00) 0.90 0.59 0.83 0.81 0.62 0.85

FMI 0.68 (±0.11) 0.48 0.61 (±0.00) 0.92 0.69 0.87 0.86 0.71 0.90

PAR 6 0.5 6/10 0.002/4 2 2 6 15 10

Jain AMI 0.49 (±0) 0.22 0.50 (±0) 0.86 0.54 0.35 1.00 1.00 1.00

ARI 0.57 (±0) 0.11 0.57 (±0) 0.97 0.62 0.32 1.00 1.00 1.00

FMI 0.80 (±0) 0.37 0.81 (±0) 0.99 0.84 0.70 1.00 1.00 1.00

PAR 2 0.5 2/10 0.006/1 2 2 13 10 20

Pathbased AMI 0.51 (±0) 0.36 0.57 (±0) 0.75 0.50 0.71 0.82 0.44 0.98

ARI 0.46 (±0) 0.22 0.53 (±0) 0.77 0.45 0.61 0.86 0.41 0.99

FMI 0.66 (±0) 0.42 0.59 (±0) 0.85 0.66 0.75 0.91 0.65 0.99

PAR 3 0.5 3/10 0.004/10 2 2 10 15 7

S3 AMI 0.85 (±0.02) 0.47 0.89 (±0) 0.66 0.94 0.88 0.87 0.96 0.96

ARI 0.77 (±0.05) 0.32 0.85 (±0) 0.30 0.92 0.83 0.82 0.95 0.95

FMI 0.78 (±0.04) 0.44 0.82 (±0) 0.39 0.93 0.84 0.83 0.95 0.96

PAR 15 0.5 15/15 0.001/50 2 2 36 50 100

Impossible AMI 0.63 (±0.01) 0.18 0.82 (±0.02) 0.90 0.66 0.81 0.67 0.78 0.95

ARI 0.52 (±0.07) 0.05 0.76 (±0.03) 0.93 0.62 0.71 0.53 0.68 0.97

FMI 0.59 (±0.06) 0.16 0.79 (±0.03) 0.94 0.72 0.76 0.63 0.74 0.98

PAR 7 0.5 7/30 0.0005/4 3 2 30 15 10

R15 AMI 0.94 (±0.05) 0.99 0.99 (±0) 0.94 0.99 0.99 0.99 0.99 0.99

ARI 0.88 (±0.11) 0.99 0.99 (±0) 0.95 0.99 0.99 0.99 0.99 0.99

FMI 0.89 (±0.10) 0.99 0.99 (±0) 0.95 0.99 0.99 0.99 0.99 0.99

PAR 15 0.5 15/10 0.001/10 2 2 20 20 40

D31 AMI 0.92 (±0.02) 0.77 0.97 (±0) 0.86 0.95 0.96 0.96 0.96 0.95

ARI 0.83 (±0.04) 0.80 0.95 (±0) 0.71 0.93 0.94 0.94 0.94 0.93

FMI 0.84 (±0.04) 0.81 0.95 (±0) 0.72 0.94 0.94 0.94 0.94 0.93

PAR 31 0.5 31/30 0.001/30 2 2 30 30 30

4.3. Experiments on real-world datasets

Real-world data clustering is difficult due to its high-dimensional and large size characteristics, but it has vital importance in real 
applications.

To further evaluate the performance of MDPC+, experiments were conducted on eight common real-world datasets: Iris, Wine, 
Breastcancer, Parkin, YTF, USPS, OlivettiFaces, and MNIST, where the OlivettiFaces data is processed by [23], and the three large 
datasets: YTF, MNIST and USPS, are processed by [15]. Table 1 lists the details of these datasets, and Table 3 reports the experimental 
results, where the best results are highlighted.

As shown, the overall performance of MDPC+ is outstanding, verifying that MDPC+ shall be an alternative method for real-world 
data clustering.

4.3.1. Face recognition on the OlivettiFaces dataset

OlivettiFaces [39] is a well-known face database consisting of 400 face images of 40 persons, and each person has 10 images with 
different angles. Since the number of clusters (i.e., 40 persons) is considerable to the total number of data points (i.e., 400 faces), it 
is quite difficult to accurately obtain the 40 real cluster centers [16]. Because some non-center points may seriously interfere with 
the center selection, thus MDPC+ excludes the interference of non-peaks. Fig. 10 shows the decision graphs of DPC and MDPC+ on 
OlivettiFaces, and obviously, it is much easier to detect cluster centers in the decision graph of MDPC+.

Fig. 7 shows the clustering results of DPC and MDPC+ with selected 44 density peaks of the top largest 𝛾 as cluster centers, 
where the extra 4 centers (10%) are used to increase the recall of cluster centers. Faces with the same color are in the same cluster. 
Cluster centers are circled in white, while the gray faces (i.e., noise) do not belong to any cluster. As shown, DPC cuts off 25% of 
faces as noise by applying its specific denoising method [16], thus, for a fair comparison, MDPC+ also cuts off 25% of faces with 
bottom confidence 𝜉 values as noise.

According to the strong confidence of cluster centers [15], for each person, recognized faces without a cluster center are regarded 
as misclassified, framed in white. It can be observed that in 75% of the recognized faces, DPC misclassified 82 faces while MDPC+ 
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only misclassified 22 faces, which demonstrates MDPC+ has better clustering performance than DPC. In addition, MDPC+ recalled 
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Table 3

The comparison of AMI, ARI, and FMI on real-world datasets. PAR represents the parameter setting.

Dataset Metric K-means AP SSC DBSCAN DPC SSSP-DPC SNN-DPC PGDPC MDPC+

Iris AMI 0.72 (±0.01) 0.42 0.83 (±0.02) 0.58 0.86 0.88 0.91 0.88 0.88

ARI 0.71 (±0.01) 0.34 0.84 (±0.03) 0.57 0.88 0.90 0.92 0.90 0.90

FMI 0.81 (±0.01) 0.51 0.89 (±0.02) 0.77 0.92 0.93 0.95 0.93 0.93

PAR 3 0.5 3/19 0.12/9 0.2 2 15 20 22

Wine AMI 0.62 (±0.23) 0.36 0.89 (±0) 0.53 0.70 0.75 0.87 0.74 0.80

ARI 0.62 (±0.26) 0.27 0.91 (±0) 0.45 0.67 0.74 0.90 0.73 0.82

FMI 0.78 (±0.14) 0.46 0.94 (±0) 0.68 0.78 0.83 0.93 0.82 0.88

PAR 3 0.5 3/30 0.44/6 2 2 18 18 26

Breastcancer AMI 0.61 (±0) 0.15 0.67 (±0.00) 0.26 0.41 0.34 0.75 0.63 0.68

ARI 0.73 (±0) 0.09 0.79 (±0.00) 0.29 0.47 0.38 0.85 0.74 0.79

FMI 0.88 (±0) 0.25 0.90 (±0.00) 0.64 0.79 0.76 0.93 0.88 0.90

PAR 2 0.5 2/30 0.1/6 0.1 1 12 8 12

Parkin AMI 0.21 (±0.00) 0.09 0.19 (±0) 0.18 0.18 0.18 0.15 0.18 0.30

ARI 0.04 (±0.00) 0.03 0.15 (±0) 0.28 0.27 0.27 0.29 0.27 0.46

FMI 0.59 (±0.00) 0.25 0.63 (±0) 0.81 0.81 0.81 0.80 0.81 0.84

PAR 2 0.5 2/10 0.05/4 2 2 5 12 12

YTF AMI 0.74 (±0.01) 0.53 0.75 (±0.01) 0.81 0.80 0.80 0.76 0.80 0.83

ARI 0.54 (±0.02) 0.24 0.50 (±0.02) 0.71 0.59 0.58 0.52 0.60 0.77

FMI 0.56 (±0.02) 0.38 0.53 (±0.01) 0.73 0.60 0.60 0.54 0.61 0.79

PAR 41 0.5 41/50 0.04/10 1 2 80 80 15

USPS AMI 0.58 (±0.03) 0.34 0.72 (±0.00) 0.38 0.52 0.74 0.61 0.75 0.76

ARI 0.46 (±0.05) 0.05 0.60 (±0.00) 0.20 0.30 0.60 0.45 0.64 0.66

FMI 0.52 (±0.05) 0.16 0.64 (±0.00) 0.36 0.45 0.67 0.51 0.67 0.70

PAR 10 0.5 10/50 0.05/30 0.05 0.5 105 20 16

OlivettiFaces AMI 0.71 (±0.04) 0.69 0.78 (±0.04) 0.73 0.76 0.81 0.81 0.81 0.82

ARI 0.56 (±0.06) 0.62 0.66 (±0.01) 0.56 0.60 0.68 0.68 0.69 0.68

FMI 0.52 (±0.05) 0.64 0.67 (±0.01) 0.57 0.62 0.69 0.69 0.70 0.69

PAR 40 0.5 40/10 0.5/2 0.85 0.3 6 5 5

MNIST AMI 0.79 (±0.05) 0.35 0.89 (±0.00) 0.56 0.71 0.61 0.77 0.82 0.92

ARI 0.72 (±0.07) 0.05 0.82 (±0.00) 0.24 0.61 0.31 0.66 0.73 0.93

FMI 0.76 (±0.06) 0.16 0.84 (±0.00) 0.39 0.67 0.51 0.70 0.77 0.93

PAR 10 0.5 10/30 4/6 0.1 2 80 20 120

cluster centers for 37 persons, while DPC only recalled 31 persons, demonstrating that MDPC+ has higher center recall than DPC in 
center detection.

4.3.2. Handwritten digit recognition on the MNIST dataset

MNIST [40] is a widely used handwritten digit image database. Herein, a strong feature representation MNIST test set of 10,000 
samples of 500 features from [15] is used. As shown in Table 3, MDPC+ did a pleasing job on the MNIST dataset by obtaining the 
highest scores: AMI=0.92, ARI=0.93, FMI=0.93.

To demonstrate the performance of our confidence learning (see Section 3.3.3), digits with bottom confidence (𝜉) (under different 
noise-cutting rates) and digits with the top confidence (15) were selected in the clustering results of MDPC+ on MNIST, as presented 
in Fig. 8. Note that the 15 digits with the top confidence are accurate (AMI=1.00, ARI=1.00), particularly neat, and identifiable. By 
contrast, digits with bottom confidence under zero noise-cutting rate are much more difficult to identify, and the corresponding 
clustering result (AMI=0.68, ARI=0.61) is less satisfying. But if we cut off 25% data points of low confidence as noise, the 
recognizability of the 15 digits with bottom confidence is greatly improved, as presented in the middle figure.

This verifies the effectiveness of the confidence learning of MDPC+. In real applications, it can actively cut out a part of data 
with the lowest confidence as noise to obtain a high-precision clustering result. Additionally, it’s worth mentioning that non-negative 
matrix factorization-based clustering [44] and sub-space clustering [45–47] are outstanding techniques for face images clustering and 
handwritten digits clustering [48], due to their effective dimension-reduction techniques of data representation. So, it is enlightening 
about applying dimension reduction technology to further explore MDPC+’s practicability.

4.4. Robustness of center detection

The identification of cluster centers in the decision graph is a crucial step for MDPC+. Unlike DPC, MDPC+ aims to find main 
peaks as cluster centers and is supported by a new satellite peak attenuation technique (see Section 3.4), by which MDPC+ is more 
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robust in center detection.
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Fig. 7. The clustering results on OlivettiFaces by DPC and MDPC+.

Fig. 8. The bottom 15 confidence digit images (with noise cutting rate: 0% and 25%) and the top 15 confidence digit images.

Fig. 9. The decision graphs with different 𝜆 of MDPC+ on the Jain dataset.

4.4.1. Anti-satellite peak performance

To illustrate the anti-satellite peak performance of MDPC+, Fig. 9 presents 5 decision graphs of different attenuation-coefficient 
𝜆 of MDPC+ in dealing with the Jain dataset. As shown, without collecting density deviation information (i.e., set 𝜆 = 0), the 
interference of satellite peaks seriously affected the center selection. But once the density deviation information was taken into 
account (i.e., set 𝜆 = 1), the interference of satellite peaks was greatly reduced, standing out the two main peaks (i.e., real cluster 
centers, labeled by red color). As the value of 𝜆 increases, the gap between satellite peaks and the main peaks widens. For example, 
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when 𝜆 = 5, satellite peaks almost disappeared in the decision graph, while the main peak still fell firmly in the upper right corner, 
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Fig. 10. The decision graphs of DPC and MDPC+ on different datasets. Cluster centers are marked in red. The green box marks the correct cluster center selection, 
while the blue indicates the wrong selection.

Table 4

The comparison of F1 scores of different DPC-based algorithms on tested datasets.

Algorithm DPC SSSP-DPC SNN-DPC PGDPC MDPC+

Metric F1 F1 F1 F1 F1

Agg 1.00 1.00 1.00 1.00 1.00

Compound 0.73 0.83 0.73 0.83 0.91

Jain 0.50 0.50 1.00 1.00 1.00

Pathbased 1.00 1.00 0.67 0.67 1.00

S3 1.00 1.00 1.00 1.00 1.00

Impossible 0.62 0.59 0.67 0.80 0.94

R15 1.00 1.00 0.97 1.00 1.00

D31 0.93 1.00 1.00 1.00 1.00

Iris 1.00 1.00 1.00 1.00 1.00

Wine 1.00 1.00 1.00 1.00 1.00

Breastcancer 0.50 0.50 1.00 1.00 1.00

Parkin 0.50 0.50 0.50 0.50 0.50

YTF 0.51 0.63 0.68 0.47 0.64

USPS 0.40 0.50 0.50 0.64 0.70

OlivettiFaces 0.74 0.83 0.78 0.81 0.86

MNIST 0.70 0.50 0.70 0.90 1.00

verifying that the satellite peak attenuation function embedded in MDPC+ can eliminate the satellite peak interference concisely and 
effectively.

4.4.2. The superiority of decision graph

Based on the new center assumption and anti-satellite peak function, MDPC+’s decision graph can better highlight cluster centers 
than DPC, indicating that MDPC+ is more robust in cluster center detection. Fig. 10 presents the decision graphs of MDPC+ and DPC 
on testing datasets. As shown, the decision graphs of MDPC+ are more concise than DPC’s, especially for the OlivettiFaces and MNIST

datasets. MDPC+ obtains much higher precision (PRE) and recall (REC) than DPC.

To further verify the superiority of MDPC+, F1-score [50] (as in Eq. (19)) was applied to conduct quantitative experiments on 
different decision graphs. The corresponding results are displayed in Table 4, in which MDPC+ has the highest F1 scores on all 
datasets except the YTF dataset.

𝐹1 = 2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(19)

To further compare the center detection robustness of MDPC+’s decision graph, we designed the 𝛾𝑐 -F1 plot, that is, a plot of F1 
score as a function of center threshold 𝛾𝑐 ∈ [𝛾𝑚𝑖𝑛𝑐 , 𝛾𝑚𝑎𝑥𝑐 ], where [𝛾𝑚𝑖𝑛𝑐 , 𝛾𝑚𝑎𝑥𝑐 ] is the valid interval of center threshold 𝛾𝑐 , and points with 
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𝛾 > 𝛾𝑐 are selected as centers. As known, an ideal decision graph should have a 𝛾𝑐-F1 plot that owns a relatively large F1 score on a 
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Fig. 11. The 𝛾𝑐 -F1 plots of different DPC-based algorithms on several datasets.

Table 5

The comparison of the runtime of different algorithms (unit: second).

Dataset (Instances) K-means AP SSC DBSCAN DPC SSSP-DPC SNN-DPC PGDPC MDPC+

Agg (788) 0.0085 1.4849 0.5033 0.0558 0.1292 0.3483 0.6848 0.0218 0.0361

Compound (399) 0.0073 0.4476 0.2037 0.0042 0.0393 0.1013 0.2036 0.0034 0.0170

Jain (373) 0.0212 0.2815 0.242 0.0224 0.0534 0.1126 0.2545 0.0091 0.0142

Pathbased (300) 0.0032 0.1792 0.1422 0.0039 0.0399 0.1181 0.1663 0.0063 0.0091

S3 (5000) 0.0581 234.1025 5.1464 0.7526 2.5115 12.9207 26.7429 0.0395 0.1732

Impossible (3673) 0.0315 99.5429 3.7503 0.2413 1.4488 6.8049 12.1977 0.0356 0.1270

R15 (600) 0.0357 1.6074 0.4121 0.0106 0.0497 0.3829 0.5237 0.0147 0.0173

D31 (3100) 0.7494 69.0944 3.3671 0.4509 1.2265 5.8842 10.2211 0.0681 0.1051

Iris (150) 0.0105 0.0479 0.1141 0.0062 0.0077 0.0260 0.2598 0.0414 0.0105

Wine (178) 0.0127 0.0619 0.1121 0.0185 0.0056 0.0471 0.0999 0.0054 0.0080

Breastcancer (569) 0.0141 0.6029 0.4440 0.0131 0.0461 0.1736 0.5643 0.0232 0.0369

Parkin (195) 0.0282 0.0724 0.1170 0.0012 0.0190 0.0590 0.0436 0.0071 0.0095

YTF (10000) 0.2371 1437.9252 26.632 1.4860 11.6643 85.9085 121.6136 0.7101 0.6590

USPS (11000) 0.0992 9048.9395 30.5068 1.9598 15.8159 92.3958 171.5179 0.6996 1.1347

OlivettiFaces (400) 0.0408 0.2887 0.2042 0.0055 0.0840 0.1493 0.1883 0.0132 0.0312

MNIST (10000) 1.2577 565.0760 47.7253 3.1544 27.8584 77.1532 144.1165 0.6075 1.0979

Total time 2.6152 11459.7549 119.6226 8.1864 60.9993 282.5855 489.3985 2.3060 3.4867

Table 6

The time complexity of algorithms. 𝑇 indicates iteration times.

K-means [9] 𝑂(𝑛𝑁𝑐𝑇 ) AP [11] 𝑂(𝑛2𝑇 ) SSC [41] 𝑂(𝑛2)

DBSCAN [12] 𝑂(𝑛 log(𝑛)) DPC [16] 𝑂(𝑛2) SSSP-DPC [17] 𝑂(𝑛2)

SNN-DPC [23] 𝑂(𝑘+𝑁𝑐 )𝑛2 PGDPC [18] 𝑂(𝑛 log(𝑛) + �̃�𝑛) MDPC+ (ours) 𝑂(𝑛 log(𝑛) + 𝑘𝑛)

relatively large continuous 𝛾𝑐 -interval. Fig. 11 presents the normalized 𝛾𝑐 -F1 plots of different decision graphs on several datasets. As 
shown, the performance of MDPC+ (orange line) is the most robust.

The above experiments verified the higher robustness of MDPC+ in cluster center detection compared with traditional DPC and 
the state-of-the-art DPC variant algorithms.

4.5. Running speed

As analyzed in Section 3.6, MDPC+ can run fast by applying some fast kNN search techniques [49].

Table 5 demonstrates the runtime of algorithms on different datasets, and Table 6 lists the time complexity. As shown, MDPC+ is 
much faster than other density-based algorithms except for PGDPC, and it can run a dataset of 10,000 data points in about one second. 
PGDPC with 𝑂(𝑛 log(𝑛) + �̃�𝑛) is a little faster than MDPC+. Because PGDPC is also based on kNN-graph and its allocation strategy 
with 𝑂(�̃�𝑛) is fast than MDPC+’s 𝑂(𝑘𝑛), �̃� ⩽ 𝑘, where �̃� (an average concept) indicates that each non-peak point can find its �̃�-th 
nearest neighbor as the nearest higher density point. However, PGDPC’s clustering accuracy is inferior to that of MDPC+. SNN-DPC 
and SSSP-DPC, as excellent improved methods of DPC, are more time-consuming than DPC. While K-means with 𝑂(𝑛𝑁𝑐𝑇 ) owns the 
fastest speed. Because the cluster numbers (𝑁𝑐) of all tested datasets are small, which allows K-means to achieve convergence in a 
small number of iterations, i.e., a small 𝑇 value.

To further verify the fast speed of MDPC+, experiments were launched as in Table 7, in which the runtime of K-means and 
MDPC+ on the Birchrg1 [35] dataset of 100,000 points with setting different cluster numbers are presented. As shown, K-means is 
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slower when 𝑁𝑐 turns larger, while MDPC+ has a stable speed no matter how 𝑁𝑐 changes. Note that, when dealing with the Birchrg1
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Table 7

The comparison of runtime of K-means and MDPC+ with setting different number of clusters on the Birchrg1 dataset (unit: second).

Algorithm Metric 𝑁𝑐 = 500 𝑁𝑐 = 100 𝑁𝑐 = 300 𝑁𝑐 = 200 𝑁𝑐 = 100

K-means runtime 30.5909 (± 3.7202) 27.0610 (± 2.8171) 25.5954 (± 2.5675) 16.2591 (± 0.9817) 7.5152 (± 1.7920)

iterations (𝑇 ) 124 (± 16) 131 (± 32) 124 (± 34) (107 ± 44) (72 ± 29)

MDPC+ runtime 4.7278 (± 0.1719 ) 4.7479 (± 0.2092) 4.65695 (± 0.1291) 4.67915 (± 0.1788) 4.77135 (± 0.1639)

(𝑘 = 40) iterations (𝑇 ) 1 1 1 1 1

Fig. 12. The 𝑘-AMI, 𝑘-ARI, and 𝑘-FMI plots of MDPC+ on different datasets with different parameter 𝑘.

dataset with a large number of clusters (such as setting 𝑁𝑐 = 500), K-means is more time-consuming than MDPC+. So, MDPC+ is 
more promising for large-scale clustering.

4.6. Parameter 𝑘

In MDPC+, the parameter 𝑘, 𝑘 =
√
𝑛, is used for graph construction, density estimation, density peak detection, and weight 

evaluation, so the performance of the MDPC+ algorithm is highly dependent on 𝑘.

Fig. 12 shows the 𝑘-AMI, 𝑘-ARI, and 𝑘-FMI plot on 10 different datasets with 𝑘 ∈ [
√
𝑛 − 10, 

√
𝑛 + 10]. As shown, the overall 

performance of MDPC+ is robust to changes in 𝑘, especially for large datasets. Meanwhile, MDPC+ works well at 𝑘 =
√
𝑛.

This verifies the parameter insensitivity and the effectiveness of the parameter setting of the MDPC+ algorithm.

5. Conclusion

In this work, a Main Density Peak Clustering algorithm (MDPC+) is proposed following a new center assumption that views 
main peaks as cluster centers. Meanwhile, through the exclusion of non-peaks and the attenuation of satellite peaks, the detection of 
cluster centers is more accurate and easy. Our allocation strategy based on digraph structures can accurately assign non-peaks and 
satellite peaks. In addition, MDPC+ only requires kNN distances of data points as input, so it can run fast and is suitable for large 
data clustering. The center detection robustness, the clustering accuracy, and the running speed of MDPC+ are well verified in the 
conducted comparative experiments on synthetic datasets and real-world datasets, as well as its application to the face recognition 
of OlivettiFaces and the handwritten digital recognition of MNIST.

To be noted, the clustering performance of MDPC+ is based on the quality of the allocation of non-peaks, and the latter is highly 
relied on the design of edge-weight function 𝑤𝑃 (⋅) (see Eq. (8)). In terms of 𝑤𝑃 (⋅) design, there is still room for improvement (as 
a part of our future work). Benefiting from the clear decision graph, MDPC+’s center detection is outstanding, but it still relies on 
manual operation. However, in many real applications, automatic cluster detection is needed. Therefore, in future work, we intend 
to improve MDPC+ to realize the automatic detection of cluster centers. Besides, to further expand the applications of MDPC+ on 
high-dimensional data, we will seek some effective dimension-reduction techniques of data representation from non-negative matrix 
factorization-based clustering [44] and sub-space clustering [46].

CRediT authorship contribution statement

Junyi Guan: Conceptualization, Methodology, Software. Sheng Li: Conceptualization, Validation. Xiongxiong He: Supervision.

Jiajia Chen: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
519

influence the work reported in this paper.



Information Sciences 628 (2023) 504–521J. Guan, S. Li, X. He et al.

Data availability

Data will be made available on request.

Acknowledgement

This work was supported by the National Science Foundation of P.R. China (Grant: 62233016) and Key R&D Program Projects in 
Zhejiang Province: 2020C03074.

References

[1] M. Gao, G.Y. Shi, Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms, 
Ocean Eng. 205 (2020) 106919.

[2] M. Paolanti, E. Frontoni, Multidisciplinary pattern recognition applications: a review, Comput. Sci. Rev. 37 (2020) 100276.

[3] G.B. Coleman, H.C. Andrews, Image segmentation by clustering, Proc. IEEE 67 (5) (1979) 773–785.

[4] H. Zhang, H. Li, N. Chen, et al., Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation, Pattern Recognit. 
121 (2022) 108201.

[5] T. Lei, P. Liu, X. Jia, et al., Automatic fuzzy clustering framework for image segmentation, IEEE Trans. Fuzzy Syst. 28 (9) (2019) 2078–2092.

[6] M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects, Science 349 (6245) (2015) 255–260.

[7] R. Achanta, S. Susstrunk, Superpixels and polygons using simple non-iterative clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2017, pp. 4651–4660.

[8] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., 1988.

[9] J. MacQueen, Classification and analysis of multivariate observations, in: 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297.

[10] H.S. Park, C.H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl. 36 (2) (2009) 3336–3341.

[11] B.J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (5814) (2007) 972–976.

[12] M. Ester, H.P. Kriegel, J. Sander, et al., A density-based algorithm for discovering clusters in large spatial databases with noise, KDD 96 (34) (1996) 226–231.

[13] K. Sawant, Adaptive methods for determining DBSCAN parameters, Int. J. Innov. Sci. Eng. Technol. 1 (4) (2014) 329–334.

[14] A. Karami, R. Johansson, Choosing DBSCAN parameters automatically using differential evolution, Int. J. Comput. Appl. 91 (7) (2014) 1–11.

[15] H. Averbuch-Elor, N. Bar, D. Cohen-Or, Border-peeling clustering, IEEE Trans. Pattern Anal. Mach. Intell. 42 (7) (2019) 1791–1797.

[16] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science 344 (6191) (2014) 1492–1496.

[17] D.U. Pizzagalli, S.F. Gonzalez, R. Krause, A trainable clustering algorithm based on shortest paths from density peaks, Sci. Adv. 5 (10) (2019), eaax3770.

[18] J. Guan, S. Li, X. He, et al., Peak-graph-based fast density peak clustering for image segmentation, IEEE Signal Process. Lett. 28 (2021) 897–901.

[19] M. Du, S. Ding, H. Jia, Study on density peaks clustering based on k-nearest neighbors and principal component analysis, Knowl.-Based Syst. 99 (2016) 135–145.

[20] J. Xie, H. Gao, W. Xie, et al., Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors, Inf. Sci. 354 (2016) 
19–40.

[21] M. Abbas, A. El-Zoghabi, A. Shoukry, DenMune: density peak based clustering using mutual nearest neighbors, Pattern Recognit. 109 (2021) 107589.

[22] M. Du, S. Ding, X. Xu, et al., Density peaks clustering using geodesic distances, Int. J. Mach. Learn. Cybern. 9 (8) (2018) 1335–1349.

[23] R. Liu, H. Wang, X. Yu, Shared-nearest-neighbor-based clustering by fast search and find of density peaks, Inf. Sci. 450 (2018) 200–226.

[24] C. Wiwie, J. Baumbach, R. Röttger, Comparing the performance of biomedical clustering methods, Nat. Methods 12 (11) (2015) 1033–1038.

[25] J. Guan, S. Li, X. He, et al., Fast hierarchical clustering of local density peaks via an association degree transfer method, Neurocomputing 455 (2021) 401–418.

[26] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31 (8) (2010) 651–666.

[27] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell. 24 (5) (2002) 603–619.

[28] E.W. Dijkstra, A note on two problems in connexion with graphs, in: Edsger Wybe Dijkstra: His Life Work, and Legacy, 2022, pp. 287–290.

[29] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, ACM Trans. Knowl. Discov. Data 1 (1) (2007) 4-es.

[30] C.T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans. Comput. 100 (1) (1971) 68–86.

[31] A.K. Jain, M.H.C. Law, Data Clustering: A User’s Dilemma, International Conference on Pattern Recognition and Machine Intelligence, Springer, Berlin, 
Heidelberg, 2005, pp. 1–10.

[32] H. Chang, D.Y. Yeung, Robust path-based spectral clustering, Pattern Recognit. 41 (1) (2008) 191–203.

[33] P. Fränti, O. Virmajoki, Iterative shrinking method for clustering problems, Pattern Recognit. 39 (5) (2006) 761–775.

[34] C.J. Veenman, M.J.T. Reinders, E. Backer, A maximum variance cluster algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 24 (9) (2002) 1273–1280.

[35] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: a new data clustering algorithm and its applications, Data Min. Knowl. Discov. 1 (2) (1997) 141–182.

[36] K. Bache, M. Lichma, UCI machine learning repository, [online] available: http://archive .ics .uci .edu /ml, 2013.

[37] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background similarity, in: CVPR 2011, IEEE, 2011, pp. 529–534.

[38] D. Keysers, T. Deselaers, C. Gollan, et al., Deformation models for image recognition, IEEE Trans. Pattern Anal. Mach. Intell. 29 (8) (2007) 1422–1435.

[39] F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of 1994 IEEE Workshop on Applications of 
Computer Vision, IEEE, 1994, pp. 138–142.

[40] L. Deng, The mnist database of handwritten digit images for machine learning research [best of the web], IEEE Signal Process. Mag. 29 (6) (2012) 141–142.

[41] L. Zelnik-Manor, P. Perona, Self-Tuning Spectral Clustering, Advances in Neural Information Processing Systems, 2004.

[42] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings comparison: is a correction for chance necessary?, in: Proceedings of the 26th Annual 
International Conference on Machine Learning, 2009, pp. 1073–1080.

[43] E.B. Fowlkes, C.L. Mallows, A method for comparing two hierarchical clusterings, J. Am. Stat. Assoc. 78 (383) (1983) 553–569.

[44] C. Peng, Z. Kang, M. Yang, et al., Feature selection embedded subspace clustering, IEEE Signal Process. Lett. 23 (7) (2016) 1018–1022.

[45] C. Peng, Z. Kang, H. Li, et al., Subspace clustering using log-determinant rank approximation, in: Proceedings of the 21th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, 2015, pp. 925–934.

[46] E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 2765–2781.

[47] C. Peng, Z. Kang, Q. Cheng, Subspace clustering via variance regularized ridge regression, in: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 2017, pp. 2931–2940.

[48] C. Peng, Q. Zhang, Z. Kang, et al., Kernel two-dimensional ridge regression for subspace clustering, Pattern Recognit. 113 (2021) 107749.

[49] N. Bhatia, Survey of nearest neighbor techniques, arXiv preprint arXiv :1007 .0085, 2010.
520

[50] A. Patil, D. Huard, C.J. Fonnesbeck, PyMC: Bayesian stochastic modelling in Python, J. Stat. Softw. 35 (4) (2010) 1.

http://refhub.elsevier.com/S0020-0255(23)00159-7/bibA19C80E393BD190BA6D22605C0487FB7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibA19C80E393BD190BA6D22605C0487FB7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB7A48E1CE2DC245E108C22182D399808s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib6ABF98C5E14DA53FABE91064B5FEE505s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib6B4A82DCB7C47F431D775CD623606FE7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib6B4A82DCB7C47F431D775CD623606FE7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib3E79B8342AF4192FC06A1973C0F2EB75s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibD1AF6340BF2C2E57B3EEB66E728F41C9s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib492C4A5B899FF280F9911E89CCCD014Fs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib492C4A5B899FF280F9911E89CCCD014Fs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB3BA8C7ADFB0E850599C37E497312F63s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib23B4AD8A1A76169C9CB3D7D2BEF990C7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF8DF98EFCE741E19AE40D9C6A710D094s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib0FD3F8DD5EDC33B28DB1162E15E8FCBCs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibD201DFF027E66594EAD5109DAAD978A6s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib4E3A95BCDC8A6F51C4999E48867C1F20s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib921C75017AE224C58BD289078687037Ds1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib96D4CDFF8ED57E93E3B3D843CFFE3AF7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib050682F101AAF2E897331DEB2647A261s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib014606B9204709F196D60ABA00CF5666s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibA121E2080AC2663CCC51F9B1B8F84504s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib33782DD62B3EA727FC5BC2EAFC62A83Bs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB26DB1DBD70D2A8224498C3887B43C32s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB26DB1DBD70D2A8224498C3887B43C32s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib79AD42E59760113705C9D4479D0B73E5s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibFFAB8506853644FD86D6C29C27FBDE50s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibD955847015DDA77E5F944E794854DEF4s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF1A543F5A2C5D49BC5DDE298FCF716E4s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib9BA9A8DC7F2D2C51E40584A7D292EFF7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibFEA813D4DDBA3C46CF8B8E664B92CDAAs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib3D6C9AC08ADA31C184094BBC67AFE00Ds1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib052D7289884A0D0DAE24AA88A7E62E83s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib75B51C4F8E52A58F5C6B54D578475B21s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib26154EA007C65F860DE5333A555A56CFs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib3C5BA135874FB7BD9F82CCB9C2CB532Cs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib3C5BA135874FB7BD9F82CCB9C2CB532Cs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibDE3421EB00FE613ED65429B6F12E2E86s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib946B7AC43194880F9A644DA2AD9F15ADs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF071B9A662A53A630B24E453E82B6828s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibEBA1FB668B5AA6910583E0B76370FA69s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib6CEEE37EF27403A49B956EF09A7EA351s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib75CB0EC04419956C980321208CF105C7s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib7304404371117EF6B372AFC6699E485Fs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib7304404371117EF6B372AFC6699E485Fs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibC1886B1C221C7942DBF45CD7D97AD358s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib15BB1B57390D466DAD252AE0F4919EEFs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB787A6498077F389F18EBD00BF26A4BFs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibB787A6498077F389F18EBD00BF26A4BFs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib99FA5F5D0F0F854BB803AE98215636BBs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibBCA5C5F3578138D4942F8763AECAD44Bs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF0760D022117919EDFF950A89F98EA38s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF0760D022117919EDFF950A89F98EA38s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bib0501926A19B6575F46E0CDD9254BC6C4s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibDA18227241673C21A696F84678309AB6s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibDA18227241673C21A696F84678309AB6s1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibEB2B31831B3CF592F7A33837FC2DDD0Bs1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibF4E09C61F0878AD265A9516B1C2A4F3As1
http://refhub.elsevier.com/S0020-0255(23)00159-7/bibE1DFFC8709F31A4987C8A88334107E89s1


Information Sciences 628 (2023) 504–521J. Guan, S. Li, X. He et al.

Junyi Guan received Ph.D. in Zhejiang University of Technology (ZJUT), Hangzhou, China. He is currently a post-doctoral in ZJUT. His current research interests 
include data mining, pattern recognition, unsupervised learning, and machine learning.

Sheng Li received Ph.D. in electronic engineering, University of York, York, U.K. Associate professor of ZJUT. His research interests include signal processing, 
machine learning, and pattern recognition.

Xiongxiong He received Ph.D. in Zhejiang University, Hangzhou, China. Professor of ZJUT. His research areas include nonlinear control, signal processing, and 
pattern recognition.
521

Jiajia Chen received M.A. in East China Normal University, Shanghai, China. Her current research interests include data mining and pattern recognition.


	Clustering by fast detection of main density peaks within a peak digraph
	1 Introduction
	2 Related works
	2.1 The DPC algorithm
	2.2 DPC’s limitations and improvements

	3 The proposed MDPC+ algorithm
	3.1 The assumption of MDPC+
	3.2 The graph clustering problem of MDPC+
	3.3 The clustering of MDPC+
	3.3.1 The allocation of non-peaks in a kNN digraph
	3.3.2 The grouping of density peaks in a peak digraph
	3.3.3 The learning of confidence

	3.4 The effect of attenuation-coefficient λ
	3.5 The overall clustering process of MDPC+
	3.5.1 The one-dimensional display of our clustering idea
	3.5.2 The clustering process on a two-dimensional dataset

	3.6 Complexity analysis

	4 Experiment
	4.1 Experimental set up
	4.2 Experiments on synthetic datasets
	4.3 Experiments on real-world datasets
	4.3.1 Face recognition on the OlivettiFaces dataset
	4.3.2 Handwritten digit recognition on the MNIST dataset

	4.4 Robustness of center detection
	4.4.1 Anti-satellite peak performance
	4.4.2 The superiority of decision graph

	4.5 Running speed
	4.6 Parameter k

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


