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ABSTRACT

We propose to address quadrupedal locomotion tasks using Reinforcement Learn-
ing (RL) with a Transformer-based model that learns to combine proprioceptive
information and high-dimensional depth sensor inputs. While learning-based lo-
comotion has made great advances using RL, most methods still rely on domain
randomization for training blind agents that generalize to challenging terrains.
Our key insight is that proprioceptive states only offer contact measurements for
immediate reaction, whereas an agent equipped with visual sensory observations
can learn to proactively maneuver environments with obstacles and uneven terrain
by anticipating changes in the environment many steps ahead. In this paper, we
introduce LocoTransformer, an end-to-end RL method that leverages both propri-
oceptive states and visual observations for locomotion control. We evaluate our
method in challenging simulated environments with different obstacles and uneven
terrain. We transfer our learned policy from simulation to a real robot by running it
indoors and in the wild with unseen obstacles and terrain. Our method not only
significantly improves over baselines, but also achieves far better generalization
performance, especially when transferred to the real robot. Our project page with
videos is at https://LocoTransformer.github.io/.

1 INTRODUCTION

Legged locomotion is one of the core problems in robotics research. It expands the reach of robots
and enables them to solve a wide range of tasks, from daily life delivery to planetary exploration in
challenging, uneven terrain (Delcomyn & Nelson, 2000; Arena et al., 2006). Recently, besides the
success of Deep Reinforcement Learning (RL) in navigation (Mirowski et al., 2017; Gupta et al.,
2019; Yang et al., 2019; Kahn et al., 2021) and robotic manipulation (Levine et al., 2018; 2016; Tian
et al., 2019; Jain et al., 2019b), we have also witnessed the tremendous improvement of locomotion
skills for quadruped robots, allowing them to walk on uneven terrain (Xie et al., 2020; 2021), and
even generalize to real-world with mud, snow, and running water (Lee et al., 2020a).

While these results are encouraging, most RL approaches focus on learning a robust controller
for blind quadrupedal locomotion, using only the proprioceptive state. For example, Lee et al.
(2020a) utilize RL with domain randomization and large-scale training in simulation to learn a robust
quadrupedal locomotion policy, which can be applied to challenging terrains. However, is domain
randomization with blind agents really sufficient for general legged locomotion?

By studying eye movement during human locomotion, Matthis et al. (2018) show that humans
rely heavily on eye-body coordination when walking and that the gaze changes depending on
characteristics of the environment, e.g., whether humans walk in flat or rough terrain. This finding
motivates the use of visual sensory input to improve quadrupedal locomotion on uneven terrain. While
handling uneven terrain is still possible without the vision, a blind agent is unable to consistently
avoid large obstacles as shown in Figure 1. To maneuver around such obstacles, the agent needs to
perceive the obstacles at a distance and dynamically make adjustments to its trajectory to avoid any
collision. Likewise, an agent navigating rough terrain (mountain and forest in Figure 1) may also
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Figure 1: Overview of simulated environments & real robot trajectories. Top row shows the simulated
environments. For each sample, the left image is the environment and the right image is the corresponding
observation. Agents are tasked to move forward while avoiding black obstacles and collecting red spheres.
Following two rows show the deployment of the RL policy to a real robot in an indoor hallway with boxes and a
forest with trees. Our robot successfully utilizes the visual information to traverse the complex environments.

benefit from vision by anticipating changes in the terrain before contact, and visual observations can
therefore play an important role in improving locomotion skills.

In this paper, we propose to combine proprioceptive states and first-person-view visual inputs with a
cross-modal Transformer for learning locomotion RL policies. Our key insight is that proprioceptive
states (i.e. robot pose, Inertial Measurement Unit (IMU) readings, and local joint rotations) provide
a precise measurement of the current robot status for immediate reaction, while visual inputs from
a depth camera help the agent plan to maneuver uneven terrain and large obstacles in the path. We
fuse the proprioceptive state and depth image inputs using Transformers (Vaswani et al., 2017; Tsai
et al., 2019) for RL, which enables the model to reason with complementary information from both
modalities. Additionally, Transformers also offer a mechanism for agents to attend to specific visual
regions (e.g. objects or uneven ground) that are critical for their long-term and short-term decision
making, which may in turn lead to a more generalizable and interpretable policy.

Our Transformer-based model for locomotion, LocoTransformer, consists of two encoders for inputs
(an MLP for proprioceptive states, a ConvNet for depth image inputs) and Transformer encoders for
multi-modal fusion. We obtain a feature embedding from the proprioceptive states and multiple image
patch embeddings from the depth images, which are used jointly as token inputs for the Transformer
encoders. Feature embeddings for both modalities are then updated with information propagation
among all the tokens using self-attention. We combine both features for action prediction. The model
is trained end-to-end without hierarchical RL (Peng et al., 2017; Jiang et al., 2019; Jain et al., 2019a)
nor pre-defined controllers (Da et al., 2020; Escontrela et al., 2020).

We experiment on both simulated and real environments as shown in Figure 1. Our tasks in simulation
include maneuvering around obstacles of different sizes, dynamically moving obstacles, and rough
mountainous terrain. With simulation-to-real (sim2real) transfer, we deploy the policies to the robot
on indoor hallways with box obstacles and outdoor forests with trees and uneven terrain. We show
that learning policies with both proprioceptive states and vision significantly improve locomotion
control, and the policies further benefit from adopting cross-modal Transformer. We also show that
LocoTransformer generalizes much better to unseen environments, especially for sim2real transfer.
We highlight our main contributions as follows:

• Going beyond blind robots, we introduce visual information into end-to-end RL policies for
quadrupedal locomotion to traverse complex terrain with different kinds of obstacles.

• We propose LocoTransformer, which fuses proprioceptive states and visual inputs for better
multi-modal reasoning in sequential decision making.

• To the best of our knowledge, this is the first work which deploys vision-based RL policy on
running real quadrupedal robot avoiding obstacles and trees in the wild.
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2 RELATED WORK

Learning Legged Locomotion. Developing legged locomotion controllers has been a long-standing
problem in robotics (Miura & Shimoyama, 1984; Raibert, 1984; Torkos & van de Panne, 1998; Geyer
et al., 2003; Yin et al., 2007; Bledt et al., 2018). While encouraging results have been achieved
using Model Predictive Control (MPC) and trajectory optimization (Gehring et al., 2013; Carlo et al.,
2018; Di Carlo et al., 2018; Carius et al., 2019; Ding et al., 2019; Grandia et al., 2019; Bledt & Kim,
2020; Sun et al., 2021), these methods require in-depth knowledge of the environment and substantial
manual parameter tuning, which makes these methods challenging to apply to complex environments.
Alternatively, model-free RL can learn general policies on challenging terrain (Kohl & Stone, 2004;
Zhang et al., 2018; Luo et al., 2020; Peng et al., 2018; Tan et al., 2018; Hwangbo et al., 2019; Lee
et al., 2020a; Iscen et al., 2018; Jain et al., 2019a; Xie et al., 2021; Kumar et al., 2021). Xie et al.
(2020) use dynamics randomization to generalize RL locomotion policy in different environments,
and Peng et al. (2020) use animal videos to provide demonstrations for imitation learning. However,
most approaches currently rely only on proprioceptive states without other visual inputs. In this work,
we propose to incorporate both visual and proprioceptive inputs using a Transformer for RL policy,
which allows the quadruped robot to simultaneously move and plan its trajectory.

Vision-based Reinforcement Learning. To generalize RL to real-world applications beyond state
inputs, a lot of effort has been made in RL with visual inputs (Sax et al., 2018; Jaderberg et al.,
2017; Levine et al., 2016; 2018; Pathak et al., 2017; Jain et al., 2019b; Mnih et al., 2015a; Lin
et al., 2019; Yarats et al., 2019; Laskin et al., 2020; Stooke et al., 2020; Schwarzer et al., 2020). For
example, Srinivas et al. (2020) propose to apply contrastive self-supervised representation learning (He
et al., 2020) with the RL objective in vision-based RL. Hansen & Wang (2021) further extend the
joint representation learning and RL for better generalization to out-of-distribution environments.
Researchers have also looked into combining multi-modalities with RL for manipulation tasks (Lee
et al., 2020b; Calandra et al., 2018) and locomotion control (Heess et al., 2017; Merel et al., 2020).
Escontrela et al. (2020) propose to combine proprioceptive states and LiDAR inputs for learning
quadrupedal locomotion with RL using MLPs. Jain et al. (2020) propose to use Hierarchical RL
(HRL) for locomotion, which learns high-level policies under visual guidance and low-level motor
control policies with IMU inputs. Different from previous work, we provide a simple approach to
combine proprioceptive states and visual inputs with a Transformer model in an end-to-end manner
without HRL. Our LocoTransformer not only performs better in challenging environments but also
achieves better generalization results in unseen environments and with the real robot.

Transformers and Multi-modal Learning. The Transformer model has been widely applied in the
fields of language processing (Vaswani et al., 2017; Devlin et al., 2018; Brown et al., 2020) and visual
recognition and synthesis (Wang et al., 2018; Parmar et al., 2018; Child et al., 2019; Dosovitskiy
et al., 2020; Carion et al., 2020; Chen et al., 2020a). Besides achieving impressive performance in
a variety of language and vision tasks, the Transformer also provides an effective mechanism for
multi-modal reasoning by taking different modality inputs as tokens for self-attention (Su et al., 2019;
Tan & Bansal, 2019; Li et al., 2019; Sun et al., 2019; Chen et al., 2020b; Li et al., 2020; Prakash
et al., 2021; Huang et al., 2021; Hu & Singh, 2021; Akbari et al., 2021; Hendricks et al., 2021). For
example, Sun et al. (2019) propose to use a Transformer to jointly model video frames and their
corresponding captions from instructional videos for representation learning. Going beyond language
and vision, we propose to utilize cross-modal Transformers to fuse proprioceptive states and visual
inputs. To our knowledge, this is the first work using cross-modal Transformers for locomotion.

3 REINFORCEMENT LEARNING BACKGROUND

We model the interaction between the robot and the environment as an MDP (Bellman, 1957)
(S,A, P,R, H, γ), where s ∈ S are states, a ∈ A are actions, P (s′|s, a) is transition function, R
is reward function, H is finite episode horizon, and γ is discount factor. The Agent learn a policy
πθ parameterized by θ to output actions distribution conditioned on current state. The goal of
agent is to learn θ that maximizes the discounted episode return: R = Eτ∼pθ(τ)[

∑H
t=0 γ

trt], where
rt ∼ R(st, at) is the reward for time step t, τ ∼ pθ(τ) is the trajectory.

4 METHOD

We propose to incorporate both proprioceptive and visual information for locomotion tasks using a
novel Transformer model, LocoTransformer. Figure 2 provides an overview of our architecture. Our
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model consists of the following two components: (i) Separate modality encoders for proprioceptive
and visual inputs that project both modalities into a latent feature space; (ii) A shared Transformer
encoder that performs cross-modality attention over proprioceptive features and visual features, as
well as spatial attention over visual tokens to predict actions and predict values.

4.1 SEPARATE MODALITY ENCODERS

Shared Transformer Encoder

Proprioceptive
State

Conv

……

Proprioceptive Features Visual Features

Projection Head

Output

L x

Self Attention

Add & Norm

Feed
Forward

Add & Norm

Depth
Image
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Figure 2: Network Architecture. We process proprioceptive
states with a MLP and depth images with a ConvNet. We take
proprioceptive embedding as a single token, split the spatial visual
feature representation into N ×N tokens and feed all tokens into
the Transformer encoder. The output tokens are further processed
by the projection head to predict value or action distribution.

In our setting, the agent utilizes both
proprioceptive states and visual ob-
servations for decision-making. Pro-
prioceptive state and visual observa-
tion are distinctively different modal-
ities: the proprioceptive input is a 93-
D vector, and we use stacked first-
person view depth images to encode
the visual observations. To facili-
tate domain-specific characteristics of
both modalities, we use two separate,
domain-specific encoders for propri-
oceptive and visual data respectively,
and unify the representation in a latent
space. We now introduce the architec-
tural design of each encoder, and how
features are converted into tokens for
the Transformer encoder.

We use an MLP to encode the propri-
oceptive input into proprioceptive fea-
tures Eprop ∈ RCprop

, where Cprop is
the proprioceptive feature dimension.
We encode additionally provided visual information using a ConvNet. The ConvNet encoder forwards
the stacked depth image inputs into a spatial representation Evisual with shape C ×N ×N , where C
is the channel number, and N is the width and height of the representation. The depth images are
from the first-person view from the frontal of the robot, which captures the obstacles and terrain from
the perspective of the acting robot. However, for first-person view, the moving camera and limited
field-of-view make learning visual policies significantly more challenging. For instance, changes in
robot pose can result in changes in visual observations. This makes it essential to leverage propri-
oceptive information to improve visual understanding. In the following, we present our proposed
method for fusing the two modalities and improving their joint representation using a Transformer.

4.2 TRANSFORMER ENCODER

We introduce the Transformer encoder to fuse the visual observations and the proprioceptive states for
decision making. Given a spatial visual features with shape C ×N ×N from the ConvNet encoder,
we split the spatial features into N × N different C-dimensional token embeddings tvisual ∈ RC

(illustrated as yellow tokens in Figure 2), each corresponding to a local visual region. We use a
linear layer to project the proprioceptive features into a C-dimensional token embedding tprop ∈ RC

(illustrated as a green token in Figure 2). Formally, we have N ×N + 1 tokens in total obtained by:

tprop = W prop(Eprop) + bprop tprop ∈ RC (1)

T0 = [tprop, tvisual
0,0 , tvisual

0,1 , ..., tvisual
N−1,N−1] tvisual

i,j ∈ RC (2)

where tvisual
i,j is the token at spatial position (i, j) of the visual features Evisual, and W prop, bprop are

the weights and biases, respectively, of the linear projection for proprioceptive token embedding. In
the following, we denote Tm ∈ R(N2+1)×C as the sequence of tokens after m Transformer encoder
layers, and T0 as the input token sequence from Eq. 2.

We adopt a stack of Transformer encoder layers (Vaswani et al., 2017) to fuse information from
proprioceptive and visual tokens. Specifically, we formulate the Self-Attention (SA) mechanism of
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the Transformer encoder as a scaled dot-product attention mechanism, omitting subscripts for brevity:

T q, T k, T v = TUq, TUk, TUv Uq, Uk, Uv ∈ RC×C (3)

W sum = Softmax(T qT k⊤/
√
D) W sum ∈ R(N2+1)×(N2+1) (4)

SA(T ) = W sumT vUSA USA ∈ RC×C (5)

where D is the dimension of the self-attention layer. The SA mechanism first applies separate linear
transformations on each input token T to produce embeddings T q, T k, T v as defined in Eq. 3. We
then compute a weighted sum over input tokens, where the weight W sum

i,j for each token pair (ti, tj)
is computed as the dot-product of elements ti and tj scaled by 1/

√
D and normalized by a Softmax

operation. After a matrix multiplication between weights W sum and values T v , we forward the result
to a linear layer with parameters USA as in Eq. 5, and denote this as the output SA(T ).

Each Transformer encoder layer consists of a self-attention layer, two LayerNorm (LN) layers with
residual connections, and a 2-layer MLP as shown in Figure 2 (right). This is formally expressed as,

T ′
m = LN(SA(Tm) + Tm), Tm+1 = LN(MLP(T ′

m) + T ′
m), Tm, Tm+1 ∈ R(N2+1)×C (6)

where T ′
m is the normalized SA. Because SA is computed across visual tokens and single propriocep-

tive token, proprioceptive information may gradually vanish in multi-layer Transformers; the residual
connections make the propagation of proprioceptive information through the network easier.

We stack L Transformer encoder layers. Performing multi-layer self-attention on proprioceptive and
visual features enables our model to fuse tokens from both modalities at multiple levels of abstraction.
Further, we emphasize that a Transformer-based fusion allows spatial reasoning, as each visual token
has a separate regional receptive field, and self-attention, therefore, enables the agent to explicitly
attend to relevant visual regions. For modality-level fusion, direct application of a pooling operation
across all tokens would easily dilute proprioceptive information since the number of visual tokens far
exceed that of the proprioceptive token. To balance information from both modalities, we first pool
information separately for each modality, compute the mean of all tokens from the same modality to
get a single feature vector. We then concatenate the feature vectors of both modalities and project the
concatenated vector into a final output vector using an MLP, which we denote the projection head.

Observation Space. In all environments, the agent receives both proprioceptive states and visual
input as follows: (i) proprioceptive data: a 93-D vector consists of IMU readings, local joint
rotations, and actions taken by then agent for the last three time steps; and (ii) visual data: stacked
the most recent 4 dense depth image of shape 64× 64 from a depth camera mounted on the head of
the robot, which provides the agent with both spatial and temporal visual information.

Implementation Details. For the proprioceptive encoder and the projection head, we use a 2-layer
MLP with hidden dimensions (256, 256). Our visual encoder encode visual inputs into 4× 4 spatial
feature maps with 128 channels, following the architecture in Mnih et al. (2015b). Our shared
Transformer consists of 2 Transformer encoder layers, each with a hidden feature dimension of 256.

5 EXPERIMENTS

We evaluate our method in simulation and the real world. In the simulation, we simulate a quadruped
robot in a set of challenging and diverse environments. In the real world, we conduct experiments in
indoor scenarios with obstacles and in-the-wild with complex terrain and novel obstacles.

5.1 ENVIRONMENTS IN SIMULATION

We design 6 simulated environments with varying terrain, obstacles to avoid, and spheres to collect
for reward bonuses. Spheres are added to see whether agents are able to distinguish objects and their
associated functions based on their appearance. All obstacles and spheres are randomly initialized and
remain static throughout the episode unless stated otherwise. Specifically, our environments include:
Wide Obstacle (Wide Obs.): wide cuboid obstacles on flat terrain, without spheres; Thin Obstacle
(Thin Obs.): numerous thin cuboid obstacles on flat terrain, without spheres; Wide Obstacle &
Sphere (Wide Obs.& Sph.): wide cuboid obstacles on flat terrain, including spheres that give a reward
bonus when collected; Thin Obstacle & Sphere (Thin Obs.& Sph.): numerous thin cuboid obstacles
and spheres on a flat terrain; Moving Obstacle: similar to the Thin Obs. environment, but obstacles
are now dynamically moving in random directions updated at a low frequency. Mountain: a rugged
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(a) In the environment with obstacles, the agent learns to automatically attend to obstacles.
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(b) On challenging terrain, the agent attends to the goal destination and the local terrain in an alternative manner.
Figure 3: Self-attention from our shared Transformer module. We visualize the self-attention
between the proprioceptive token and all visual tokens in the last layer of our Transformer model. We
plot the attention weight over raw visual input where warmer color represents larger attention weight.

mountain range with a goal on the top of the mountain. We show 4 environments above in Figure 1,
omitting Wide Obs. and Thin Obs. for simplicity. We provide further details on the observation and
action space, specific reward function, and relevant hyper-parameters in Appendix A.

Reward Function. For all environments, we adopt the same reward function containing the following
terms: (i) Forward reward incentivizing the robot to move forward along a task-specific direction, i.e.
towards the goal position in the Mountain environment (visualized as the red sphere in Figure 1), or
the move along the axis in all other environments (i.e. moving forward); (ii) Sphere reward for each
sphere collected; (iii) Alive reward encouraging the agent to avoid unsafe situations, e.g. falling; and
(iv) Energy usage penalty encouraging the agent to use motor torque of small magnitude.

5.2 BASELINE AND EXPERIMENTAL SETTING

To demonstrate the importance of visual information for locomotion in complex environments, as
well as the effectiveness of our Transformer model, we compare our method to: State-Only baseline
that only uses proprioceptive states; Depth-Only baseline that only uses visual observations; State-
Depth-Concat that uses both proprioceptive states and vision, but without our proposed Transformer.
The State-Depth-Concat baseline uses a linear projection to project visual features into a feature
vector that has the same dimensions as the proprioceptive features. The State-Depth-Concat baseline
then concatenates both features and feeds it into the value and policy networks. We also introduce a
Hierarchical Reinforcement Learning (HRL) baseline as described in Jain et al. (2020), but without
the use of the trajectory generator for a fair comparison (We follow Jain et al. (2020) faithfully and
our results indicate that it works as expected). We train all agents using PPO (Schulman et al., 2017)
and share the same proprioceptive and visual encoder for the value and policy network.

Evaluation Metric and Training Samples. We evaluate policies by their mean episode return, and
two domain-specific evaluation metrics: (i) the distance (in meters) an agent moved along its target
direction; and (ii) the number of collisions with obstacles per episode (with length of 1k steps). The
collision is examined at every time step. , and we only compute the collision when the robot pass by
at least one obstacle. We train all methods for 15M samples with 5 different random seeds and report
the mean and standard deviation of the final policies.

5.3 ATTENTION MAPS

To gain insight into how our Transformer model leverages spatial information and recognizes
dominant visual regions for decision-making at different time steps, we visualize the attention map of
our policy on the simulated environment in Figure 3. Specifically, we compute the attention weight
Wi,j between the proprioceptive token and all other visual tokens and visualize the attention weights
on the corresponding visual region of each token. In the top row, we observe that the agent pays most
attention to nearby obstacles in the front, i.e. objects that the agent needs to avoid to move forward.
The attention also evolves when new obstacles appear or get closer. In the Mountain environment
(bottom row), the agent attends alternatively to two different types of regions: the close terrain
immediately influencing the locomotion of the robot, and regions corresponding to the task-specific
direction towards the target. The robot first attends to the terrain in front to step on the ground (1st &
3rd frame), once the agent is in a relatively stable state, it attends to the goal far away to perform
longer-term planning (2nd & 4th frame). The regions attended by the agent are highly task-related
and this indicates that our model learns to recognize important visual regions for decision-making.
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(a) (b) (c) (d)

Figure 4: Training and evaluation curves on simulated environments (Concrete lines and shaded areas shows
the mean and the std over 5 seeds, respectively). For environment without sphere (in (a)), our method achieve
comparable training performance but much better evaluation performance on unseen environments (in (b)). For
more challenging environment (in (c) and (d)) our method achieve better performance and sample efficiency.
Table 1: Generalization. We evaluate the generalization ability of all methods by evaluating on unseen
environments. Our method significantly outperform baselines on both metrics (longer distance & less collision).

Distance Moved (m) ↑ Collision Happened ↓
Thin Obs.(Train
on Wide Obs.)

Wide Obs.(Train
on Thin Obs.)

Thin Obs.(Train
on Wide Obs.)

Wide Obs.(Train
on Thin Obs.)

State-Only 3.6±1.3 5.9±0.9 456.3±262.2 545.1±57.7

Depth-Only 1.1±1.1 0.1±0.0 - -
State-Depth-Concat 5.6±2.1 7.1±2.0 406.8±89.5 331.1±192.8

HRL 5.8 ±2.2 11.5±1.8 527.9±94.6 238.8±59.5

Ours 8.2±2.5 14.2±2.8 310.4±131.3 82.2±103.8

5.4 NAVIGATION ON FLAT TERRAIN WITH OBSTACLES

Static Obstacles without Spheres. We train all methods on navigation tasks with obstacles and flat
terrain to evaluate the effectiveness of modal fusion and stability of locomotion. Results are shown
in Figure 4 (a). Our method, the HRL baseline, and the State-Depth-Concat baseline significantly
outperform the State-Only baseline in both the Thin Obstacle and Wide Obstacle environment,
demonstrating a clear benefit of vision for locomotion in complex environments. Interestingly, when
the environment appearance is relatively simple (e.g., the Wide Obstacle environment), the Depth-
Only baseline can learn a reasonable policy without using proprioceptive states. We surmise that the
agent can infer part of the proprioceptive state from visual observations for policy learning. This
phenomenon suggests that modeling the correlation between different modalities and better fusion
techniques are essential for a good policy. We also observe that the simpler State-Depth-Concat
baseline performs as well as our Transformer-based model in these environments. We conjecture that
this is because differentiating obstacles from flat terrain is not a perceptually complex task, and a
simple concatenation, therefore proves sufficient for policy learning.

We further evaluate the generalization ability of methods by transferring methods trained with thin
obstacles to environments with wide obstacles, and vice versa. Figure 4 (b) shows generalization
measured by episode return, and Table 1 shows average the quantitative evaluation results. While the
State-Depth-Concat baseline is sufficient for training, we find that our Transformer-based method
improves episode return in transfer by as much as 69% and 56% in the Wide and Thin obstacle
environments, respectively, over the State-Depth-Concat baseline. Compared with the HRL baseline,
the improvements of our method are 257.6% and 118.2%, respectively. We observe that our method
moves significantly farther on average, and reduces the number of collisions by 290.5%, 402% and
663% over the HRL baseline, the State-Depth-Concat and State-Only baselines when trained on
thin obstacles and evaluated on wide obstacles. The Depth-Only baseline fails to generalize across
environments and no collision occurs as the robot moves too little to even collide with obstacles.
Interestingly, we observe that the generalization ability of the State-Depth-Concat decreases as
training progresses, whereas for our method it either plateaus or increases over time. This indicates
that our method is more effective at capturing essential information in the visual and proprioceptive
information during training, and is less prone to overfit to training environments.
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Table 2: Evaluation on environments with spheres. We evaluate the final policy of all methods. Our method
achieved the best performance on almost all environment for all metrics.

Distance Moved (m) ↑ Sphere Reward ↑ Collision Happened ↓
Thin Obs.
& Sph.

Wide Obs.
& Sph.

Thin Obs.
& Sph.

Wide Obs.
& Sph.

Thin Obs.
& Sph.

Wide Obs.
& Sph.

State-Only 5.6±1.6 7.4±2.8 80.0±43.2 80.0±32.7 450.2±59.7 556.5±173.1

Depth-Only 0.0±0.1 5.2±3.9 0.0±0.0 33.3±47.1 - -
State-Depth-Concat 13.1±2.3 11.4±3.3 206.0±41.1 193.3±24.9 229.2±65.3 87.2±40.7

HRL 10.8±0.8 11.3±2.9 166.7±54.4 288.9±154.8 256.8±87.4 423.3±170.0

Ours 15.2±1.8 14.5±0.7 233.3±47.1 220.0±33.2 256.2±70.0 54.6±20.8

Static Obstacles with Spheres. We now consider a perceptually more challenging setting with the
addition of spheres in the environment; results are shown in Figure 4 (c). We observe that with
additional spheres, the sample efficiency of all methods decreases. While spheres with positive reward
provide the possibility for higher episode return, spheres increase complexity in two ways: (i) spheres
may lure agents into areas where it is prone to get stuck; and (ii) although spheres do not block the
agent physically, they may occlude the agent’s vision and can be visually difficult to distinguish from
obstacles in a depth map. We observe that with increased environmental complexity, our method
consistently outperforms both the HRL baseline and the State-Depth-Concat baseline in the final
performance and sample efficiency. We report the average distance moved, number of collisions, and
the reward obtained from collecting spheres, in Table 2. Our method obtains a comparable sphere
reward but a longer moved distance, which indicates that our LocoTransformer method is more
capable of modeling complex environments using spatial and cross-modal attention.

Table 3: Evaluation results on the Moving Obsta-
cle Environment.

Method Distance
Moved (m) ↑

Collision
Happened ↓

State-Only 6.0±1.3 129.4±25.4

Depth-Only 1.1±1.1 -
State-Depth-Concat 16.3±1.7 88.4±34.0

HRL 7.1±2.6 75.8±11.0

Ours 11.3±2.9 67.9±18.1

Moving Obstacles. When the positions of obstacles
are fixed within an episode, the agent may learn
to only attend to the closest obstacle, instead of
learning to plan long-term. To evaluate the ability of
long-term planning, we conduct a comparison in an
environment with moving obstacles to simulate real-
world scenarios with moving objects like navigating
in the human crowd. The top row of Figure 4 (d)
and Table 3 shows that the State-Only baseline and
the Depth-Only baseline both perform poorly, and
the HRL baseline performs worse than the State-Depth-Concat baseline. These results indicate that
the State-Only baseline lacks planning skills, which can be provided by visual observations, and
the hierarchical policy can not fuse the information from different modalities effectively when the
environment is sufficiently complex. While the State-Depth-Concat baseline performs better in terms
of distance, it collides more frequently than our method. This indicates that the baseline fails to
recognize the moving obstacles, while our method predicts the movement of obstacles and takes a
detour to avoid potential collisions. In this case, the conservative policy obtained by our method
achieved better performance in terms of episode return though it did not move farther. We deduce
that with only a compact visual feature vector, it is very hard for the State-Depth-Concat baseline to
keep track of the movement of obstacles in the environment. On the other hand, it is easier to learn
and predict the movement of multiple obstacles with our method since the Transformer provides an
attention mechanism to model the visual region relations.

Table 4: Ablation study on Thin Obs. & Sph.: We perform
ablations on Thin Obs. & Sph. environment and adopt the best
setting (N = 4, L = 2) for all environments, which includes 16
visual tokens and 2 Transformer encoder layers.
(a) On Number of Visual Tokens

Method Episode Return ↑
Ours (N=1) 1204.8±243.6

Ours (N=2) 1418.1±167.8

Ours (N=4) 1551.5±120.4

(b) On Number of Layers

Method Episode Return ↑
Ours (L=1) 1509.7±244.8

Ours (L=2) 1551.5±120.4

Ours (L=3) 1423.5±100.7

Ablations. We evaluate the impor-
tance of two components of our Trans-
former model on the Thin Obs. &
Sph. environment: (1) the number
of Transformer encoder layers; and
(2) the number of visual tokens (N2

visual tokens). Results are shown in
Table 4. From Table 4b, we observe
that the performance of our model is
relatively insensitive to the number of
Transformer encoder layers. For ablation on the number of visual tokens, we change the kernel size
and the stride of the last convolutional layer in our visual encoder to get visual features with different
shapes and different numbers of visual tokens. From Table 4a, we can see that the performance of our
method is positively correlated with the number of the visual tokens. With a fixed size of the visual
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feature map, a higher number of tokens directly results in a smaller receptive field for each visual
token. Because our method performs spatial cross- modality attention across all tokens, our model
benefits from richer low-level visual information. This indicates a potential for our model to work
with high-resolution visual input and in more complicated environments and complex tasks.

5.5 NAVIGATION ON SIMULATED UNEVEN TERRAIN

Table 5: Evaluation Result on the
Mountain environment.

Method 3D Distance
Moved (m) ↑

State-Only 3.7±1.6

Depth-Only 3.0±0.5

State-Depth-Concat 4.7 ±0.8

HRL 6.3±0.3

Ours 6.8 ±1.1

We also evaluate all methods on uneven, mountainous terrain.
The bottom row of Figure 4 (d) and Table 5 shows training
curves and the mean distance moved for each method, and
our method improves over all baselines by a large margin in
episode return. Despite having access to depth images, the State-
Depth-Concat baseline does not show any improvement over
the State-Only baseline in episode return. We conjecture that
naively projecting spatial-visual feature into a vector and fusing
multi-modality information with a simple concatenation can
easily lose the spatial structure of visual information. Although
the HRL baseline moves farther among baselines, it does not obtain a higher episode return, indicating
the HRL baseline is not able to utilize the visual guidance towards the target. Our Transformer-based
method better captures spatial information such as both global and local characteristics of the terrain
and more successfully fuses spatial and proprioceptive information than a simple concatenation.

5.6 REAL-WORLD EXPERIMENTS

(a) Indoor & Obs. (b) Forest
Figure 5: Real World Samples We evaluate our
method in real-world scenarios with different ob-
stacles on complex terrain.

Figure 6: Experiment results in the real-world:
We perform real-world experiment on Indoor &
Obs. and Forest environments.

Method Distance
Moved (m) ↑

Collision
Times ↓

State-Depth-Concat 5.0±2.6 0.4±0.5

Ours 9.6±2.2 0.3±0.5

(a) Indoor & Obs.

Method Distance
Moved (m) ↑

Collision
Count ↓

State-Depth-Concat 5.1±0.9 0.3±0.5

Ours 9.6±2.0 0.0±0.0

(b) Forest

To validate our method in different real-world scenes
beyond the simulation, we conduct real-world ex-
periments in both indoor scenarios with obstacles
(referred as Indoor & Obs.) and in-the-wild forest
with complex terrain and trees (referred to as For-
est)) as shown in Figure 5. As the HRL baseline
is found to not generalize well to unseen environ-
ments as shown in Figure 4 (b) and Table 1, we only
deploy policies learned in simulation using our Lo-
coTransformer and the State-Depth-Concat baseline
on a Unitree A1 Robot (Unitree, 2018). The poli-
cies are trained with the Thin Obstacle environment
randomized with uneven terrains. All the real-world
deployment experiments are repeated 15 times across
different seeds. Details about robot setup are pro-
vided in Appendix A. Since it is challenging to mea-
sure the exact duration of collision with obstacles in
the real world, we instead report the number of times
that robot collides with obstacles (Collision Count)
as a measure of performance.

As shown in Table 6, our method outperforms the
baseline by a large margin in both scenarios. In the
Indoor & Obs environment, our method moves 92%
farther than the baseline and collides less. When facing complex terrain and unseen obstacles in the
Forest environment, our method greatly improves over the baseline; our policy moved approximately
90% farther without colliding into any obstacles, while the baseline frequently collides into trees and
gets stuck in potholes. We generally observe that our method is more robust than the baseline when
deployed in the real world, indicating that our method better captures the object structure from visual
observations, rather than overfitting the appearance of objects during training.

6 CONCLUSION

We propose to incorporate the proprioceptive and visual information with the proposed LocoTrans-
former model for locomotion control. By borrowing the visual inputs, we show that the robot can
plan to walk through different sizes of obstacles and even moving obstacles. The visual inputs also
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helps the locomotion in challenging terrain such as mountain. Beyond the training environment,
we also show that our method with the cross-modality Transformer achieves better generalization
results when testing on unseen environments and in the real world. This shows our Transformer
model provides an effective fusion mechanism between proprioceptive and visual information and
new possibilities on reinforcement learning with information from multi-modality.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the following illustrations in our paper and
appendix:

• Environment: We provide the detailed description of the environment in Section 5.1, as
well as the specific observation space, action space and reward function in Appendix A.2.

• Implementation Details: We provide all implementation details and related hyperparame-
ters for both our methods and baselines in Section 4.2 and Appendix B.

• Real Robot Setup: We provide all relavant details about setting up the real robot and
conduct real-world experiment in Appendix A.3.

We are committed to releasing the code for our approach, baselines, and the simulation environment.
We believe the open source of our code and environment will be an important contribution to
the community. We have released our videos in project page: https://LocoTransformer.
github.io/, and we will release the code and environment on the same website after incorporating
the feedbacks from the reviewers.
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A DETAILED EXPERIMENT SETUP

A.1 DETAILS ON PROPRIOCEPTION AND ACTION

Our Unitree A1 robot has 12 Degrees of Freedom (DoF), and we use position control to set actions
for the robot. Specifically, the proprioceptive input contains the following components:

• Joint angle: a 12-dimensional vector records the angle of each joint.

• IMU information: a 4-dimensional vector records orientations and angular velocities.

• Base displacement: a 3-dimensional vector records the absolute base position of robot.

• Last action: a 12-dimensional vector records the angle change in the last step.

The full proprioceptive vector consists of all these vectors over the last three steps to retain historical
state information. The action is also a 12-dimensional vector that controls the change of all the joint
angles. We use 0.5 as the upper bound of action for locomotion stability. We use all default settings
of A1 robot in the official repository.

A.2 REWARD DEFINITION

In all our experiments, we use the same reward function as follow:

R = αforwardRforward + αenergyRenergy + αaliveRalive +K ·Rsphere, (7)

where we set αforward = 1, αenergy = 0.005, αalive = 0.1 for all tasks.

Rforward stands for moving forward reward. In flat environments, it’s defined by the moving speed
of robot along the x-axis; in mountain environment, it’s defined by that along the direction to the
mountain top (red sphere in Figure 1 Mountain in paper).

Renergy ensures the robot is using minimal energy, which has been shown to improve the naturalness
of motion, similar to Yu et al. (2018). Specifically, we penalize the actions resulting motor torques
with large euclidean norm.:

Renergy = −∥τ∥2, τ is the motor torques.

Ralive encourages the agent to live longer. It gives a positive reward of 1.0 at each time step until
termination. Dangerous behaviors like falling down and crashing into obstacles will call termination.

Rsphere stands for sphere collection reward (whenever applicable) for each sphere collected, and K is
the number of spheres collected at the current time step.

A.3 REAL ROBOT SETUP

We use the Unitree A1 Robot (Unitree, 2018), which has 18 links and 12 degrees of freedom (3 for
each leg). We mount an Intel RealSense camera at the head of the robot to capture the depth map, and
use the robot sensors to get the joint states and IMU for the proprioceptive input. All computations
are running with on-board resources. We set the control frequency to be 25 Hz and set the action
repeat to be 16, so that the PD controller converts the target position commands to motor torques at
400 Hz. We set the KP and KD of PD controller to be 40 and 0.6 respectively. The base displacement
is removed from the observation for the real-world experiment. For the real-world experiment, we
execute the policy on the real-robot for 20 seconds and measure the Euclidean distance between the
start and end point of the trajectory for evaluating the performance.

B HYPERPARAMETERS

In this section, we detail the hyperparameters for each method used in our experiments.
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Parameters Range

KP [40, 90]
KD [0.4, 0.8]

Inertia (× default value) [0.5, 1.5]
Lateral Friction (Ns / m) [0.5, 1.25]
Mass (× default value) [0.8, 1.2]

Motor Friction (Nms / rad) [0.0, 0.05]
Motor Strength (× default value) [0.8, 1.2]

Sensor Latency (s) [0, 0.04]

Table 6: Variation of Environment and Robot Parameters.

B.1 DOMAIN RANDOMIZATION

To narrow the reality gap, we leverage domain randomization during training phase. All methods
conducted in real world experiments use a same group of randomization setting to be fair. Specifically,
we set the range of parameters as follow:

During training, besides the domain randomization for the proprioceptive state, we perform domain
randomization for visual input. Specifically, at each time-step, we randomly choose 3 to 30 values in
(64, 64) depth input and set the depth reading to the maximum reading. In this case, we simulate the
noisy visual observation in the real-world.

B.2 HYPERPARAMETERS SHARED BY ALL METHODS

Here we give the details of all hyperparameters that are related to reinforcement learning and shared
by all tested methods. “Horizon” denotes the episode length in both training and testing, and “Clip
parameter” denotes the max norm of gradients in all trained networks.

Hyperparameter Value
Horizon 1000
Non-linearity ReLU
Policy initialization Standard Gaussian
# of samples per iteration 8192
Discount factor .99
Batch size 256
Optimization epochs 3
Clip parameter 0.2
Policy network learning rate 1e-4
Value network learning rate 1e-4
Optimizer Adam

B.3 STATE-ONLY BASELINE

To keep the comparison fair, we use 4 fully-connected layers for state-only baseline to keep the
network size large enough for higher learning capacity. We also try more layers but observe minor
difference in performance.

Hyperparameter Value
Network size 4 FC layers with 256 units

B.4 STATE-DEPTH-CONCAT BASELINE

Apart from the perception encoder, we keep all other parts same for State-Depth-Concat baseline and
our LocoTransformer.

Hyperparameter Value
Proprioceptive encoder 2 FC layers with 256 units
Projection Head 2 FC layers with 256 units
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B.5 OURS - LOCOTRANSFORMER

Hyperparameter Value
Token dimension 128
Proprioceptive encoder 2 FC layers with 256 units
Projection Head 2 FC layers with 256 units
# of transoformer encoder layers 2

C MORE ATTENTION VISUALIZATION RESULTS

We offer more visualization of attention maps here to show that LocoTransformer consistently attends
to reasonable parts of environment during an episode. In the Thin Obstacle, robot will be aware of
the new appearing obstacles and give emergent reaction to escape the threat. For example, in the
last row, the robot attends to the closed obstacle and then turns left. Suddenly it attends to the wall,
so it reorientates its body to avoid risky. In the Mountain, robot not only pays attention to the final
goal position, but also attend to rugged terrains that are extremely hard to step on. This also shows
the planning ability according to different visual regions learned by Transformer architecture. In the
second case, the robot first attends to goal position to ensure the forward direction, but the uneven
rocks also draw its attention.

Figure 7: Additional Attention Visualization We visualize more attention map visualization for better
understanding of how our LocoTransformer works. Each row shows a sequence of attention map to present how
the attention of agent evolves.

D COMPARISON WITH CLASSICAL ROBOTIC CONTROLLERS

To understand the advantages of learning-based locomotion, we offer a detailed comparison with the
classical quadrupedal robotic control pipeline, which is commonly used in both classicalal approaches
and recent visual locomotion learning works. With this comparison, we can also help the community
understand the main difference between learning-based academic works and industrial solutions, like
the famous Boston Dynamics Spot.
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D.1 VISION-GUIDED WHOLE-BODY CONTROLLER

We mainly follow Carlo et al. (2018) and the code for (Peng et al., 2020) to reproduce the vision-
guided whole-body controller for A1. Our high-level vision controller is trained with RL perceiviing
the visual information same as other approaches and outputing the target linear and angular velocity
for low-level controller. Our low-level motion controller provide the actual motor commands to the
robot according to current target velocity.

High-level Visual Policy. High-level visual policy outputs the target linear velocity and angular
velocity given the stacked depth maps and (optionally) CoM velocity and IMU information. If
only given the depth maps, we remove the state encoder part in the original models and keep the
Transformer and CNN encoders; if given both the depth maps and the body state (CoM velocity
and IMU information), we just keep the two architectures same as the main paper. We train the
high-level controller with PPO to provide fair and consistent comparison with our method. The
control frequency of the high-level controller is 20Hz, with the action repeat set as 10 to guide the
low-level controller. We use the Unicycle Model to control the CoM velocity, i.e., specifying the
absolute linear velocity and angular (rotating) velocity. In our experiments, the target linear velocity
is clipped to ±0.4 and the target angular velocity is clipped to ±0.3.

Low-level Controller. The low-level controller uses position control for swing actions and torque
control for stance actions. Specifically, we use a finite state machine (FSM) based gait scheduler to
decide when to swing each leg and how long stance each leg needs in a complete control cycle. The
swing action is determined by a fixed foot clearance height and controlled by a PD-controller with the
target foot position. The stance force (torques of each joint in a leg) is computed by model predictive
control to track the desired CoM velocity. The whole-body controller outputs a new command in
200HZ and use another action repeat 5 to control the body.

Training. We use PPO to train the control policy, similar to other methods in this paper. Here we
only demonstrate some main modifications that might influence reproducing the experiments: 1) we
remove the energy reward term, since the low-level motion control is not learnable; 2) Because of the
change of the control frequency (all other methods in our paper directly provide low-level command
which requires a higher control frequency), we tune the following hyperparameters:

Hyperparameter Value
Horizon 500
# of samples per iteration 4096
αforward 0.5

We remove domain randomization terms which are only related to motion robustness.

D.2 RESULTS IN SIMULATION

We perform the training in simulation and answer the following two questions:

• Can our Transformer-based architecture still outperform CNN-based one while combining
with classical controller?

• Is our RL-based framework better than visual policy + classical controller?

Our results show the advantage of our network design and that of our End-to-end RL pipeline.

Comparison between Network Architectures. We train the vision-guided whole body controller
in two settings. The two settings are: (i) Stacked depth maps; (ii) Stacked depth maps with CoM
velocity and IMU sensor input. The training curves are in Figure 9. Due to the difference of the
reward settings and episode length, it’s meaningless and unfair to compare the curves with that of
RL-based methods. The training results show that for multi-modal setting, our LocoTransformer still
outperforms the baseline. For vision-only setting, we observe minor difference between transformer
and CNN, and speculate that attention mechanism indeed improves the modal fusion rather than
image representation learning.
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Note that it costs several times of samples to train the controller. We deduce the phenomenon is
due to low-level controller is not agile enough to the varying high-level command to gain explicit
information for RL optimization.

For customized traditional controllers, such as the MPC controller used by MIT cheetah 3 (Carlo et al.,
2018), the inference speed is at around 120Hz on the Unitree A1 robot. To overcome the limitation
of computation, an external laptop is used in (Sun et al., 2021; Yang et al., 2021). In contrast, our
end-2-end learned policy is able to utilize the on-board GPU to perform real-time inference.
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Figure 8: Training curves of vision-guided MPC-based whole body controller. For multi-modal input
setting, LocoTransformer still outperforms the baseline.

D.3 RESULTS IN REAL WORLD

To further illustrate the advantage of end-to-end RL for locomotion, we deploy the vision-guided
whole-body controller in the real world. Please refer to the videos for more examples. According to
the visualization results, MPC-based controller generates natural and stable gaits, including larger
amplitude of feet swing, lower frequency of stepping, and consistent body height. However, when
facing obstacles like trees, the baseline cannot plan well with the MPC controller for avoidance. It
tries to avoid the tree, but since the motion is not very flexible and the high-level transitions are not
smooth, it collides with the side of the tree, and bounces away to come across the obstacle. While
the agent is still moving forward, having more collisions makes the robot unsafe. On the other hand,
when trained end-to-end with both vision and legged motion, our approach can flexibly change from
a moving forward motion to a turning motion and adjust the speed at the same time. We generally
observe much more diverse motions emerge and our policy is able to transition smoothly between
these motions according to vision. For in-door environments where the obstacles are larger, there are
less chances for the baseline to come across the obstacle when the robot is about to collide into it.

Figure 9: Some failure cases of MPC-based controller due to limitation of agility. The left figure shows that
when walking through a narrow path, the robot can not quickly turn around and collide into the wall. The right
figure denotes that it may collide to the tree in the wild, due to the shape of the obstacles are out of the training
distribution and the robot can’t adjust quickly enough to avoid.
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