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Corresponding authors: {jacob.chmura,shenyang.huang}@mail.mcgill.ca

ABSTRACT

Well-designed open-source software drives progress in Machine Learning (ML)
research. While static graph ML enjoys mature frameworks like PyTorch Geomet-
ric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks
comparable infrastructure. Existing TG libraries are often tailored to specific archi-
tectures, hindering support for diverse models in this rapidly evolving field. Addi-
tionally, the divide between continuous- and discrete-time dynamic graph methods
(CTDG and DTDG) limits direct comparisons and idea transfer. To address these
gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library
for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM
offers first-class support for dynamic node features, time-granularity conversions,
and native handling of link-, node-, and graph-level tasks. Empirically, TGM
achieves an average 7.8× speedup across multiple models, datasets, and tasks
compared to the widely used DyGLib, and an average 175× speedup on graph
discretization relative to available implementations. Beyond efficiency, we show in
our experiments how TGM unlocks entirely new research possibilities by enabling
dynamic graph property prediction and time-driven training paradigms, opening
the door to questions previously impractical to study.

Code: tgm-team/tgm Documentation: tgm.readthedocs.io

1 INTRODUCTION AND MOTIVATION

Advances in machine learning are driven by open, easy-to-use libraries that let researchers focus on de-
veloping frontier architectures. For example, deep learning research was propelled by Caffe (Jia et al.,
2014), TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). Similarly, developments in
graph machine learning (Kipf & Welling, 2016; Veličković et al., 2017; Dwivedi & Bresson, 2020;
Rampášek et al., 2022) are accelerated by libraries such as PyG (Fey & Lenssen, 2019; Fey et al.,
2025) and DGL (Wang et al., 2019). However, both PyG and DGL are designed for static graphs and
cannot capture the temporal dynamics of networks, known as Temporal Graphs (TGs). Real-world
examples include transaction (Shamsi et al., 2022), social (Huang et al., 2023a), trade (Poursafaei
et al., 2022b), and communication networks (Yoon et al., 2020) among others.

Recently, Temporal Graph Learning (TGL) has emerged to capture both spatial and temporal de-
pendencies in networks (Cornell et al., 2025; Cao et al., 2020; Han et al., 2014). The field has seen
growth with high-impact, cross-domain applications, such as LinkedIn’s LiGNN system (Borisyuk
et al., 2024) for user recommendations and mobility modelling that informed COVID-19 policy
decisions (Chang et al., 2021). Unlike static graph ML, TGL must treat time as a first-class signal,
making timestamps central to modelling and data processing. Despite research progress, software
infrastructure has not kept pace.

Limitations of existing libraries. Current TG libraries (Yu et al., 2023a; Rozemberczki et al.,
2021) are narrow in scope: many implement only a single algorithm family (Wang & Mendis, 2024;
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Figure 1: Overview of TGM features. TGM has native support for node events and unified continuous-
and discrete-time graph iteration (left). Generic hooks formalize common TG transformations (top-
right). TGM supports a broad range of temporal graph learning methods (bottom-right).

Zhou et al., 2023b) and most lack extensibility, resulting in a fragmented ecosystem. For instance,
TGL (Zhou et al., 2022a), DistTGL (Zhou et al., 2023b) and TGLite (Wang & Mendis, 2024) are
optimized for temporal message passing architectures (Rossi et al., 2020; da Xu et al., 2020) but
do not support emerging transformer-based approaches (Yu et al., 2023a; Gao et al., 2025). Also,
none provide time conversion operations which are critical for analyzing temporal granularity in
TGs (Huang et al., 2024). Finally, existing libraries fall short on usability features needed to foster
reproducible research such as profiling tools, test suites, and modular abstractions (see Table 1).

Motivation for a unified framework. Unlike NLP, where the transformer serves as a canonical
architecture (Vaswani et al., 2017), TGL lacks a standard model family. This leads to fragmented and
error-prone experimentation: continuous- and discrete-time models require entirely different data
pipelines, while core operations such as temporal neighbor sampling and negative edge construction
are implemented inconsistently. Without a unified framework, the community faces difficulties in fair
benchmarking, rapid prototyping, and combining ideas across approaches.

Our solution. We introduce TGM, a modular and efficient framework for TGL research. TGM
introduces several firsts: native support for node events, a generic hook mechanism that standardizes
TG transformations, and unified support for both continuous- and discrete-time graphs, ending the
long-standing separation between the two lines of research (Rossi et al., 2020; You et al., 2022).
Node events naturally capture phenomena like social media posts or other user activity in real-world
networks (Kazemi et al., 2020a). These abstractions unify diverse TG pipelines, lowering the barrier
for practitioners and accelerating innovation. Beyond flexibility, TGM delivers efficiency: 7.8×
faster than DyGLib on standard TG models and an average speedup of 175× on graph discretization.

In summary, the key properties of TGM are:

• First unified library for TG. TGM is the first library to support both continuous- and discrete-time
graphs, treating them as distinct views of the same underlying data. We implement 8 methods from
both CTDG and DTDG literature, including frontier models.

• Time as a first-class citizen. Time operations are central to TGs. TGM natively incorporates time
granularity into its API, with built-in support for graph discretization and snapshot iteration.

• Efficiency. Our experiments show that TGM achieves an average 7.8× faster end-to-end training
than DyGLib, and 175× faster graph discretization compared with existing implementations.

• Research-oriented. Designed for rapid prototyping, TGM emphasizes modularity and ease-of-
use. Its novel hook mechanism standardizes temporal graph transformations while supporting the
broadest range of TG tasks: link, node, and graph-level prediction.
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2 RELATED WORK

CTDG Methods. Continuous-time Dynamic Graph (CTDG) methods process temporal graphs as
streams of timestamped edge events. TGAT (da Xu et al., 2020) pioneered inductive representation
learning on temporal graphs, and TGN (Rossi et al., 2020) generalized this approach into a widely
adopted framework, with TGAT as a special case. Both rely on temporal neighbor sampling for
message passing. More recently, DyGLib (Yu et al., 2023a) emerged as a popular library, introducing
DyGFormer, one of the first transformer-based CTDG architectures inspired by their success in time
series, NLP, and vision (Vaswani et al., 2017; Devlin et al., 2019; Dosovitskiy et al., 2021). Despite
these advances, Poursafaei et al. (2022a) exposed flaws in prior evaluation and proposed EdgeBank,
a strong heuristic baseline for link prediction. To address reproducibility, Huang et al. (2023a)
introduced the large-scale Temporal Graph Benchmark (TGB), which we adopt for evaluating TGM.
Recently, TPNet (Lu et al., 2024b) further advanced state-of-the-art link prediction by introducing
temporal walk matrices with time decay, and is fully supported in TGM.

DTDG Methods. Discrete-time Dynamic Graph (DTDG) or snapshot-based methods represent tem-
poral evolution as a sequence of static graph snapshots, adapting GNNs like GCN (Kipf & Welling,
2017) to this setting. GCLSTM (Chen et al., 2018) integrates GCNs with LSTMs (Hochreiter &
Schmidhuber, 1997) to capture spatial and temporal dependencies, while PyG Temporal (Rozem-
berczki et al., 2021) provides a library of DTDG architectures for spatiotemporal graph learning.
However, PyG Temporal lacks recent methods and standardized benchmarks like TGB. More re-
cently, Unified Temporal Graph (UTG) (Huang et al., 2024) demonstrated a proof-of-concept for
comparing CTDG and DTDG approaches via graph discretization. While UTG offers useful insights,
its implementation is slow, limited to a few datasets, and not designed for reuse. In contrast, TGM
supports fully vectorized graph discretization and time-iteration operations, unifying CTDG and
DTDG within a single, robust framework and closing a long-standing gap in TGL.

CTDG vs DTDG. Discrete and continuous-time formulations differ primarily in their treatment
of time: DTDGs aggregate changes into snapshots while CTDGs record each event, providing
fine-grained temporal resolution (Kazemi et al., 2020b; Longa et al., 2023; Gravina & Bacciu, 2024).
DTDGs offer simpler batch processing when data arrives regularly, whereas CTDGs are event-driven,
making them better for capturing fine-grained dynamics and causal relationships. While DTDGs
prioritize efficiency, they may lose important information when events occur more frequently than
the snapshot rate (Kazemi et al., 2020b). Prior discussions largely remain conceptual and offer no
practical framework for comparing or unifying the two paradigms. For example, applying DTDG
models to CTDG tasks requires discretizing continuous-time events into snapshots.

TGL Libraries. Several libraries support temporal graph learning including DyGLib (Yu et al.,
2023b), TGL (Zhou et al., 2022b), DistTGL (Zhou et al., 2023a), TGLite (Wang & Mendis, 2024),
and TSL (Cini & Marisca, 2022). DyGLib provides pipelines for continuous-time models but is
limited by scalability, lack of modularity, and weak support for discrete-time methods (Gastinger
et al., 2024). TGL and DistTGL offer large-scale sampling and multi-GPU execution but lack a
researcher-friendly interface and have seen few recent updates. TGLite focuses on continuous-time
message-flow models, while TSL addresses spatiotemporal modelling on static graphs.

Table 1 summarizes key aspects of these libraries. TGM stands out as the only library that supports
both CTDG and DTDG methods, bridging continuous- and discrete-time research paradigms. Its
efficient and modular design facilitates flexible experimentation, while support for time conversion
and dynamic node events enables diverse temporal graph learning tasks. Additionally, comprehensive
tests and system profiling ensure reproducibility and provide research-ready infrastructure.

3 TGM FRAMEWORK

In this section, we present the foundation and concepts in TGM. In Section 3.1, we introduce the
formulation of temporal graph in TGM and unify continuous- and discrete-time formulations by
defining them as different ways of iteration over the graph. We also define the graph discretization
operation as a principled way to map from continuous events to snapshots. Then in Section 3.2, we
introduce the TGM hook formalism, a modular abstraction for composing graph operations. Together,
these elements inform the software and system design in Section 4.
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Table 1: Comparison of TGL libraries. TGM is the only library that meets all desirable criteria for
TGL research while other libraries lack one or more criteria.

TGL Features Software Infrastructure
Library CTDG DTDG Time Ops. Node Events Modular Efficient Unit Tests Profiling

TGM (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DyGLib ✓ × × × × × × ×
TGL ✓ × × × × ✓ × ✓
TGLite ✓ × × × ✓ ✓ ✓ ✓
PyG Temporal × ✓ × × ✓ ✓ ✓ ×
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Figure 2: TGM supports iteration by events and time. Discretization maps fine-grained timestamps
(e.g., hourly) to coarser timestamps (e.g., daily), aggregating duplicated edges in the process.

3.1 TGM TEMPORAL GRAPH FORMULATION

Here, we first introduce the notation of temporal graphs in TGM. On temporal graphs, events are
considered as a fundamental unit for representing the network’s evolution (Kazemi et al., 2020a). To
capture changes in graph structure and features, TGM distinguish between the following event types:
Definition 3.1 (Node and Edge Events). An edge event (t, s, d,xedge) is an interaction between two
nodes s and d at time t where xedge ∈ Rdedge is the associated edge feature vector. A node event
(t, s,xnode) represents the arrival of new features xnode ∈ Rdnode at node s and timestamp t.
Definition 3.2 (Temporal Graph). A temporal graph is a sequence of time-ordered events: G =
{e0, ..., eT }. Each event ei can be an edge event or a node event. Also, G can be associated with a
static node feature matrix X ∈ Rn×dstatic where n is the number of unique nodes in G. For any time
interval T ⊂ R+, the temporal sub-graph G|T contains all events in G intersecting T .

Representing Continuous and Discrete-Time Graphs. As temporal graphs are represented as
sequences of events in TGM, TGM doesn’t treat CTDG and DTDG as different data types but rather
as distinct ways of data iteration. We consider that any temporal graph admits a native time granularity
τ : the coarsest unit of time (e.g., seconds) that still discriminates between all event timestamps. If
real-world time is unavailable (e.g., due to privacy), TGM employs a special event-ordered granularity
τevent, preserving only the relative order of events but lacks correspondence to a real-world time
granularity, thus τevent is excluded from any time operations. Lastly, note that time granularities can
be compared: τ̂ ≤ τ ⇐⇒ τ is coarser than τ̂ . This view unifies CTDG and DTDG as alternative
ways of iterating over the same event stream:
Definition 3.3 (CTDG: Event-based iteration). A CTDG is often expressed as a stream of
events (Kazemi et al., 2020a; Huang et al., 2023b; Rossi et al., 2020; You et al., 2022). In TGM,
iterating a CTDG corresponds to using the event-ordered granularity τevent. Each batch contains a
fixed number of events, independent of real-world time.
Definition 3.4 (DTDG: Time-based iteration). A DTDG is often expressed as a sequence of static
graph snapshots sampled at regularly-spaced time intervals, i.e. as {G0,G1, ..., }, where Gi =
{Vi,Ei} is a static graph at snapshot i (Huang et al., 2024). In TGM, we achieve this by iterating
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Table 2: Examples of common temporal graph operations represented as hooks, and their attributes.

Hook Type Neighbor Sampling Evaluation Device Ops. Analytics
Recency Uniform TGB Eval GPU Transfer DOS Estimate

R (Requires) {negatives} {negatives} ∅ ∅ ∅
P (Produces) {neighbors} {neighbors} {negatives} ∅ {DOS}

with a time granularity τ̂ that is coarser than the native graph granularity. Iterating by time produces
batches G|[t0,ti],G|[ti,ti+1], · · · where |ti − t0| = |ti+1 − ti| = τ̂ .

Discretizing Temporal Graphs. For snapshot-based models, it is often useful to process the graph at
a coarser granularity than the native τ (e.g., daily instead of second-wise). Discretization converts the
underlying network to this coarser timeline by collapsing duplicate edges within each time interval:
Definition 3.5 (Time Granularity Discretization.). Let G be a temporal graph with native time
granularity τ . For any τ̂ ≥ τ , the discretization operator:

ψr : (G, τ) 7→ (Ĝ, τ̂) (1)

maps G to coarser granularity τ̂ , groups events into equivalence classes induced by τ̂ and applies a
reduction operator r to each class. The resulting graph Ĝ contains one representative event per class.
Figure 2 illustrates these time operations in TGM.

3.2 TGM HOOKS AND RECIPES

In TGM, we formalize TGL workflows as compositions of data transformations called hooks. Each
hook specifies certain batch attributes as inputs and outputs thus forming dependency relations
between hooks, i.e. one hook produces an attribute that is required by another. A set of hooks forming
a valid composition of hook signatures are considered as a recipe.
Definition 3.6 (Materialized Batch). Let G|T be a temporal subgraph. We denote by B|T ,A the
materialized batch associated with a set of properties A. Intuitively, A captures the attributes that
enrich the slice of data, typically tensors required by a model (e.g. neighborhood information in
message-passing architectures).
Definition 3.7 (Hook). A hook ϕR,P is a transformation on a materialized batch:

ϕR,P : B|T ,A 7→ B|T ,A∪P (2)

which declares a contract based on the attributes required on the input R ⊂ A, and the attributes
produced P , so that the batch transformed by ϕ has attributes A ∪ P . Table 2 illustrates several
common temporal graph operations expressed as hooks using the notation introduced here.

The real power of hooks is unlocked by composing their transformations to express complete temporal
graph workflows. The notion of a hook recipe formalizes this.
Definition 3.8 (Hook Recipe). A set of hooks {ϕ1R1,P1

, ..., ϕkRk,Pk
} induces an ordering given by

their dependencies:

ϕi → ϕj ⇐⇒ Pi ∩Rj ̸= ∅ (3)

We call this a hook recipe if this dependency graph is acyclic and every required is satisfied, i.e.
∀j,Rj ⊂

⋃
i<j Pi. Thus, any hook recipe admits a valid ordering by topological sort. With this

framework, exploring new research is simpler as complex workflows can be expressed with minimal
boilerplate. Figure 3 illustrates how ML and analytics pipelines are represented as recipes in TGM.

4 TGM SOFTWARE LIBRARY

We now describe the software implementation that realizes the framework described in the previous
section. Figure 4 presents the high-level system design: the data layer is an immutable time-sorted
coordinate format (COO) storage with lightweight graph views for efficient slicing; the execution
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Figure 3: Example recipes in TGM: TGAT link prediction and Density of States Analysis. TGM
provides a unified ecosystem supporting both representation learning and temporal graph analytics.
The constituent hooks are modular, enabling reuse across different workflows within the community.
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Figure 4: Three Layer Architecture of TGM: data layer (left), with IO adaptors and preprocessing,
immutable COO graph storage, and lightweight sub-graph views; execution layer (middle), where
users register custom hooks or apply pre-built recipes through the hook manager and dataloader to
inject execution logic; and ML layer (right), where batches are materialized on device and used for
node-, link-, or graph-level prediction. Light blue elements denote user-facing APIs.

layer is built around a hook manager that transparently performs complex transformations (e.g.,
temporal neighbors); and the ML layer materializes batches on-device for model computation. This
separation of concerns yields workflows that are efficient and extensible, as we show in Section 5.3.
Note that batch sizes significantly impact model performance (see Appendix G for further discussion).

IO Adaptors and Data Preprocessing. TGM streamlines experimentation by integrating the widely-
used benchmark dataset: TGB (Huang et al., 2023a; Gastinger et al., 2024), in the form of IO
Adapters, including loading, preprocessing, and train/validation/test splits. This allows researchers to
start experiments immediately and compare models consistently with minimal overhead. Custom
adapters are also supported via CSV and Pandas. Our design makes it straightforward to incorporate
new benchmarks while ensuring consistent evaluation across all datasets (see Appendix D).

Graph Storage and Graph Views. The storage exposes an interface for graph queries, implemented
using a time-sorted COO with a cached index. This enables binary search over timestamps, which
is critical for recent-neighbor retrieval. The backend is designed for extension, allowing alternative
layouts (Zhang et al., 2021; Sha et al., 2017) so future models can use the most efficient data structures
for their workload. Backed by the storage, graph views provide lightweight, concurrency-safe access
to temporal sub-graphs. Each view tracks time boundaries and encodes read-access through the
time granularity abstraction. This enables TGM to perform both CTDG and DTDG-style loading,
making it straightforward to study the effects of snapshot resolutions, as illustrated in Section 5.3.
Our discretization is fully vectorized, enabling efficient snapshot creation, as demonstrated in Table 5.
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Hook Registry and Management. Building on the graph abstractions, hooks are transformations
that can be combined to create workflows (see Section s 3). Hooks process batches in chronological
order to preserve temporality, while operations on events within the same batch, including neighbor
sampling, device transfer, and negative edge generation, are executed in parallel, thus contributing to
the efficiency of TGM. The HookManager handles shared state, resolves dependencies, and executes
transparently during data loading. A key-value interface allows hooks to be registered under specific
conditions (e.g., analytics hooks). We provide pre-defined recipes for common tasks such as TGB
link prediction, helping new practitioners avoid common pitfalls like mismanaging state across splits.

Diverse Model and Task Support. TGM provides PyTorch modules tailored for TGL, including
memory units, attention layers, and link decoders. With this, TGM implements a range of TG
methods, from baselines like EdgeBank (Poursafaei et al., 2022a), to message passing-based models
like TGAT (da Xu et al., 2020), and frontier models like DyGFormer (Yu et al., 2023a) and TPNet (Lu
et al., 2024b). Crucially, learnable components are decoupled from graph management, making it
easy for researchers to prototype new models.

from tgm import DGData, DGraph, RecipeRegistry
from tgm.loader import DGDataLoader
from tgm.constants import RECIPE_TGB_LINK

# Load TGB Dataset and split data
train, ... = DGData.from_tgb(“tgbl-wiki”).split()

# Create storage-backed views over train split
train_dg = DGraph(train, device='cuda')

# Build TGB Link Property Prediction Recipe
manager = RecipeRegistry.build(RECIPE_TGB_LINK)
manager.register(...) # Register custom hooks

     

# Inject hook manager into our data loader
loader = DGDataLoader(train_dg, manager, ...)

# Create model and optimizer
model, optimizer = ...

for epoch in range(NUM_EPOCHS):
  with manager.activate("train"):
    for batch in loader:
      loss = compute_loss(model(batch))
      loss.backward(); optimizer.step()

  manager.reset_state() # Reset hooks after epoch

     Figure 5: Example workflow in TGM. Left: dataset loading, graph creation, and hook registration;
Right: manager injection, model setup, and training loop with automatic hook activation. Highlighted
code maps to system components from Figure 4.

Streamlined TGL Workflows. Figure 5 provides a high-level overview of a typical workflow in
TGM, showing how data preparation, graph creation, hook registration, and training are orchestrated.
Registered hooks dynamically inject behaviour during data loading, ensuring models automatically
receive the appropriate tensors. This unifies the model interface and defines which batch attributes
each model consumes. The manager reset method exposes a simple API for clearing the state of
active hooks. Complex workflows can be implemented by registering hooks under key-value pairs.

Robust and Research-Ready Infrastructure. Finally, TGM is built following modern software engi-
neering practices to ensure reliability, maintainability, and ease of use. We use type hinting throughout
the codebase, which unifies model APIs and improve usability. Continuous integration pipelines run
end-to-end tests on all layers, hooks, and graph APIs with test coverage to ensure correctness. Perfor-
mance monitoring utilities can track GPU usage with support for tools such as FlameProf (Bobrov,
2017) to help identify bottlenecks. We also provide detailed tutorials, documentation, and examples
for link, node and graph tasks. Overall, TGM provides a high-quality, research-ready platform that
lowers the barrier to TG research while supporting efficient experimentation.

5 EXPERIMENTS

In this section, we evaluate TGM efficiency and research extensibility. Correctness results are reported
in Section 5.2, where we show that TGM reproduces prior library performance. The appendix also
includes peak memory measurements ( B.2) and a detailed runtime breakdown ( B.3) collected
with TGM ’s profiling tools. All experiments share the TGB (Huang et al., 2023a; Gastinger et al.,
2024) 70/15/15 chronological data splits for train/validation/test, and hyperparameters as reported in
Table 14. Runtimes are benchmarked under the same compute resources as described in Section F.

5.1 EFFICIENCY BENCHMARK

We evaluate TGM on two standard TGL tasks: dynamic link property prediction and dynamic node
property prediction. Since graph discretization is a core operation in DTDG methods, we additionally
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Table 3: Training time per epoch (seconds, ↓) for link property prediction. The First and Second
best results are highlighted (✕ marks unsupported). TGM achieves competitive performance to
the system-optimized TGLite library on TGAT and TGN models while supporting a broader range
of architectures, and consistently outperforms the widely used research library DyGLib across all
datasets and models, delivering a 4.4× speedup on the transformer-based DyGFormer architecture.

Model tgbl-wiki tgbl-subreddit tgbl-lastfm
TGM DyGLib TGLite TGL TGM DyGLib TGLite TGL TGM DyGLib TGLite TGL

TGAT 6.97 41.24 4.85 10.00 28.23 182.21 25.00 53.25 55.32 349.31 38.00 85.12
TGN 10.59 63.37 6.80 23.32 61.25 287.06 60.50 125.23 91.23 392.98 92.93 250.00
DyGFormer 17.00 75.10 ✕ ✕ 72.29 326.60 ✕ ✕ 142.40 633.99 ✕ ✕

TPNet 12.28 ✕ ✕ ✕ 49.79 ✕ ✕ ✕ 97.23 ✕ ✕ ✕

GCLSTM 3.56 ✕ ✕ ✕ 9.17 ✕ ✕ ✕ 140.69 ✕ ✕ ✕

GCN 2.50 ✕ ✕ ✕ 7.88 ✕ ✕ ✕ 96.89 ✕ ✕ ✕

benchmark the efficiency of TGM in this setting. All datasets are stored in CPU host memory and
transferred to GPU when required. Full experiment details, including model hyperparameters and
compute resources, are provided in Appendix F.

Link Property Prediction. We benchmark TGM against state-of-the-art libraries on the dynamic
link property prediction task using three standard datasets: tgbl-wiki, tgbl-subreddit, and
tgbl-lastfm. Competing baselines include DyGLib (Yu et al., 2023a), TGL (Zhou et al., 2022b),
and TGLite (Wang & Mendis, 2024), all of which are designed primarily for continuous-time models.

Table 3 reports training time per epoch across models implemented in TGM and competing libraries.
First, TGM uniquely supports the widest range of architectures, spanning both CTDG and DTDG
methods. In particular, DTDG models such as GCLSTM and GCN are supported via graph discretiza-
tion and iterate-by-time functionality, and TGM is the only library with native support for TPNet (Lu
et al., 2024a), the state-of-the-art link prediction model on TGB as of September 2025. Second,
TGM consistently ranks among the top two fastest implementations across datasets and models. It
outperforms DyGLib and TGL in all cases, and is only slightly behind the highly specialized TGLite
on TGAT and TGN. For example, TGM achieves a 4.4× speedup over the alternative DyGFormer im-
plementation on tgbl-wiki. A key driver of performance is our fully vectorized recency sampler,
implemented with a circular buffer in PyTorch-native code, which enables cache-friendly memory
access. Finally, TGM offers native support for TGB evaluation, the standard benchmark protocol.
Appendix B shows that TGM can be up to 246× faster than DyGLib for TGN on tgbl-wiki,
owing to batch-level de-duplication and efficient data handling: while DyGLib repeatedly samples
neighbors for each prediction, TGM samples once per batch. By contrast, TGL and TGLite do not
support this one-vs-many evaluation, limiting their benchmarking robustness compared to TGM.

Node Property Prediction. We bench-
mark TGM on the dynamic node prop-
erty prediction task, comparing against
both DyGLib and the native TGB im-
plementations on the tgbn-trade
and tgbn-genre datasets. TGL and
TGLite do not support this task. Ta-
ble 4 reports training time per epoch.
Compared to DyGLib, TGM achieves
up to a 10× speedup for TGN on
tgbn-trade while reducing training
time by 80 seconds on tgbn-genre.
Moreover, TGM is the only library sup-
porting node property prediction for
DTDG models: GCLSTM, GCN, and
TGCN. Note, we encountered an OOM
while running DyGLib on tgbn-genre
with our 64GB RAM allocation (see Ap-
pendix F), requiring 256GB of memory to
produce the results reported in Table 4.

Table 4: Training time per epoch (seconds, ↓) for dynamic
node property prediction. The First and Second best
results are highlighted (✕ marks unsupported). TGM has
the best all-around performance and uniquely supports
message-passing (TGN), snapshots-based (e.g. TGCN),
and transformer-based (DyGFormer) models.

Model tgbn-trade tgbn-genre
TGM DyGLib TGB TGM DyGLib TGB

TGN 12.94 19.37 11.07 208.88 918.46 281.36
DyGFormer 16.24 117.13 ✕ 70.89 3539.95 ✕

P.F. 0.41 2.09 0.78 38.15 41.73 35.58
TGCN 0.85 ✕ ✕ 17.27 ✕ ✕

GCLSTM 0.88 ✕ ✕ 17.71 ✕ ✕

GCN 0.80 ✕ ✕ 17.21 ✕ ✕
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Table 6: The choice of snapshot time granularity significantly affects link prediction performance.
Reported metric is MRR (↑) with the First and Second best result for each dataset highlighted.

Time Gran. tgbl-wiki tgbl-subreddit
GCN T-GCN GCLSTM GCN T-GCN GCLSTM

Hourly 0.510 ± 0.001 0.509 ± 0.004 0.395 ± 0.022 0.529 ± 0.012 0.374 ± 0.004 0.219 ± 0.003
Daily 0.702 ± 0.007 0.540 ± 0.008 0.372 ± 0.017 0.266 ± 0.007 0.231 ± 0.003 0.212 ± 0.004
Weekly 0.393 ± 0.005 0.330 ± 0.009 0.323 ± 0.010 0.191 ± 0.002 0.212 ± 0.001 0.206 ± 0.004

Graph Discretization. Enabling DTDG models on
CTDG tasks requires discretizing the original graph
into snapshots. We compare TGM’s implementation
with that of UTG (Huang et al., 2024). Table 5 shows
that TGM achieves dramatic speedups, up to 433× on
LastFM. This improvement stems from a fully vector-
ized, PyTorch-native implementation that avoids cache-
unfriendly Python dictionaries and other overheads com-
mon in prior repositories. This result underscores our
commitment to high-performance, research-ready tool-
ing, setting TGM apart from existing libraries in effi-
ciency and engineering standards.

Table 5: Discretization Latency to
Hourly Snapshots (seconds, ↓). TGM
has substantial speedups due to our vec-
torized, PyTorch-native implementation.

Dataset UTG TGM Speedup

tgbl-wiki 1.94 0.04 49.62×
tgbl-subreddit 8.83 0.21 41.63×
tgbl-lastfm 19.94 0.05 433.39×

5.2 CORRECTNESS TESTS

Table 7 reports MRR performance on texttttgbl-wiki for dynamic link property prediction, as well
as NDCG on tgbn-trade for node property prediction. We cross-reference these results with
TGB-reported performance and find that all models fall within the expected range. Note that we
did not perform hyperparameter optimization but instead used the parameters listed in Table 14.
On tgbl-wiki, CTDG models outperform DTDG baselines, with TPNet achieving the highest
validation and test MRR, followed by DyGFormer and TGN. In contrast, for node property prediction,
DTDG models, particularly GCLSTM and GCN, achieve the best held-out NDCG. These results
highlight a complementary strength: CTDG models excel in link prediction, while DTDG models are
more effective for node-level prediction.

Table 7: Performance on tgbl-wiki and tgbn-trade datasets. Numbers are mean ± std over 3
runs. The First and Second best results are highlighted (– marks unsupported)

Category Model tgbl-wiki tgbn-trade

Validation MRR (↑) Test MRR (↑) Validation NDCG (↑) Test NDCG (↑)

Baselines Edgebank 0.495 0.527 — —
P.F. — — 0.860 0.855

DTDG
GCN 0.465 ± 0.013 0.410 ± 0.019 0.670 ± 0.013 0.629 ± 0.009
GCLSTM 0.402 ± 0.016 0.364± 0.015 0.761 ± 0.003 0.692 ± 0.002
TGCN 0.400± 0.017 0.332± 0.004 0.515±0.006 0.458± 0.007

CTDG

TGAT 0.380± 0.013 0.322± 0.013 0.380± 0.006 0.309 ± 0.002

TGN 0.660± 0.008 0.527± 0.008 0.393 ± 0.001 0.329 ± 0.002
GraphMixer 0.610± 0.010 0.567± 0.018 — —
DyGFormer 0.743 ± 0.006 0.712 ± 0.009 0.386± 0.0012 0.312 ± 0.0003
TPNet 0.771 ± 0.033 0.747 ± 0.037 0.398 ± 0.0034 0.289± 0.0030

5.3 TGM RESEARCH EXPERIMENTS

In addition to its efficiency, TGM is designed as a flexible framework for exploring research questions
in temporal graph learning. By supporting both CTDG and DTDG methods, along with native
time conversions and composable hooks, TGM allows researchers to implement and test novel
ideas effortlessly. We ran all three example experiments using a single script, which we include
in our anonymized code release. These experiments investigate the following questions: RQ1:

9
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Table 8: Binary classification task predicting whether the next daily snapshot will see an increased
number of edges. Reported metric is AUC (↑) with the First and Second best results highlighted.

TGB MiNT
Model tgbl-wiki tgbl-subreddit ADX ARC MIR

P.F. 0.018 ± 0.058 0.617 ± 0.047 0.397 ± 0.010 0.625 ± 0.022 0.365 ± 0.011

T-GCN 0.667 ± 0.083 0.600 ± 0.147 0.897 ± 0.019 0.901 ± 0.020 0.900 ± 0.008
GCLSTM 0.567 ± 0.047 0.526 ± 0.020 0.588 ± 0.047 0.466 ± 0.019 0.656 ± 0.046
GCN 0.577 ± 0.053 0.200 ± 0.000 0.503 ± 0.049 0.608 ± 0.061 0.555 ± 0.033

How accurately can we predict the future evolution of a graph property? RQ2: How does the time
granularity of graph snapshots impact DTDG performance on a continuous-time graph? RQ3: How
do batching strategies, by fixed edges versus by time, affect the performance of a CTDG model?

RQ1: Future evolution of a graph property. Graph-level tasks require grouping edges into
snapshots. The ability to natively support iteration by time is unique to TGM, allowing researchers
to explore research questions in dynamic graph property prediction. As shown in Table 8, we
benchmark models on predicting whether future snapshots on tgbl-wiki, tgbl-subreddit
and transaction networks from the MiNT benchmark ( ADX, ARC and MIR), will grow or shrink, a
critical problem for network evolution (Shamsi et al., 2025). The results highlight the sensitivity of
model performance to temporal granularity: T-GCN performs best on tgbl-wiki with an AUC
of 0.667, while P.F surprisingly excel on tgbl-subreddit with an AUC of 0.617. On MiNT,
T-GCN consistently achieves the best scores with average AUC of 0.899 across three token networks.

RQ2: Effect of Time Granularity for DTDG methods. Table 6 demonstrates that the choice
of snapshot granularity, i.e. hourly, daily, or weekly, has a substantial impact on the performance
of snapshot-based temporal graph models. On the Wikipedia dataset, the impact is particularly
pronounced: GCN’s MRR increases by 30% when moving from weekly to daily snapshots, while
T-GCN and GCLSTM improve by 21% and 5%, respectively. On Reddit, the same trend is observed,
though less extreme: GCN achieves 0.529 MRR with hourly snapshots, dropping to 0.191 with
weekly snapshots. These results underscore the importance of selecting an appropriate snapshot
granularity for DTDG models. TGM makes this process effortless, allowing users to adjust the time
granularity with a single line of code, treating it effectively as a hyperparameter.

RQ3: Effect of Batch Size for CTDG methods.
Our analysis reveals that the configuration of the
evaluation process itself is a critical, yet previously
overlooked, hyperparameter in temporal graph learn-
ing. As demonstrated in Table 9, the choice of vali-
dation batch size and temporal unit significantly im-
pacts the reported performance of the TGAT model
on link prediction. Note that when iterating by time,
the number of edges in each batch is different, how-
ever, each batch spans a fixed amount of time instead.
We observe a pronounced degradation in MRR with
larger batch sizes and coarser temporal units (e.g.,
Day versus Hour). TGM supports flexible tempo-
ral batching via our graph formulation, enabling the
investigation of batch size at test time.

Table 9: The choice of validation batch
size and batch unit affects the performance
of TGAT link prediction on tgbl-wiki.
First and Second best are highlighted.

Size/Unit Test MRR (↑)

Batch size
1 0.449 ± 0.001

50 0.414 ± 0.006
100 0.414 ± 0.004
200 0.403 ± 0.004

Batch unit Hour 0.402 ± 0.012
Day 0.349 ± 0.004

6 CONCLUSION

We present TGM, a modular and efficient framework for temporal graph learning built around a
novel hook formalism. By decoupling graph operations from model logic, TGM enables rapid
prototyping and code reuse, unifying CTDG and DTDG methods under a single research-ready
library. Efficiency-wise, TGM is highly competitive and on average 7.8× faster in training than the
widely used DyGLib. We ultimately envision TGM as a foundation for a shared ecosystem where
models, hooks, and analytics can be seamlessly composed and reused, accelerating TGL research.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Yufeng Wang and Charith Mendis. Tglite: A lightweight programming framework for continuous-
time temporal graph neural networks. In Proceedings of the 29th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems, Vol-
ume 2, ASPLOS ’24, pp. 1183–1199, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640414. URL https:
//doi.org/10.1145/3620665.3640414.

Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast and accurate anomaly detection
in dynamic graphs with a two-pronged approach. CoRR, abs/2011.13085, 2020. URL https:
//arxiv.org/abs/2011.13085.

Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: graph learning framework for dynamic
graphs. In Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, pp. 2358–2366. ACM, 2022. doi: 10.1145/3534678.3539300. URL https://doi.org/
10.1145/3534678.3539300.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 2023a.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 2023b.

Fan Zhang, Lei Zou, and Yanpeng Yu. Lpma - an efficient data structure for dynamic graph on
gpus. In Wenjie Zhang, Lei Zou, Zakaria Maamar, and Lu Chen (eds.), Web Information Systems
Engineering – WISE 2021, pp. 469–484, Cham, 2021. Springer International Publishing. ISBN
978-3-030-90888-1.

Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common neighbor
for temporal graph link prediction, 2024. URL https://arxiv. org/abs/2406.07926.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn:
A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent
transportation systems, 21(9):3848–3858, 2019.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. TGL:
A general framework for temporal GNN training on billion-scale graphs. CoRR, abs/2203.14883,
2022a. doi: 10.48550/ARXIV.2203.14883. URL https://doi.org/10.48550/arXiv.
2203.14883.

15

https://openreview.net/forum?id=Za7IcsXIRV
https://doi.org/10.1145/3620665.3640414
https://doi.org/10.1145/3620665.3640414
https://arxiv.org/abs/2011.13085
https://arxiv.org/abs/2011.13085
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.48550/arXiv.2203.14883
https://doi.org/10.48550/arXiv.2203.14883


Published as a conference paper at ICLR 2026

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl:
a general framework for temporal gnn training on billion-scale graphs. Proc. VLDB Endow.,
15(8):1572–1580, April 2022b. ISSN 2150-8097. doi: 10.14778/3529337.3529342. URL
https://doi.org/10.14778/3529337.3529342.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor Prasanna. Disttgl: Distributed
memory-based temporal graph neural network training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’23, New
York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400701092. doi:
10.1145/3581784.3607056. URL https://doi.org/10.1145/3581784.3607056.

Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor K. Prasanna. Disttgl: Dis-
tributed memory-based temporal graph neural network training. In Dorian Arnold, Rosa M.
Badia, and Kathryn M. Mohror (eds.), Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2023, Denver, CO, USA,
November 12-17, 2023, pp. 39:1–39:12. ACM, 2023b. doi: 10.1145/3581784.3607056. URL
https://doi.org/10.1145/3581784.3607056.

16

https://doi.org/10.14778/3529337.3529342
https://doi.org/10.1145/3581784.3607056
https://doi.org/10.1145/3581784.3607056


Published as a conference paper at ICLR 2026

Table 10: Validation time per epoch (seconds, ↓) for link property prediction (top) and node property
prediction (bottom). The First and Second best results are highlighted (✕ marks unsupported). OOT
indicates that a single validation epoch did not complete after 3 hours.

Model Wikipedia Reddit LastFM
TGM DyGLib TGLite TGL TGM DyGLib TGLite TGL TGM DyGLib TGLite TGL

EdgeBank 11.08 950.05 ✕ ✕ 50.01 134.55 ✕ ✕ 223.01 470.08 ✕ ✕

TGAT 532.89 2898.53 ✕ ✕ 2241.70 OOT ✕ ✕ 4163.20 OOT ✕ ✕

TGN 13.84 3404.82 ✕ ✕ 60.30 OOT ✕ ✕ 112.23 OOT ✕ ✕

DyGFormer 6.97 6125.05 ✕ ✕ 1856.78 OOT ✕ ✕ 3554.252 OOT ✕ ✕

TPNet 408.91 ✕ ✕ ✕ 1735.71 ✕ ✕ ✕ 3308.91 ✕ ✕ ✕

GCLSTM 11.92 ✕ ✕ ✕ 51.68 ✕ ✕ ✕ 110.16 ✕ ✕ ✕

GCN 11.70 ✕ ✕ ✕ 50.88 ✕ ✕ ✕ 102.56 ✕ ✕ ✕

Model Trade Genre
TGM DyGLib TGB TGM DyGLib TGB

P.F. 0.06 1.35 0.15 6.02 8.56 6.66
TGN 2.44 2.54 2.19 25.37 106.34 58.13
DyGFormer 3.49 21.13 ✕ 11.78 588.69 ✕

TGCN 0.08 ✕ ✕ 6.39 ✕ ✕

GCLSTM 0.07 ✕ ✕ 6.48 ✕ ✕

GCN 0.07 ✕ ✕ 6.46 ✕ ✕

A LLM USAGE

We acknowledge the use of LLMs to assist in polishing the writing of this paper. All content, ideas,
and results are our own. The LLM helped improve clarity, grammar, style, and LaTeX formatting.

B ADDITIONAL RESULTS

B.1 VALIDATION LATENCY BENCHMARKS

In Table 10, we report the TGB validation evaluation time per epoch for TGM and other libraries. Note
that TGM supports highly optimized evaluation time for the robust TGB link prediction evaluation
when compared to DyGLib. TGM consistently outperforms the widely used research library DyGLib
across datasets and models. TGLite and TGL do not support the one-vs-many TGB-based link
prediction evaluation (Gastinger et al., 2024).

B.2 PEAK GPU USAGE

Table 11 shows the peak GPU memory us-
age of each model across three standard
datasets. Lightweight models such as GCN
and GCLSTM consume minimal memory,
making them efficient choices for resource-
constrained environments, whereas larger ar-
chitectures like GraphMixer and DyGFormer
require significantly more GPU memory. This
comparison highlights the trade-offs between
model size and memory efficiency, providing
a practical reference for selecting models in
temporal graph learning tasks.

Table 11: Peak GPU memory usage (GB) per
model on different datasets.

Model tgbl-wiki tgbl-subreddit tgbl-lastfm

TGAT 0.55 0.57 0.30
TGN 0.67 0.81 0.11
GraphMixer 2.61 2.62 2.62
DyGFormer 1.34 1.36 1.03
TPNet 1.37 1.47 1.15
GCLSTM 0.01 0.18 0.07
GCN 0.01 0.09 0.05

B.3 CPROFILER MODEL BREAKDOWN

Table 12 shows a runtime decomposition of TGAT on the LastFM dataset. The largest costs arise
from the backward pass (25.8%), model forward (26.5%), and optimizer updates (19.1%), together
accounting for over 70% of total runtime. Within data loading (26.5%), hook execution (15.1%) and
graph materialization (11.4%) dominate, with the recency sampler alone contributing 13.2%. Inside
TGAT forward, attention layers (14.7%) and MLPs (6.0%) form the bulk of computation, while time
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encoding adds 3.5%. Using a profiler in this way helps researchers and practitioners identify which
components are the main bottlenecks and prioritize optimizations accordingly.

Table 12: Breakdown of TGAT runtime on LastFM dataset.

Category Component Percent (%)

Data Loading

Hook execution 15.09
|-- Recency sampler 13.19
| |-- Get neighbors 7.76
| |-- Update circular buffer 5.43
|-- Other hooks 1.90
Graph materialization 11.40

Model Forward

TGAT forward 24.20
|-- Attention layers 14.70
|-- MLP layers 5.96
|-- Time encoding 3.54
Other forward (decoders) 2.30

Optimization

Backward pass 25.80
Optimizer (Adam) 19.10
Loss computation 0.62

Other - 1.61

C ADDITIONAL BACKGROUND: DTDG VS. CTDG

As defined in Section 3, a temporal graph is a graph whose structure and attributes evolve over
time, capturing not only the relationships between entities but also the dynamics of their interactions.
Unlike static graphs, which provide a single snapshot of connectivity, temporal graphs represent
edges (and sometimes nodes) as time-stamped events or intervals, enabling modelling of when
and how relationships form, change, or disappear. Temporal graph neural networks are typically
categorized into two types: continuous-time dynamic graph (CTDG) methods and discrete-time
dynamic graph (DTDG) methods. Section C.1 and Section C.2 provide further information about
common approaches from each category.

C.1 DTDG METHODS

DTDG, or snapshot-based methods, take as input a sequence of graph snapshots, each representing
the state of the temporal graph at discrete time intervals (e.g., hours or days). These approaches
process each snapshot as a whole, typically using a graph learning model, and employ mechanisms to
capture temporal dependencies across snapshots.

The majority of DTDG methods consist of two main components: a spatial encoder, commonly
GNN-based, and a temporal encoder, usually an RNN or one of its variants. Given a snapshot Gi,
a spatial representation is learned, Zi = f(Vi, Ei), where f is a trainable or non-trainable function
that takes the graph structure of the current snapshot and returns either node-level representations
in Gi or a representation of the entire snapshot. GCN (Kipf & Welling, 2017) is used as f in
TGCN (Zhao et al., 2019), EvolveGCN (Pareja et al., 2020), and GCLSTM (Chen et al., 2018).
In contrast, GraphPulse (Shamsi et al., 2024) encodes a whole-graph representation by extracting
topological features from both the original graph Gi and a transformed version G′

i, using Topological
Data Analysis (TDA). The concatenation of the features from Gi and G′

i serves as the graph-level
representation for downstream property prediction tasks.

To capture temporal dependencies across snapshots, an RNN or one of its variants (e.g., GRU or
LSTM) is typically employed. These are applied either to the sequence of snapshot representations
Zi (Zhao et al., 2019; Chen et al., 2018; Shamsi et al., 2024) or directly to the evolving parameters of
the GCN (Pareja et al., 2020).

18



Published as a conference paper at ICLR 2026

C.2 CTDG METHODS

In contrast, CTDG methods operate on a continuous stream of edges and can make predictions at
arbitrary timestamps. They update internal representations incrementally as new interactions arrive,
incorporating fresh information into predictions. For computational efficiency, the edge stream is
usually partitioned into fixed-size batches, with predictions performed sequentially per batch; once
predictions are made, the corresponding edges are revealed to the model. Unlike DTDG methods,
CTDG approaches do not rely on snapshots; instead, they maintain evolving node representations
and sample temporal neighborhoods around nodes of interest for prediction.

Temporal Message Passing. The temporal message passing framework is a neighbourhood ag-
gregation scheme which recursively computes a latent representation by forwarding messages to
temporal neighbours. Formally, if N k(s) denotes the k-hop neighbourhood of node s in the dynamic
graph G, then the temporal neighbourhood N k

t (s) is given by restricting neighbours to edge events
chronologically before time t:

N k
t (s) = {(s, d, t′) ∈ N k(s) : t′ ≤ t} (4)

The combination of temporal and topological constraints makes efficient neighbourhood particularly
challenging, requiring complex hierarchical data structures and cache-aware programming to sustain
high-throughput on GPU stream multiprocessors Zhang et al. (2021); Sha et al. (2017). We bypass
the insertion and deletion complexity by assuming the entire graph structure is read-only. Temporal
message proceeds by creating and passing messages between such sub-neighorhoods. In particular,
messages are created by concatenating embeddings, aggregating embeddings across temporal neigh-
bourhoods, then updating the new hidden representation. Such information flow occurs concurrently
for each event in a batch of data.

Time-Encoding and Memory-Based Learning. Time-encoding models use a shift-invariant model
ψ : T → Rdt that maps a real-valued time stamp into a dt-dimensional vector (e.g. TGAT da Xu
et al. (2020) use time-encoders like Time2Vec Kazemi et al. (2019)). This encoding is then passed
through modified self-attention blocks or feedforward layers. Memory-based models, such as TGN
Rossi et al. (2020), utilize a fixed-bandwidth memory module that compresses relevant information
for each node and updates it over time. EdgeBank Poursafaei et al. (2022a) is a non-parametric,
memory-based method that memorizes and predicts new links at test time based on their occurrence
in the training data.

D DATASET DETAILS

In this work, we conduct experiments on Wikipedia (obtained from the TGB Huang et al.
(2023a), where the dataset can be downloaded along with the package from TGB website), Red-
dit, LastFM, datasets, obtained from Poursafaei et al. (2022b); these can be downloaded from
https://zenodo.org/records/7213796#.Y8QicOzMJB2. These datasets span a vari-
ety of real-world domains, providing a broad testbed for evaluating temporal graph models. Detailed
information about these datasets are as follows.

• Wikipedia is a bipartite interaction network that captures editing activity on Wikipedia over one
month. The nodes represent Wikipedia pages and their editors, and the edges indicate timestamped
edits. Each edge is associated with a 172-dimensional LIWC feature vector derived from the text.

• Reddit models user-subreddit posting behaviour over one month. Nodes are users and subreddits,
and edges represent posting requests made by users to subreddits, each associated with a timestamp.
Each edge is associated with a 172-dimensional LIWC feature vector based on post contents.

• LastFM is a bipartite user–item interaction graph where nodes represent users and songs. Edges
indicate that a user listened to a particular song at a given time. The dataset includes 1000 users
and the 1000 most-listened songs over a one-month period. This dataset is not attributed.

• Trade represents the international agriculture trading network between UN nations from 1986 to
2016. Nodes are countries and edges capture the annual sum of agriculture trade values from one
country to another. The task is to predict each nation’s trade proportions in the following year.

• Genre is a bipartite, weighted network connecting users to music genres based on listening history.
Edges indicate the proportion of a song belonging to a genre that a user listens to, aggregated
weekly. The task is to predict user-genre interactions in the next week, capturing evolving user
preferences for music recommendation.

19

https://tgb.complexdatalab.com/
https://zenodo.org/records/7213796#.Y8QicOzMJB2


Published as a conference paper at ICLR 2026

Table 13: Dataset statistics.

Dataset # Nodes # Edges # Unique Edges # Unique Steps Surprise Duration

Wikipedia 9,227 157,474 18,257 152,757 0.108 1 month
Reddit 10,984 672,447 78,516 669,065 0.069 1 month
LastFM 1,980 1,293,103 154,993 1,283,614 0.35 1 month
Trade 255 468,245 468,245 32 0.023 30 years
Genre 1,505 17,858,395 17,858,395 133,758 0.005 1 month

E TEMPORAL GRAPH MODELS SUPPORTED IN TGM

TGM is a research-driven library providing implementations of state-of-the-art temporal graph
learning models. At the time of writing, TGM includes the following models:

Persistent Forecast. A simple baseline that predicts the future state of each node or edge by assuming
it remains unchanged from the most recent observation. Despite its simplicity, it often serves as a
strong baseline for dynamic node property prediction.

EdgeBank. Poursafaei et al. (2022a) Maintains a memory bank of historical edges and uses them to
make predictions. By storing and sampling past interactions, EdgeBank leverages temporal patterns
without explicit node embedding updates, providing a lightweight but effective approach for dynamic
link prediction.

TGAT. da Xu et al. (2020) proposed to model dynamics node representations with TGAT layer, which
is a combination of the graph attention mechanism with a time encoding function based on Bochner’s
theorem, which provides a continuous functional mapping from time to a vector space. This allows
TGAT to efficiently learn from temporal neighbourhood features with the aid of a self-attention
mechanism and temporal dependencies encoded by the time encoding function.

TGN. Rossi et al. (2020) proposed an event-based model that is a combination of a memory module,
message aggregator, message updater and embedding module. In particular, the memory module
maintains evolving memory for each node and updates this memory when the node is observed to
be involved in an interaction, which is achieved by a message function, message aggregator, and
message updater. Finally, the embedding model is used to compute the representation of nodes.

GCN.(Kipf & Welling, 2017) Standard Graph Convolutional Network applied on static snapshots
to encode structural information. Node features are aggregated from neighbors and combined with
self-features to produce updated embeddings at each snapshot. When used in temporal settings,
GCNs process sequences of snapshots independently or in combination with temporal modules.

GCLSTM. To learn over a sequence of graph snapshots, Chen et al. (2018) proposed an end-to-
end model named Graph Convolutional Long Short-Term Memory (GCLSTM) for dynamic link
prediction. The LSTM serves as the backbone to capture temporal dependencies across graph
snapshots, while a GCN is applied to each snapshot to encode structural dependencies between nodes.
Specifically, two GCNs are used to update the hidden state and the cell state of the LSTM, and a
multilayer perceptron (MLP) decoder maps the features at the current time step back to the graph
space. This design enables GCLSTM to effectively handle both link additions and deletions.

T-GCN. Zhao et al. (2019) integrates GCNs with gated recurrent units to learn node embeddings over
sequences of graph snapshots, capturing temporal and structural information jointly.

GraphMixer. (Sarıgün, 2023) A graph adaptation of MLP-Mixer architectures. It alternates between
node-wise and feature-wise mixing layers to capture structural correlations across nodes and temporal
correlations across features. By stacking multiple mixer layers, GraphMixer can model complex
dependencies in dynamic graphs while remaining simple and parameter-efficient.

DyGFormer. Yu et al. (2023a) proposed a Transformer-based architecture for modeling dynamic
graphs. DyGFormer consists of two key components: the Neighbour Co-occurrence Encoder and a
Transformer. The Neighbour Co-occurrence Encoder leverages the recent first-hop neighbours of the
source and destination nodes of an edge to capture correlations and compute relative embeddings.
To enhance representation learning, Yu et al. (2023a) further introduced a patching technique that
splits the source and destination node features, edge features, time embeddings (computed following
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TGAT (da Xu et al., 2020)), and relative embeddings into multiple patches. These patches are then
fed into the Transformer to generate node representations with respect to an edge.

TPNet. TPNet is composed of two main modules: Node Representation Maintenance and Link
Likelihood Computation. Lu et al. (2024b) unifies existing relative encoding methods by introducing
temporal walk matrices with an integrated time-decay function. These matrices establish a principled
connection between relative encodings and temporal walks, offering a clearer framework for analyzing
and designing temporal encodings. The time-decay effect further allows joint modelling of temporal
and structural information. Since computing temporal walk matrices directly is computationally and
memory intensive, TPNet employs a theoretically grounded random feature propagation mechanism
to implicitly approximate and maintain them efficiently.

The TGM team is actively expanding the library to incorporate additional cutting-edge models,
including TNCN (Zhang et al.), DyGMamba (Ding et al., 2024), NAT (Luo & Li, 2022), and
TGNv2 (Tjandra et al.).

F COMPUTE RESOURCES AND EXPERIMENT DETAILS

Compute: Experiments were run on Ubuntu 20.04 with 64 GB RAM, 4 isolated AMD EPYC 7502
CPU cores, and a single 80 GB A100 GPU. Jobs were managed with SLURM to ensure isolated
environments and no concurrent interference.

Experiment Details: We use the default TGB splits (Huang et al., 2023a; Gastinger et al., 2024), with
hyperparameters listed in Table 14. For efficiency benchmarks, TGAT and TGN adopt the TGLite
configuration (Wang & Mendis, 2024) for fairness. Other libraries were modified only minimally to
measure latency, and TGLite/TGL times are taken directly from Fig. 6 of (Wang & Mendis, 2024).
All DTDG methods discretized the Trade dataset to yearly snapshots, and the Genre dataset to
weekly snapshots.

Table 14: Hyperparameters used for each model

Parameter Edgebank TGAT TGN GCN GCLSTM TGCN GraphMixer DyGFormer TPNet

Batch Size 200 200 200 200 200 – 200 200 200
Epochs – 10 30 30 30 – 10 5 10
Learning Rate – 1e-4 1e-4 1e-3 1e-3 1e-3 2e-4 1e-4 1e-4
Dropout – 0.1 0.1 0.1 – 0.1 0.1 0.1 0.1
# Heads – 2 2 – – – – 2 –
# Neighbors – 20 10 – – – 20 32 32
# Layers – 2 2 2 2 2 2 2 2
Embedding Dim. – 100 100 128 256 128 128 172 172
Time Dim. – 100 100 – – – 100 100 100
Memory Dim. – – 100 – – – – – –
Node Dim. – – – 256 256 256 100 128 128
Sampling – Recency Recency – – – Recency Recency Recency
Memory Mode Unlimited – – – – – – – –
Time Gap – – – – – – 2000 – –
Token Dim. Factor – – – – – – 0.5 – –
Channel Dim. Factor – – – – – – 4.0 – –
Channel Dim. – – – – – – – 50 –
Patch Size – – – – – – – 1 –
# Channels – – – – – – – 4 –
# RP Layers – – – – – – – – 2
RP Time Decay – – – – – – – – 1e-6
RP Dim – – – – – – – – log(|2 ∗ E|)

G EFFECT OF BATCH SIZE

TGL models often update their representation after a batch has been processed to incorporate the
most recent information. Events within a batch are processed in parallel in TGM thus larger batch
size leads to more efficient inference. Therefore, the batch size parameter becomes a trade-off
between efficiency and model update frequency (or a model’s staleness). In this work, we follow the
TGB Huang et al. (2023a) evaluation procedure of using 200 edges per batch where applicable. With
the time slicing operation in TGM, it is now possible to explore arbitrary or dynamic batch size where
a batch is formed by slicing a graph in a custom time interval. An alternative way is to iterate by time
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in TGM, which provides variable batch size in terms of number of edges and more empirical results
are reported in Section 5.3. We believe that exploring the implication of batching is an important
future direction and leave it as an interesting future work which can be built-upon in TGM.

H TGM TUTORIALS AND DOCUMENTATION

Ensuring reproducibility and ease of use is a top priority in TGM. We therefore provide a full
documentation suite, including beginner-friendly tutorials and a comprehensive API specification.
Below, we include excerpts from our tutorials.
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Temporal Graph Data in TGM

This tutorial shows the core graph API in TGM. By the end, you should understand how to:

Construct and preprocess graph data ( DGData )

Split and discretize temporal datasets ( SplitStrategy )

Work with immutable graph views ( DGraph )

Train with batches ( DGBatch )

We also highlight some important errors, caching behaviour, and best practices.

1. The Core Objects

TGM's graph API revolves around four main objects:

Object Description Mutable Device

Semantics

Typical Usage

DGData Mutable bulk

dataset storage

(IO, splits,

transforms)

Yes No Ingesting datasets

from disk, TGB,

preprocessing

DGraph Immutable graph

view backed by

storage engine

No Yes Main user-facing

graph object

DGBatch Materialized

batches of

tensors from a

temporal slice of

data

Yes Yes What dataloaders

yield, input to

models
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Object Description Mutable Device

Semantics

Typical Usage

DGStorage Internal backend

for graph data

(non-user-facing)

No Yes Powers graph

querying, caching,

slice ops

Note: Users typically only interact with the first 3. DGStorage  is internal and abstracted away. It

is in our stream of work to build out more efficient storage backends for various workloads in

the future.

2. Starting with DGData

DGData  is your main entry point for working with temporal graph datasets. It's a dataclass that

holds bulk storage of events, timestamps, features, and metadata.

Because it's mutable, you can freely transform and prepare it before moving to the immutable

graph representation ( DGraph ).

Features of DGData

Holds raw edge data ( edge_index , edge_timestamps )

Holds static node features, dynamic node features, and edge_features (on CPU)

Provides IO constructors (CSV, Pandas, TGB, pyTorch)

Supports temporal splitting and discretization

Ensures data is sorted chronologically, valid node ids, valid tensor shapes, etc.

See below for a summary of the data class attributes of DGData :

@dataclass

class DGData:

"""Container for dynamic graph data to be ingested by `DGStorage`.

Stores edge and node events, their timestamps, features, and optional split

strategy.

Provides methods to split, discretize, and clone the data.

Attributes:

time_delta (TimeDeltaDG | str): Time granularity of the graph.

timestamps (Tensor): 1D tensor of all event timestamps [num_edge_events +

num_node_events].
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See tgm.data.DGData  for full reference.

3. Constructing DGData

You can build datasets in multiple ways. Let's look at each.

3.1 From TGB

This is most likely all you need. The Temporal Graph Benchmark (TGB) provides a suite of temporal

graph datasets with diverse scales and properties. We natively support direct construction from all

the tgbl-  and tgbn-  in TGM.

Note: Temporal knowledge graph (TKG) and temporal hypergraph (THG) are not yet supported in

TGM.

Note: To load a TGB dataset, you must have the py-tgb  package in your python env.

edge_event_idx (Tensor): Indices of edge events within `timestamps`.

edge_index (Tensor): Edge connections [num_edge_events, 2].

edge_feats (Tensor | None): Optional edge features [num_edge_events,

D_edge].

node_event_idx (Tensor | None): Indices of node events within

`timestamps`.

node_ids (Tensor | None): Node IDs corresponding to node events

[num_node_events].

dynamic_node_feats (Tensor | None): Node features over time

[num_node_events, D_node_dynamic].

static_node_feats (Tensor | None): Node features invariant over time

[num_nodes, D_node_static].

Raises:

InvalidNodeIDError: If an edge or node ID match `PADDED_NODE_ID`.

ValueError: If any data attributes have non-well defined tensor shapes.

EmptyGraphError: If attempting to initialize an empty graph.

Notes:

- Timestamps must be non-negative and sorted; DGData will sort

automatically if necessary.

- Cloning creates a deep copy of tensors to prevent in-place

modifications.

"""

from tgm import DGData

# Load the Wikipedia dataset from TGB

data = DGData.from_tgb('tgbl-wiki')
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TIP: You can print(data)  to see which features and events exist within the dataset.

3.2 Custom Datasets

If you have our own dataset in TGM, you can create a DGData  object either from_csv ,

from_pandas , or directly from tensors. A brief overview of each is given below, consult the API

reference for more details.

From CSV

Please consult our documentation for full description of our API. The table below summarizes the

main pieces of data expected during construction. Note that analogous attributes are expected in

the other IO constructors (e.g. from_pandas , from_raw )

Attribute Description Type Required Note

edge_file_p

ath

Path to CSV file

containing edge

data

str \|

pathlib.Pa

th

Yes edge_df  if using

from_pandas

edge_src_co

l

Column name

in edge file for

src nodes

str Yes Cannot have ids

matching

tgm.constants.

PADDED_NODE_ID

edge_dst_co

l

Column name

in edge file for

dst nodes

str Yes Cannot have ids

matching

tgm.constants.

PADDED_NODE_ID

edge_time_c

ol

Column name

in edge file for

edge times

str Yes Time must be

non-negative

node_file_p

ath

Path to CSV file

containing

str \|

pathlib.Pa

No node_df  is using

from_pandas

print(data.time_delta) # TimeDelta('s', value=1)

print(data.edge_index.shape) # torch.Size([157474, 2])

print(data.dynamic_node_feats) # None, no dynamic node features in tgbl-wiki

print(data.static_node_feats) # None, no static node features in tgbl-wiki
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Attribute Description Type Required Note

dynamic node

data

th

node_id_co

l

Column name

in node file for

node event

node ids

str No, unless

node_file_pat

h  is specified

Cannot have ids

matching

tgm.constants.

PADDED_NODE_ID

node_time_c

ol

Column name

in node file for

node event

node times

str No, unless

node_file_pat

h  is specified

Time must be

non-negative

dynamic_nod

e_feats_co

l

Column name

in node file for

dynamic node

features

str No

static_node

_feats_file

_path

Path to CSV file

containing

static node

features

str \|

pathlib.Pa

th

No static_node_fe

ats_df  if using

from_pandas

static_node

_feats_col

Column name

in static node

feats file for

static node

features

str No, unless

static_node_f

eats_file_pat

h  is specified

time_delta Time granularity

of the graph

data

TimeDeltaD

G \| str

Yes Default to

event_ordered

granularity 'r'

A few key things to know:

time_delta : defines how timestamps are interpreted on your custom dataset.

The default is 'r' which entails event-ordered semantics. This means there is no real-world time

unit assigned to your timestamps. This prevents from doing things like discretizing your data,
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and iterating by temporal snapshots.

More often than not, your timestamps have some semantics meaning (e.g. seconds, days, etc).

In this case, you should specify the appropriate time_delta  value. See our time management

tutorial for more details.

edge data:

We expect an edge_file_path  which is a csv file with edge_src_col , edge_dst_col ,

edge_time_col  as a minimum.

Your edge csv file may also contain edge_feats_col  which are the edge features on your data

dynamic node data (optional)

If included, we expect a node_file_path  which is a csv file with node_id_col ,

node_time_col  as a minimum. These are your dynamic node events.

Your dynamic node data csv file may also include dynamic_node_feats_col , which are the

dynamic node features in your data.

static node data (optional)

If included, we expect a static_node_feats_fil_path  which is a csv file with

static_node_feats_col , the static node features for your dataset.

Internally, we perform various checks on the tensors shapes, node ranges, and timestamps values.

If your data is well structured, everything should work. If you get an error message that is not

intuitive, please let us know.

From Pandas

The API largely the same as above, except that we expected edge_df , node_df , and

static_node_feats_df  dataframes for the edge, dynamic node, and static node data respectively,

instead of csv files.

import pandas as pd

# Define Edge Data

edge_df = pd.DataFrame({

'src': [2, 2, 1],

'dst': [2, 4, 8],

't': [1, 5, 10],

'edge_feat': [torch.rand(5).tolist() for _ in range(3)], # Optional

})

# Define Dynamic Node Data (Optional)

dynamic_node_df = pd.DataFrame({

'node': [2, 4, 6],

't': [1, 2, 3],

'dynamic_node_feat': [torch.rand(5).tolist() for _ in range(3)],
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From Tensors

If all your data is already in memory as torch.Tensor  you can directly instantiate DGdata  using

the class method DGData.from_raw :

})

# Define Static Node Features (Optional)

static_node_df = pd.DataFrame({

'static_node_feat': [torch.rand(11).tolist() for _ in range(9)]

})

dg = DGraph.from_pandas(

edge_df=edge_df,

edge_src_col='src',

edge_dst_col='dst',

edge_time_col='t',

edge_feats_col='edge_feat',

node_df=dynamic_node_df,

node_id_col='node',

node_time_col='t',

dynamic_node_feats_col='dynamic_node_feat',

static_node_feats_df=static_node_df,

static_node_feats_col='static_node_feat',

time_delta='s',  # second-wise granularity

)

import torch

# Define Edge Data

edge_index = torch.LongTensor([[2, 2], [2, 4], [1, 8]])

edge_timestamps = torch.LongTensor([1, 5, 20])

edge_feats = torch.rand(3, 5)  # optional edge features

# Define Dynamic Node Data (Optional)

node_timestamps = torch.LongTensor([1, 2, 3])

node_ids = torch.LongTensor([2, 4, 6])

dynamic_node_feats = torch.rand([3, 5])

# Define Static Node Features (Optional)

static_node_feats = torch.rand(9, 11)

data = DGData.from_raw(

edge_timestamps=edge_timestamps,

edge_index=edge_index,

edge_feats=edge_feats,

node_timestamps=node_timestamps,

node_ids=node_ids,

dynamic_node_feats=dynamic_node_feats,

static_node_feats=static_node_feats,
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3.3 Errors to know

tgm.exceptions.EmptyGraphError : Raised when you try to construct a DGData  object from

empty data. This is probably not what you intended to do since downstream DGraph  is

immutable.

tgm.exceptions.InvalidNodeIDError : Raised when you dataset contains -1  as a node ID

(reserved for padding).

4. Splitting DGData

After loading your data, you'll probably want to split your dataset into train, validation, and test

splits. TGM provides a strategy pattern interface for different split strategies:

TemporalSplit : Split by fixed timestamp boundaries

TemporalRatioSplit : Split by ratio of both edge and node events

TGBSplit : Pre-defined TGB data splits

Important: The TGB data splits uses pre-defined event masks, to match the splits as per the TGB

leaderboard. If you try to change this, you'll get a ValueError .

The split method is defined on DGData :

time_delta='s',  # second-wise granularity

)

def split(self, strategy: SplitStrategy | None = None) -> Tuple[DGData, ...]:

"""Split the dataset according to a strategy.

Args:

strategy (SplitStrategy | None): Optional strategy to override the

default. If None, uses `_split_strategy` or defaults to

`TemporalRatioSplit`.

Returns:

Tuple[DGData, ...]: Split datasets (train/val/test).

Raises:

ValueError: If attempting to override the split strategy for TGB datasets.

Notes:

- Splits preserve the underlying storage; only indices are filtered.

"""
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Splitting TGB Datasets

5. Discretizing DGData

In TGM, we do not enforce strict definition of continuous time (resp. discrete time) dynamic graph

CTDG (resp. DTDG). Instead, as you have seen, we define graphs based on their time granularity.

Therefore, the user is able to convert between event-based and snapshot based views of the

underlying data. You can learn more about this in the UTG paper.

In TGM, we provide a method on DGData  called discretize  which allows you to coarsen your

graph into different time granularities. The API looks like:

from tgm import DGData

# Load the Wikipedia dataset from TGB

data = DGData.from_tgb('tgbl-wiki')

# Split using native TGB masks

train_data, val_data, test_data = data.split()

# If you tried to override the split strategy, you'll get an error

from tgm.split import TemporalRatioSplit

split_strategy = TemporalRatioSplit(train=0.8, val=0.1, test=0.1)

_ data.split(strategy=split_strategy) # Raises ValueError

def discretize(

self, time_delta: TimeDeltaDG | str | None, reduce_op: str = 'first'

) -> DGData:

"""Return a copy of the dataset discretized to a coarser time granularity.

Args:

time_delta (TimeDeltaDG | str | None): Target time granularity.

reduce_op (str): Aggregation method for multiple events per bucket.

Default 'first'.

Returns:

DGData: New dataset with discretized timestamps and features.

Raises:

EventOrderedConversionError: If discretization is incompatible with event-

ordered granularity

InvalidDiscretizationError: If the target granularity is finer than the

current granularity.

"""
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Note: This is only well defined if the DGData time delta is time-ordered. If you try discretizing an

event-ordered dataset, you will get a tgm.exceptions.EventOrderedConversionError .

Note: Discretization goes from finer time units (e.g. seconds) to coarse time units (e.g. hours). If

your attempt to discretize in the other direction, you'll get a

tgm.exceptions.InvalidDiscretizationError .

See our time management tutorial for more details on discretization and how it relates to

TimeDeltaDG .

6. From DGData  to DGraph

Once your dataset is ready to go, you can cast it to DGraph :

Some things to note:

DGraph  is an immutable view over a temporal window of graph data.

It is backed by DGStorage  (internal engine). When you first create a DGraph  as we did above,

a new storage is created, and the view encapsulates the entire dataset.

DGraph  supports device semantics, you can choose what device your graph is on.

DGraph Properties

Let's use our toy DGData  we had above, cast to DGraph  and inspect some of the properties of the

entire dataset.

from tgm import DGraph, DGData

data = DGData.from_tgb(...)

dg = DGraph(data, device=...)

data = DGData.from_raw(...) # As we had above

dg = DGraph(data) # Default to CPU

print(f'Start time                : {dg.start_time}') # 1

print(f'End time                  : {dg.end_time}') # 10

print(f'Number of nodes           : {dg.num_nodes}') # 9

print(f'Number of edge events     : {dg.num_edges}') # 3

print(f'Number of timestamps      : {dg.num_timestamps}') # or len(dg); 5

print(f'Total events (edge+node)  : {dg.num_events}') # 6

print(f'Edge feature dimension    : {dg.edge_feats_dim}') # 5

print(f'Static node feature dim   : {dg.static_node_feats_dim}') # 11

print(f'Dynamic node feature dim  : {dg.dynamic_node_feats_dim}') # 5
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Note: The number of nodes is computed as max(node_ids) + 1 .

Note: If the DGraph  is empty, start_time  and end_time  are None .

Note: len()  returns the number of timestamps (not the number of events) in the graph.

Slicing: Creating new views

You can create a new DGraph  view by slicing the underlying data. Currently, we support slicing by

time, or by event index. Both operations are lightweight, as the storage is shared between DGraph

instances. This makes it very fast to select subsets of your data.

You can slice temporal data using slice_time() . This returns a new DGraph  containing only

events within the specified time range (end time exclusive). Slicing is a lightweight operation since

the underlying data storage is shared across DGraph  instances.

Note: These are both end-time exclusive operations.

Following from our previous code snippet:

7. Materialization, Iteration and DGBatch

In practice, the typical workflow will require you to feed data into your model for training. For this

purpose, we need to materialize the view.

The method on DGraph  looks like:

print(f'TimeDelta                 : {dg.time_delta}') # TimeDelta('s', value=1)

print(f'Device                    : {dg.device}') # torch.device(cpu)

# We can move the graph to GPU

dg = dg.to('cuda')

print(f'Device                    : {dg.device}') # torch.device(cuda:0)

sliced_dg = dg.slice_time(start_time=5, end_time=10)

print(sliced_dg.start_time) # 5

print(sliced_dg.end_time) # 9, end time exclusive

print(sliced_dg.num_edges) # 1

print(sliced_dg.device) # still on gpu

def materialize(self, materialize_features: bool = True) -> DGBatch:

"""Materialize the current DGraph slice into a dense `DGBatch`.

Args:

materialize_features (bool, optional): If True, includes dynamic node
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As described above, the output is a DGBatch  object, which is nothing but a container of tensors

corresponding to the materialized data of the DGraph , on device. By default, the DGBatch  contains

the following attributes:

For example:

features, node IDs/times, and edge features. Defaults to True.

Returns:

DGBatch: A batch containing src, dst, timestamps, and optionally

features from the current slice.

"""

@dataclass

class DGBatch:

"""Container for a batch of events/materialized data from a DGraph.

Each `DGBatch` holds edge and node information for a slice of a dynamic graph,

including optional dynamic node features and edge features. Hooks read and

write

additional attributes to the container transparently during dataloading.

Args:

src (Tensor): Source node indices for edges in the batch. Shape `(E,)`.

dst (Tensor): Destination node indices for edges in the batch. Shape

`(E,)`.

time (Tensor): Timestamps of each edge event. Shape `(E,)`.

dynamic_node_feats (Tensor | None, optional): Dynamic node features for

nodes

in the batch. Typically sparse tensor of shape `(T x V x

d_node_dynamic)`.

edge_feats (Tensor | None, optional): Edge features for the batch.

Typically

sparse tensor of shape `(E x d_edge)` or `(T x V x V x d_edge)`

depending

on storage.

node_times (Tensor | None, optional): Timestamps corresponding to dynamic

node features.

node_ids (Tensor | None, optional): Node IDs corresponding to dynamic node

features.

"""

# Our full graph view

dg_batch = dg.materialize(materialize_features=False) # Skip features

print(dg_batch.src) # torch.tensor([2, 2, 1], dtype=torch.long, device='cuda:0')

print(dg_batch.edge_feats) # None, because we skipped materializing features

# Our sliced graph view (from start_time=5, end_time=10)

sliced_dg_batch = sliced_dg.materialize()

 latest



Note: Materializing a full graph view with features could be expensive, especially on large

graphs. Note: The device of DGraph  determines the device on which the DGBatch  tensors are

allocated.

DGDataLoader

Internally, the DGDataLoader  is responsible for materializing slices of graph data, using exactly the

mechanics describe above. In particular, when you do something like:

the data loader computes offsets into the storage, performs slicing operations, materializes the

sliced views, and the applies hooks on the materialized data. See our hook management tutorial

for more details.

Summary

We learned about how DGData  is used for loading data and preprocessing. We discussed how to

created data splits and discretize your dataset to coarser time granularities. Once your data is

loaded, you cast to DGraph , which is an immutable view of a slice of data.We showed how to

query various attributes from a DGraph , and how to slice the DGraph  in temporal snapshots.

Finally, we showed how to materialize the data in DGBatch  for training, and how the DGDataLoader

does this internally during iteration.

With this foundation, you're ready to explore hook management and get started with our examples.

Please feel free to reach out to us if anything is unclear or unintuitive. We are happy to discuss and

improve your experience with TGM.

print(dg_batch.src) # torch.tensor([5], dtype=torch.long, device='cuda:0')

print(dg_batch.edge_feats is None) # False, we matrialized our slice of edge

features

from tgm import DGraph

from tgm.loader import DGDataLoader

dg = DGraph(...)

loader = DGDataLoader(dg, ...)

for batch in loader:

...
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Time Management in Temporal Graphs

This tutorial explains how time deltas work in TGM, how they influence graph construction,

iteration, and discretization, and how to use them effectively.

1. TimeDeltaDG: High-Level Concept

A TimeDeltaDG  defines the temporal granularity of a dynamic graph. It specifies the “unit of time”

at which events (edges or nodes) are recorded. Think of it as the resolution of your graph’s

timeline.

See tgm.timedelta.TimeDeltaDG  for full reference.

Construction

You can create a TimeDeltaDG  using a string alias or by explicitly providing a unit and a multiplier:

Event-Ordered vs. Time-Ordered

There are 2 broad classes of TimeDeltaDG  which determine how timestamps on a graph are

interpreted:

Event-Ordered ( r ): Events are only guaranteed to have a relative order. No real-world time unit

is associated.

Time-Ordered (e.g. second-wise ( s ), or daily ( D )): Standard time units like seconds, minutes,

days, etc. Can perform coarsening or time conversion.

The full list of time-ordered units is given below:

from tgm.timedelta import TimeDeltaDG

# Basic usage

td_seconds = TimeDeltaDG("s")       # 1-second granularity

td_days = TimeDeltaDG("D")          # 1-day granularity

td_biweekly = TimeDeltaDG("W", 2)   # 2-week (bi-weekly) granularity

td_ordered = TimeDeltaDG("r") # Only relative order matters
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Time Unit Meaning

"Y" Yearly

"M" Monthly

"W" Weekly

"D" Daily

"h" Hourly

"m" Minute-wise

"s" Second-wise

"ms" Millisecond-wise

"us" Microsecond-wise

"ns" Nanosecond-wise

Coarser vs. Finer Granularities

Coarser time granularities use lower resolution time units (e.g. week is coarser than day):

Note: Checking whether an event-ordered time delta is coarser or finer than an non-ordered is

undefined and will raise a EventOrderedConversionError .

2. DGData Construction

td_day = TimeDeltaDG("D")

td_week = TimeDeltaDG("W")

td_biweek = TimeDeltaDG("W", 2)

td_month = TimeDeltaDG("M")

print(td_week.is_coarser_than(td_day)) # True

print(td_biweek.is_coarser_than(td_week)) # True

print(td_month.is_coarser_than(td_biweek)) # True
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Every DGData  requires an associated TimeDeltaDG . Predefined datasets (e.g. tgbl-wiki ) have

native time deltas, usually in seconds.

If you are using a custom dataset, you must specify a time delta. If the exact temporal unit is

unknown, you can resort to event-ordered granularity TimeDelta('r') , which is the default:

See tgm.data.DGData  for full reference.

3. Temporal Data Iteration

The time delta also informs how you iterate over the graph. In this respect, the DGDataLoader  uses

two key parameters:

batch_unit : Unit of time for batching ( r , D , h )

batch_size : Number of units or events per batch.

Iteration Modes

There are two different modes of iteration in TGM, depending on whether the batch_unit

parameter is event-ordered or time-ordered:

from tgm.data import DGData

# Custom dataset with day granularity

dg_data = DGData(

time_delta="D",

timestamps=timestamps,

...

)

# Ordered dataset (relative order only)

dg_event_ordered = DGData(

time_delta="r",

timestamps=timestamps,

...

)
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Iteration

Mode

Meaning Example Requires

Time-Ordered

Graph

TimeDelta

Can produce

empty

batches

By Events

(Event-

Ordered)

Iterates over a

fixed number of

events at a

time

Batch unit = r

and batch size N

yields N events

per batch

No No

By Time

(Time-

Ordered)

Iterates over a

time window

Batch unit = h

and batch size 3

yields 3 hours of

data per batch

Yes Yes

Note: Time-based iteration can result in empty batches if no edge and no node events occur in

the window. You can specify on_empty='raise'  to error on empty batches, on_empty='skip'

to ignore them, or on_empty=None  to materialize the empty snapshots for your model. The

default will materialize empty snapshots.

See tgm.loader.DGDataLoader  for full reference. See tgm.loader.DGDataLoader  for full

reference.

4. Discretization: Coarsening Graphs

Discretization allows you to coarsen a time-ordered graph to a new time granularity:

multiple edge and node events are partitioned into time buckets based on the requested

granularity

from tgm.loader import DGDataLoader

# Event-ordered iteration: yield 10 events per batch

loader = DGDataLoader(dg_data, batch_size=10)

# Time-ordered iteration: yield 3 days of data per batch, skip empty batches

loader_time = DGDataLoader(dg_data, batch_size=3, batch_unit='D', on_empty='skip')

# Time-ordered iteration: yield 3 days of data per batch, raise ValueError on

empty batches

loader_time = DGDataLoader(dg_data, batch_size=3, batch_unit='D',

on_empty='raise')
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if multiple events map to the same edge in the same bucket, only the first occurence is kept

(future versions will support other reduction ops)

This is useful for tuning dataset granularity (e.g. converting from continuous to discrete temporal

graphs).

Note: Discretization is only defined for time-ordered graphs. Attempting to discretize an even-

ordered DGData  is undefined and will raise InvalidDiscretizationError .

5. Workflows

TGB Datasets, Continuous-Time Temporal Graph Model

This is the simplest setup. Simply use DGData.from_tgb()  to load the TGB dataset with its native

time granularity. By default, batch_unit='r'  in the data loader so we can iterate by batches of

200 events with:

dg_data_second_wise = DGData.from_raw(

time_delta="s",

edge_timestamps=torch.tensor([15, 30, 45, 60]),

edge_index=torch.tensor([[0, 1], [2, 3], [0, 1], [0, 1]),

edge_feats=torch.tensor([[100, 200, 300, 400]]),

)

# Discretize from second-wise to minutely data

dg_data_minute_wise = dg_data_second_wise.discretize(time_delta="m",

reduce_op="first")

# After discretizing, note that the edge interaction between node 0 and 1 at time

15 and 45 are duplicates

# after grouping to minute-wise buckets (minute 0). In this case, we keep the

first event (edge_feats 100)

# and drop the second event (edge_feats 400).

print(dg_data.time_delta) # TimeDeltaDG("m")

print(dg_data.edge_timestamps) # torch.tensor([0, 0, 1])

print(dg_data.edge_index) # torch.tensor([[0, 1], [2, 3], [0, 1])

print(dg_data.edge_feats) # torch.tensor([[[100, 200, 400]])

from tgm import DGData, DGraph

from tgm.loader import DGDataLoader

data = DGData.from_tgb('tgbl-wiki')

dg = DGraph(data)

loader = DGDataLoader(dg, batch_size=200)
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TGB Datasets, Discrete-Time Temporal Graph Model

In this case, we can still load the native time granularity for the given TGB dataset. However, we

need to specify a valid batch_unit  in our dataloader. Recall, that internally, this applies a

TimeDeltaDG  conversion, and therefore, our iterating batch unit must be coarser (or the same

granularity) as the underlying graph time unit.

Here, we use tgbl-wiki  which has second-wise data, and we iterate over it in weekly snapshots:

We can just as easily iterate over biweekly graph snapshots:

Custom Datasets with Known TimeDelta

When working with custom datasets, it's likely that you have an underlying time granularity as

determined by your data feed. For instance, you may be streaming log events with unix

timestamps, or have pre-aggregated data arriving daily from a cron job.

In this case pretty much the same workflow as above can be used. Just make sure to pass the

right unit when constructing your DGData.from_raw() . You may also be interested in discretizing

your dataset into various granularities, and running some data analysis on the underlying graphs

(e.g. figuring out number of nodes, edges, connected components etc).

Custom Datasets with Unknown TimeDelta

It could occur that the underlying source time unit is not known a priori. In this situation, you can

use the even-ordered time unit TimeDeltaDG('r')  which preserves the relative order of events

without assuming a specific time unit.

from tgm import DGData, DGraph

from tgm.loader import DGDataLoader

data = DGData.from_tgb('tgbl-wiki')

dg = DGraph(data)

loader = DGDataLoader(dg, batch_unit='W')

from tgm import DGData, DGraph

from tgm.loader import DGDataLoader

data = DGData.from_tgb('tgbl-wiki')

dg = DGraph(data)

loader = DGDataLoader(dg, batch_unit='W', batch_size=2)
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Hook Management in TGM

Temporal graph learning pipelines often require dynamic transformations on graph batches—like

sampling neighbors, generating negative edges, or moving data to GPU. TGM defines DGHook s to

provide a flexible, composable way to perform these transformations automatically during batch

iteration. Think of DGHook s as all the necessary data processing and operations before you feed

the current batch into the TG ML model.

1. Hooks: The Basics

A DGHook  is a callable object that takes a DGBatch  (a batch of graph events) and a DGraph  (a

temporal view over the entire graph) as inputs and returns a transformed DGBatch , with additional

properties.

See tgm.graph.DGBatch  for a full reference of the base DGBatch  yielded by our DGDataLoader .

Hooks declare the following information

requires: Set[str] : Names of attributes that the hook needs to exist on the batch

produces: Set[str] : Names of attributes from the batch that the hook requires

has_state: bool : A flag to denote whether the hook stores state internally (i.e. some

memory or attribute that may change upon subsequent invocations of the hook). An example

of a stateful hook is a RecencyNeighborSampler  which keeps track of node interactions over

subsequent __call__ s.

Note: - StatelessHook : only transforms the batch, no internal state ( has_state = False ) -

StatefulHook : maintains internal state, ( has_state = True )

Built-in Hooks

TGM implements several commonly used hooks. The table below summarizes them:
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Hook Name Type requires produces Description

NegativeEdg

eSamplerHoo

k

Stateless None neg ,

neg_time

Generates random

negatives for link

prediction

TGBNegative

EdgeSampler

Hook

Stateless None neg ,

neg_time ,

neg_batch_li

st

Loads pre-computed

negative edges for

TGB datasets

NeighborSam

plerHook

Stateless None nbr_nids ,

nbr_times ,

nbr_feats

Uniform sampler

neighbor for a given

number of hops

RecencyNeig

hborSampler

Hook

Stateful None nbr_nids ,

nbr_times ,

nbr_feats

Recency neighbor

sampler for a given

number of hops

PinMemoryHo

ok

Stateless None None Pins all torch.Tensor

in DGBatch  for fast

CPU-GPU transfer

Deduplicati

onHook

Stateful None unique_nids ,

global_to_lo

cal

Computes unique node

ids in DGBatch  and a

mapping from global

(graph) to local (batch)

coordinates

Custom Hooks

Along with the hooks provided by TGM  team, users are welcome to write custom hooks to perform

any operations on DGBatch  as desired. For instance, if you are developing a new model or new

sampling strategy, chances are, all you need to do is define a custom hook. The first step is to think

about whether you need internal state. If not, you can subclass tgm.hooks.StatelessHook .

For example, the following shows a simple implementation of a negative sampler hook, which add

random negative nodes in the range [10, 100) , and a corresponding negative time which matches

the ground truth batch time:

 latest



Important: Each hooks adds attributes to the batch. Hooks that run after it may depend on these

attributes (defined in requires ). More on that later.

2. HookManager: Orchestrator of Hooks

Typically, a full training and evaluation pipeline will require multiple hooks, perhaps some of which

execute conditionally on your workload (e.g. validation vs. test). The HookManager  manages which

hooks are applied to a batch, and in what order. You can think of it like a key-value store where:

Keys: e.g. 'train' , 'val' , 'test'

Values: List of hooks associated with each key

Hooks are executed automatically during data loading, allowing different transformations to occur

for different data splits. For instance:

from tgm.hooks import StatelessHook

from tgm import DGBatch, DGraph

class MyNegativeHook(StatelessHook):

produces = {'my_neg', 'my_neg_time'}

requires = set()

def __call__(self, dg: DGraph, batch: DGBatch) -> DGBatch:

batch.my_neg = torch.randint(10, 100, (len(batch.dst),))

batch.my_neg_time = batch.time.clone()

return batch

from tgm.hooks import NegativeEdgeSamplerHook # A real negative edge sampler

from tgm.loader import DGDataLoader

# Create our graph

train_dg, test_dg = ...

# Initialize a hook manager with 'train' and 'test' keys

hm = HookManager(keys=['train', 'test'])

# Train: Random negatives

hm.register('train', NegativeEdgeSamplerHook(low=0, high=dg.num_nodes))

# Test: Use the dummy class we defined above

hm.register('test', MyNegativeHook())

train_loader = DGDataLoader(train_dg, hook_manager=hm)

test_loader = DGDataLoader(test_dg, hook_manager=hm)
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Important: When creating custom hooks, you need to make sure you follow the correct hook API.

See tgm.hooks  for more information. A BadHookProtocolError  will be thrown if you accidentlly

tried registering a hook with the wrong API. We suggest you write some unit tests to accompany

your custom protocols. You can see some of our hook tests as a starting point. If your hook has

general utility to the TG community, we can add it to TGM and enable code re-use for other

practitioners.

What now? Well, when we iterate our training graph, we have access to the attributes produced by

NegativeEdgeSamplerHook , which are neg  and neg_time . In order to see these transformations

get applied, we need to activate the key we are interested in...

3. Context Management

In the previous section, we created a hook manager and added a hook to the 'train' key and another

to the 'test' key. If we just try iterating the data, we won't see the attributes we want:

What we have to do is activate the keys we want. This allows us to selectively execute the right

transformation, depending on which key is active. We can use the with hm.activate()  context

manager to do so:

Note: The context manager is just syntactical sugar for the following:

for batch in train_loader:

assert batch.dst.shape() == batch.neg.shape() # AttributeError! No attribute

`neg` in batch

for batch in test_loader:

assert batch.dst.shape() == batch.my_neg.shape() # AttributeError! No

attribute `my_neg` in batch

with hm.activate('train'):

for batch in train_loader:

assert batch.dst.shape() == batch.neg.shape() # True

with hm.activate('test'):

for batch in test_loader:

assert batch.dst.shape() == batch.my_neg.shape() # True

assert torch.all(batch.my_neg >= 10) # True

assert torch.all(batch.my_neg < 100) # True

assert torch.equal(batch.my_neg_time, batch.time) # True

with hm.activate(key):

...
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See tgm.hooks.HookManager  for a full reference.

State Reset

Often it will happen that hooks with internal memory (stateful hooks) require that some memory is

reset, at an end of epoch, for instance. The HookManager  will automatically walk through all the

stateful hooks and call reset_state()  internally when you issue:

You can also selectively reset hooks for a particular key.

4. Shared Hooks

In temporal graph learning, it is common that information you received in the past needed to be

used for future prediction. For example, the stored neighbours in the

tgm.hooks.RecencyNeighborSampler  hook is state that must be carried to the validation phase to

ensure that the models can access information from the training set. Therefore, this raises the

need for sharing hook state of a hook across splits.

For this purpose, we have the notion of shared hooks , which are automatically attributed to all

keys in the HookManager :

Note: Using shared hooks is typically only useful if the hook has state, that needs to be shared

across activation keys.

#### Equivalent to

hm.set_active_hooks(key)

...

hm.set_active_hooks(None)

hm.reset_state()

hm.reset_state('train')

from tgm.loader import DGDataLoader

# Create our graph

train_dg, test_dg = ...

# Initialize a hook manager with 'train' and 'test' keys

hm = HookManager(keys=['train', 'test'])

# Register our dummy hook across both the train and test split

hm.register_shared(MyNegativeHook())  latest



5. Hook Resolution

As you may have guessed, hooks add attributes that may depend on other hooks. Formally, the set

of requires  and produces  attributes defined on DGBatch  by the list of hooks defines a directed-

acylic-graph (DAG) for every key in the hook manager. When we activate a key, the hook manager

performs a topological sort of the hook list and finds a topological ordering to execute during data

loading. This is only done once and cached, until (if) you decide to add more hooks for that key.

The upside is that you shouldn't care what order you register your hooks in, the manager will figure

it out. But, it's possible that no valid ordering exists.

For instance, suppose in our dummy hook, we added a requirement that our hook requires  the

batch attribute foo :

Now, if we register our hook and try to activate a key that uses it, we'll encounter the

tgm.UnresolvableHookDependenciesError :

You will see the error message tell you that the manager could not find a valid ordering of hooks,

and that's because no hook produces 'foo' . If you encounter this, chances are you just

misspelled either your requires  or produces  specification.

Note: You can also manually try to resolve hooks for a specific key without activating anything:

from tgm.hooks import StatelessHook

from tgm import DGBatch, DGraph

class MyNegativeHookWithFoo(StatelessHook):

produces = {'my_neg', 'my_neg_time'}

requires = {'foo'} # This hook depends on batch.foo existing!

def __call__(self, dg: DGraph, batch: DGBatch) -> DGBatch:

batch.my_neg = torch.randint(10, 100, (len(batch.dst),))

batch.my_neg_time = batch.time.clone()

return batch

# Register MyNegativeHook on 'train' then activate it and try iterating the data,

as before

hm.register('train', MyNegativeHookWithFoo()) # Ok, registered

with hm.activate('train'): # Raises tgm.UnresolvableHookDependenciesError

...

hm.resolve_hooks('train') # Raises tgm.UnresolvableHookDepenenciesError
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You can inspect the resolved hooks according to the __str__  method on the HookManager , to

validate that everything is as expected as well:

It might give you something along the lines of:

6. Recipes

TGM  offer a convenient way to setup common HookManager  configuration by using

RecipeRegistry.build()  with a pre-defined recipe. For example, in the TGB linkproppred

setting, the HookManager  must register train, validation, and test hooks as follows:

print(hm)

HookManager:

Shared hooks:

- DeduplicationHook (requires=set(), produces={'unique_nids',

'global_to_local'})

- MockHook (requires=set(), produces=set())

Active key: None

Keyed hooks:

train:

- DeduplicationHook (requires=set(), produces={'unique_nids',

'global_to_local'})

- MockHook (requires=set(), produces=set())

- MockHookRequires (requires={'foo'}, produces=set())

- MockHookWithState (requires=set(), produces=set())

val:

- DeduplicationHook (requires=set(), produces={'unique_nids',

'global_to_local'})

- MockHook (requires=set(), produces=set())

- MockHookRequires (requires={'foo'}, produces=set())

dataset = PyGLinkPropPredDataset(

name=dataset_name, root='datasets'

)

dataset.load_val_ns()

dataset.load_test_ns()

_, dst, _ = train_dg.edges

neg_sampler = dataset.negative_sampler

hm = HookManager(keys=['train', 'val', 'test'])

hm.register(

'train', NegativeEdgeSamplerHook(low=int(dst.min()), high=int(dst.max()))

)
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To minimize boilerplate and avoid accidental typos in this setup process, this procedure can be

encapsulated in a function and registered through RecipeRegistry  as follows:

build_tgb_link_pred()  encapsulates procedure to set up HookManager  for TGB  linkpropred

experiments and is registered to RecipeRegistry  with the name defined by constant

RECIPE_TGB_LINK_PRED  as follows:

Therefore, all we need to do to set up HookManager  for TGB  linkproppred is:

hm.register('val', TGBNegativeEdgeSamplerHook(neg_sampler, split_mode='val'))

hm.register('test', TGBNegativeEdgeSamplerHook(neg_sampler, split_mode='test'))

@RecipeRegistry.register(RECIPE_TGB_LINK_PRED)

def build_tgb_link_pred(dataset_name: str, train_dg: DGraph) -> HookManager:

try:

from tgb.linkproppred.dataset_pyg import PyGLinkPropPredDataset

except ImportError:

raise ImportError('TGB required to load TGB data, try `pip install py-

tgb`')

dataset = PyGLinkPropPredDataset(

name=dataset_name, root='datasets'

)

dataset.load_val_ns()

dataset.load_test_ns()

_, dst, _ = train_dg.edges

neg_sampler = dataset.negative_sampler

hm = HookManager(keys=['train', 'val', 'test'])

hm.register(

'train', NegativeEdgeSamplerHook(low=int(dst.min()), high=int(dst.max()))

)

hm.register('val', TGBNegativeEdgeSamplerHook(neg_sampler, split_mode='val'))

hm.register('test', TGBNegativeEdgeSamplerHook(neg_sampler, split_mode='test'))

return hm

@RecipeRegistry.register(RECIPE_TGB_LINK_PRED)

hm = RecipeRegistry.build(

RECIPE_TGB_LINK_PRED, dataset_name=args.dataset, train_dg=train_dg

)

registered_keys = hm.keys

train_key, val_key, test_key = registered_keys
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TGM  team provided the implementation of recipe for TGB  linkproppred, users are welcome to

define their own Recipe , register it and build it with RecipeRegistry.build() .

Summary

DGHook s are modular transformation applied to batches under the hood during data loading. The

HookManager  orchestrates hooks by key-value pair, and ensures correct execution order given the

set of requires  and produces  attributes. After activating a given key, the yielded batch from the

dataloader will have all the produces  attributes computed for you.

By sub-classing either the StatefulHook  or StatelessHook , you can define you own custom

hooks in TGM .

Watch Our Demo video to see firsthand how to upgrade your site with end-to-end AI Search.

Ads by EthicalAds
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