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ABSTRACT

We propose Decrypto, a novel interactive benchmark for evaluating coordination,
competition, and theory of mind (ToM) reasoning capabilities in agentic, foun-
dational AI models. Existing benchmarks often suffer from data leakage, satura-
tion, and lack of interactivity, making it hard to measure the ability of intelligent
systems to model other agents’ reasoning. To overcome or alleviate these lim-
itations, we introduce Decrypto, a multi-agent benchmark based on a popular,
language-based board game and designed to be future-proof for large language
models (LLMs). We validate Decrypto’s effectiveness through comprehensive
empirical evaluations of frontier LLMs, robustness studies, and human-AI cross-
play experiments. We show that LLMs do not coordinate well with other LLMs
or humans and perform strictly worse than the latter. Specifically, LLMs struggle
to reason about the choices of others, even if they use the same underlying model,
pointing to a fundamental limitation of current systems.

1 INTRODUCTION

Much recent effort has been made towards agentic behaviour and reasoning (Huang et al., 2023)
to improve the capabilities of frontier foundational models. Multiple benchmarks have also been
proposed to assess progress, with a focus on mathematical reasoning (Cobbe et al., 2021), common
sense (Zellers et al., 2019), and theory of mind (Chen et al., 2024b).

However, many of those benchmarks suffer from significant shortcomings. For example, some
benchmarks are based on a fixed dataset of problems. This leads to a significant risk of data leakage,
whereas models will appear to perform well but become brittle when the questions are rephrased.
Even when leakage risks are mitigated, such as having a secret test set, those benchmarks are subject
to saturation. Other benchmarks for tasks such as maths (Cobbe et al., 2021), spatial reasoning
Clark et al. (2018), or even multiple choice question answering (Hendrycks et al., 2020), target
the weaknesses inherent in transformers trained on next-token prediction, such as failing to tokenize
numbers correctly, inability to perform complex operations, and more. More importantly, real-world
agentic applications are often multi-turn, multi-agent, partially observable, and stochastic. However,
many of the supervised benchmarks do not address these specific challenges, unlike Decrypto.

Historically, games have proven valuable as benchmarks, requiring planning, decision-making,
credit assignment and different types of reasoning. One such type of reasoning is theory of mind
(ToM), which requires creating and maintaining a mental model of other agents (artificial or biolog-
ical) within a multi-agent scenario. However, many ToM benchmarks are not interactive and suffer
from one or more of the scenarios above. As a ToM task, Decrypto presents a multi-turn language
variant of the Three Mountain Problem (Piaget et al., 1956) introduced to study child cognitive de-
velopment. This seminal problem examines whether a child can acknowledge physical points of
view distinct from its own. Additionally, Decrypto contains a cooperative and competitive aspect
and thus requires players to reason about the information available to each of the other players,
coordinate, and take strategic decisions accordingly.

Decrypto is inspired by the interactive environments prevalent in (multi-agent) reinforcement learn-
ing (RL) and based on the popular board game of the same name. In the paper, we first outline the
design decisions to ensure that the benchmark is simultaneously future-proof and as easy as possible
for LLMs, by removing every blocker that typically hurts LLM performance. We then introduce
the different evaluation settings afforded by the game, evaluate a suite of popular frontier LLMs,
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Alice Bob

Code:
2-3-4

Eve

Keywords:
1. giraffe 
2. jazz
3. thunder 
4. plane

Hints:
a. trumpet
b. Zeus
c. takeoff

Hints:
a. trumpet
b. Zeus
c. takeoff

Guess Bob:
2-3-4

Guess Eve:
1-2-4

Hint History:
1. neck, savannah 
2. new orleans, trumpet
3. lightning, Zeus
4. wing, turbulence, takeoff

Code History:
1-4-2, 3-1-4, 2-3-4

Guess Bob:
2-3-4

Guess Eve:
1-2-4

Step 1: Encryption Step 2: Decryption Step 3.1: Public Reveal 

Step 3.2: Update

Code:
2-3-4

Figure 1: Overview of a turn in Decrypto, split into three steps, with Alice and Bob (Encoder and
Decoder) playing against Eve (Interceptor). Step 1: Alice gets a random code of 3 non-repeating
digits, and provides 3 hints referring to the meaning of the four Keywords. Step 2: Bob and Eve
receive the hints and attempt to guess the code independently. Step 3: Both guesses and the code are
publicly revealed, and the code and hint histories are updated accordingly. All players have access
to the histories at all times, but only Alice and Bob have access to the keywords. The goal is for
Alice to provide hints that are easy for Bob to decode but hard for Eve. As the game progresses, the
growing hint history makes it easier for Eve to intercept.

perform a robustness study on our environment design, investigate human-AI cross-play results, and
outline several exciting research directions enabled by our environment.

In summary, Decrypto distinguishes itself from existing benchmarks in several key ways:

1. Focus on Language-Based Reasoning: Unlike grid-world or embodied task environ-
ments, Decrypto isolates language-based reasoning and association, directly leveraging
LLMs’ core training objective. Decrypto is operated entirely through word associations,
something that LLMs could reasonably be expected to excel at, since learning word co-
occurrences is an important step towards reducing perplexity during pre-training.

2. Theory of Mind Assessment: Decrypto’s design specifically targets theory of mind capa-
bilities, requiring agents to reason about the knowledge of other players.

3. Human-Compatible Evaluation: As a game designed for humans, Decrypto facilitates
comparisons between human and LLM performance, offering insights into the gap and
compatibility between artificial and human intelligence in strategic communication tasks.

2 DECRYPTO: THE GAME

Decrypto is a word-based code-guessing board game published by Scorpion Masqué. It requires at
least three players divided into two teams. We describe this variant here and implement it in this
benchmark. Borrowing the terminology from cryptography, players are assigned three distinct roles:
Alice (the Encoder), Bob (the Decoder), and Eve (the Interceptor or Eavesdropper). An instance of
a game lasts 8 turns. We refer to one game instance as an episode, consistent with RL nomenclature.

As shown in Figure 1, Alice and Bob are on the same team and they share 4 ordered secret keywords,
ke = {kc}e where c ∈ [1, 4], e ∈ N is the current episode, and k ∈ K, where K is a predetermined
corpus of keywords. In the original game, the corpus contains around 450 keywords. For example,
k0 might be {1. guitar, 2. space, 3. apple, 4. sword}. The keywords ke are sampled at the beginning
of the episode and remain fixed throughout the 8 turns.

Each turn, Alice samples a secret code of 3 non-repeating digits between 1 and 4, ct = {cj}t, where,
c ∈ [1, 4] as above, j ∈ [0, 2], and t ∈ [0, 7], e.g. at turn 0, c0 = {4, 1, 3}0. Alice must provide 3
public hints, one for each digit, ht = {hc}t ∀c ∈ ct, e.g. {knight, music, laptop} such that Bob can
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guess the code but Eve cannot. Then, Bob and Eve make an independent attempt to guess the code,
i.e., gt

B = {gj}tB and gt
E = {gj}tE , where g ∈ [1, 4], and the real code is revealed.

If Bob guesses incorrectly, his team gets a Miscommunication token. If Eve guesses correctly,
she gets an Interception token. If, at any point in the episode, Alice and Bob accumulate two
miscommunication tokens or Eve gains two Interception tokens, the episode ends, and Eve wins.
Alice and Bob win if they make it through 8 rounds without any of those two conditions happening.

Bob starts with an advantage because Bob has access to the 4 keywords ke and Eve does not, see
Figure 1. However, the actual code is revealed publicly after Bob and Eve provide their guess. Eve
can, therefore, keep track of the hint history τ e = {τc}e, where c ∈ [1, 4] and τ tc = {h0

c , ..., h
t
c}, i.e.,

the hints used for each digit on previous turns. τ makes it easier to intercept the code as the game
progresses. For instance, if Alice provided the hints τ34 ={knight, duel, Middle Ages, blacksmith}
for digit 4 in the previous 4 turns, and now gives the hints ht=4 ={“shield”, “accountant”, “snow”},
it is quite likely that Eve will associate “shield” to digit 4. Therefore, Alice must be careful to
provide hints that are subtle enough to avoid interception yet sufficiently related to the keywords for
Bob to guess correctly.

While the keywords are sampled from a predetermined set, the choice of hints is open-ended. The
restriction is that hints must be real words (including proper nouns) and refer to the meaning of the
keywords, not to their spelling or pronunciation.

The game provides a language reasoning challenge. Alice must choose associated hints carefully,
using theory of mind to anticipate how Bob and Eve will interpret them using their respective avail-
able information. Both miscommunications and interceptions are detrimental.

3 DECRYPTO: THE BENCHMARK

Unlike other reasoning benchmarks, Decrypto is purposely designed to not require many of the
capabilities that large pre-trained models struggle with. In particular, it demands no symbolic rea-
soning (Clark et al., 2018; Bard et al., 2020), mathematical reasoning ((Cobbe et al., 2021; Zhang
et al., 2024a), spatial reasoning (Clark et al., 2018; Carroll et al., 2019), tool use (Xu et al., 2023a), or
particular attention to tokenization (which has notably been shown to affect arithmetic performance).

Instead, strong performance in Decrypto relies purely on word-based reasoning and theory of mind.
Because LLMs are trained to learn word co-occurrences and associations, we expect them to excel
at the game. However, this is not the case, and humans and simple hard-coded baselines outperform
even the most advanced open—and closed-source LLMs available.

Due to its two-team, three-player setup, Decrypto can be used to benchmark LLMs in both compet-
itive and cooperative scenarios. Being a game, the difficulty of Decrypto naturally scales with the
agents’ ability for each of the three roles. This makes the benchmark much harder to saturate, unlike
those relying on a fixed dataset of problems. We also curate a set of 680 possible keywords, re-
sulting in over 8.8 billion possible keyword combinations to limit memorization, and implement the
option to provide custom keywords beyond the standard set. Furthermore, the game was designed
for human play, facilitating human-AI coordination and qualitative performance comparison.

The benchmark, including integration with popular APIs, all keywords, and helper code to run
experiments and collect human data will be open-sourced along with this paper’s final release.

Competition. The first aspect of the Decrypto benchmark is to evaluate language reasoning in a
competitive setting. This setting involves assigning Alice and Bob with identical agents (i.e. the
same LLM) and evaluating the Alice-Bob pair against Eves with different agents. The goal is to
determine how well an LLM can play with itself to win against various interceptor Eves. A model
that outperforms other LLMs as Alice-Bob, and as Eve, likely has stronger reasoning capabilities.
The average number of turns per game is the most predictive performance variable.

The key metrics provided naturally by the game are the number of interceptions, the number of
miscommunications and certainly the number of wins either by Alice/Bob or Eve. The number
of miscommunications measures the ability of Alice and Bob to cooperate and the number of in-
terceptions captures Eve’s ability to compete. There is a tension between miscommunications and
interceptions in Decrypto. Alice can aim to minimise miscommunications and provide easy hints.

3
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Figure 2: Percent of games ending in miscommunications (left) and average game length (right)
for the word embedding baselines as a function of K – the hint vocabulary size per keyword. For
low K, the baselines coordinate well, but their hints are easier to intercept. At high K values,
both models sample from lower similarity words. This results in very strong SP baselines, which
cannot coordinate in XP, with most games ending in miscommunication for K > 128. Each curve
corresponds to an (encoder, decoder) pair. The interceptor is Llama3.1 70B, but trends hold across
all interceptors, including baselines. We report mean and standard error over 3 model seeds.

If Alice’s hints were easy to guess, Alice would never miscommunicate with Bob, but Eve could
certainly intercept the code. If Alice aims to minimise intercepts, the hints would be impossible to
guess for Eve, but also for Bob. Thus, the number of miscommunications and intercepts are two
sides of the same coin. Average game length per game allows us to capture both sides in one metric.
If the average length is high, Alice and Bob can successfully balance the difficulty of hints to avoid
miscommunications and intercepts. The number of interceptions and miscommunications only cap-
ture part of the game. On one hand, if Alice wanted to avoid miscommunications, she would provide
obvious hints but get intercepted quickly. On the other hand, Alice could give hints that are almost
impossible to guess to avoid interceptions. In both cases, the games would be over quickly soon, so
the number of turns is an insightful metric.

Benchmarking LLMs directly with and against other state-of-the-art LLMs is akin to Chess or Go,
where the best models are evaluated against each other and not on a fixed dataset of trajectories.
We strongly believe that solving the Decrypto challenge likely requires LLMs to perform multi-step
reasoning and to train them in self-play (SP) for goal-oriented tasks.

Ad-hoc Coordination In this setting, we are interested in evaluating the coordination ability. This
setting freezes Eve (e.g., to a rule-based baseline or the strongest available LLM). It then pairs
different LLMs with each other (e.g. Alice is GPT-4o, and Bob is Llama). What matters is the
ability to coordinate with previously unseen agents. As above, the average number of turns per
game is the most reasonable metric here.

A subset of ad-hoc coordination is human-AI coordination. This setting is similar to the above,
except one of the two agents (Alice or Bob) is played by a human. In this case, we evaluate the
ability of LLMs to coordinate with humans, understand why they gave certain hints, and anticipate
how they might interpret given hints.

Theory of Mind Both the competitive and cooperative settings require theory of mind for high
performance. Each of the three players has access to different information. Bob and Eve must ap-
proximate or recreate the reasoning that Alice took to arrive at her proposed hints to guess correctly.
Meanwhile, Alice must anticipate how each of the other two players will interpret the hints and
choose accordingly.
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Figure 3: Cooperative and competitive results for 5 different agents. All results were reported for
32 games and 3 model seeds. Top: Cooperative cross-play matrix when the interceptor is Llama3.1
70B. Left: proportion of games ending in miscommunication. Right: average number of turns per
episode. At K=16, baselines play well with each other, outperforming all LLM agents tested, but
coordinate poorly with LLMs. Bottom Competitive results playing a homogeneous encoder-decoder
team against an interceptor. Left: proportion of games ending in an intercept. Right: average number
of turns per episode. Here, too, baselines outperform LLM agents across both roles.

4 STATE OF THE ART

4.1 SPECIALIST VS GENERALIST AGENTS

To avoid trivial solutions for our benchmark, we will discuss two different types of agents, specialist
agents and generalist agents, and highlight which directions we encourage for exploration. In most
RL settings, the policy is designed specifically for a given environment since it is parameterised to
map the environment’s observations (or action-observations history) to its action space. This lim-
itation no longer necessarily holds with general-purpose models, mainly because large pre-trained
models are expected to perform well in several scenarios beyond their training distribution (Brown,
2020). As a result, we propose to divide agents into two distinct classes: specialist agents and
generalist agents.

Specialist agents are all agents purposely designed using knowledge of the task. Solutions in this
space include rule-based strategies, fine-tuning a large pre-trained model on game data, building a
prompt pipeline informed by the rules of the games, and prompt engineering. In this framework, we
consider the prompt to be part of the agent, if it is needed at all. In this context, prompt engineering
is the designer’s burden, and the environment only returns key information, such as a dictionary.

Due to the larger design space, we expect specialist agents to outperform generalist ones in every
task. However, we especially encourage research on methods which produce specialist agents for
a large class of tasks. This includes better fine-tuning algorithms but excludes rule-based agents
for playing Decrypto, such as the Word2Vec (Mikolov, 2013) and GloVe (Pennington et al., 2014)
baselines we present next.
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Specialist Agents - Baselines We introduce two specialist agent baselines to play Decrypto. For
the baseline models, we use the common crawl GloVe with a vocabulary of 2.2 million words (Pen-
nington et al., 2014) and the Word2Vec embeddings trained on the Google News dataset, provided
by the gensim library (Rehurek & Sojka, 2011; Mikolov, 2013). The baselines work as follows. Al-
ice can choose hints from a fixed corpus of 5696 hints. The hint corpus comprises the most common
nouns extracted from the Brown, Gutenberg, and Webtext corpora (Bird et al., 2009). We filter the
nouns to ensure all extracted nouns are present in the GloVe and Word2Vec embeddings. (We use
this hint corpus for the baselines only; LLM agents generate hints in an open-ended fashion, limited
only by the game rules and the model itself.)

Before Alice chooses hints, Alice and Bob agree on a strategy. For each code digit ctj , Alice picks
a hint ht

c and guarantees that the hint picked for the digit is more similar to the code’s keyword kc
than to any other keyword, i.e., s(ht

c, kc) > s(ht
c, kj) ∀j ∈ −c, where −c = [1, 4] \ c and s is the

cosine similarity.

Alice increases the diversity of her hints by randomly sampling each hint from the top-K most sim-
ilar words for each keyword under cosine similarity, filtering words that do not satisfy the constraint
above. We also enforce that Alice cannot reuse any previously used hints from the same episode.

Bob then analyses the hints and assigns each hint to its most similar keyword under cosine similar-
ity, i.e., argmaxc∈C s(hX ,Kc) ∀X ∈ X. Bob guesses the code perfectly if Alice and Bob use
the same word embeddings because the hints are guaranteed to be the most similar to the correct
keyword under the same embedding model.

Eve is only given the hints h and the hint history for each keyword, which at turn 0 is empty. Eve
calculates the cosine similarity between the average embedding of each keyword’s hint history with
the hints. This results in a similarity matrix of size N ×M , where N(= 3) is the number of hints
and M(= 4) is the number of keywords. Eve combinatorially calculates the globally optimal guess
based on the similarity values. Since N and M are typically small values, we are unconcerned about
the computational complexity. However, Eve’s selection task is equivalent to a linear assignment
problem and efficient algorithms, such as the Jonker-Volgenant algorithm, are available in open-
source libraries such as SciPy (Virtanen et al., 2020).

These baselines serve three purposes. First, they demonstrate that by pre-agreeing on a strategy
and having perfect theory of mind, represented by a shared word similarity measure, it is possible
to construct a virtually unbeatable Decrypto team, in the role of Alice and Bob, by setting K to a
sufficiently large value. This establishes an upper bound on performance to which to compare other
agents. Second, while they achieve arbitrarily good performance, we show in Figure 2 that changing
the similarity measure for one of the agents can result in a catastrophic lack of coordination and
poor cross-play (XP) performance. Third, by selecting a low enough value of K, we can operate
the baselines in the regime where the two embeddings (Word2Vec and GloVe) correlate and are
likely to still rely on the useful signal captured by those embeddings. For this reason, we use
baselines with K = 16 for the remainder of the paper, corresponding to the point in Figure 2 before
miscommunications increase significantly.

Generalist agents, in contrast to specialised agents, refer to general-purpose models used to play
the game “out-of-the-box” without any additional fine-tuning on task-specific data. In particular,
for generalist agents, we consider the prompt to be the observation returned by the environment,
which precludes any form of prompt engineering. Evaluating foundational models in this framework
assesses their ability to generalise to novel tasks, including out-of-distribution ones and those where
data is limited or unavailable.

Because foundational models are sensitive to their prompting, we recommend evaluating generalist
agents with a range of different prompts, to prevent the choice of prompt favouring any one model.
We provide such an evaluation using various hand-crafted Decrypto prompts in Figure 4 and show
that game performance is robust to prompt variations and depends significantly on model size.

Generalist agents include individual pre-trained models and multi-agent systems of LLMs or tool-
augmented generation. The only requirement is that any such agent be defined at a general level of
abstraction and not condition in any way on the evaluation benchmark (e.g., the Decrypto game).
For instance, an LLM that automatically rephrases the prompt for clarity is acceptable. Using a
regular expression to extract key information from the Decrypto prompt is not.

6
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Figure 4: Distribution of the number of turns per game as we vary the system and user prompts
for both encoder and decoder. We handwrite 5 system and 5 user prompts (i.e. “modes”) for the
encoder and the decoder and plot the distributions of games when only their system prompts match,
when only their user prompts match, when both match or when neither do (625 total combinations
per model). We find that both models tested are robust to significant prompt variations, with model
size remaining the most significant predictor of performance.

4.2 HUMAN-DATA COLLECTION

We collect 9 full games of human ad-hoc cooperative trajectories against a fixed LLM Eve, namely
Llama-3.1-70B. The human players interacted with the game through a unified commandline inter-
face (see Appendix B.2 and saw the same system and user prompts, and information as an LLM
would. Please see Section A.2,A.3 for example prompts.

Normally, a game ends when 2 interceptions or miscommunication tokens are collected. To max-
imise our data collection, we did not terminate the game after 2 interceptions but let the humans
play the game for the full 8 turns. The participants were incentivised to keep providing good hints
and analyse the hints appropriately even after the game technically terminated. Such a game does
not count as won, but the extra turns can be useful when replaying the game to evaluate other LLMs
as Eve.

5 RESULTS

To kickstart this benchmark, we assess the cooperative, competitive, and theory of mind capabil-
ities of specialised and generalist agents in Decrypto. Amongst generalist, open-source models,
we evaluate, in order of parameter count, Llama-3.1 8B, Llama-3.1 70B, Mistral-Large-Instruct-
2407 (123B). From the closed-source models, we only evaluate GPT-4o due to resource constraints.
Moreover, we include two specialist agent baselines based on word embedding models, which we
describe below. Finally, we present the human-AI coordination and competition results, with data
collected from 9 human games.

Baselines. We first look at the specialised agents baselines and show in Figure 2 that we can control
K for the top-K selection to make them arbitrarily strong. Smaller K prioritises words semantically
similar to the keyword, making the hints easier to guess. Bigger K might select semantically less
similar hints, which are harder to guess if Bob cannot access the same embeddings. For example,
GloVe-Alice wants to hint the keyword “fire” to Word2Vec-Bob, and K = 50. The 50th most
similar word to “fire” in the hint corpus would be “oil” for GloVe. However, “oil” is not even in the
top 1000 most similar words for Word2Vec-Bob in the hint corpus, highlighting where cross-play

7
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Role Model Events Event Rate Surv. Rate Avg. Game Len.
Interceptor Word2Vec 7.00 ± 0.00 11.29% ± 0.00% 42.86% ± 0.00% 6.89 ± 0.00

GloVe 7.00 ± 0.00 12.07% ± 0.00% 28.57% ± 0.00% 6.44 ± 0.00
Llama3.1 8B 4.00 ± 0.58 6.56% ± 1.07% 50.00% ± 4.12% 6.81 ± 0.13
Llama3.1 70B 6.67 ± 0.88 10.91% ± 1.59% 45.24% ± 2.38% 6.81 ± 0.13
Mistral Large 8.67 ± 0.33 14.32% ± 0.84% 38.43% ± 3.24% 6.74 ± 0.16
GPT-4o 9.67 ± 0.67 17.46% ± 1.68% 41.67% ± 4.17% 6.19 ± 0.20

Decoder Word2Vec 18.00 ± 0.00 75.00% ± 0.00% 0.00% ± 0.00% 2.67 ± 0.00
GloVe 18.00 ± 0.00 62.07% ± 0.00% 0.00% ± 0.00% 3.22 ± 0.00
Llama3.1 8B 18.00 ± 0.00 70.15% ± 0.92% 0.00% ± 0.00% 2.85 ± 0.04
Llama3.1 70B 15.00 ± 0.00 34.40% ± 0.93% 7.41% ± 3.70% 4.85 ± 0.13
Mistral Large 16.00 ± 0.00 34.78% ± 0.00% 12.50% ± 0.00% 5.11 ± 0.00
GPT-4o 16.67 ± 0.33 39.42% ± 1.08% 0.00% ± 0.00% 4.70 ± 0.15
Human 10.00 ± 0.00 16.39% ± 0.00% 33.33% ± 0.00% 6.78 ± 0.00

Table 1: We collect 9 games from human encoder-decoder teams and report the agents’ performance
when playing as (top) interceptor against human players or as (bottom) decoder with a human en-
coder. Events are interceptions (higher is better) when the role is Interceptor and miscommunica-
tions (lower is better) when the role is Decoder. Of all the agents tested, we see that GPT-4o is the
strongest interceptor against humans. In ad-hoc human team-play, all agents tested underperform
compared with humans, getting significantly more miscommunications, leading to shorter games.
All agent results report mean ± standard error over 3 seeds.

(XP) difficulties arise. This finding also holds when LLMs play against baselines. As K increases,
the miscommunications increase, and the average turn length thus decreases, as shown in Figure 2.

Crossplay. Baseline-LLM teams get significantly more miscommunications than baseline-
baseline or LLM-LLM teams. The top row of Figure 3 shows the total number of games ending in
miscommunication out of 32 games for the two baselines and two LLMs, Llama-3.1-8B and Llama-
3.1-70B. Among LLMs, the main determining factor for miscommunications is the model used for
Bob, with the smallest model, LLama-3.1-8B, seeing the most miscommunications. Interestingly,
we do not observe any Self-Play/Cross-Play gap, even though it would technically be possible for
an LLM to perfectly model its counterparts when playing with or against the same model. More-
over, note how very low miscommunications, e.g., between GPT-4o and Llama-3.1-70B, do not
significantly improve game length, i.e., number of turns per game.

Competitive. For our competitive results, larger models generally perform better as both Al-
ice/Bob and as Eve. However, we find that the win rate is heavily skewed in favour of Eve, as
shown in Figure 5, with most models rarely surviving. We measure the number of interceptions and
average game length of different SP teams against different Eve Agents. We report our results in
the bottom row of Figure 3. However, as our human experiments show, such a heavy bias is not a
property of the game but instead of the LLMs themselves. Indeed, we find that humans achieve 33%
win rate against even the strongest Eve agents.

Robustness. Next, we show that prompt variants do not significantly affect the final performance
measured by average turn length for Llama-3.1-8B and Llama-3.1-70B, see Figure 4. This suggests
that the poor performance of LLMs in Decrypto is more likely due to a lack of reasoning abilities
than a lack of prompt tuning. We look at the robustness of different models to variations in prompts
and generation parameters, keeping in mind that generalist agents cannot control their prompt since
it is assumed to be part of the environment. We handcraft 5 system and user prompts for Alice and
Bob, respectively. The system prompt consists of 2 components. One component is responsible for
explaining the game rules in general, for which we have 5 variants. The second component explains
the specific role. We have 5 prompt variants for each role, already resulting in 125 different prompt
combinations. The user prompt instructs the specific roles to take their actions, for which we have 5
variants. In total, this results in 625 different prompt setups for each model. We run 32 games over
3 model seeds per system/user prompt combination and measure the average game length.

Human Evaluation. We demonstrate that LLMs perform worse than humans in Decrypto and that
human hints are on par with the specialised baseline agents in Table 1 when competing with an LLM
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Encoder Model Interceptor: Llama-8B Interceptor: Llama-70B
Total Predict Intercept Predict Total Predict Intercept Predict

Llama-8B 0.17± 0.01 0.47± 0.01 0.26± 0.01 0.45± 0.03
Llama-70B 0.17± 0.01 0.38± 0.02 0.25± 0.01 0.35± 0.02

Table 2: Theory of Mind Evaluation: We ask Alice to predict what Eve will guess. We report
Total Predict, the total prediction accuracy of Alice, averaged across all turns and Intercept Predict,
the prediction accuracy only for turns on which Eve successfully intercepts. Alice struggles to
predict Eve’s guess, even when the same LLM plays both. Alice has complete knowledge of the
information available to Eve, demonstrating the limited ability of LLMs to model and reason about
other agents’ points of view.

Eve. First, humans have the lowest miscommunication rate at 16%, with Mistral-Large coming in
second at 34%, thus more than double. Humans also have the highest survival rate at 33.33%, and
again, Mistral comes second at 12.5%, and most other models never win at all. Furthermore, when
different LLMs are matched against the human collected data, we achieve an average game length
between 6.33 and 6.94, which puts humans on par with baselines’ self-play when paired against
the weakest LLM-Eve. These results provide strong evidence that LLMs lack the reasoning abilities
to understand human hints, even though human hints work well with other humans. Human data
collection details are in appendix B.1

Theory of Mind The relatively weak performance of LLMs in the settings above are evidence
that LLMs do not possess the ToM reasoning abilities necessary to play Decrypto well. This is
illustrated in the failure cases in Appendix C. In one example, Alice fails to sufficiently reason about
the difficulty of their hints and is easily intercepted. In another, Alice provides an ambiguous hint
and fails to predict what Bob might guess.

Additionally, Decrypto provides a platform on which to conduct explicit ToM experiments inspired
by works in cognitive psychology. The first such experiment is a word-based code-guessing variant
of the Three Mountain Problem (Piaget et al., 1956). We explicitly ask Alice to predict what Eve
will guess based on Alice’s hints. We evaluate the prediction abilities of Llama-3.1-8B and Llama-
3.1-70B as Alice and Eve each. We find that the accuracy is very low for both Alice models and that
the larger Eve model is more predictable, as shown in Table 2. We also find that predictability and
intercept ratio are closely connected, suggesting that a more capable Eve becomes more predictable.

The second experiment evaluates representational change (RC) and false belief (FB) in the way
defined in the seminal work of Gopnik & Astington. Our procedure is the following: At each turn
except the first, we branch out the context of the agent and prompt it three times independently.
The first prompt asks it to predict the four keywords. The second prompt reveals the keywords and
asks the model what it thought were the keywords before the reveal. The third prompt again reveals
the keywords and asks the model to predict what a “second Interceptor” who has seen everything
except the reveal would think are the keywords. By comparing the first and the second answers, we
measure RC, the ability of the agent to recognize when its belief about the world (but not the world
itself) changes due to additional information. By comparing the first and third answers, we measure
FB, the ability to represent other agents as having inaccurate beliefs about the world. For the Strong
variant of those tasks, we consider the agent to pass if it correctly predicts what it answered in
question 1. We consider an agent correct for the Weak variant if the answers to questions 2 or 3
are not the real keywords. Results in Table 3 show that ability correlates with model size but that
neither of the models gets perfect scores. On Strong tasks, pass rates are particularly low, evidence
that LLMs only do not have persistent models of their “mind” of that of others.

Overall, the results strongly support that LLMs struggle to model others’ reasoning and that De-
crypto has the potential to be a fruitful benchmark for further exploring these capabilities.

6 RELATED WORK

Recent research has seen a surge in developing game-based environments and benchmarks to eval-
uate LLMs in multi-agent scenarios. These works span various domains, from grid-based worlds to
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social deduction games, each offering unique insights into LLM capabilities. Our Decrypto bench-
mark builds on and differentiates itself from these existing approaches.

In multi-agent game environments, several frameworks have emerged. BattleAgentBench (Wang
et al., 2024) and AgentBench (Liu et al., 2023b) introduce grid-based worlds to assess cooperation
and competition. While comprehensive, their reliance on spatial reasoning makes them less suitable
for evaluating the language-based deception and coordination central to Decrypto. LLM-Arena
(Chen et al., 2024a) and GameBench (Costarelli et al., 2024) offer more diverse game sets, including
word-based games like Undercover. These share similarities with Decrypto but lack its focused
evaluation of theory of mind and coordinated deception in a purely language-based setting.

Social deduction and negotiation games have been another avenue for exploring LLM capabili-
ties. Studies on Werewolf (Xu et al., 2023b;c), AvalonBench (Light et al., 2023), and ToMBench
(Chen et al., 2024b) evaluate strategic communication and theory of mind, while LLM-Deliberation
(Abdelnabi et al., 2023) examines interactive multi-agent negotiation. Decrypto builds on these
approaches by providing a more structured environment for isolating specific language-based rea-
soning and coordination aspects.

Research has also explored LLMs in both cooperative and competitive dynamics. Studies on human-
AI coordination in Overcooked (Liu et al., 2023a) and consensus-seeking in multi-robot tasks (Li
et al., 2023) focus on cooperation. In contrast, AgentPro (Zhang et al., 2024b) examines competitive
scenarios in games like Blackjack and Poker. Decrypto bridges these approaches by simultaneously
evaluating cooperative and competitive dynamics within a single, language-centric framework.

Recent work has begun exploring theory of mind capabilities in LLMs, with studies like Guo et al.
(2024) investigating this in embodied tasks within grid worlds. Broader evaluation frameworks
such as Smartplay (Wu et al., 2023) offer comprehensive benchmarks across multiple games and
capabilities. While valuable, these approaches often make isolating specific aspects of language-
based reasoning and coordination challenging.

7 CONCLUSION

This paper introduces Decrypto, a novel benchmark designed to evaluate coordination, competition,
and theory of mind capabilities in language models. Decrypto addresses critical limitations of exist-
ing benchmarks, such as data leakage and lack of interactivity, providing a more robust framework
for assessing AI systems’ reasoning and behaviour.

Our experiments, encompassing a range of open-source and closed-source language models, and
word embedding systems, revealed that even state-of-the-art models struggle with the nuanced com-
munication and strategic reasoning Decrypto requires. This highlights a significant gap between
human-level theory of mind capabilities and current AI systems.

Decrypto offers a more explicit assessment of language models’ core communication skills by iso-
lating language-based reasoning from other factors like spatial reasoning or mathematical ability.
The benchmark’s adaptable difficulty, achieved through varying opponent sophistication and key-
word complexity, alleviates the saturation issues common in fixed-dataset benchmarks. Our human-
AI cross-play experiments shed light on the potential and limitations of human-AI coordination in
strategic communication tasks.

Decrypto opens up several promising research directions. These include enhancing language mod-
els’ theory of mind capabilities, using the benchmark as a training environment for multi-agent
reinforcement learning, and examining the ethical implications of improving AI’s strategic commu-
nication abilities.

In conclusion, Decrypto significantly advances our ability to assess and improve AI’s agentic ca-
pabilities. It provides a challenging yet focused benchmark for multi-agent communication and
reasoning, paving the way for more socially intelligent AI to better understand and interact with
humans in complex strategic scenarios. As AI capabilities continue to evolve, Decrypto will serve
as a valuable tool for measuring progress and identifying areas for improvement.
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A APPENDIX

A.1 ADDITIONAL RESULTS
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Figure 5: Number of survived games over 32 games over 3 model seeds.

Interceptor Model Strong Weak
Repr. Change False Belief Repr. Change False Belief

Llama-8B 0.05± 0.02 0.00± 0.00 0.70± 0.01 0.41± 0.07
Llama-70B 0.17± 0.08 0.00± 0.00 0.95± 0.02 0.89± 0.03

Table 3: ToM results evaluating representational change (RC) and false belief (FB) pass rates of
two models. RC measures whether agents can accurately identify a change in their own view of
the world following new information. FB measures whether agents can model the incorrect beliefs
of another agent. Strong forms require to accurately infer the wrongly held beliefs. Weak forms
only require agents to realize that their past belief or the belief of others does not match ground
truth. Model size correlates with better Weak ToM, but both models perform poorly on the Strong
task. Pass rates are computed over 64 episodes with varying lengths. We report mean and standard
deviation over 3 seeds.
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A.2 SYSTEM PROMPTS

1 You are playing a variant of the code guessing ga e Decrypto. The setup
of the game is the following:

2 The game is played with three players split into two teams.
3 The first team is composed of the Encoder and the Decoder.
4 The second team is composed of the Interceptor.
5 The Encoder and Decoder share a list of 4 secret keywords that they can

rely on to help co munication. Each keyword has a digit associated with
it.

6 For example, if the keywords are {airplane, guitar, hat, plant}, the
digits associated with them would be {1, 2, 3, 4}.

7 The keywords are fixed for the entire game, so the Encoder and Decoder
must not reveal them.

8

9 Each turn, the Encoder gets a secret code of 3 non-repeating digits
between 1 and 4, e.g. 3-1-2.

10 They have to then provide 3 hints (one for each code digit) such that
the Decoder can guess the code but the Interceptor cannot.

11 Then, the Decoder and the Interceptor make their guesses and the code is
revealed.

12

13 The Interceptor wins an Interception token if they successfully guess
the code.

14 The Encoder and Decoder get a Miscommunication token if the Decoder
fails to guess the code.

15 The Interceptor wins if it gets two Interception tokens, or if the
Encoder and Decoder get two Miscommunication tokens.

16 The Encoder and Decoder team wins if it makes it through 8 rounds
without triggering two Miscommunications or two Interceptions.

17

18 The hints must be one or two words, and make a reference to the meaning
of the secret keyword of the corresponding digit.

19 Codes are unique; the same code cannot occur twice in the same game.
20

21 For example, if the four secret keywords are
22 {1: "airplane", 2: "guitar", 3: "hat", 4: "plant"}
23 and the code for that turn is 3-1-2, which means that we need hints for

{3: hat, 1: airplane, 2: guitar}, the Encoder could hint
24 {3: gentleman, 1: wing, 2: music}. Note that the order of the hints is

important.
25

26 Ignore these keywords in the future.
27

28 When responding, first think through your decision s ep-by-step. After
your step-by-step thinking, provide your final answer as a dictionary,
clearly marked with "ANSWER:".

Listing 1: This is an example of the basic system prompt that we provide to Alice, Bob, and Eve at
the beginning of each game. It explains the roles and outline the rules. In our robustness evaluation,
we tested five variants of the system prompt.
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1 You are the Encoder. Provide your hints like "ANSWER: {"hints":
["hint_X", "hint_Y", "hint_Z"]}", where hint_X, hint_Y, hint_Z are one
or two words each. Make sure that the ordering of the hints follows the
order of the code.

2 For example:
3 '''
4 To provide the hints, I need to think about the meaning of each keyword

and come up with a one or two-word hint that makes a reference to it.
5

6 For the code 2-1-3, I need to give hints about the keywords associated
with the digits 2, 1, and 3, which are "hat", "fire", and "answer"
respectively.

7

8 Here's my step-by-step thinking:
9

10 - For the digit 2, the keyword is "hat". Since the previous hint for
this keyword was "top", I want to give a hint that is different but
still related to wearing a hat. One possible hint is "cap".

11

12 - For the digit 1, the keyword is "fire". The previous hint for this
keyword was "heat", so I want to give a hint that is related to fire but
different from "heat". One possible hint is "flame".

13

14 - For the digit 3, the keyword is "answer". A possible hint could be
something related to giving an answer. One possible hint is "solve".

15

16 So, the final hints are:
17 {"hints": ["cap", "flame", "solve"]}
18

19 ANSWER: {"hints": ["cap", "flame", "solve"]}'''

Listing 2: This is the Alice-system prompt. This prompt is appended to the system prompt for Alice
and gives one example of how Alice might reason about her hints.
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1 You are the Decoder. Provide your guess like "ANSWER: {"guess":
X-Y-Z"}". Make sure that the ordering of the guess follows the order of
the hints.

2 For exam le:'''
3 1. The hint for digit 'a' is 'cap', which doesn't seem to directly

relate to any of the keywords. However, considering the previous hint
history (top, heat, lab), we can look for a connection between 'cap' and
one of the keywords. The keyword 'hat' is associated with digit '2', and
a hat is often worn on the head, which is covered by a cap. So, we can
make a connection: {a: hat}.

4 2. The hint for digit 'b' is 'flame', which is related to heat and fire.
Since the keyword for digit '1' is 'fire', we can make a connection: {b:
f re}.

5 3. The hint for digit 'c' is 'solve', which is related to the keyword
associated with digit '3', ' nswer'. Since 'answer' is a solution to a
problem, we can make a connection: {c: ans er}.

6 4. Now that we have the connections, we can determine the code by
looking at the order of the hints: {a: hat, b: fire, c: nswer}.
Therefore, the code is {2-1-3}.

7

8 Final answer:
9 ANSWER: {"guess": "2-1-3"}'''

Listing 3: This is the Bob-syst m prompt. This prompt is appended to the system prompt for Bob
and gives one example of how Bob might reason about his guess.
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1 You are the Interceptor. You do not have access to the four keywords.
Provide your guess like "ANSWER: {"guess": "X-Y-Z"}" Make sure that the
ordering of the guess follows the order of the hints.

2 For exam le:'''
3 1. The hint for 'a' is 'income', which is related to money, and in the

previous turn, 'salary' was also related to money, which is associated
with keyword 2.

4 2. The hint for 'b' is 'power', which is related to energy or control,
and in the previous turn, 'season' was related to sports, which is often
associated with power or strength.

5 3. The hint for 'c' is 'fashion', which is related to style or clothing,
and in the previous turn, 'headgear' was directly related to a type of
hat, which is a type of clothing.

6

7 Considering possible connections:
8 - 'income' is related to money, and keyword 2 is associated with money.
9 - 'power' is related to energy or control, and keyword 4 is associated

with energy or control.
10 - 'fashion' is related to style or clothing, and keyword 3 is associated

with clothing.
11

12 Based on these connections, I'll make a guess that the code is related
to keywords 2, 4, and 3.

13

14 Final Answer:
15 ANSWER: {"guess": "2-4-3"}'''
16 Remember that the keywords could be anything. Use the most recent hint

history to your advantage.
17 Remember that digits do not repeat in the code and range from 1 to 4.

Listing 4: This is the Eve-system prompt. This prompt is appended to the system prompt for Eve
and gives one example of how Eve might reason about her guess.

A.3 USER PROMPTS
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1 Turn 1 summary:
2 Code: 3-1-4
3 Hints: ['problem', 'status', 'machine']
4 Decoder guess: 3-1-4
5 Interceptor guess: 1-2-3
6

7 Hint History:
8 Keyword 1: status
9 Keyword 2:

10 Keyword 3: problem
11 Keyword 4: machine
12 Code History: 3-1-4
13

14 Turn 2: 0 Miscommunications, 0 Interceptions so far.
15 You are the Encoder.
16 The four keywords are: {1: condition, 2: task, 3: issue, 4: device}
17 The code is 3-4-1, which corresponds to the keywords {3: issue, 4:

device, 1: condition}.
18 First, think out loud, step-by-step about what hints you s ould use. Use

the meaning of the keywords to come up with a one or two-word hint for
each digit of the code.

19 Make sure the order of the hints matches the order of the code.
20 Then provide your three hints like \"ANSWER: {\"hints\": [\"hint X\",

\"hint Y\", \"hint Z\"]}\", where hint X, hint Y, hint Z are your hints.

Listing 5: The user prompt for Alice is provided at each turn. It provides a turn summary of previous
turns. In this example, one turn has been played and Alice sees that Bob guessed the code correctly,
whereas Eve d d not. Alice also sees the previously used hints. We also provide information about
how many miscommunications and interceptions happened so far. Then we provide Alice with the
current code and instruct her to give the hints for that code.
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1 Turn 1 summary:
2 Code: 3-1-4
3 Hints: ['problem', 'status', 'machine']
4 Decoder guess: 3-1-4
5 Interceptor guess: 1-2-3
6

7 Hint History:
8 Keyword 1: status
9 Keyword 2:

10 Keyword 3: problem
11 Keyword 4: machine
12 Code History: 3-1-4
13

14 Turn 2: 0 Miscommunications, 0 Interceptions so far.
15 You are the Decoder.
16 The four keywords are: {1: condition, 2: task, 3: issue, 4: device}
17 The hints given by the Encoder for this turn are: {a: conflict, b: tool,

c: state}
18 For example, you might think the following connections are true {a: X,

b: Y, c: Z}, where X, Y, Z are non-repeating digits from 1 to 4.
19 Your guess should be in the order of the hints: {\"guess\": \"X-Y-Z\"}.
20 What is your guess for the three-digit code? Apply concise, step-by-step

thinking, double-check the order, and then provide your final answer as
\"ANSWER: {\"guess\": \"X-Y-Z\"}\".

Listing 6: The user prompt for Bob is provided at each turn. It provides a turn summary about
previous turns. In this example, one turn has been played and Bob sees the code of the previous turn
and that he guessed correctly, whereas Eve d d not. Bob also sees the previously used hints assigned
to the correct keywords, in case he did not guess correctly. We provide information about how many
miscommunications and interceptions happened o far. Then we provide Bob with the current hints
and instruct him to guess.
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1 Turn 1 summary:
2 Code: 3-1-4
3 Hints: ['problem', 'status', 'machine']
4 Decoder guess: 3-1-4
5 Interceptor guess: 1-2-3
6

7 Hint History:
8 Keyword 1: status
9 Keyword 2:

10 Keyword 3: problem
11 Keyword 4: machine
12 Code History: 3-1-4
13

14 Turn 2: 0 Miscommunications, 0 Interceptions so far.
15

16 You are the Interceptor.
17 The hints given by the Encoder for this turn are: {a: conflict, b: tool,

c: state}
18 For example, you might think the following connections are true: {a: X,

b: Y, c: Z}, where X, Y, Z are non-repeating digits from 1 to 4.
19 Your guess should be in the order of the hints: {\"guess\": \"X-Y- \"}.

Use the hint history to your advantage.
20 What is your guess for the three-digit code? Reply with very concise,

step-by-step thinking, followed by your final answer as \"ANSWER:
{\"guess\": \"X-Y-Z\"}\".

Listing 7: The user prompt for Eve is provided at each turn. It provides a turn summary of previous
turns. In this example, one turn has been played and Eve sees the code of the previous turn and that
she guessed incorrectly, whereas Bob did not. Eve also sees the previously used hints assigned to
the correct keywords, allowing Eve to reason about the current hints. We provide information about
how many miscommunications and interceptions happened so far. Then we provide Eve with the
current hints and instruct her to guess.
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1 As the Encoder, you've provided the following hints for the code 3-4-1:
2 {conflict, tool, state}
3

4 Now, let's analyze how the Decoder and Interceptor might interpret these
hints:

5

6 1. Decoder's perspective:
7 - The Decoder knows the keywords: {1: condition, 2: task, 3: issue,

4: device}
8 - Think step-by-step about how the Decoder might connect each hint to

a keyword.
9 - What is the most likely code the Decoder would guess? Why?

10

11 2. Interceptor's perspective:
12 - The Interceptor doesn't know the keywords but has access to past

hints.
13 - Consider how the Interceptor might interpret your hints based on

previous rounds.
14 - What is the most likely code the Interceptor would guess? why?
15

16 3. Hint effectiveness:
17 - Are your hints clear enough for the Decoder but ambiguous for the

Interceptor?
18 - Is there a risk of miscommunication with the Decoder or successful

Interceptor?
19

20 4. Potential improvements:
21 - If you think your hints might be too easy for the Interceptor or

too difficult for the Decoder, suggest alternative hints that could
be more effective.

22

23 After your analysis, decide if you want to keep your original hints or
provide new ones.

24

25 Provide your final three hints like \"ANSWER: {\"hints\": [\"hint X\",
\"hint Y\", \"hint Z\"]}\", where hint X, hint Y, hint Z are one or two
words each.

Listing 8: For our Theory of Mind prompts, we instruct Alice to reconsider the hints she just gave
and give her an opportunity to change the hints if she chooses to do so. We ask Alice to predict what
Bob and Eve might guess and pivot accordingly.

1 As the Encoder, you've provided the following hints for the code 3-4-1:
2 {conflict, tool, state}
3

4 What do you predict will be the guess of the Interceptor when seeing
those hints? Think step-by-step.

5 Then, give your prediction of the Interceptor's guess as \"ANSWER:
{\"guess\": \"X-Y-Z\"}\"

Listing 9: For our prediction experiments, we ask Alice explicitly to provide the guess that she
thinks Eve will provide.
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B HUMAN STUDY INTERFACE

B.1 HUMAN DATA COLLECTION DETAILS

Participants were made aware that an AI agent played Eve. Still, no additional instructions were
provided to the players, except minor assistance if/when participants asked how to format their
input. For technical reasons, players interacted on the same computer in a typical “hot seat” setup.
One of the authors was always present to ensure participants wouldn’t cheat either by peeking at
the screen outside their turn or through verbal communication. We do not claim to have collected
a representative dataset of human ability at Decrypto. The data collected serves to demonstrate that
LLMs perform worse than a non-expert group of human players and provides a starting point for
future studies on human-AI coordination and ToM.

B.2 INTERFACES

Figure 6: Alice Start Interface: This is a screenshot of the command line interface that human
study participants would see at the beginning of the game if they were to play as Alice. The humans
see the same prompt as LLMs, from game description to request for action. Alice is provided with
the current code and the four keywords for this game. The human player then enters their hints in the
command line, which differs from the LLMs, which have to provide their answers as “ANSWER:
...”.
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Figure 7: Bob Start Interface: This is a screenshot of the command line interface that human study
participants would see at the beginning of the game if they were to play as Bob. The humans see the
same prompt as LLMs, from game description to request for action. Bob is provided with Alice’s
hints and the current keywords. The human player then enters their guess in the command line,
which differs from the LLMs, which have to provide their answers as “ANSWER: ...”.
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Figure 8: Eve Start Interface: This is a screenshot of the command line interface that human study
participants would see at the beginning of the game if they were to play as Eve. The humans see
the same prompt as LLMs, from game description to request for action. Eve is only provided with
Alice’s hints. The human player then enters their guess in the command line, which differs from the
LLMs, which have to provide their answers as “ANSWER: ...”.

Figure 9: Alice Confirmation Interface: To avoid human errors, such as providing guesses instead
of hints, or typos, we add a confirmation interface after the human participants provide their answer.
Here, we ask Alice to double check their provided hints.
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Figure 10: Bob Confirmation Interface: To avoid human errors, such as providing hints instead of
guesses, or typos, we add a confirmation interface after the human participants provide their answer.
Here, we ask Bob to double check their provided guesses.

Figure 11: Eve Confirmation Interface: To avoid human errors, such as providing hints instead of
guesses, or typos, we add a confirmation interface after the human participants provide their answer.
Here, we ask Eve to double check their provided guesses.

Figure 12: Alice Turn 2 Interface: After the first turn, we do not display the “system prompt”
anymore. However, we provide an summary of the previous turn, including the code, hints, Bob’s
guess, Eve’s guess, the hint history mapped to the correct keywords and the code history. The “user
prompt” stays the same as in the start interface.
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Figure 13: Bob Turn 2 Interface: After the first turn, we do not display the “system prompt”
anymore. However, we provide an summary of the previous turn, including the code, hints, Bob’s
guess, Eve’s guess, the hint history mapped to the correct keywords and the code history. The “user
prompt” stays the same as in the start interface.

Figure 14: Eve Turn 2 Interface: After the first turn, we do not display the “system prompt”
anymore. However, we provide an summary of the previous turn, including the code, hints, Bob’s
guess, Eve’s guess, the hint history mapped to the correct keywords and the code history. The “user
prompt” stays the same as in the start interface.
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Figure 15: At the end of each turn, we display a turn summary as a “waiting screen”. As human
participants use the same device to interact with the game, we want to avoid any information leak-
age. The turn summary screen shows after Eve provides their guess and avoids Eve seeing Alice’s
interface, which would appear next.

Figure 16: As additional example, we provide Alice’s interface on turn 3. The hint histories and
code histories are accumulating with the previous hints. Ideally, Alice would use that information to
provide hints that are hard to deduce from the publicly available information.
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C REPRESENTATIVE FAILURE CASE EXAMPLES

1 ASSISTANT
2 [ENCODER] To provide the hints, I need to think about the meaning of

each keyword and come up with a one or two-word hint that makes a
reference to it.

3

4 For the code 1-2-3, I need to give hints about the keywords associated
with the digits 1, 2, and 3, which are "honey", "population", and
"equipment" respectively.

5

6 Here's my step-by-step thinking:
7

8 - For the digit 1, the keyword is "honey". A possible hint could be
something related to bees or sweetness. One possible hint is "bee".

9

10 - For the digit 2, the keyword is "population". I already used the hint
"city" in the previous turn, so I want to come up with something
different but still related to a large group of people. One possible
hint is "nation".

11

12 - For the digit 3, the keyword is "equipment". I already used the hint
"machine" in the previous turn, so I want to come up with something
different but still related to tools or gear. One possible hint is
"toolkit".

13

14 However, I want to make sure that the hints are not too obvious, but
still related to the keywords. I can try to make them a bit more subtle.

15

16 - For the digit 1, instead of "bee", I could use "nectar", which is a
substance collected by bees to make honey.

17

18 - For the digit 2, instead of "nation", I could use "community", which
is a group of people living together.

19

20 - For the digit 3, instead of "toolkit", I could use "hardware", which
is a type of equipment.

21

22 So, the final hints are:
23 ANSWER: {"hints": ["nectar", "community", "hardware"]}

Listing 10: Example Failure Case for Alice (Llama-70B) with Bob (Llama-70B) and Eve (GPT-4o),
where Alice fails to come up with creative hints that are significantly different from previous hints
and easy to intercept for Eve.
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Under review as a conference paper at ICLR 2025

1 Turn 6: 0 Miscommunications, 1 Interceptions so far.
2 You are the encoder.
3 The four keywords are:
4 {1: horse,
5 2: sign,
6 3: house,
7 4: length}
8

9 The code is 2-1-3, which corresponds to the keywords {2: sign, 1: horse,
3: house}.

10

11 First, think out loud, step-by-step about what hints you should use. Use
the meaning of the keywords to come up with a one or two-word hint for
each digit of the code.

12 Make sure the order of the hints matches the order of the code.
13 Then provide your three hints like "ANSWER: {"hints": ["hint_X",

"hint_Y", "hint_Z"]}", where hint_X, hint_Y, hint_Z are your hints.
14

15

16 ASSISTANT
17 [ENCODER] To provide the hints, I need to think about the meaning of

each keyword and come up with a one or two-word hint that makes a
reference to it.

18

19 For the code 2-1-3, I need to give hints about the keywords associated
with the digits 2, 1, and 3, which are "sign", "horse", and "house"
respectively.

20

21 Here's my step-by-step thinking:
22

23 - For the digit 2, the keyword is "sign". Since the previous hints for
this keyword were "indicator", "label", "direction", and "banner", I
want to give a hint that is related to a sign or indication but
different from those. One possible hint is "marker".

24

25 - For the digit 1, the keyword is "horse". Since the previous hints for
this keyword were "steed", "charger", and "mount", I want to give a hint
that is related to a horse but different from those. One possible hint
is "beast".

26

27 - For the digit 3, the keyword is "house". Since the previous hints for
this keyword were "dwelling", "abode", "mansion", and "residence", I
want to give a hint that is different but still related to a house. One
possible hint is "shelter".

28

29 So, the final hints are:
30 {"hints": ["marker", "beast", "shelter"]}
31

32 ANSWER: {"hints": ["marker", "beast", "shelter"]}

Listing 11: Example Failure Case for Alice (Llama-8B) with Bob (Llama-8B) and Eve (GPT-4o),
where Alice fails to come up with creative hints that are significantly different from previous hints
and easy to intercept for Eve. For example, in this case, Alice wants to provide a hint that is similar
but different from the previous hints for digit 2. However, Alice should aim to provide a hint that is
completely different from previous hints to avoid Eve’s interception.
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Under review as a conference paper at ICLR 2025

1 USER
2 [DECODER] This is the first turn. There are no past hints or past codes.
3

4 Turn 1: 0 Miscommunications, 0 Interceptions so far.
5 You are the decoder.
6 The four keywords are:
7 {1: mother,
8 2: cell,
9 3: fort,

10 4: device}
11

12 The hints given by the Encoder for this turn are:
13 {a: machine,
14 b: biology,
15 c: castle}
16

17 For example, you might think the following connections are true {a: X,
b: Y, c: Z}, where X, Y, Z are non-repeating digits from 1 to 4.

18 Your guess should be in the order of the hints: {"guess": "X-Y-Z"}.
19 What is your guess for the three-digit code? Apply concise, step-by-step

thinking, double-check the order, and then provide your final answer as
"ANSWER: {"guess": "X-Y-Z"}".

20

21

22 ASSISTANT
23 [DECODER] 1. The hint for digit 'a' is 'machine', which is related to

the keyword 'device'. This is a direct connection, so we can make a
connection: {a: device}.

24 2. The hint for digit 'b' is 'biology', which is related to the keyword
'mother'. This is a direct connection, so we can make a connection: {b:
mother}.

25 3. The hint for digit 'c' is 'castle', which is related to the keyword
'fort'. This is a direct connection, so we can make a connection: {c:
fort}.

26 4. Now that we have the connections, we can determine the code by
looking at the order of the hints: {a: device, b: mother, c: fort}.
Therefore, the code is {4-1-3}.

27

28 ANSWER: {"guess": "4-1-3"}

Listing 12: Example Failure Case for Alice/Bob with Alice (Llama-8B), Bob (Llama-8B), and Eve
(Llama-8B). Alice provides an ambiguous hint, i.e., “biology” could refer to “cell” or “mother”. Bob
fails to guess correctly (biology → cell). Intuitively, “biology” should be more closely related to
“cell” than “mother”, thus this failure case also demonstrates that LLMs’ intuition does not overlap
with human intuition.
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Under review as a conference paper at ICLR 2025

1 USER
2 [INTERCEPTOR] Turn 7 summary:
3 Code : 3-2-1
4 Hints : ['night', 'study', 'spook']
5 Decoder guess : 3-2-1
6 Interceptor guess : 1-2-3
7

8 Hint History:
9 Keyword 1: spook, haunt, scream, spook

10 Keyword 2: examine, breakdown, study, research, examine, study
11 Keyword 3: dark, night, shadow, night, dark, night
12 Keyword 4: furniture, chair, dining, desk, chair
13

14 Code History:
15 3-1-2, 2-4-1, 4-3-2, 3-2-4, 4-3-1, 4-2-3, 3-2-1
16

17 ------
18

19 Turn 8: 0 Miscommunications, 1 Interceptions so far.
20 You are the interceptor.
21 The hints given by the Encoder for this turn are:
22 {a: desk
23 b: research
24 c: haunt}
25

26 [REST OF THE PROMPT OMITTED FOR CONCISENESS]
27

28 ASSISTANT
29 [INTERCEPTOR] 1. The hint for 'a' is 'desk', which is a type of

furniture.
30 2. The hint for 'b' is 'research', which is a type of investigation or

study.
31 3. The hint for 'c' is 'haunt', which is a supernatural entity.
32

33 Considering possible connections:
34 - 'desk' is a type of furniture, which is associated with Keyword 4.
35 - 'research' is a type of investigation or study, which is associated

with Keyword 2.
36 - 'haunt' is a supernatural entity, which is associated with Keyword 1.
37

38 Based on the hint history, I notice that Keyword 1 was associated with
'spook', Keyword 2 was associated with 'study', and Keyword 4 was
associated with 'furniture'.

39

40 Considering the given hints, I'll make a guess that the code is related
to keywords that are associated with supernatural entities, something
related to investigation or research, and something related to
furniture.

41

42 Since Keyword 1 was associated with 'haunt', Keyword 2 was associated
with 'research', and Keyword 4 was associated with 'desk', I'll choose
digits that seem to fit the given hints.

43

44 Final Answer:
45 ANSWER: {"guess": "1-2-4"}

Listing 13: Example Failure Case for Eve with Alice (Llama-8B), Bob (Llama-8B), and Eve (Llama-
8B). First, you can see that Alice provides the same hints multiple times. Despite that, Eve fails to
guess the code correctly. While Eve assigns the hints to the right keywords, Eve then fails to provide
the guess in the correct order and provides the order of the guesses in the order of the keyword
enumeration.
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