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ABSTRACT

We introduce a simple and rigorous testbed for membership inference attacks
(MIA) against pre-training sequences for large language models (LLMs). Our
testbed addresses the following gaps in existing evaluations, which lack: (1) uni-
form sampling of member/non-member documents of varying lengths from pre-
training shards; (2) large-scale deduplication at varying strengths, both within and
across the sampled members/non-members; and (3) rigorous statistical tests to
detect member/non-member distribution shifts that cause faulty evaluations and
are otherwise imperceptible to the heuristic techniques used in prior work. We
provide both global- and domain-level datasets (e.g., Reddit, Stack Exchange,
Wikipedia), derived from fully-open pre-trained LLM/dataset pairs including
Pythia/Pile, Olmo/Dolma, and our custom pre-trained GPT-2-Large on FineWeb-
Edu. We additionally open source a modular and extensible codebase that facil-
itates the creation of custom, statistically validated, and deduplicated evaluation
data using future open models and datasets. In sum, our work is a concrete step
towards addressing the evaluation issues discussed by prior work.

1 INTRODUCTION

We are interested in the rigorous evaluations of membership inference attacks (MIAs) algorithms
against the pre-training data of large language models (LLMs). MIAs are binary classification al-
gorithms to determine whether a given example x was used for training for some model M (i.e.,
whether x is a member of M ’s training set). With the surge of LLMs, there has been growing in-
terest in developing MIA methods against these models for the declining levels of data transparency
and the need for auditing data misuse (e.g., Shi et al. (2023); Zhang et al. (2024a); Li et al. (2023);
Ko et al. (2023); Chang et al. (2024); Mattern et al. (2023)).

Despite this growing interest, progress has been limited. The key challenge is that very little is
known about the training data of recent LLMs such as Llama (Dubey et al., 2024) and DeepSeek (Liu
et al., 2024); this means that an MIA developer must first acquire a set of ground truth member (and
non-member) sequences that are trained (and not trained) by this model to test their MIA algorithm.

This data acquisition process is where errors—specifically distribution shifts between members and
non-members used for evaluation—occur in recent literature. For example, past work resorted to
using temporal thresholding, where Wikipedia articles (Shi et al., 2023), arXiv papers (Duan et al.,
2024), and books (Meeus et al., 2024a) before/after a training cut-off date are used as members/non-
members. Subsequently, Duan et al. (2024); Das et al. (2024); Meeus et al. (2024d); Maini et al.
(2024) reported that such temporal thresholding introduced distribution shifts so large, that even
model-blind techniques like bag-of-words classifiers can outperform state-of-the-art MIA methods;
in fact, the EMNLP 2024 best paper award paper on membership inference (Zhang et al., 2024b)
was challenged due to this very concern (Maini & Suri, 2024). Another line of work considers using
model generations as synthetic non-members (e.g., Kazmi et al. (2024); Guépin et al. (2023)), and
Naseh & Mireshghallah (2025) found that the synthetic text distribution diverges from the training
distribution sufficiently such that the MIAs essentially become machine-generated text classifiers.
To further illustrate the repercussions of member/non-member distribution shifts, we investigated
recent work claiming high MIA performance, only to find that the proposed method overfitted to the
extra EOS tokens in non-member (but not member) sequences.1 These instances suggest an urgent
need for rigorous datasets for MIA evaluations.

1After we communicated our findings, the authors diligently retracted the paper.
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Figure 1: Illustration of our pipeline to create a dataset of verified members and non-members. We
repeat for different model/dataset pairs, deduplication strengths, and global-/domain-level datasets.
Our work aims to bridge this gap. We provide a simple testbed using fully-open model/dataset pairs
(e.g., Olmo (Groeneveld et al., 2024) and Dolma (Soldaini et al., 2024)) such that ground truth
members and non-members are known and that true uniform samples can be drawn without distri-
bution shifts. We then apply large-scale deduplication both within and across the sampled members
and non-members to minimize overlap which confounds evaluation. In particular, the non-members
are also deduplicated against the entire pre-training set. Importantly, deduplication inevitably intro-
duces member/non-member distribution shifts for natural text (there will be non-zero shift as long as
some text appears in one set but not the other). To rigorously monitor distribution shifts stemming
from both sampling and deduplication, we implement two-sample Kolmogorov–Smirnov (KS) tests
over a range of textual features (e.g., average word lengths, vocab richness) across a spectrum of
deduplication strengths (e.g., different percentages of n-gram overlap between two sequences).

In sum, our work introduces a concrete testbed that captures the key desiderata discussed, yet
not implemented, in prior work (see Appendix B for related work):

1. True uniform sampling of member/non-member sequences across pre-training shards;
2. Large-scale deduplication at varying strengths; and
3. Rigorous statistical tests to quantify member/non-member distribution shifts.

Summary of artifacts. We consider three model/dataset pairs: (1) Pythia/Pile (Biderman et al.,
2023; Gao et al., 2020), (2) Olmo/Dolma (Groeneveld et al., 2024; Soldaini et al., 2024), and
(3) our own custom pre-trained GPT-2/FineWeb (Radford et al., 2019; Penedo et al., 2024). For
each model-dataset pair, we release both global- and domain-level (e.g., Reddit, Stack Exchange,
Wikipedia) member and non-member sets that are pre-sampled, deduplicated, and statistically
tested. For Pythia/Pile and GPT-2/FineWeb, we also release a list of datasets corresponding to a
range of deduplication strengths (§2.3), as the strength trades off sample overlap against distribution
shifts. Finally, we open source a modular, extensible, and easy-to-use toolkit to reproduce these
artifacts and to create custom evaluation datasets for future open model/dataset pairs.

2 METHODS

2.1 DATASET CONSTRUCTION

Modern LLMs are trained on vast datasets such that it is unclear what data are guaranteed to be
excluded unless explicitly stated by the model developer. Thus, a key requiment for a reliable
model/dataset pair is the existence of an official validation set with a similar distribution as the
training set. Despite the growing number of open models, few currently meet this criterion: open-
weight models like Llama (Dubey et al., 2024) and DeepSeek (Liu et al., 2024) have proprietary
training data, while many fully open-source models like LLM360 (Liu et al., 2023) and DCLM (Li
et al., 2024) do not have official validation sets. Our testbed uses the following model/dataset pairs:

• Pythia/Pile: The official Pile dataset (Gao et al., 2020) has established train-validation split, and
the Pythia suite of models (Biderman et al., 2023) has fully documented the training procedures
such that the ground-truth members and non-members are available.2

• Olmo/Dolma: Similar to Pythia, the Olmo family of models (Groeneveld et al., 2024) is fully
open-source, and Dolma (Soldaini et al., 2024) was released as the official training set. Unlike
Pile, Dolma does not have an “official” train-validation split; however, Paloma Magnusson et al.

2Note that the original Pile is no longer accessible due to copyright concerns. We use the “uncopyrighted”
version available at https://huggingface.co/datasets/monology/pile-uncopyrighted.
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(2023) was used as the official evaluation data and the Olmo developers applied decontamination
to minimize the overlap against Dolma. We thus sample non-member data from Paloma.

• Controlled GPT-2/FineWeb: To establish a fully controlled environment, we trained a GPT-2-
Large model from scratch on the FineWeb-Edu dataset (Penedo et al., 2024) to Chinchilla-optimal
(≈ 20 tokens per parameter, Hoffmann et al. (2022)). We release checkpoints after one, two, and
three pre-training epochs, providing complete transparency about the training data.

Our testbed incorporates two key design choices to ensure realistic assessment of MIA. First, we use
complete documents rather than fixed-length segments as our basic evaluation units, better reflecting
real-world scenarios where entire documents are used in pretraining. Second, we evaluate on both
global and domain-specific subsets (e.g., Reddit, Stack Exchange), enabling fine-grained analysis
across different data distributions. See Appendix C for detailed discussion of these design choices.

2.2 TRUE AND EFFICIENT UNIFORM SAMPLING

We implement true random sampling for terabyte-scale sharded datasets, addressing the computa-
tional challenges noted in Duan et al. (2024). Our scalable framework performs a one-time prepro-
cessing to create shard indices (e.g., recording newline offsets for fast document-level indexing) and
collect metadata (e.g., document domains), optimized through multi-threaded execution. The shard
indices enable both O(1) unconditional random sampling from the entire pre-training dataset and
conditional random sampling based on document domains, eliminating the need for costly linear
scans of massive datasets. More details can be found in Appendix C.

2.3 LARGE-SCALE DEDUPLICATION

Definition and strength of deduplication. Pre-training datasets are large and thus documents are
possibly duplicated both within and across the train and validation splits. This makes deduplication a
critial step for proper evaluation. Following Anil et al. (2023), we define a document as a duplicate
if ≥ d% of its 8-grams appear at least once in the training corpus, where different values of d%
captures varying deduplication strengths (lower means stronger deduplication). We use d = 70 by
default, though we may provide sampled datasets across all strengths. For a detailed analysis of how
deduplication strength affects distribution shifts and membership inference, see Appendix G.

Inter-deduplication. We first deduplicate across the sampled members and non-members, i.e.,
ensuring that a document in one set has no duplicate in the other set. Note that this involves dedu-
plicating non-members against the entire pre-training set (not just the sampled members), since we
need to ensure none of the sampled non-members were seen by the model. For efficiency, we follow
Groeneveld et al. (2023) for non-member deduplication using a large-scale bloom filter of training
n-grams, which may over-deduplicate but does not affect correctness.

Intra-deduplication. As a second stage of decuplication, we also deduplicate documents within
each sampled set of members/non-members to prevent biased evaluation scores. This similarly
leverages an efficient bloom filter implementation for rapid n-gram overlap checks.

2.4 DETECTING MEMBER/NON-MEMBER DISTRIBUTION SHIFTS

We implement two complementary approaches to detect distribution shifts between members and
non-members. First, following Das et al. (2024); Meeus et al. (2024b), we use “blind” baselines that
distinguish members vs. non-members without accessing the model; blind baselines, by construc-
tion, should perform randomly on ideal evaluation data. Second, we conduct rigorous statistical
analysis using Kolmogorov-Smirnov (KS) tests on a comprehensive set of textual features (e.g.,
word count, vocabulary richness) to quantify distribution shifts. The KS test statistic measures the
magnitude of shifts, while its p-value indicates confidence given the sample size, providing more
sensitive detection than blind baselines. See Appendix H for detailed methodology.

3 DATASET ANALYSIS

We applied our pipeline described in §2 to the three model/dataset pairs (Pythia/Pile, Olmo/Dolma,
and GPT-2/FineWeb). This section analyzes the quality of these evaluation datasets. We summarize
the source datasets in Table 3 in the Appendix.
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Duplicate Strength 100% 90% 70% 50% 30% 10%
Features KS p-value KS p-value KS p-value KS p-value KS p-value KS p-value
word count 0.0062 0.9907 0.0140 0.2809 0.0133 0.3394 0.0239 0.0066 0.0418 0.0000 0.0660 0.0000
avg word length 0.0067 0.9757 0.0081 0.8902 0.0091 0.8021 0.0101 0.6875 0.0178 0.0841 0.0269 0.0014
sentence count 0.0110 0.5806 0.0088 0.8335 0.0121 0.4569 0.0231 0.0096 0.0327 0.0000 0.0495 0.0000
unique words ratio 0.0111 0.5689 0.0179 0.0812 0.0113 0.5457 0.0147 0.2301 0.0524 0.0000 0.0851 0.0000
punctuation ratio 0.0092 0.7912 0.0203 0.0325 0.0182 0.0729 0.0184 0.0677 0.0512 0.0000 0.1063 0.0000
avg sentence length 0.0139 0.2888 0.0178 0.0841 0.0113 0.5457 0.0172 0.1038 0.0238 0.0069 0.0389 0.0000
vocab richness 0.0052 0.1300 0.0077 0.0055 0.0100 0.0001 0.0177 0.0000 0.0492 0.0000 0.7523 0.0000
short word ratio 0.0079 0.9139 0.0120 0.4676 0.0098 0.7229 0.0100 0.6994 0.0161 0.1497 0.0140 0.2809
long word ratio 0.0105 0.6399 0.0197 0.0413 0.0087 0.8436 0.0072 0.9578 0.0130 0.3667 0.0303 0.0002

Average 0.0091 0.6533 0.0140 0.3019 0.0115 0.4810 0.0158 0.3069 0.0331 0.0675 0.1299 0.0314

DateDetectionMIA 0.482 0.500 0.504 0.485 0.509 0.472
GreedyRareWordMIA 0.503 0.501 0.498 0.508 0.503 0.517
BagOfWordsMIA 0.490 0.500 0.514 0.517 0.536 0.542

Table 1: Distribution shifts on Pile across deduplication strengths (100% to 10%). For each strength,
we report: (1) KS tests with test statistics and p-values, and (2) the AUROC scores of blind baselines.

Domains Reddit Wiki C4∗ Falcon∗

Features KS p-value KS p-value KS p-value KS p-value
word count 0.0093 0.7802 0.0206 0.5599 0.0933 0.0000 0.0761 0.0000
avg word length 0.0255 0.0030 0.0227 0.4339 0.0256 0.0409 0.0428 0.0002
sentence count 0.0139 0.2888 0.0198 0.6093 0.0832 0.0000 0.0813 0.0000
unique words ratio 0.0162 0.1449 0.0150 0.8933 0.0731 0.0000 0.0595 0.0000
punctuation ratio 0.0314 0.0001 0.0141 0.9303 0.0353 0.0012 0.0516 0.0000
avg sentence length 0.0147 0.2301 0.0306 0.1272 0.0635 0.0000 0.0322 0.0119
short word ratio 0.0149 0.2169 0.0237 0.3790 0.0309 0.0069 0.0476 0.0000
long word ratio 0.0208 0.0264 0.0155 0.8664 0.0183 0.2698 0.0393 0.0010
text length 0.0088 0.8335 0.0204 0.5715 0.0924 0.0000 0.0752 0.0000

DateDetectionMIA 0.500 0.494 0.514 0.524
GreedyRareWordMIA 0.498 0.497 0.501 0.502
BagOfWordsMIA 0.524 0.501 0.587 0.575

Table 2: Distribution shift analysis across Dolma domains using 70% intra-deduplication threshold.
Domains marked with * are excluded from the final testbed due to significant distribution shifts.

Pythia/Pile. Our analysis covers both the globally sampled datasets across multiple deduplication
strengths (d ∈ 100, 90, 70, 50, 30, 10) and the domain-level datasets.

Global-level datasets. We observe larger distribution shifts as deduplication strength increases
(lower d), indicated by both the increasing performance of blind baselines and higher KS statis-
tics with lower p-values (Table 1). This highlights the inherent tension between deduplication and
low distribution shifts. Given this trade-off, we recommend researchers report MIA success
across multiple deduplication levels. Following Anil et al. (2023), we establish d = 70 as the
default deduplication strength, where we observe negligible distribution shift between members and
non-members. We further recommend calibrating MIA performance against the performance of the
strongest blind baseline, as opposed to random accuracy/AUROC of 50%).

Our results also indicate that KS tests are generally more sensitive at the population level compared
to blind baselines. Notably, a p-value below 0.05 does not automatically disqualify a dataset, partic-
ularly when it had a small KS test statistic and that p-values also accounts for the sample size. We
thus set a KS statistic threshold of 0.04 for the inclusion of a dataset.

Domain-level datasets. Under the default dedup strength of 70%, we found that of the 17 avail-
able domains from the Pile, 3 exhibited severe member/non-member distribution shifts (NIH Ex-
Porter, DM Mathematics, and USPTO Backgrounds), and another 5 have less 3,000 samples post-
dudplication. This leaves 9 workable domains from which we release verified domain-level datasets.
See See Appendix F for full results, including distribution shifts on domain-specific datasets.

Olmo/Dolma. Olmo/Dolma presents unique challenges as Dolma (training tokens) and Paloma
(evaluation tokens) differ in both collection methodology and domain composition. Our global
random sampling revealed substantial distribution shifts, as shown in Table 2. Paloma also has
generally smaller per-domain sample sizes, which limited the availability of distribution-matched
data. After analyzing four common domains with over 1,500 samples in Paloma, we identified
Reddit and Wiki as having acceptable levels of distribution shift.

GPT-2/FineWeb. As a fully controlled setting, we trained a GPT-2-Large model from scratch on
FineWeb-Edu Penedo et al. (2024) with explicit train-validation splits. Our analysis shows distribu-
tion shift patterns similar to the Pythia/Pile setting. See Appendix F for details.
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A CONCLUDING REMARKS

We introduced a rigorous testbed for evaluating membership inference attacks on LLM pre-training
sequences, addressing key gaps in prior work. Our framework ensures uniform and efficient sam-
pling from pre-training shards, large-scale deduplication, and statistical validation to detect distribu-
tion shifts across different deduplication stregnths. By standardizing a framework for building MIA
evaluation datasets, we hope to facilitate future research in this critical area.

B RELATED WORK

Our work is not the first to provide evaluation data for MIAs against pre-trained LLMs. Duan et al.
(2024) reported temporal shifts in the WikiMIA dataset (Shi et al., 2023), and in turn proposed
the MIMIR benchmark which included Temporal arXiv and Temporal Wiki datasets; Temporal
arXiv/Wiki are subsequently reported by Das et al. (2024) to still be susceptible to model-blind
attacks like bag-of-words classification. MIMIR also included a Pile random sample, though the
uniform randomness was implemented at the level of pre-training shards rather than documents, and
distribution shifts were only examined with existing (ineffective) MIA methods without rigorous
statistical tests across different deduplication levels. Meeus et al. (2024a) proposed using books be-
fore/after training cut-off as members/non-members, and was similarly shown by Das et al. (2024)
to have severe distribution shifts. As follow-up, Meeus et al. (2024d) released a Pile-based arXiv
paper split; the latter has low sample size and is similarly not statistically tested across deduplication
strengths as done in our work. Meeus et al. (2024c) considered injecting synthetic strings to training
data and use similar, held-out strings as non-members, but the unrealistic nature of these strings may
imply that MIA evaluation may not reflect real-world performance. Our work aims to fill these gaps.

C IMPLEMENTATION DETAILS

Other model/dataset pairs. We explored other model/dataset candidate pairs, including the
Molmo/Pixmo (vison-language model), but found them unsuitable for our purposes, either due to
limited number of available examples or observing large member/non-member distribution shifts
after deduplication.

Indices for random sampling. During preprocessing, we scan each shard once to index the po-
sition and count of newline characters, tracking line numbers across different domains and main-
taining domain-specific data counts per shard. This stage leverages multi-threading to accelerate
processing, scaling efficiently with available memory and CPU cores. When randomly sampling
from the sharded dataset, we use the total line counts per shard to determine the sampling distri-
bution across shards, then employ randint to select specific lines within each shard. Thanks to our
indexing approach, we can access any line in O(1) time complexity. Using this method, we suc-
cessfully preprocessed the entire Dolma dataset—11TB of data or 3 trillion tokens—in just 2 days
using 16 threads on a machine with 300GB of memory. Once preprocessing is complete, our index
enables repeated O(1) time sampling operations. To facilitate broader research use, we will release
our preprocessed cache, allowing users to perform immediate random sampling without repeating
the preprocessing step.

Document-level testbed. Our evaluation sets are document-level by design, meaning that every
member and non-member example in the dataset corresponds to a complete document in the original,
untokenized dataset (e.g., one row of Pile). This design better reflects real-world usage (as opposed
to having fixed-length member and non-member strings).

Global- and domain-specific datasets. Beyond sampling members/non-members globally, we also
assess MIA success across domain-specific subsets. This involves examining the metadata of each
document in the pre-training dataset and group them into domains such as Reddit, Stack Exchange,
and Wikipedia. This approach gives more fine-grained insights into MIA performance. In total, our
pipeline (fig. 1) yields 9 validated domains from Pile and 2 from Dolma. See Appendix D for details.
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D DOMAIN-SPECIFIC MEMBERS AND NON-MEMBERS

Available domains. We list all the available domains from which we draw evaluation members
and non-members:

• Pile: ArXiv, Pile-CC, StackExchange, Wikipedia, FreeLaw, Github, HackerNews, PubMed
Abstracts, PubMed Central.

• Dolma: Reddit and Wiki.

E TEXTUAL FEATURES FOR TWO-SAMPLE KOLMOGOROV–SMIRNOV (KS)
TESTS

The nine different textual features that we extracted for our KS tests are:

1. Word Count: The total number of words in the text, calculated by counting all sequences of
words.

2. Average Word Length: The mean length of all words in the text, providing a measure of
vocabulary complexity.

3. Sentence Count: The total number of sentences in the text, determined by counting sentence-
ending punctuation marks (.!?).

4. Unique Words Ratio: The proportion of unique words to total words, calculated as the number
of distinct words divided by the total word count.

5. Punctuation Ratio: The density of punctuation marks in the text, computed as the count of
punctuation characters divided by the total character count.

6. Average Sentence Length: The mean number of words per sentence, indicating typical sen-
tence complexity.

7. Short Word Ratio: The proportion of words that are 4 characters or shorter, representing the
usage of simple or common words.

8. Long Word Ratio: The proportion of words that are 7 characters or longer, indicating the
usage of complex or specialized vocabulary.

9. Text Length: The total number of characters in the text, including spaces and punctuation
marks.

F ADDITIONAL RESULTS

Dataset statistics. We present our testbed statistics in Table 3. For each testbed, we generally
aim to balance the number of member and non-member samples. While our target sampling size is
shown in the table, some domain-specific cases contain fewer samples (e.g. approximately 4,000)
due to data availability constraints after deduplication. In these cases, we maintain the target size
for the member set while including all available deduplicated samples in the non-member set.

Dataset Characteristics Pythia/Pile Olmo/Dolma GPT-2/FineWeb
Training Dataset Size (docs) 177M 3.395B 16M
Global Testbed Size (docs) 50,000 - 50,000
Available Domain-specific Testbeds 9 2 -
Per-Domain Testbed Size (docs) 20,000 20,000 -
Model Size (parameters) 1.4B 7B 762M

Table 3: Summary statistics of our constructed testbeds across three experimental settings. For each
setting, we report the size of the original training corpus, the number of documents in our global and
domain-specific testbeds, the number of domains where distribution-matched data was available, and
the size of the corresponding language model. A dash (-) indicates that the particular characteristic
is not applicable for that setting.
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Domains Pile-CC StackExchange Wikipedia ArXiv DM Mathematics∗

Features KS p-value KS p-value KS p-value KS p-value KS p-value
word count 0.0125 0.0969 0.0080 0.5419 0.0139 0.0430 0.0207 0.0754 0.0770 0.0000
avg word length 0.0101 0.2756 0.0059 0.8732 0.0084 0.4941 0.0201 0.0919 0.0726 0.0000
sentence count 0.0119 0.1289 0.0047 0.9795 0.0089 0.4170 0.0131 0.5287 0.0301 0.0100
unique words ratio 0.0106 0.2251 0.0103 0.2414 0.0119 0.1194 0.0161 0.2743 0.0803 0.0000
punctuation ratio 0.0043 0.9941 0.0121 0.1057 0.0085 0.4667 0.0258 0.0124 0.0782 0.0000
avg sentence length 0.0080 0.5611 0.0051 0.9582 0.0139 0.0432 0.0161 0.2790 0.0204 0.1739
short word ratio 0.0106 0.2242 0.0086 0.4482 0.0103 0.2406 0.0182 0.1606 0.0743 0.0000
long word ratio 0.0095 0.3406 0.0077 0.5960 0.0083 0.5037 0.0157 0.3046 0.0668 0.0000
text length 0.0127 0.0866 0.0077 0.6004 0.0137 0.0490 0.0224 0.0437 0.0001 1.0000

Average 0.0100 0.3259 0.0078 0.5938 0.0109 0.2641 0.0187 0.1967 0.0555 0.1315

DateDetectionMIA 0.502 0.501 0.493 0.501 0.514
BagOfWordsMIA 0.504 0.491 0.506 0.505 0.533
GreedyRareWordMIA 0.501 0.500 0.501 0.500 0.509

Table 4: Domain-specific distribution shifts for Pile domains at 70% deduplication threshold. Do-
mains marked with * are excluded from the final testbed due to significant distribution shifts.

Additional domains for Pythia/Pile. For the Pythia/Pile setting, we analyzed additional domains
beyond the four non-shift and one shifted domain discussed in Section 3. We deferred results on
domain-specific datasets from the main text, and they can be found in Table 4 and Table 5. Not all
domain-specific datasets in Pile are usable after deduplication; for example, as shown in Table 5,
after applying a 70% deduplication threshold, we found severe distribution shifts in the NIH Exporter
and USPTO Backgrounds domains, rendering them unsuitable for inclusion in our benchmark.

NIH ExPorter∗ FreeLaw Github HackerNews PubMed Abstracts PubMed Central USPTO Backgrounds∗

Feature KS p-val KS p-val KS p-val KS p-val KS p-val KS p-val KS p-val
word count 0.0615 0.0000 0.0182 0.0278 0.0062 0.8718 0.0200 0.2128 0.0072 0.6736 0.0192 0.0098 0.0235 0.0004
avg word length 0.0160 0.6358 0.0103 0.5041 0.0197 0.0018 0.0250 0.0598 0.0076 0.6216 0.0160 0.0508 0.0528 0.0000
sentence count 0.0522 0.0000 0.0169 0.0494 0.0089 0.4640 0.0186 0.2870 0.0069 0.7341 0.0188 0.0121 0.0294 0.0000
unique words ratio 0.0479 0.0001 0.0126 0.2570 0.0120 0.1461 0.0162 0.4552 0.0062 0.8412 0.0152 0.0704 0.0235 0.0004
punctuation ratio 0.0338 0.0145 0.0070 0.9044 0.0298 0.0000 0.0181 0.3146 0.0070 0.7132 0.0193 0.0091 0.0386 0.0000
avg sentence length 0.0315 0.0277 0.0111 0.3991 0.0061 0.8871 0.0214 0.1543 0.0082 0.5151 0.0135 0.1446 0.0384 0.0000
short word ratio 0.0195 0.3853 0.0078 0.8228 0.0150 0.0342 0.0205 0.1883 0.0085 0.4624 0.0175 0.0247 0.0407 0.0000
long word ratio 0.0193 0.3931 0.0054 0.9920 0.0184 0.0043 0.0267 0.0371 0.0051 0.9611 0.0149 0.0799 0.0495 0.0000
text length 0.0634 0.0000 0.0194 0.0155 0.0058 0.9155 0.0197 0.2255 0.0074 0.6480 0.0181 0.0173 0.0249 0.0001

DateDetectionMIA (AUROC) 0.503 0.488 0.485 0.492 0.497 0.494 0.495
BagOfWordsMIA (AUROC) 0.512 0.507 0.500 0.506 0.491 0.506 0.532
GreedyRareWordMIA (AUROC) 0.502 0.500 0.502 0.499 0.501 0.501 0.501

Table 5: Additional domain-specific distribution shift analysis for the remaining 7 domains at 70% deduplica-
tion threshold. Domains marked with * are excluded from the final testbed due to significant distribution shifts.

GPT-2/FineWeb. We trained a GPT-2-Large model from scatch using LLM.c (Karpathy, 2024)
on an explicit train-validation split of FineWeb-Edu Penedo et al. (2024). Since FineWeb provides
only coarse-grained document metadata, we focus on the global-level datasets at different dedupli-
cation strengths, similar to the Pythia/Pile setting. Distribution shifts are evaluated in Table 6 in
Appendix F, showing patterns similar to the Pythia/Pile setting. We release model checkpoints af-
ter 1/2/3 epochs to facilitate MIA evaluations accounting for data repetition. indicating Common
Crawl version source Beyond these three settings, we also attempted to construct a testbed using
Molmo/Pixmo. However, we observed significant distribution shifts immediately after random sam-
pling, suggesting non-negligible inherent distribution differences between the training and validation
sets.

G ANALYSIS

Dataset-level vs. instance-level evaluation. The relationship between dataset-level distribution
tests and instance-level membership inference requires careful consideration. While passing dataset-
level tests (such as the KS test) is necessary, it does not invalidate the dataset’s utility for evaluat-
ing membership inference attacks. Rather, successful dataset-level tests ensure that any observed
membership inference performance stems from genuine membership signals rather than artifacts
of distribution shift. This separation enables us to disentangle distribution inference effects from
true membership inference capabilities, providing a more reliable evaluation framework for MIA
research.
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Duplicate Strength 100% 90% 70% 50% 30% 10%

Features KS p-value KS p-value KS p-value KS p-value KS p-value KS p-value

word count 0.0053 0.4724 0.0080 0.0893 0.0101 0.0205 0.0078 0.1418 0.0102 0.0268 0.0119 0.0119
avg word length 0.0038 0.8701 0.0042 0.7795 0.0066 0.2830 0.0062 0.3852 0.0091 0.0646 0.0200 0.0000
sentence count 0.0054 0.4485 0.0066 0.2472 0.0074 0.1705 0.0063 0.3577 0.0093 0.0571 0.0111 0.0231
unique words ratio 0.0056 0.4027 0.0060 0.3450 0.0048 0.6712 0.0082 0.1076 0.0145 0.0003 0.0203 0.0000
punctuation ratio 0.0113 0.0033 0.0071 0.1747 0.0126 0.0016 0.0211 0.0000 0.0301 0.0000 0.0518 0.0000
avg sentence length 0.0072 0.1447 0.0086 0.0534 0.0107 0.0123 0.0081 0.1207 0.0067 0.3019 0.0058 0.5805
short word ratio 0.0041 0.7931 0.0049 0.5961 0.0074 0.1712 0.0065 0.3205 0.0099 0.0353 0.0212 0.0000
long word ratio 0.0029 0.9853 0.0027 0.9937 0.0060 0.3991 0.0049 0.6878 0.0070 0.2603 0.0158 0.0002
text length 0.0057 0.3852 0.0083 0.0706 0.0098 0.0282 0.0077 0.1560 0.0105 0.0204 0.0106 0.0348

Average 0.0057 0.501 0.0063 0.372 0.0084 0.195 0.0085 0.253 0.0119 0.085 0.0187 0.072

DateDetectionMIA 0.501 0.500 0.507 0.501 0.508 0.504
GreedyRareWordMIA 0.499 0.500 0.500 0.500 0.499 0.500
BagOfWordsMIA 0.500 0.509 0.514 0.513 0.511 0.537

Table 6: Distribution shift analysis on FineWeb across deduplication thresholds. Average KS
statistics, p-values, and blind baseline performance are provided for each threshold.

Discussions on deduplication strength. The inherent ambiguity of MIA, as discussed in Duan
et al. (2024), complicates duplicate definition through two key challenges: (1) high n-gram over-
lap between non-members and the training corpus creates “partial duplicates” that contain training
data signals, blurring the member/non-member distinction, and (2) stronger deduplication can intro-
duce more severe distribution shifts, potentially conflating membership inference with distribution
inference (Suri & Evans, 2022). This presents a fundamental trade-off between maintaining distribu-
tional consistency and ensuring clear membership distinction. As a testbed, we aim to balance these
competing objectives. To better understand how deduplication strength influences this trade-off, we
conduct comprehensive distribution shift analyses across a spectrum of strength values.

H DISTRIBUTION SHIFT DETECTION METHODOLOGY

Blind baselines. Recent work by Das et al. (2024); Meeus et al. (2024b) introduced “blind” base-
lines that attempt to distinguish members vs. non-members without accessing the model. Because of
widespread distribution shifts in existing evaluation data, these baselines outperform existing MIA
methods by a large margin. On an ideal evaluation dataset, they should perform (near-)randomly; we
re-implement these baselines as an initial check of distribution shifts. In our analysis, we consider
three such blind baselines: date detection, greedy rare word detection, and bag-of-words classifica-
tion. (We refer the reader to Das et al. (2024); Meeus et al. (2024b) for more details.)

Two-sample hypothesis tests. While blind baselines detect coarse distribution shifts, we need
additional rigor via statistical methods. We extract a comprehensive set of textual features from the
documents, including: document word count, average word length, sentence count, unique words
ratio, punctuation ratio, average sentence length, vocab richness, short word ratio, and long word
ratio (see Appendix E for details). We then apply the Kolmogorov-Smirnov (KS) test (Massey,
1951) to these features from the members and non-members as a two-sample hypothesis test. The
KS test statistic measures the magnitude of distribution shifts, and the p-value indicates confidence
for the given amount of samples. The KS tests are much more powerful (and sensitive) than the
blind baselines (§3); we use them as an important indicator of data quality, though strict passing of
these tests is not always necessary for our testbed to be useful for MIA evaluation.
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