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Abstract

Molecular Representation Learning (MRL) has proven impactful in numerous1

biochemical applications such as drug discovery and enzyme design. While Graph2

Neural Networks (GNNs) are effective at learning molecular representations from3

a 2D molecular graph or a single 3D structure, existing works often overlook the4

flexible nature of molecules, which continuously interconvert across conforma-5

tions via chemical bond rotations and minor vibrational perturbations. To better6

account for molecular flexibility, some recent works formulate MRL as an en-7

semble learning problem, focusing on explicitly learning from a set of conformer8

structures. However, most of these studies have limited datasets, tasks, and models.9

In this work, we introduce the first MoleculAR Conformer Ensemble Learning10

(MARCEL) benchmark to thoroughly evaluate the potential of learning on con-11

former ensembles and suggest promising research directions. MARCEL includes12

four datasets covering diverse molecule- and reaction-level properties of chemically13

diverse molecules including organocatalysts and transition-metal catalysts, extend-14

ing beyond the scope of common GNN benchmarks that are confined to drug-like15

molecules. In addition, we conduct a comprehensive empirical study, which bench-16

marks representative 1D, 2D, and 3D molecular representation learning models,17

along with two strategies that explicitly incorporate conformer ensembles into 3D18

MRL models. Our findings reveal that direct learning from an accessible conformer19

space can improve performance on a variety of tasks and models.20

1 Introduction21

Recent years have seen the emergence of Molecular Representation Learning (MRL) as a promising22

approach for modeling molecules with machine learning. In the typical formulation, MRL maps23

discrete molecular objects to continuous features in a data-driven manner, encoding complex chemical24

structures into representation vectors that can subsequently be utilized in different downstream tasks.25

In particular, MRL now underpins a variety of biochemical applications spanning molecular property26

prediction to the design of novel drug candidates [1–3].27

Traditional approaches often encode chemical compounds with fingerprints, such as extended-28

connectivity fingerprints [4, 5], which indicate the existence of certain substructures as binary bits in a29

fixed-length sequence. Such line-based representations are concise and efficient, but have limited ex-30

pressive power and have difficulty in capturing 3D structural information such as bonding geometries31

and global shapes, which can be important for analyzing molecular properties and chemical reactiv-32

ity [6, 7]. Recently, Graph Neural Networks (GNNs) have become an increasingly popular method of33

learning molecular representations by treating molecules as graph-structured objects. Existing GNN34

models for MRL can be broadly classified into two categories: 2D topological models [8–11] and35

3D geometric models [12–17]. 2D GNNs typically model the molecular connectivity as a flat 2D36

graph with atoms as nodes and bonds as edges, learning representations of chemical environments37

by iteratively passing messages between neighboring atoms. Although powerful in the absence of38

Submitted to NeurIPS 2021 AI for Science Workshop.



2D topology graph

<latexit sha1_base64="2PEaoG07yKEMoUTnVb++yrmxwp4="></latexit>

O
H
N

OH

3D conformation Conformer ensemble

1D string

CC(=O)NC1=CC=C(C=C1)O

<latexit sha1_base64="2NHzkUSvOk/vUZZzyMTaUj/5dQ8="></latexit>

H2N

O

R

<latexit sha1_base64="VZf2VX7mt2DhOkN9OKKz3cBBHko="></latexit>

OHR

MARCEL

Datasets

Drugs-
75K Kraken

EE BDE

MRL models

LSTM GIN

GPS SchNet

GemNet LEFTNet

Evaluation

Metrics

Experiment management

Result analysis

Descriptors

Quantum Catalytic 
ligand

Binding 
energy

EE 
selectivity

Chemical compounds

Drug-like molecules

Organocatalysts

Transition-state 
catalysts

Figure 1: We present a MARCEL benchmark that comprehensively evaluates the potential of learning
on conformer ensembles across a diverse set of molecules, datasets, and models.

structural information, 2D GNNs may fail to capture key conformational effects or stereochemical39

properties like chirality [18, 19], which is critical for modeling molecular interactions in areas such as40

drug design or chemical catalysis. Conversely, 3D GNNs are designed to model molecular conformers41

(conformations), which describe the structure of molecules in 3D space. Thus, these models have42

found widespread adoption for modeling electronic properties, predicting conformer energies and43

forces, and scoring interactions between ligands and proteins, amongst other applications.44

In almost all applications, benchmarks, and demonstrations, 3D GNN models focus on encoding45

individual conformer structures. It is critical to recognize that in reality molecules are not rigid,46

static objects; rather, thermodynamically-permissible rotations of chemical bonds, small vibrational47

motions, and dynamic intermolecular interactions cause molecules to continuously convert between48

different conformations [20]. As a consequence, many experimentally observable chemical properties49

depend on the full distribution of thermodynamically-accessible conformers. For example, a molecule50

needs to be arranged into a particular pose to bind to a target protein, and this binding conformation51

changes depending on the dynamic interaction between the molecule and the target [21]. Also, it is52

often challenging to determine a priori the conformers that predominantly contribute to molecular53

properties without doing prohibitively expensive simulations. Therefore, a natural question arises:54

can we leverage the collective power of many different conformer structures lying on the local minima55

of the potential energy surface, also known as the conformer ensemble, to improve MRL models?56

As shown by the empirical evidence from various studies, learning from an explicit conformer57

ensemble can prove to be advantageous for many tasks, including property and energy prediction [22–58

24], key conformer pose identification [25], and RNA sequence design [26]. However, these studies59

have been mostly confined to small-scale datasets, a limited set of tasks, and a restricted set of model60

architectures. As a result, it remains unclear (1) to what extent 2D GNNs can implicitly model61

molecular flexibility and (2) whether the explicit encoding of conformer ensembles can improve the62

performance of 3D models that traditionally encode only one single conformer.63

In this paper, we present the first MoleculAR Conformer Ensemble Learning (MARCEL) benchmark.64

As shown in Figure 1, MARCEL covers a diverse range of chemical space, which focuses on four65

chemically-relevant tasks for both molecules and reactions, with an emphasis on Boltzmann-averaged66

properties of conformer ensembles computed at the Density-Functional Theory (DFT) level. Our67

datasets encompass a variety of compounds with high-quality conformers, including organocatalysts68

and transition-metal catalysts, extending beyond the scope of conventional GNN benchmarks which69

are often restricted to drug-like molecules. Moreover, we implement a comprehensive benchmark70

suite that enables extensive empirical studies across representative 1D, 2D, and 3D MRL models. We71

further explore the advantages of leveraging conformer ensembles through two straightforward strate-72

gies: (1) augmenting training samples by randomly selecting one conformer from the ensemble for73

each molecule and (2) applying an explicit multi-instance ensemble learning layer, which aggregates74

individual conformer embeddings.75

Our experimental results confirm the potential effectiveness of incorporating conformer ensembles in76

MRL, highlighting the improvements over conventional single-conformation 3D networks. However,77

it is important to understand the heterogeneity of outcomes based on different dataset characteristics,78

task objectives, and model choices. Our investigation yields three key findings: (1) Leveraging79

molecular conformers by incorporating explicit set encoders, as a part of conformer ensemble learning80

strategies, can improve single-conformer 3D MRL models performance. (2) Data augmentation81

through conformer sampling may offer potential benefits, evidenced by improved results in the BDE82

dataset, suggesting a method to increase model robustness against imprecise structures. (3) Model83

selection for MRL depends on dataset sizes and tasks, with traditional 1D fingerprints and 2D models84

preferred for smaller datasets and 3D models for larger or reaction-focused tasks.85
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2 Problem Formulation86

We represent a 2D molecular graph as a tuple G = (V, E ,X,W ), where V = {vi}|V|
i=1 is the node87

set with each node corresponding to an atom, and E ⊆ V × V is the edge set representing chemical88

bonds as edges between nodes. Further, X ∈ Rdv×|V| contains vector attributes for each node, and89

W ∈ Rdw×|E| contains attributes for each edge. When modeling chemical reactions, we represent a90

molecule-molecule complex as a pair of graphs (G1,G2). In this case, the conformation describes the91

combined structure of the interacting molecules. For a given molecule or molecular complex, we92

assume that its geometry can be effectively characterized by a representative set of discrete, sampled93

conformers from the thermodynamically-accessible conformer distribution. Formally, this set can94

be denoted as C = {Ci}|C|i=1, where Ci ∈ R|V|×3 represents one conformer structure in 3D space.95

In reality, the conformer distribution is continuous; C in our study contains representative samples96

of the infinite set. Each conformer in the sampled ensemble is associated with a statistical weight97

given by pi =
exp

(
− ei

kBT

)
∑

j exp
(
−

ej
kBT

) , which corresponds to its probability under experimental conditions.98

Here, ei is the energy of the conformer Ci, kB is the Boltzmann constant, and T is the temperature.99

Notably, pi is not prior information to the models analyzed in this benchmark. Rather, we use a100

discrete approximation of pi to compute the ground-truth labels for our regression tasks.101

3 Datasets and Tasks102

MARCEL contains four small-to-large-scale datasets involving nine regression tasks with consider-103

ably diverse chemistry. Drugs-75K and Kraken focus on molecular properties, while EE and BDE104

focus on reaction-centric properties. MARCEL includes molecules with high structural flexibility,105

evidenced by an average number of rotatable bonds exceeding 5. Table 1 summarizes the datasets.106

Drugs-75K is a subset of the GEOM-Drugs [27] dataset, which includes 75,099 molecules with107

at least 5 rotatable bonds. For each molecule, we focus on three important quantum chemical108

descriptors: ionization potential, electron affinity, and electronegativity [28]. The tasks are to predict109

the Boltzmann-averaged value of each property across the conformer ensemble ⟨y⟩kB
=

∑
Ci∈C piyi,110

where yi is a conformer-specific property. We are given each Ci, and the goal is to predict ⟨y⟩kB
111

from the molecular graph G, a single conformer Ci ∈ C, or the set C.112

Kraken [29] is a dataset of 1,552 monodentate organophosphorus (III) ligands along with their113

DFT-computed conformer ensembles. In this study, we consider four 3D ligand descriptors exhibiting114

significant variance among conformers: Sterimol B5, Sterimol L, buried Sterimol B5, and buried115

Sterimol L. These descriptors quantify the steric features of each ligand in units of Å and are often116

employed for Quantitative Structure-Activity Relationship (QSAR) modeling in catalyst design.117

As in the Drugs-75K tasks, the goal is to predict the Boltzmann-averaged value of each property118

across the conformer ensemble from the molecular graph G, a single conformer Ci ∈ C, or the set C.119

EE [30] is a dataset of 872 catalyst-substrate pairs involving 253 Rh-bound atropisomeric catalysts120

derived from chiral bisphosphine, with 10 enamides as substrates. The dataset includes conformations121

of catalyst-substrate transition state complexes in two separate pro-S and pro-R configurations. The122

task is to predict the Enantiomeric Excess (EE) of the chemical reaction involving the substrate.123

Unlike properties in Drugs-75K and Kraken, EE depends on the conformer ensembles of each pro-R124

and pro-S complex. The goal is to predict EE from the graphs of the catalyst and substrate (Gcat,Gsub),125

a conformer C(R)
i ∈ C(R) and C(S)

i ∈ C(S) for each complex, or the ensembles C(R) and C(S).126

BDE [31] is a dataset containing 5,915 organometallic catalysts ML1L2 consisting of a metal center127

coordinated to two flexible organic ligands. The data includes conformations of each unbound catalyst,128

as well as conformations of the catalyst when bound to ethylene and bromide after oxidative addition129

with vinyl bromide. Each catalyst has an electronic binding energy to be predicted. Although the130

binding energies are computed via DFT, the conformers provided for modeling are initially generated131

with Open Babel [32] followed by further geometry optimization, which ensures that the 3D structures132

are likely to be the global minimum energy conformers at the force field level [31]. This dataset133

realistically represents the setting in which precise conformer ensembles are unknown at inference.134

The task is to predict the binding energy from the graphs of the unbound and bound catalyst, sampled135

conformers C(unbound)
i ∈ C(unbound) and C(bound)

i ∈ C(bound), or the ensembles C(unbound) and C(bound).136
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Table 1: Statistics of the four datasets. The numbers of heavy atoms and rotatable bonds (“rot.
bonds”) are averaged per conformer.

Dataset # Molecules # Conformers # Heavy atoms # Rot. bonds # Targets Atomic species
Drugs-75K 75,099 558,002 30.56 7.53 3 H, C, N, O, F, Si, P, S, Cl

Kraken 1,552 21,287 23.70 9.05 4 H, B, C, N, O, F, Si, P, S,
Cl, Fe, Se, Br, Sn, I

Dataset # Reactions # Conformers # Heavy atoms # Rot. bonds # Targets Atomic species

EE 872 Pro-R: 14,807
Pro-S: 13,999 59.32 18.57 1 H, C, N, O, F, P, Cl, Br, Rh

BDE 5,915 Ligand: 73,834
Complex: 40,264

29.62
32.38

6.99
6.99 1 H, C, N, O, F, P, Cl, Ni, Cu,

Br, Pd, Ag, Pt, Au

Dataset Preparation. We implement several preprocessing steps to ensure the quality and validity of137

our datasets and facilitate their integration into machine learning models.138

• Conformer deduplication. To eliminate redundant conformers in each ensemble C, we first139

align every pair of conformers using RDKit [33], accounting for symmetric atom permutations.140

Subsequently, we employ Butina clustering [34] based on the Root Mean Square Deviation (RMSD)141

values derived from conformer alignment. Within each cluster, we select the conformer with the142

lowest energy. Note that Boltzmann-averaged regression labels are computed before deduplication.143

• Selection of molecules. We focus on modeling flexible molecules, for which conformer ensemble144

learning may be relevant to capture their properties. Hence, we only retain molecules with more145

than 5 rotatable bonds. We also remove molecules with missing 3D geometries or 2D graphs.146

4 Benchmarking Molecular Representation Learning Models147

The representation of molecular data is crucial for applying machine learning models to problems in148

chemistry and biology. These representations typically include 1D strings, 2D topological graphs,149

and 3D geometric graphs. For a comprehensive benchmark for MRL models, our MARCEL includes150

a diverse representative selection of models for each of the aforementioned molecular representations.151

In this section, we provide an overview of these models and describe how they are tailored to our152

tasks. We also introduce two strategies of explicitly encoding conformer ensembles using 3D models.153

4.1 1D Models154

Our 1D baselines include Random Forest [35] models operating on molecular fingerprints [33, 36,155

37]. Fingerprints convert a molecular graph into a bit array indicating the presence of chemical156

substructures and are widely used for cheminformatics and QSAR modeling in the low-data regime.157

Additionally, we include Long Short-Term Memory (LSTM) [38] and Transformer [39] models,158

popular sequence-based neural network architectures, operating on SMILES strings. For the BDE and159

EE datasets, we concatenate the SMILES of each molecule or complex with a “.” symbol and use a160

single sequence encoder. Further details on model implementations can be found in Appendix B.1.161

4.2 2D Graph Neural Networks162

We employ four widely-used GNN models as 2D baseline methods, including Graph Isomorphism163

Network (GIN) [40], GIN with Virtual Node (GIN-VN) [41], ChemProp [42], and GraphGPS [43].164

Following OGB protocols [41], we employ a diverse set of atomic features such as aromaticity and165

hybridization for nodes, as well as bond features like ring information for edges (Appendix B.2). For166

the EE and BDE datasets, we employ a two-tower architecture with two separate 2D GNN models:167

for EE, since both pro-S and pro-R complexes share the same 2D graph, we leverage two separate168

GNNs to encode the catalyst and substrate; for BDE, we also encode the unbound and bound catalysts169

separately. We then concatenate these together to obtain the system-level embeddings.170

4.3 3D Graph Neural Networks171

We include six representative 3D GNNs that encompass diverse modeling perspectives. For invariant172

networks, our experiments involve SchNet [12], DimeNet++ [13], and GemNet [14]. For equivariant173

networks, we include PaiNN [15], ClofNet [16], and LEFTNet [17].174
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We use atom types as the sole atom features for the 3D models. For both training and inference on175

Drug-75K, Kraken, and EE datasets, all the single-conformer 3D models encode the lowest-energy176

conformer of each conformer ensemble, which has the largest Boltzmann weight and hence provides177

the strongest model. Since imprecise conformers are encoded for the BDE task, we use a fixed,178

randomly sampled conformer for each unbound- and bound-catalyst during training and inference.179

The 3D models also employ a two-tower architecture for the EE and BDE datasets. Two separate180

3D GNNs are used to encode representations for each pro-S and pro-R complex in EE, or for each181

catalyst and bound complex in BDE, which are then concatenated to form the final representations.182

We note that although using the lowest-energy conformer will yield the strongest performance, this183

setting can be unrealistic: it is often not possible to identify the lowest energy conformer without184

searching the entire conformer space. The lowest energy conformer can also depend on the force185

field used for geometry optimization, which may neglect experimental conditions such as solvents.186

4.4 Incorporating Conformer Ensembles into Molecular Representations187

3D geometric models primarily focus on learning representations from individual 3D structures.188

Although some models preserve global symmetries such as SE(3)-equivariance, these models do189

not learn representations that capture conformational flexibility which is caused by internal degrees190

of freedom such as bond rotations. Here, we describe two straightforward strategies that model191

conformational flexibility by explicitly leveraging conformer ensembles.192

4.4.1 Strategy 1: Training-Time Data Augmentation via Conformer Sampling193

A direct approach to modeling conformer flexibility is to simply enrich the training data by randomly194

sampling a conformer from the ensemble during each training epoch. Formally, for a given molecule195

G and its conformer ensemble C, we randomly select a conformer with uniform probability p = 1/|C|196

while using the same training label for each conformer. Note that during inference, the lowest-energy197

conformer is used to evaluate the model performance. This strategy aligns with learning represen-198

tations invariant to conformational changes, thus implicitly encoding the flexibility of molecular199

structures, and has been shown to be useful for learning chirality-sensitive 3D representations [19].200

When conformer ensembles are available, the strategy is computationally efficient as it maintains201

the same complexity as the base 3D model. Unlike the other ensemble methods, this strategy can be202

used if conformer ensembles are only available at training time. In Appendix C, we evaluate two203

alternative scenarios where conformer ensembles are also available during evaluation.204

4.4.2 Strategy 2: Ensemble Learning with Explicit Set Encoders205

The second strategy utilizes a set encoder to simultaneously encode the entire conformer ensemble C206

at both training and inference time. Inspired by the multi-instance learning framework [44–46], this207

strategy first employs 3D GNNs to generate individual conformer embeddings and then aggregates208

these embeddings using a set encoder, as illustrated in Figure 2.209

Formally, for each conformer Ci ∈ C, we obtain its corresponding embedding zi = f(G,Ci) ∈210

Rd, where f is a single-conformer 3D model and d is the embedding dimension. Note that the211

embedding z is a (3D) graph-level representation resulting from a pooling function over the node-212

level embeddings after message passing. To further aggregate these embeddings Z = {zi}|C|i=1 into a213

single molecular representation, we consider the following three set encoders:214

• Mean pooling simply computes the mean of all the conformer embeddings.215

• DeepSets [47] utilizes a permutation-invariant function to process a set of inputs. It first applies a216

MultiLayer Perceptron (MLP) h to each conformer embedding and then aggregates the transformed217

embeddings using sum pooling followed by another MLP g:218

sDS = g

 |C|∑
i=1

h(zi)

 . (1)

This method retains more discernible information from individual embeddings compared to mean219

pooling at a cost of two non-linear functions.220
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Figure 2: Conformer ensemble learning with explicit set encoders (Strategy 2). Individual conformer
embeddings are first obtained via 3D GNN encoders. Then, a set encoder is employed to aggregate
conformer embeddings. Finally, a linear projection head is used to generate the prediction.

• Self-attention [48] further computes a weighted sum of the embeddings, where the weights are221

obtained by applying a softmax function to the dot product of the embeddings:222

sATT =

|C|∑
i=1

ci, where ci = g

 |C|∑
j=1

αijh(zj)

 , αij =
exp((Wh(zi))

⊤(Wh(zj)))∑|C|
k=1 exp((Wh(zi))⊤(Wh(zk)))

.

(2)
Here, W ∈ Rd×d is a learnable weight matrix. This approach can capture conformer interactions.223

By employing these set encoders, we can learn a model that is more sensitive to the full range of224

conformer variations present in the ensemble. After obtaining the ensemble embeddings, we further225

apply a linear projection head to generate the final prediction.226

5 Experiments227

5.1 Experimental Configurations228

Each dataset is partitioned randomly into three subsets: 70% for training, 10% for validation, and229

20% for test. Each model is trained over 2,000 epochs using the Adam optimizer [49] with early230

stopping triggered if there is no improvement on the training loss over 200 epochs. For all nine231

regression targets, experiments are repeated three times, and the results reported correspond to the232

model that performs best on the validation set in terms of Mean Absolute Error (MAE).233

The Boltzmann-averaged targets are computed over all available conformers. For ensemble learning234

models, we cap the number of encoded conformers per molecule to a maximum of 20, which235

empirically improves training stability and leads to better performance. To ensure a fair comparison,236

the hidden dimension size is uniformly set to 128 for all models. Other settings mostly follow the237

original configurations as described in the respective papers. We specify all hyperparameters and238

describe experimental environments in Appendix B.3.239

5.2 Results and Analysis240

We summarize the performance of the 1D, 2D, and 3D MRL models in Table 2. Figure 3 reports the241

performance changes in Mean Absolute Error (MAE) for each 3D model when applying the ensemble242

learning strategies. The raw performance data with standard deviation and the parameter size of each243

model can be found in Appendix D. In summary, although performance varies across the datasets,244

tasks, and models, the ensemble learning strategies improve upon 3D models that only encode245

one conformer in 48 out of 54 experiments across 9 tasks and 6 base models, demonstrating the246

effectiveness of conformer ensemble learning. Our analysis leads to the following key observations.247

Observation 1. The conformer ensemble learning strategy with explicit set encoders frequently248

yields improved performance.249

Figure 3 indicates that encoding conformer ensembles can substantially reduce test error, achieving250

improvements in 108 experiments across all 9 tasks, 6 base models, and 3 set encoders, most notably251

on the tasks in the smaller-sized Kraken dataset. This, however, does not always extend to larger252

datasets like Drugs-75K. We conjecture that for Drugs-75K, the computational burden of encoding all253

conformers in each ensemble alters the learning dynamics of the underlying model, making training254

more challenging. A similar finding was reported by Axelrod and Gómez-Bombarelli [23].255

Among the three set encoders, DeepSets consistently demonstrates significant improvements in 42 out256

of 54 experiments across 9 tasks and 6 base 3D models. We conjecture that this superior performance257
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Table 2: Performance of 1D, 2D, and 3D baseline MRL models and the best results from ensemble
learning strategies on 3D GNNs. The metric used is the Mean Absolute Error (MAE, ↓). The bold
indicates the best-performing model, while underlined denotes the second-best.

Category Model
Drugs-75K Kraken

EE BDE
IP EA χ B5 L BurB5 BurL

1D
Random forest 0.4987 0.4747 0.2732 0.4760 0.4303 0.2758 0.1521 61.2963 3.0335

LSTM 0.4788 0.4648 0.2505 0.4879 0.5142 0.2813 0.1924 64.0088 2.8279
Transformer 0.6617 0.5850 0.4073 0.9611 0.8389 0.4929 0.2781 62.0816 10.0771

2D

GIN 0.4354 0.4169 0.2260 0.3128 0.4003 0.1719 0.1200 62.3065 2.6368
GIN+VN 0.4361 0.4169 0.2267 0.3567 0.4344 0.2422 0.1741 62.3815 2.7417
ChemProp 0.4595 0.4417 0.2441 0.4850 0.5452 0.3002 0.1948 61.0336 2.6616
GraphGPS 0.4351 0.4085 0.2212 0.3450 0.4363 0.2066 0.1500 61.6251 2.4827

3D

SchNet 0.4394 0.4207 0.2243 0.3293 0.5458 0.2295 0.1861 17.7421 2.5488
DimeNet++ 0.4441 0.4233 0.2436 0.3510 0.4174 0.2097 0.1526 14.6414 1.4503

GemNet 0.4069 0.3922 0.1970 0.2789 0.3754 0.1782 0.1635 18.0338 1.6530
PaiNN 0.4505 0.4495 0.2324 0.3443 0.4471 0.2395 0.1673 20.2359 2.1261

ClofNet 0.4393 0.4251 0.2378 0.4873 0.6417 0.2884 0.2529 33.9473 2.6057
LEFTNet 0.4174 0.3964 0.2083 0.3072 0.4493 0.2176 0.1486 19.7974 1.5328

is due to its ability of effectively modeling set objects at a relatively minor computational overhead258

of two non-linear transformations. On the other hand, the simple mean pooling approach loses259

discriminative power across the conformers in the ensemble, resulting in inferior performance. It is260

also noteworthy that the attention models exhibit mixed results compared to the vanilla 3D models,261

despite theoretically being the most powerful set encoders. This inconsistency might be attributable262

to the computational intricacy of the self-attention layer, which models the pairwise relationship263

among conformers in each ensemble and hence could require more sophisticated training strategies.264

Future research should consider developing better neural architectures that are specifically designed265

to more efficiently encode structural information from conformer ensembles.266

Observation 2. Sampling conformers at training time can improve performance, especially on267

imprecise conformer structures.268

We observe that data augmentation improves performance on 34 experiments, especially on the269

challenging BDE dataset, where the other ensemble learning strategies often do not help. Note that270

the conformers in the BDE dataset originate from Open Babel, as opposed to the golden-standard271

DFT-level conformers present in other datasets. This suggests that training with randomly sampled272

conformers might offer robustness to noise in the imprecise structures. On other tasks, randomly273

sampling the conformers at each epoch may help the model learn an invariance to conformational274

changes, but does not always increase performance for all 3D models. This might be because the275

sampling probability is uniform across the entire conformer set, which does not respect the underlying276

Boltzmann weight of each conformer. In future work, it may be worthwhile to investigate whether277

more physics-informed sampling strategies could lead to more consistent performance gains.278

Observation 3. No model consistently outperforms the rest, with substantial task dependencies.279

The results in Table 2 suggest that no single model outperforms the others across all tasks. Of280

the 1D models, LSTM outperforms Random Forest and Transformer models on Drugs-75K and281

BDE, demonstrating the effectiveness of SMILES-based representations of molecules on large-scale282

datasets. For small datasets such as Kraken and EE, Random Forests outperform sequence models at283

a lower computational cost, indicating that traditional models are superior in the low-data regime.284

Amongst 2D models, GIN delivers the best performance on four tasks compared to all other models;285

GraphGPS also demonstrates strong performance on several tasks (B5, L, and BurL). Surprisingly,286

the 2D models are also competitive with some 3D models on the large-scale Drugs-75K tasks.287

This is possibly due to the fact that the electronic properties in Drugs-75K are not as sensitive to288

conformational changes, thus explicitly modeling the structures in 3D may not be necessary. However,289

all 2D models perform worse as compared to the 3D models in the reaction datasets EE and BDE,290

indicating the important role of spatial interactions in determining reaction-related properties.291

For 3D models, GemNet and LEFTNet excel in IP, EA, and χ. The complexity of these two equivariant292

models may especially benefit from the large dataset size of Drugs-75K. For Kraken and the two293

reaction datasets, DimeNet++ — an invariant model — achieves promising performance, suggesting294

that highly-complex 3D models may be less useful for chemical applications with small-to-medium295

sized datasets. On EE, we observe that 3D models remarkably outperform 1D and 2D models, likely296
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Figure 3: Performance changes of four conformer ensemble learning strategies on the basis of six 3D
graph models. Here, negative values (marked in hatch patterns ) denote reduced Mean Absolute Error
(MAE), signifying a performance improvement due to the incorporation of conformer ensembles.

because enantioselectivity depends on subtle spatial interactions. When predicting binding energies,297

using 3D models also leads to modest improvements.298

Overall, model performance varies substantially across tasks, even within the same dataset, emphasiz-299

ing the diversity of the tasks in MARCEL. Generally, 1D and 2D models perform well on small-scale300

molecular datasets, while 3D models excel on large datasets and reaction-centric tasks. MARCEL301

also highlights the benefits of explicitly encoding multiple conformers to improve MRL.302

6 Discussions and Conclusions303

In this work, we present the first MoleculAR Conformer Ensemble Learning benchmark (MARCEL)304

to evaluate the potential of learning from a set of conformer structures. Through two conformer305

ensemble learning strategies, we discover performance improvements across various tasks. However,306

there are some limitations that require further consideration. First, our studied ensemble learning307

strategies do not universally improve performance across all tasks and datasets. This highlights the308

need for more tailored approaches that integrate with domain expertise to better model specific tasks309

and datasets of practical interest. Second, the computational cost of encoding all conformers within310

the ensembles, especially for larger datasets, suggests the need to further study the trade-offs between311

model complexity and efficiency. Finally, our datasets only contain regression tasks and do not cover312

all of the relevant chemical space, which might limit the generalization of our experimental findings.313

Despite these challenges, we envision that our work will prompt further research in the geometric314

deep learning community on how to make use of conformer ensembles for molecular property315

prediction. For instance, future research could explore new model architectures that can efficiently316

encode ensemble-level information or more sophisticated conformer sampling strategies. We also317

hope that our work will stimulate collaborative research across the machine learning and chemistry318

fields, with the ultimate goal of pushing the boundaries of predictive molecular modeling and aligning319

algorithmic advancements with the practical needs of the chemistry community.320
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A Dataset Description481

MARCEL include four datasets that cover a diverse range of chemical space, which focuses on four482

chemically-relevant tasks for both molecules and reactions, with an emphasis on Boltzmann-averaged483

properties of conformer ensembles computed at the Density-Functional Theory (DFT) level. Detailed484

information regarding dataset access, data formatting, and loading procedures can be found at our485

GitHub repository https://anonymous.4open.science/r/MARCEL-4813. Any subsequent486

updates will also be posted on this repository.487

A.1 Drugs-75K488

Drugs-75K is a subset of the GEOM-Drugs [27] dataset, which includes 75,099 drug-like molecules489

with at least 5 rotatable bonds. The original GEOM-Drugs dataset was constructed using semi-490

empirical DFT methods, which is less accurate than full DFT. To curate the Drugs-75K subset,491

Auto3D [50] is used to generate and optimize the conformer ensembles for each molecule and492

AIMNet-NSE [51] is used to calculate three important DFT-based reactivity descriptors: ionization493

potential, electron affinity, and electronegativity [28].494

Auto3D [50] efficiently generates high-quality conformers, with a mean RMSD at around 0.2 Å when495

compared with DFT conformers. It has been used in other large conformer dataset generation [52].496

Regarding the neural network surrogate AIMNET-NSE [51], it mimics the PBE0/ma-def2-SVP497

method of DFT, which is widely used in the chemistry community. Investigating their accuracy is out498

of the scope of this paper, but are readily accessible from multiple sources [51, 53].499

Objectives. The tasks are to predict the Boltzmann-averaged value of each property across the500

conformer ensemble ⟨y⟩kB
=

∑
Ci∈C piyi, where yi is a conformer-specific property. We are given501

each Ci, and the goal is to predict ⟨y⟩kB
from the molecular graph G, a single conformer Ci ∈ C, or502

the set C.503

Dataset preparation. In preparing the 75K version of GEOM-Drugs, we begin with the original504

SMILES strings of the molecules. We first exclude molecules that have less than 5 rotatable bonds.505

To enable the utilization of AIMNet-NSE for descriptor computation, we retain only those molecules506

containing atoms of H, C, N, O, F, Si, P, S, and Cl. Further, we generate DFT-level conformers507

and compute their energies with Auto3D. Based on these conformers, we compute three chemical508

bond energy descriptors using AIMNet-NSE. We exclude conformers that Auto3D fails to converge509

and charged molecules that are unable to be processed by AIMNet-NSE, which results in 75,099510

molecules. Subsequently, we compute molecular-level Boltzmann-averaged descriptors based on511
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Figure S1: Histogram of the ratio of the variance of each conformer property to the variance of each
Boltzmann-averaged property in the Kraken dataset.

conformer-level descriptors. Finally, we undertake a deduplication process as outlined in Section 3512

with a RMSD threshold of 2.0, which yields a total of 558,002 distinct conformers.513

Data availability and license. The original GEOM-Drugs dataset is publicly available at https:514

//github.com/learningmatter-mit/geom but no license is specified. Our Drugs-75K can be515

accessed at https://anonymous.4open.science/r/MARCEL-4813/datasets/Drugs/READM516

E.md. As for the conformer ensembles and descriptors that we generated, they are licensed under the517

Apache License.518

A.2 Kraken519

Kraken [29] is a dataset of 1,552 monodentate organophosphorus (III) ligands along with their520

DFT-computed conformer ensembles. In this study, we consider four 3D catalytic ligand descriptors521

exhibiting significant variance among conformers: Sterimol B5, Sterimol L, buried Sterimol B5, and522

buried Sterimol L. These descriptors quantify the steric size of a substituent in Å, and are commonly523

employed for Quantitative Structure-Activity Relationship (QSAR) modeling. The buried Sterimol524

variants describe the steric effects within the first coordination sphere of a metal [54].525

Objectives. As in the Drugs-75K tasks, the goal is to predict the Boltzmann-averaged value of each526

property across the conformer ensemble from the molecular graph G, a single conformer Ci ∈ C, or527

the set C.528

Dataset preparation. In this study, we utilize the original 3D geometry structures of molecules and529

their corresponding Boltzmann-averaged properties provided in the Kraken dataset. Among the 78530

physical-organic properties listed in the original dataset, we select four properties that demonstrate531

high variance across conformer ensembles, as illustrated in Figure S1.532

Data availability and license. The Kraken dataset is publicly accessible at https://kraken.cs.533

toronto.edu. Its copyright is retained by the original authors. Under the permission of the original534

authors, the Kraken dataset with the conformer ensembles and the four conformer-level descriptors535

used in this study can be accessed at https://anonymous.4open.science/r/MARCEL-4813/da536

tasets/Kraken/README.md.537

A.3 EE538

EE [30] is a dataset of 872 catalyst-substrate pairs involving 253 Rhodium (Rh)-bound atropisomeric539

catalysts derived from chiral bisphosphine, with 10 enamides as substrates. The dataset includes540

conformations of catalyst-substrate transition state complexes in two separate pro-S and pro-R541

configurations. The task is to predict the Enantiomeric Excess (EE) of the chemical reaction involving542

the substrate, defined as the absolute ratio between the concentration of each enantiomer in the543

product distribution.544

Objectives. EE depends on the conformer ensembles of each pro-R and pro-S complex. The goal is545

to predict EE from the graphs of the catalyst and substrate (Gcat,Gsub), a conformer C(R)
i ∈ C(R) and546

C(S)
i ∈ C(S) for each complex, or the ensembles C(R) and C(S).547

Dataset preparation. The conformer ensembles are generated with Q2MM, which automatically548

generates Transition State Force Fields (TSFFs) in order to simulate the conformer ensembles of each549
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prochiral transition state complex. Then, the EE values are computed from the conformer ensembles550

by Boltzmann-averaging the activation energies for the competing transition states [30, 55]. Finally,551

we conduct the same conformer deduplication process as described in Section 3 with a RMSD552

threshold of 1.0.553

Data availability and license. As of now, the EE dataset is proprietary, given that the publication554

addressing the conformer ensembles is still under preparation. Therefore, access to the EE dataset is555

restricted to review purposes only. We anticipate making the EE dataset publicly accessible following556

the acceptance of the corresponding paper.557

A.4 BDE558

BDE [31] is a dataset containing 5,915 organometallic catalysts ML1L2 consisting of a metal center559

(M = Pd, Pt, Au, Ag, Cu, Ni) coordinated to two flexible organic ligands (L1 and L2), each selected560

from a 91-membered ligand library. The data includes conformations of each unbound catalyst, as561

well as conformations of the catalyst when bound to ethylene and bromide after oxidative addition562

with vinyl bromide. Each catalyst has an electronic binding energy, computed as the difference563

in the minimum energies of the bound-catalyst complex and unbound catalyst, following the DFT-564

optimization of their respective conformer ensembles.565

Although the binding energies are computed via DFT, the conformers provided for modeling are566

initially generated with Open Babel [32], followed by further geometric optimization steps, which567

ensures that the generated 3D structures are likely to be the global minimum energy conformers at568

the force field level [31, Supplementary Information]. We also note that obtaining DFT-optimized569

conformers for BDE is not feasible given the time-consuming nature of the process — a single570

geometric search using DFT can take 2 to 3 days. Therefore, this realistically represents the setting in571

which precise conformer ensembles are unknown at inference.572

Objectives. The task is to predict the binding energy from the graphs of the unbound and bound cata-573

lyst, sampled conformers C(unbound)
i ∈ C(unbound) and C(bound)

i ∈ C(bound), or the ensembles C(unbound)574

and C(bound).575

Dataset preparation. We employ Open Babel [32] to produce conformers for each unbound catalyst576

and each bound complex. In order to avoid redundancy, we follow a deduplication process as outlined577

in Section 3. For the unbound catalysts, a RMSD threshold value of 0.5 is applied, whereas for the578

bound complexes, a threshold of 1.0 is used.579

Data availability and license. The binding energy descriptors can be accessed at https://archiv580

e.materialscloud.org/record/2018.0014/v1 under the Creative Commons Attribution 4.0581

International license. The conformers are publicly available at https://anonymous.4open.scie582

nce/r/MARCEL-4813/datasets/BDE/README.md under the Apache license.583

B Implementation Details584

B.1 Implementation of 1D Models585

For the random forest model that operates on fingerprints, we employ three molecular finger-586

print schemes: the Molecular ACCess System (MACCS) [37], Extended-Connectivity Fingerprints587

(ECFP) [36], and RDKit topological fingerprints [33]. Then, we concatenate their outputs into a588

single vector, which might lead to some feature redundancy, given the possible overlaps in these three589

fingerprint representations of the molecular structure. To tackle this issue, we remove any features590

that exhibit a high correlation exceeding 90% with the other features. For implementation, we employ591

Scikit-Learn [56] and compute fingerprints with RDKit [33].592

For both LSTM and Transformer models that operate on SMILES strings, we use a Byte-Pair593

Encoding (BPE)-based tokenizer [57] that is pretrained on PubChem10M, which strikes a balance594

among character- and word-level representations and allows to handle large vocabularies in molecular595

corpora. For the Transformer model, we further follow the positional embedding scheme [39] to596

capture the positional relationship among tokens in the SMILES string.597
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Table S1: A summary of node and edge features used in 2D GNN models.

Feature Explanation

Node

AtomicNum Atomic number, representing the type of atom.
ChiralTag Indicator of chirality, a property of asymmetry.

TotalDegree Sum of implicit and explicit bonds of an atom.
FormalCharge Charge of an atom assuming equal sharing of bonding electrons.
TotalNumHs Total number of hydrogen atoms bonded to the atom.

NumRadicalElectrons Count of unpaired electrons in an atom.
Hybridization Type of atomic orbital hybridization in the atom.
IsAromatic Boolean indicating if the atom is part of an aromatic ring.
IsInRing Boolean indicating if the atom is part of any ring structure.

Edge
BondType Type of the bond (e.g., single, double, triple, aromatic).
Stereo Stereochemistry of the bond (e.g., “none”, “any”, “Z”, or “E” for double bonds).

IsConjugated Boolean indicating if the bond is part of a conjugated system.

B.2 Featurizations of Molecules for 2D Models598

Following OGB [41], we employ a rich set of features for atoms (nodes) and bonds (edges) for 2D599

GNN models. A complete list of node and features can be found in Table S1.600

B.3 Hyperparameter Specifications and Experimental Environments601

Each model is trained over 2,000 epochs using the Adam optimizer [49] with early stopping triggered602

if there is no improvement in the training loss over 200 epochs. To ensure a fair comparison, the603

hidden dimension size is uniformly set to 128 for all models. Other hyperparameters mostly follow604

the original configurations as described in the respective papers. The complete hyperparameter set of605

each model can be found in https://anonymous.4open.science/r/MARCEL-4813/benchmar606

ks/params.607

We utilize PyTorch [58] and PyTorch-Geometric [59] to implement all deep learning models. Most608

of the experiments are conducted on servers equipped with NVIDIA A100 GPUs, each with 40GB of609

memory. For memory-intensive models such as GemNet and LEFTNet, we use servers with NVIDIA610

H100 GPUs, each with 80GB memory. The cumulative computation time across all experiments611

amounts to approximately 6,000 single GPU hours.612

C Additional Experiments on Evaluation Schemes of the Conformer613

Sampling Strategy614

In this section, we conduct one additional experiment on the conformer ensemble learning strategies.615

We assess all 3D models on five tasks: Ionization Potential (IP) from the Drugs-75K dataset, B5 and616

BurB5 from the Kraken dataset, and tasks from the EE and BDE datasets.617

In our previous setup, we evaluate the conformer sampling strategy using the lowest-energy conformer618

of each molecule at evaluation time, to provide a direct comparison to the single-conformer 3D619

models that are trained and tested with the lowest energy conformation. In these experiments, we620

continue to sample a random conformer uniformly from the conformer ensemble during training621

time, but consider two additional evaluation schemes: (1) evaluating model performance when622

encoding a randomly sampled conformer, and (2) evaluating model -performance when averaging the623

per-conformer predictions across the entire conformer ensemble.624

The results of these experiments are summarized in Table S2. In the table, we refer to the original625

evaluation scheme as “fixed”, and the additional schemes as “random” and “all”, respectively. We626

find that across all three schemes, using the lowest-energy conformer for evaluation consistently627

yields the best performance. This is expected, as the lowest-energy conformer contributes the most628

to ensemble-level descriptors. The random conformer evaluation scheme generally yields the worst629

performance, which is likely due to the introduction of noise from less relevant conformers at test630
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Table S2: Performance comparison of three conformer sampling variants with different evaluation
strategies. All models are trained with a randomly sampled conformer from the ensemble. The last
column summarizes the average rank across all datasets for each base model.

Model Evaluation
Strategy

Drugs-75K Kraken
EE BDE Average

RankIP B5 BurB5

SchNet

Fixed 0.4452 0.3235 0.2086 20.3595 1.9737 1

Random 0.4498 0.3682 0.2454 22.0380 2.4416 3

All 0.4428 0.3856 0.2407 18.0296 2.0106 2

DimeNet++

Fixed 0.4395 0.3323 0.2237 15.0596 1.4741 = 2

Random 0.4555 0.3549 0.2222 13.5681 1.4688 = 2

All 0.4479 0.3282 0.2001 12.3562 1.6270 1

GemNet

Fixed 0.4066 0.2694 0.1796 12.0541 1.6059 1

Random 0.4250 0.4034 0.2534 16.1709 1.7894 3

All 0.4320 0.4523 0.2481 14.3952 1.6660 2

PaiNN

Fixed 0.4466 0.3441 0.2476 19.1521 1.9262 1

Random 0.4770 0.3756 0.2478 21.3553 1.9411 3

All 0.4478 0.3458 0.2342 19.1955 1.8696 2

ClofNet

Fixed 0.4430 0.4524 0.2442 31.3733 2.5126 1

Random 0.4530 0.4689 0.2736 31.3675 2.6310 = 2

All 0.4363 0.4749 0.2855 34.3203 2.0271 = 2

LEFTNet

Fixed 0.4149 0.2834 0.2120 20.3358 1.5276 1

Random 0.4518 0.3177 0.2344 20.3740 1.5842 3

All 0.4274 0.3152 0.2170 18.8945 1.8663 2

time. Interestingly, we observe occasional performance improvement when averaging the predictions631

across all conformers in the ensemble, indicating that explicitly using ensemble-level information632

during evaluation can be beneficial.633

D Raw Data634

The raw performance data with standard deviation of Table 2 and Figure 3 is summarized in Table S3.635
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Table S3: Raw performance data (mean ± standard deviation) of representative 1D, 2D, 3D, and
conformer ensemble MRL models in terms of absolute test error.

Category Model
Drugs-75K Kraken

EE BDE
IP EA χ B5 L BurB5 BurL

1D
Random forest 0.4987±0.0037 0.4747±0.0022 0.2732±0.0031 0.4760±0.0041 0.4303±0.0090 0.2758±0.0180 0.1521±0.0149 61.2963±2.8640 3.0335±0.2693

LSTM 0.4788±0.0024 0.4648±0.0002 0.2505±0.0050 0.4879±0.0280 0.5142±0.0411 0.2813±0.0041 0.1924±0.0028 64.0088±2.3708 2.8279±0.0728

Transformer 0.6617±0.0023 0.5850±0.0031 0.4073±0.0006 0.9611±0.0813 0.8389±0.0431 0.4929±0.0369 0.2781±0.0207 62.0816±2.1789 10.0771±0.6457

2D

GIN 0.4354±0.0029 0.4169±0.0032 0.2260±0.0017 0.3128±0.0264 0.4003±0.0341 0.1719±0.0031 0.1200±0.0040 62.3065±2.9010 2.6368±0.2276

GIN-VN 0.4361±0.0059 0.4169±0.0083 0.2267±0.0002 0.3567±0.0031 0.4344±0.0416 0.2422±0.0033 0.1741±0.0109 62.3815±2.1882 2.7417±0.2446

ChemProp 0.4595±0.0028 0.4417±0.0045 0.2441±0.0012 0.4850±0.0068 0.5452±0.0454 0.3002±0.0086 0.1948±0.0138 61.0336±2.9715 2.6616±0.1429

GraphGPS 0.4351±0.0049 0.4085±0.0055 0.2212±0.0054 0.3450±0.0324 0.4363±0.0133 0.2066±0.0115 0.1500±0.0138 61.6251±1.3743 2.4827±0.1992

3D

SchNet 0.4394±0.0062 0.4207±0.0021 0.2243±0.0089 0.3293±0.0068 0.5458±0.0341 0.2295±0.0111 0.1861±0.0095 17.7421±1.0899 2.5488±0.0050

DimeNet++ 0.4441±0.0087 0.4233±0.0072 0.2436±0.0075 0.3510±0.0107 0.4174±0.0397 0.2097±0.0160 0.1526±0.0072 14.6414±2.2791 1.4503±0.0370

GemNet 0.4069±0.0007 0.3922±0.0024 0.1970±0.0039 0.2789±0.0125 0.3754±0.0086 0.1782±0.0099 0.1635±0.0063 18.0338±2.4777 1.6530±0.3081

PaiNN 0.4505±0.0041 0.4495±0.0054 0.2324±0.0040 0.3443±0.0388 0.4471±0.0324 0.2395±0.0176 0.1673±0.0088 20.2359±1.2128 2.1261±0.0920

ClofNet 0.4393±0.0084 0.4251±0.0066 0.2378±0.0020 0.4873±0.0093 0.6417±0.0362 0.2884±0.0166 0.2529±0.0052 33.9473±1.4633 2.6057±0.0236

LEFTNet 0.4174±0.0007 0.3964±0.0009 0.2083±0.0054 0.3072±0.0012 0.4493±0.0261 0.2176±0.0010 0.1486±0.0095 19.7974±1.4097 1.5328±0.0567

3D
+Sampling

SchNet 0.4452±0.0080 0.4232±0.0042 0.2243±0.0022 0.3235±0.0147 0.4598±0.0041 0.2086±0.0111 0.1739±0.0142 20.3595±1.5260 1.9737±0.0125

DimeNet++ 0.4395±0.0032 0.4217±0.0040 0.2432±0.0048 0.3323±0.0320 0.4153±0.0208 0.2237±0.0122 0.1561±0.0241 15.0596±0.2867 1.4741±0.0349

GemNet 0.4066±0.0015 0.3910±0.0004 0.2027±0.0013 0.2694±0.0221 0.3488±0.0252 0.1796±0.0098 0.1184±0.0033 12.0541±0.7735 1.6059±0.1094

PaiNN 0.4466±0.0087 0.4393±0.0045 0.2331±0.0037 0.3441±0.0161 0.4358±0.0343 0.2476±0.0070 0.1543±0.0022 19.1521±0.2386 1.9262±0.0188

ClofNet 0.4430±0.0074 0.4237±0.0005 0.2335±0.0090 0.4524±0.0935 0.5962±0.0074 0.2442±0.0109 0.1756±0.0112 31.3733±1.9892 2.5126±0.2366

LEFTNet 0.4149±0.0019 0.3988±0.0048 0.2141±0.0084 0.2834±0.0068 0.4407±0.0531 0.2120±0.0097 0.1547±0.0101 20.3358±0.6614 1.5276±0.0088

Ensemble

SchNet
Mean 0.4583±0.0019 0.4410±0.0018 0.2371±0.0098 0.3075±0.0151 0.4691±0.0234 0.2282±0.0206 0.1619±0.0062 20.1392±1.5748 2.5312±0.0246

DeepSet 0.4537±0.0065 0.4396±0.0010 0.2385±0.0066 0.3105±0.0381 0.4322±0.0464 0.2249±0.0234 0.1535±0.0076 18.0495±1.2846 2.2941±0.2229

Attention 0.4556±0.0075 0.4382±0.0125 0.2380±0.0007 0.2704±0.0187 0.4517±0.0132 0.2024±0.0183 0.1443±0.0043 14.2238±0.5451 2.6445±0.0031

DimeNet++
Mean 0.4488±0.0086 0.4340±0.0079 0.2425±0.0060 0.2630±0.0122 0.3828±0.0331 0.1960±0.0059 0.1268±0.0060 12.0259±0.8933 1.7964±0.1260

DeepSet 0.4126±0.0076 0.3944±0.0034 0.2267±0.0047 0.2889±0.0069 0.3468±0.0090 0.1783±0.0110 0.1339±0.0087 15.5754±2.6294 1.7533±0.0163

Attention 0.4188±0.0024 0.4030±0.0075 0.2325±0.0028 0.3718±0.0300 0.3628±0.0259 0.1899±0.0081 0.1185±0.0105 13.3643±1.4309 2.5714±0.2149

GemNet
Mean 0.4505±0.0052 0.4334±0.0023 0.2289±0.0032 0.2635±0.0053 0.3753±0.0036 0.1671±0.0154 0.1587±0.0029 11.6142±1.7271 2.1914±0.0605

DeepSet 0.4187±0.0022 0.4002±0.0012 0.2169±0.0036 0.2313±0.0026 0.3386±0.0269 0.1589±0.0068 0.0947±0.0012 13.9273±1.8656 2.2532±0.2106

Attention 0.4212±0.0017 0.4221±0.0097 0.2260±0.0056 0.2670±0.0026 0.3554±0.0147 0.1769±0.0153 0.1346±0.0075 12.0249±1.8418 2.6810±0.0223

PaiNN
Mean 0.4591±0.0024 0.4425±0.0064 0.2360±0.0032 0.2877±0.0252 0.3950±0.0233 0.1817±0.0091 0.1472±0.0039 16.4239±0.0743 1.8744±0.1657

DeepSet 0.4471±0.0071 0.4269±0.0033 0.2294±0.0065 0.2225±0.0218 0.3619±0.0192 0.1693±0.0111 0.1324±0.0091 13.5570±0.5505 2.2097±0.0586

Attention 0.4641±0.0016 0.4567±0.0094 0.2471±0.0049 0.3496±0.0140 0.4109±0.0167 0.2123±0.0005 0.1506±0.0029 19.1556±2.2765 2.2335±0.1255

ClofNet
Mean 0.4536±0.0030 0.4301±0.0007 0.2365±0.0075 0.3555±0.0193 0.4485±0.0053 0.2473±0.0076 0.2022±0.0212 19.9710±0.7745 2.0106±0.0856

DeepSet 0.4280±0.0056 0.4033±0.0024 0.2199±0.0073 0.3228±0.0020 0.4742±0.0161 0.2263±0.0249 0.1548±0.0039 13.9647±1.2753 2.3576±0.0496

Attention 0.4330±0.0071 0.4107±0.0048 0.2220±0.0084 0.3734±0.0267 0.4963±0.0286 0.2178±0.0186 0.1690±0.0281 26.7133±1.7225 2.6652±0.1438

LEFTNet
Mean 0.4402±0.0062 0.4267±0.0026 0.2183±0.0007 0.2949±0.0001 0.3643±0.0352 0.2098±0.0146 0.1386±0.0007 18.9245±2.0136 2.0440±0.0076

DeepSet 0.4167±0.0043 0.3953±0.0000 0.2069±0.0022 0.2644±0.0130 0.3866±0.0270 0.2023±0.0026 0.1441±0.0042 18.4189±1.8922 2.5165±0.3077

Attention 0.4229±0.0059 0.4067±0.0047 0.2198±0.0011 0.3161±0.0116 0.4324±0.0292 0.2017±0.0023 0.1508±0.0075 18.9988±1.6904 2.6361±0.1560
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