
Vol.:(0123456789)

Machine Learning (2020) 109:1945–1986
https://doi.org/10.1007/s10994-020-05902-7

1 3

Fast greedy C‑bound minimization with guarantees

Baptiste Bauvin1,3 · Cécile Capponi3 · Jean‑Francis Roy2 · François Laviolette3,4

Received: 16 September 2019 / Revised: 21 July 2020 / Accepted: 11 August 2020 /
Published online: 23 September 2020
© The Author(s) 2020

Abstract
The C-bound is a tight bound on the true risk of a majority vote classifier that relies on the
individual quality and pairwise disagreement of the voters and provides PAC-Bayesian
generalization guarantees. Based on this bound, MinCq is a classification algorithm that
returns a dense distribution on a finite set of voters by minimizing it. Introduced later
and inspired by boosting, CqBoost uses a column generation approach to build a sparse
C-bound optimal distribution on a possibly infinite set of voters. However, both
approaches have a high computational learning time because they minimize the C-bound
by solving a quadratic program. Yet, one advantage of CqBoost is its experimental abil-
ity to provide sparse solutions. In this work, we address the problem of accelerating the
C-bound minimization process while keeping the sparsity of the solution and without los-
ing accuracy. We present CB-Boost, a computationally efficient classification algorithm
relying on a greedy–boosting-based–C-bound optimization. An in-depth analysis proves
the optimality of the greedy minimization process and quantifies the decrease of the
C-bound operated by the algorithm. Generalization guarantees are then drawn based on
already existing PAC-Bayesian theorems. In addition, we experimentally evaluate the rel-
evance of CB-Boost in terms of the three main properties we expect about it: accuracy,
sparsity, and computational efficiency compared to MinCq, CqBoost, Adaboost and other
ensemble methods. As observed in these experiments, CB-Boost not only achieves results
comparable to the state of the art, but also provides C-bound sub-optimal weights with
very few computational demand while keeping the sparsity property of CqBoost.

Editors: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

 * Baptiste Bauvin
 baptiste.bauvin@lis-lab.fr
 http://qarma.lis-lab.fr

 Jean-Francis Roy
 jfroy@coveo.com

 François Laviolette
 francois.laviolette@ift.ulaval.ca

1 Aix Marseille University, Toulon University, CNRS, LIS (Qarma), Marseille, France
2 Coveo Solutions Inc, Québec, QC, Canada
3 Dép. d’informatique et de génie logiciel, Université Laval, Québec, QC, Canada
4 Element AI, Montréal, QC, Canada

http://orcid.org/0000-0002-7985-058X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05902-7&domain=pdf

1946 Machine Learning (2020) 109:1945–1986

1 3

Keywords PAC-Bayes · Boosting · Ensemble methods · C-bound · Greedy optimization

1 Introduction

Ensemble-based supervised classification consists in training a combination of many
classifiers learnt from various algorithms and/or sub-samples of the initial dataset. Some
of the most prominent ensemble learning frameworks include Boosting, with the semi-
nal elegant Adaboost (Freund and Schapire 1997), which has been the inspiration of
numerous other algorithms, Bagging (Breiman 1996) leading to the successful Random
Forests (Breiman 2001), but also Multiple Kernel Learning (MKL) approaches (Sonnen-
burg et al. 2006; Lanckriet et al. 2004) or even the Set Covering Machines (Marchand
and Taylor 2003). Most of these approaches are founded on theoretical aspects of PAC
learning (Valiant 1984). Among them, the PAC-Bayesian theory studies the properties
of the majority vote that is used to combine the classifiers (McAllester 1999) accord-
ing to the distributions among them. Experimentally, valuable ad-hoc studies have been
made over specific application domains in order to build relevant sets of classifiers. We
address here the problem of learning one independently from the priors relevant to the
application domain, together with a weighted schema that defines a majority vote over
the members of that set of classifiers.

Introduced by McAllester (1999), the PAC-Bayesian theory provides some of the
tightest Probably Approximately Correct (PAC) learning bounds. These bounds are
often used for a better understanding of the learning capability of various algorithms
(Seeger 2002; McAllester 2003; Langford and Shawe-Taylor 2003; Catoni 2007; Seldin
et al. 2012; Dziugaite and Roy 2018). Based on the fact that PAC-Bayesian bounds gave
rise to a powerful analysis of many algorithms’ behavior, it has incited a research direc-
tion that consists in developing new (or new variants of) algorithms that simply are
bound minimizers (Germain et al. 2009; Parrado-Hernández et al. 2012; Dziugaite and
Roy 2018; Germain et al. 2015). In this paper, we revisit one of such algorithms, MinCq
(Germain et al. 2015), which focuses on the minimization of the C-bound and comes
with PAC-Bayesian guarantees. The C-bound, introduced in Lacasse et al. (2006),
bounds the true risk of a weighted majority vote based on the averaged true risk of the
voters, coupled with their averaged pairwise disagreement. According to the C-bound,
the quality of each individual voter can be compensated if the voting community tends
to balance the individual errors by having plural opinions on “difficult” examples.

Although MinCq has state of the art performance on many tasks, it computes the
output distribution on a set of voters through a quadratic program, which is not tractable
for more than medium-sized datasets. To overcome this, CqBoost (Roy et al. 2016) has
then been proposed. It iteratively builds a sparse majority vote from a possibly infinite
set of classifiers, within a column generation setting. However, CqBoost’s approach only
partially tackles the computational challenge. In order to overcome this drawback, we
propose CB-Boost, a greedy, boosting-based, C-bound minimization algorithm designed
to greatly reduce the computational cost of CqBoost and MinCq while maintaining the
attractive peculiarities of the C-bound on a finite set of hypothesis.

CB-Boost is somewhat similar to CqBoost, while closer to boosting in the sense that
at each iteration, it selects a voter, finds its associated weight by minimizing an objec-
tive quantity (the C-bound in the case of CB-Boost, and the exponential loss as for Ada-
boost) and adds it to the vote.

1947Machine Learning (2020) 109:1945–1986

1 3

The main advantage of CB-Boost comes from the fact that at each iteration, it solves
a C-bound minimization problem by considering only one direction. Interestingly, it is
possible to solve it analytically and with only a few light operations. Furthermore, we
derive a guarantee that the C-bound decreases throughout CB-Boost ’s iterations.

This paper is organised as follows. Section 2 sets up basic notation and definitions,
reviews the C-bound and its PAC-Bayesian framework, and briefly introduces MinCq and
CqBoost, two existing algorithms that aim at learning an ensemble of classifiers based on
the minimization of the C-bound. Section 3 introduces our new boosting-based algorithm
named CB-Boost, which aims at keeping the benefits of these two algorithms, while reduc-
ing the disadvantages. Finally, Sect. 4 addresses the theoretical properties of CB-Boost,
while Sect. 5 focuses on experiments that not only validate the theoretical aspects, but also
shows that CB-Boost performs well empirically on major aspects.

2 Context

After setting up basic notations and definitions, the context of PAC-Bayesian learning is
introduced through the C-bound and two theorems, which are pivotal components of our
contribution.

2.1 Basic notations and definitions

Let us consider a supervised bi-class learning classification task, where X is the input
space and Y = {−1, 1} is the output space. The learning sample S = {(xi, yi)}

m
i=1

 con-
sists of m examples drawn i.i.d from a fixed, but unknown distribution D over X × Y . Let
H = {h1,… hn} be a set of n voters hs ∶ X → {−1, 1} , and Conv(H) the convex hull of H.

Definition 1 ∀x ∈ X , the majority vote classifier (Bayes classifier) BQ over a distribution
Q on H is defined by

Definition 2 The true risk of the Bayes classifier BQ over Q on H , is defined as the
expected zero one loss over D, a distribution on X × Y:

Definition 3 The training error of the Bayes classifier BQ over Q on H , is defined as the
empirical risk associated with the zero one loss on S = {(xi, yi)}

m
i=1

.

Definition 4 The Kullback-Leibler (KL) divergence between distributions Q and P is
defined as

BQ(x) ≜ sg

[
�
h∼Q

h(x)

]
where sg(a) = 1 if a > 0 and − 1 otherwise.

RD(BQ) ≜ �
(x,y)∼D

I

(
�
h∼Q

y ⋅ h(x) < 0

)
, with I(a) = 1 if a true, 0 otherwise.

RS(BQ) =
1

m

m∑
i=1

I

(
�
h∼Q

yi ⋅ h(xi) < 0

)
.

1948 Machine Learning (2020) 109:1945–1986

1 3

In the following study, let P denote the prior distribution on H that incorporates pre-
existing knowledge about the task. And let Q denote the posterior distribution, which is an
update of P after observing the task’s data.

2.2 Previous work: the C‑Bound & PAC‑Bayesian guarantees

Here, we state the main context of our work by presenting the C-bound and its properties,
as introduced in Lacasse et al. (2006). Let us first define one core concept: the margin of
the majority vote.

Definition 5 Given an example x ∈ X and its label y ∈ Y drawn according to a distribu-
tion D, MD

Q
 is the random variable that gives the margin of the majority vote BQ , defined as

MD
Q
= y �

h∼Q
h(x) .

Given the margin’s definition, the C-bound is presented in Lacasse et al. (2006) as
follows.

Definition 6 For any distribution Q on H , for any distribution D on X × Y , let CD

Q
 be the

C-bound of BQ over D, defined as

with �1(M
D
Q
) being the first moment of the margin

and �2(M
D
Q
) being the second moment of the margin

where the last equality comes from the fact that y ∈ {−1, 1} , so y2 = 1.

Definition 7 For any distribution Q on H and any S = {(xi, yi)}
m
i=1

 , let CS

Q
 be the empirical

C-bound of BQ on S , defined as

The following theorem, established and proven in Lacasse et al. (2006), shows that the
C-bound is an upper bound of the true risk of the majority vote classifier.

KL(Q||P) = �
h∼Q

ln
Q(h)

P(h)
.

C
D

Q
= 1 −

(
�1(M

D
Q
)
)2

�2(M
D
Q
)

,

�1(M
D
Q
) = �

(x,y)∼D
M

Q
(x, y),

�2(M
D
Q
) = �

(x,y)∼D

[
M

Q
(x, y)2

]

C
S

Q
= 1 −

1

m

�
m∑
i=1

yi �
h∼Q

h(xi)

�2

m∑
i=1

�
yi �
h∼Q

h(xi)

�2

1949Machine Learning (2020) 109:1945–1986

1 3

Theorem 1 Lacasse et al. (2006) For any distribution Q on a set H of hypotheses, and for
any distribution D on X × Y , if 𝜇1(M

D
Q
) > 0 , we have

From this result, we derive a corollary for the empirical risk, i.e., the training error that
is used in Sect. 4:

Corollary 1 For any distribution Q on a set H of hypotheses, and for S = {(xi, yi)}
m
i=1

 a
training sample, if 1

m

m∑
i=1

yi �
h∼Q

h(xi) > 0 , we have

In terms of generalization guarantees, the PAC-Bayesian framework (McAllester 1999)
provides a way to bound the true risk of BQ , given the empirical C-bound, and P and Q the
prior and posterior distributions. The important following theorem, established by Roy
et al. (2016) is used in Sect. 4.3; it gives an upper bound of the true risk of the majority
vote, which depends on the first and second moments of the margin as introduced in Defi-
nitions 5 and 6, and on the Kullback-Leibler divergence between the prior and posterior
distributions.

Theorem 2 Roy et al. (2016) For any distribution D on X × Y , for any set H of voters
h ∶ X → {−1, 1} , for any prior distribution P on H and any � ∈]0, 1] over the choice of
the sample S = {(xi, yi)}

m
i=1

∼ Dm , and for every posterior distribution Q on H , we have,
with a probability at least 1 − �

2.3 Existing algorithms: MinCq & CqBoost

Let us focus on two algorithms that rely on the minimization of the empirical C-bound in
order to learn an accurate ensemble of classifiers. MinCq (Germain et al. 2015) finds the
weights that minimize the empirical C-bound on a given set of voters, and CqBoost (Roy
et al. 2016), inversely, uses column generation and boosting to iteratively build a set of vot-
ers by minimizing the C-bound.

RD(BQ) ≤ C
D

Q
.

RS(BQ) ≤ C
S

Q
.

RD(BQ) ≤1 −

�
max(0,�1)

�2

min(1,�2)
, where:

�1 =
1

m

m�
i=1

yi �
h∼Q

h(xi) −

���� 2

m

�
KL(Q��P) + ln

�
2
√
m

�∕2

��

�2 =
1

m

m�
i=1

�
yi �
h∼Q

h(xi)

�2

+

���� 2

m

�
2KL(Q��P) + ln

�
2
√
m

�∕2

��
.

1950 Machine Learning (2020) 109:1945–1986

1 3

MinCq1 (Germain et al. 2015) The principle of MinCq is to create a majority vote
over a finite set of voters, whose weights minimize the C-bound. To avoid overfitting, it
considers a restriction on the posterior distribution named quasi-uniformity (Germain et al.
2015), and adds an equality constraint on the first moment of the margin.

Beneficially, it is ensured to perform as well in train as in generalization, according to
Corollary 1 and Theorem 2. The main drawback of MinCq is its computational training
time: its algorithmic complexity is O(m × n2 + n3) , which prevents it from scaling up to
large datasets.

CqBoost2 (Roy et al. 2016) Like MinCq, CqBoost is an algorithm based on the min-
imization of the C-bound. It was designed to accelerate MinCq and has proven to be a
sparser C-bound minimizer, hence enabling better interpretability and faster training.

CqBoost is based on a column generation process that iteratively builds the majority
vote. It is similar to boosting in the way that, at each iteration t, the choice of the voter to
add is made by greedily optimizing the edge criterion (Demiriz et al. 2002). Once a voter
has been added to the current selected set, CqBoost finds the optimal weights by minimiz-
ing the C-bound similarly to MinCq, solving a quadratic program.

The sparsity of CqBoost is explained by its ability to stop the iterative vote building
early enough to avoid overfitting. Nevertheless, even though CqBoost is faster and sparser
than MinCq, it is still not applicable to large datasets because of its algorithmic complexity
is O(m × T2 + T3) , where T is the number of boosting iterations.

3 CB‑Boost: A fast C‑Bound minimization algorithm

In this section, we present the mono-directional C-bound minimization problem and its
solution, which are central in CB-Boost. Then, we introduce CB-Boost ’s pseudo-code in
Algorithm 1.

The empirical C-bound of a distribution Q = {�1,… ,�n} of n weights over
H = {h1,… , hn} a set of n voters, on a learning sample S of m examples, is as follows.

It is proven in Appendix D.1 that if we use positive weights {�1,… , �n} ∈ (ℝ+)n instead of
a distribution, the empirical C-bound is equivalent to using the distribution
Q = {

�1

�
,… ,

�n

�
} , with � being

n∑
s=1

�s . From here, we use the weights that do not sum to one

in order to simplify the proofs.

C
S

Q
= 1 −

1

m

�
m∑
i=1

yi

n∑
s=1

�shs(xi)

�2

m∑
i=1

�
yi

n∑
s=1

�shs(xi)

�2
.

2 CqBoost’s pseudo-code is given in Appendix A.2.
1 The pseudo-code of MinCq is given in Appendix A.1.

1951Machine Learning (2020) 109:1945–1986

1 3

3.1 Optimizing the C‑Bound in one direction

We outline some basic definitions to clarify the contributions of the following work :
agreement ratio, margin and norm.

Definition 8 The agreement ratio between two voters h, h� ∈ H (or two combination of
voters in Conv(H)) is defined as �(h, h�) ≜ 1

m

m∑
i=1

h(xi)h
�(xi) .

Definition 9 The empirical margin of a single voter h ∈ H (or combination of voters in
Conv(H)) is �(h) ≜ 1

m

m∑
i=1

yih(xi).

Definition 10 The squared and normalized L2-norm of h ∈ H (or combination of voters in
Conv(H)), is defined as �(h) ≜ 1

m

m∑
i=1

h(xi)
2 =

1

m
‖h‖2

2
.

Here, we consider the C-bound optimization in a single direction, meaning that all
weights, except one, are fixed. For readability reasons, we introduce ∀i ∈ [m] ,
Fk(xi) =

n∑
s = 1

s ≠ k

�shs(xi) which denotes the majority vote built by all the fixed weights and

their corresponding voters, and (�, hk) the weight that varies during the optimization and its
corresponding voter. We can thus rewrite the empirical C-bound with respect to k , the vary-
ing direction, as

Our goal here is to find the optimal � in terms of C-bound, denoted by �∗
k
= argmin

�∈ℝ+

Ck(�) .

The following theorem is the central contribution of our work as it provides an analytical
solution to this problem.

Theorem 3 ∀k ∈ [n] with the previously introduced notations, if 𝛾(hk) > 0 and 𝛾(Fk) > 0 ,
then

The proof is provided in the Appendix, in Sect. D.1.
Theorem 3 states that in a specific direction, the C-bound has a global minimum, pro-

vided three conditions. The first two (𝛾(hk) > 0 and 𝛾(Fk) > 0) are met trivially within our
framework as hk is a weak classifier3 and Fk is a positive linear combination of weak classi-
fiers. The third one

(
𝜏(Fk, hk) <

𝛾(Fk)

𝛾(hk)

)
 means that Fk and hk are not supposed to be colinear,

which in the next section, we will show is not restrictive.

Ck(�) = 1 −
1

m

�
m∑
i=1

yi
�
Fk(xi) + �hk(xi)

��2

m∑
i=1

�
yi
�
Fk(xi) + �hk(xi)

��2 .

𝛼∗
k
= argmin

𝛼∈ℝ+

Ck(𝛼) =

{
𝛾(hk)𝜈(Fk)−𝛾(Fk)𝜏(Fk ,hk)

(𝛾(Fk)−𝛾(hk)𝜏(Fk ,hk))
if 𝜏(Fk, hk) <

𝛾(Fk)

𝛾(hk)
,

0 otherwise.

3 A weak classifier is a classifier that is slightly better than random classification.

1952 Machine Learning (2020) 109:1945–1986

1 3

This theoretical result is the main step in building a greedy C-bound minimization algo-
rithm. Moreover, as long as there is a direction k in which 𝜏(Fk, hk) <

𝛾(Fk)

𝛾(hk)
 , the C-bound

can be optimized in this direction, and every other one in which �(Fk, hk) ≥
�(Fk)

�(hk)
 is a dead

end.
In terms of complexity, the solution to the minimization problem is obtained in O(m) as

�(hk) , �
(
Fk

)
 , �(Fk) , and �(Fk, hk) are sums over the m examples of the training set S.

3.2 Optimally choosing the direction

In the previous subsection, we presented a theoretical result proving that, for a given
direction, the C-bound minimization problem has a unique solution. Here, we propose a
way to optimally choose this direction and compare it to the main existing method.

Exhaustive search In our framework, H is finite and has a cardinality of n, imply-
ing that we have a finite number of available directions to choose from. As stated before,
the minimum C-bound in one direction is available in O(m) . So by computing these min-
ima in each direction, in O(n × m) , we are able to choose the optimal direction, in which
the C-bound decreases the most.

Comparison with gradient boosting In the gradient boosting framework (a), the
optimization direction is chosen by gradient minimization. Coupled with an adequate
method to choose the step size, it is a very efficient way of optimizing a loss function.
However, thanks to our theoretical analysis, we know that at each iteration of CB-Boost,
the best direction is chosen and the optimal step size is known analytically.

Nonetheless, we present a comparison between our exhaustive method and a gradient
boosting version that we call GB-CB-Boost. We show in the experiments (Sects. 5.1 and
5.2) that it has no significant advantage and it is less stable than CB-Boost. The details
about the gradient boosting variant are explained in Appendix B, and a toy example
gives an intuition on the difference between the two processes in Appendix C.

3.3 Presenting CB‑Boost

Armed with the theoretical and practical results presented in the previous subsections,
we are now ready to present the overall view of CB-Boost, which optimizes the training
error of the majority vote through the iterative minimization of the mono-directional
C-bound presented in Theorem 3.

1953Machine Learning (2020) 109:1945–1986

1 3

Algorithm 1 CB-Boost
Require: T # the maximum number of iterations
Require: H = h1, . . . , hn #Precomputed set of classifiers
1: α1, . . . , αn ← 0, . . . , 0
2: I1, . . . , IT ← 0, . . . , 0 # The list containing the indices of the chosen hypothesis
3: I1 ← argmax

k∈[n]
γ(hk) # Find the index of the voter of H with the highest margin

4: αI1 ← 1 # Initialize its weight with 1
5: for t in 2, . . . , T do
6: α∗

1, . . . , α
∗
n ← 0, . . . , 0

7: for k in [n]\{It−1} do
8: if τ(Fk, hk) <

γ(Fk)
γ(hk)

then

9: α∗
k ← γ(hk)ν(Fk)−γ(Fk)τ(Fk,hk)

(γ(Fk)−γ(hk)τ(Fk,hk))
Find the optimal weight in every direction

10: end if
11: end for
12: It ← argmin

k∈[n]\{It−1}
Ck(α∗

k) # Find the best direction’s index

13: αIt ← α∗
zt

14: end for
15: return α1, . . . , αn

For the sake of clarity, we define I1,… , IT as a list that is initialized with zeros (Line
2), and that contains each of the chosen directions’ indices (Updated in Lines 3 and 12).
To initialize CB-Boost, we use hI1 ∈ H the hypothesis with the best margin, we set its
weight to 1, and all the others to zero (Lines 1, 3 and 4). This aims at accelerating the
convergence by starting the vote building with the strongest available hypothesis.

Then, for each iteration t, we compute the C-bound-optimal weights in every avail-
able direction, by solving multiple mono-directional optimization problems (Lines 7 to
11). The direction is then exhaustively chosen (Line 12).

After the initialization, the weights on H are a Dirac distribution with the best-mar-
gin hypothesis’s weight being the only one non-zero, and at each iteration t, one more
element of H will have a non-zero weight �It.

One major advantage of CB-Boost when compared to MinCq and CqBoost is the
simplicity of Line 9, where its predecessors solve quadratic programs. Indeed, the algo-
rithmic complexity of CB-Boost only depends on the number of iterations T, the num-
ber of examples m, and the number of hypotheses n. As the mono-directional C-bound
optimization is solved in O(n × m) CB-Boost ’s complexity is O(n × m × T).

3.4 Remarks

On the C-bound indirect example re-weighting To bring diversity in the majority
vote, Adaboost (Freund and Schapire 1997) updates weights over the examples at each
iteration, exponentially emphasizing the examples on which it previously failed.

In CB-Boost, by considering both the first and second moments of the margin, the
C-bound takes into account the individual performance of each voter and their disagree-
ment. Therefore, minimizing the C-bound requires to keep a trade-off between maximiz-
ing the vote’s margin and internal disagreement. This is the reason why CB-Boost does
not include any example weighting. Indeed, the mono-directional C-bound minimization
problem is equivalent to minimizing the following quantity

1954 Machine Learning (2020) 109:1945–1986

1 3

Intuitively, in this expression,
m∑
i=1

Fk(xi)hk(xi) is equivalent to �(Fk, hk) , so it decreases as h

and F disagreement increases. It encourages CB-Boost to choose directions that perform
well on hard examples. Moreover, �2 can be interpreted as a regularization term and

1

(�(Fk)+��(hk))
2 encapsulates the quality of the vote.

On the difference between the majority votes Intuitively, the concession made in
CB-Boost to accelerate CqBoost and MinCq is focused on the weights of the majority vote.
Indeed, CqBoost returns the majority vote that exactly minimizes the C-bound, for the con-
sidered set of voters where CB-Boost returns sub-optimal weights because they have been
optimized greedily throughout the iterations. Nevertheless, the C-bound computed during the
training phase is not an approximation for the considered majority vote, which explains the
theoretical results of the next section. Moreover, in Fig. 5 (page 19), we empirically show
that the weight-by-weight optimization has similar accuracy than the quadratic programs of
MinCq and CqBoost.

On the stopping criterion In Sect. 3.1, we stated that as long as there is still a direction in
which 𝜏(Fk, hk) <

𝛾(Fk)

𝛾(hk)
 , the C-bound can be optimized by CB-Boost. However, this is a very

loose stopping criterion. i In fact, as experimentally seen in Sect. 5, as in CqBoost, it is far
more interesting to use a fixed number of iterations as an hyper-parameter of the algorithm, as
the main improvements are made during the first iterations of the algorithm. This way of
restricting the number of iterations helps to reach a sparse model.

4 Theoretical results on training and generalization aspects

4.1 Quantifying the empirical C‑Bound decrease

In this section, we quantify the decrease rate of the empirical C-bound for each iteration of
CB-Boost, depending on the previous one and the considered direction.

Property 1 During iteration t of CB-Boost, if It is the chosen direction’s index, hIt its cor-
responding voter, and FIt

=
n∑

s = 1

s ≠ It

�shs the majority vote of all the other directions, then

the empirical C-bound decreases exactly by

The proof is provided in the Appendix, in Sect. D.4.

(
m∑
i=1

Fk(xi)
2 + 2�

m∑
i=1

Fk(xi)hk(xi) + �2m

)
1(

�(Fk) + ��(hk)
)2 .

St =

(
𝛾(hIt)𝜈

(
FIt

)
− 𝛾(FIt

)𝜏(FIt
, hIt)

)2
𝜈
(
FIt

)(
𝜈
(
FIt

)
− 𝜏(FIt

, hIt)
2
) > 0 .

1955Machine Learning (2020) 109:1945–1986

1 3

4.2 Deriving the training error bound

Corollary 2 The training error of the majority vote, built by CB-Boost at iteration t > 2 is
bounded by

with Sj being the quantity introduced in Property 1.

The proof is straightforward by combining Corollary 1 and Property 1.
This training error bound allows us to assess CB-Boost ’s capacity to learn relevant

models based on the available pool of voters.

4.3 Generalization guarantees

Theorem 2 presents a PAC-bound that gives generalization guarantees based on the empiri-
cal C-bound. In order to apply it to CB-Boost ’s output F =

n∑
s=1

hs�s , we use Q = {
�1

�
,… ,

�n

�
}

with � =
n∑

s=1

�s . Note that only the T weights corresponding to the chosen directions are

non-zero. So, according to Theorem 2, with probability 1 − � , for any sample S drawn
according to D,

These guarantees are tighter when the empirical C-bound of a majority vote is small, which
is exactly what CB-Boost aims at returning. Moreover, as seen in Sect. 2.2, returning a
majority vote with a small KL(Q||P) is essential in order to have good generalization guar-
antees. In Roy et al. (2016), the authors established that if the number of voters is far lower
than the number of examples, n << m , then minimizing KL(Q||P) is negligible in compari-
son with minimizing the C-bound of the majority vote.

If the case n << m is not applicable, we need to characterize KL(Q||P) intuitively. We
use a uniform prior on H , and as at each iteration of CB-Boost, one more weight of Q
will be non-zero, KL(Q||P) will increase as the posterior’s number of non-zero weight aug-
ments. Moreover, we proved that the C-bound of Q decreases over the iterations of CB-
Boost. Thus, in order to keep the trade-off between KL(Q||P) and the C-bound for the bound
of Theorem 2, it is relevant to use early-stopping by choosing a maximal number of itera-
tions. Consequently, based on the generalization guarantees, we set the maximum number
of iterations on CB-Boost as an hyper-parameter that can be chosen using hold-out data.

1 −
1

m

�
m∑
i=1

yi
�
hI1 (xi) + �I2hI2 (xi)

��2

m∑
i=1

�
yi
�
hI1 (xi) + �I2hI2 (xi)

��2 −

t�
j=3

Sj ,

RD(F) ≤ 1 −

�
max

�
0,

1

m

m∑
i=1

yi �
h∼Q

h(xi) −

�
2

m

�
KL(Q��P) + ln

�
2
√
m

�∕2

����2

min

�
1,

1

m

m∑
i=1

�
yi �
h∼Q

h(xi)

�2

+

�
2

m

�
2KL(Q��P) + ln

�
2
√
m

�∕2

��� ,

1956 Machine Learning (2020) 109:1945–1986

1 3

Comparison to non PAC-Bayesian generalization bounds In Cortes et al. (2014), a
tight bound based on the Rademacher complexity is given for majority votes F of Conv(H) .
This bound depends on R̂S,𝜌(F) = �

(x,y)∼S
[1yF(x)≤𝜌] the training error of F ’s margin being

lower than � , over the sample S drawn according to D and ℜm(H) the Rademacher com-
plexity of H , as

As explained in the previous paragraph, the size of KL(Q||P) is either negligible or depends
on the complexity of the distribution Q, and then can be reduced by early stopping. So,
intuitively, both the expressions rely on

√
1

m
 and are then fairly equivalent. The main dif-

ference is that the Rademacher-based bound relies on the training error of the majority vote
and the Rademacher complexity of the hypothesis space H (in our case ℜm(H) ≤

√
2 ln(|H|)

m
 ,

as our classifiers only outputs −1 or 1) whereas the C-bound ’s PAC-Bayesian bound relies
on maximizing

�1(M
S

Q
)

�2(M
S

Q
)
 , which CB-Boost is explicitly processing.

5 Experiments 4

In order to experimentally study CB-Boost, we first compare it to CqBoost (Roy et al.
2016), MinCq (Germain et al. 2015) and GB-CB-Boost (Sect. 3.2), focusing on efficiency,
sparsity and performance on chosen datasets featuring various properties. Then, we com-
pare it to Adaboost (Freund and Schapire 1997) and other ensemble methods: Random
Forest (Breiman 2001), Bagging (Breiman 1996), and Gradient Boosting (Friedman 2001).

5.1 Computational time improvement

In order to highlight the main advantage of CB-Boost, we first analyze the computational
time improvement obtained by greedily minimizing the C-bound, comparing CB-Boost and
GB-CB-Boost to CqBoost’s and MinCq’s quadratic programs. Moreover to compare them
with a fast, broadly used boosting algorithm, we challenge CB-Boost ’s computational effi-
ciency with Adaboost’s.

Protocol In this experiment, we want to compare MinCq, CqBoost , GB-CB-Boost, CB-
Boost and Adaboost by varying three factors : the training set size, the hypothesis set size, and
the number of boosting iterations, respectively denoted, m, n and T. To do so, we use MNist
4vs9 (LeCun and Cortes 2010) as it provides 11791 examples and 784 features. Moreover,
to be as fair as possible with the quadratic programs, we allowed 8 threads for the solver. For
comparative purposes, the only difference between GB-CB-Boost and CB-Boost ’s implemen-
tations is the gradient computation, as they are based on the same code.

Results In Fig. 1a, we vary n, the number of available hypotheses, with constant m and
T and, as expected, MinCq has a very long computational time. Moreover, even if CqBoost’s

RD(F) ≤ R̂S,𝜌(F) +
4

𝜌

T�
t=1

𝛼tℜm(H) +
2

𝜌

�
ln n

m
+

����⌈ 4

𝜌2
ln

�
𝜌2m

ln n

�
⌉ ln n
m

+
ln

2

𝛿

2m
.

4 The code used to realize each of the following experiments is available here: https ://gitla b.lis-lab.fr/bapti
ste.bauvi n/cb-boost -exps.

https://gitlab.lis-lab.fr/baptiste.bauvin/cb-boost-exps
https://gitlab.lis-lab.fr/baptiste.bauvin/cb-boost-exps

1957Machine Learning (2020) 109:1945–1986

1 3

boosting-like structure reduce its time consumption, it is still much longer than the three other
algorithms.

In Fig. 1b, we vary m. It has a small effect on MinCq, but has a huge effect on CqBoost
as it runs T = 50 iterations in which it solves one increasingly complex quadratic programs
per iteration, whereas MinCq has only one. Here, the apparently small difference between the
other algorithms is due to CqBoost’s and MinCq’s long duration.

Figure 1c only plots the iterative algorithms, and the duration difference between CqBoost
and the greedy ones is clear even for this small learning set.

To sum up the results of these three sub-experiments, Adaboost, CB-Boost and GB-CB-
Boost are far faster than the other C-bound algorithms. However, Adaboost and GB-CB-Boost
seem to be slightly more time consuming than CB-Boost. To compare them, we analyze
Fig. 1d, showing that even though they are close, CB-Boost is constantly faster than the oth-
ers. Moreover, it is visible that GB-CB-Boost ’s gradient computation is more time consuming
than CB-Boost ’s exhaustive search.

(a) Train time against hypothesis space
size. n is the number of available voters
in H

(b) Train time against train set size.
m is the number of training examples
in S

(c) Train time against number of
boosting iterations

(d) Train time against number of
available classifiers and number of
boosting iterations.

Fig. 1 Efficiency of C-bound algorithms and Adaboost on MNist 0v9. For a, b, c, we broke the ordinate
axis, to highlight the difference between the fast algorithms while showing the most time consuming algo-
rithms

1958 Machine Learning (2020) 109:1945–1986

1 3

To conclude, CB-Boost is a substantial acceleration of CqBoost and MinCq, and is faster
than Adaboost and GB-CB-Boost, which means that it is able to scale up to much bigger data-
sets than the other C-bound-based algorithms.

5.2 Performance comparison: C‑bound‑based algorithms equivalence

Here, we compare CB-Boost ’s performance in zero-one loss with the other C-bound
minimizers. Our goal is to measure the potential decrease in accuracy that greedy mini-
mization would imply.

Protocol

– Datasets All the datasets used in this experiment are presented in Table 1, an in-
depth presentation is made in Appendix E.

– Classifiers For each classifier, hyper-parameters were found with a randomized
search with 30 draws, over a distribution that incorporates prior knowledge about
the algorithm, but is independent from the dataset. They were validated by a 5-folds
cross-validation and each experiment was run ten times, with the result in Table 2
being the mean and standard deviation over them. These results are not statistically
significant, but multiplying the experiments helps avoiding an outlier split that could
bias the results.

Results Table 2 shows that, for all datasets except Ionosphere and MNist-5v6, CB-
Boost is performing at least as well as the other C-bound algorithms, considering the
standard deviation. It is quite clear that MinCq has the best zero-one loss on nearly
all the datasets, as it uses all the available hypotheses. However, CB-Boost is competi-
tive with both CqBoost and MinCq, and is even better on three datasets. On the more

Table 1 Datasets used in the different experiments

UCI datasets are used as simple tasks, MNist datasets are intended to represent usual complex problems
with numerous examples and medium dimensionality—we select usually confused binary tasks from it –,
and AwA is supposed to represent a complex problem of high dimensionality. See Appendix E for more
details

Source Name Size Dim. Train size (%) Test size (%)

UCI Dua and Graff (2017) Australian 690 14 345 (50) 345 (50)
Balance 625 4 312 (50) 313 (50)
Bupa 345 6 172 (50) 173 (50)
Cylinder 540 35 270 (50) 270 (50)
Hepatitis 155 19 77 (50) 78 (50)
Ionosphere 351 34 175 (50) 176 (50)
Pima 768 8 384 (50) 384 (50)
Yeast 1484 8 742 (50) 742 (50)

MNIST LeCun and Cortes (2010) MNist-0v9 11872 784 474 (4) 11398 (96)
MNist-6v5 11339 784 453 (4) 10886 (96)
MNist-5v3 11552 784 462 (4) 11090 (96)
MNist-7v9 12214 784 488 (4) 11726 (96)

AwA Lampert et al. (2009) Awa-TvW 1092 2000 546 (50) 546 (50)

1959Machine Learning (2020) 109:1945–1986

1 3

complex Animals with Attributes, CB-Boost is the best of the C-bound algorithms. As
expected, GB-CB-Boost shows no significant improvement of the accuracy, and is even
less stable on australian, MNist-7v9 and 5v6.

CB-Boost is competitive with both the quadratic C-bound minimization algorithms 11
times out of 13, and has the best mean 3 times. Considering its shorter computational time,
it is more efficient at extracting the information.

5.3 Sparsity conservation

Protocol We analyze here the convergence speed of the five previously studied algo-
rithms with grid-searched optimal hyper-parameters, when needed (MinCq’s margin
hyper-parameter set to 0.05, and CqBoost’s margin and error parameters, respectively
set to 0.001 and 10−6). The chosen dataset is MNIST 0v9 as it is more complex than
UCI datasets but still small enough for CqBoost and MinCq to have reasonable comput-
ing time on it. We use the same hypotheses, training and testing sets as previously.

Results Figure 2 shows that, even if CB-Boost converges a bit less quickly than
Adaboost and CqBoost on the training set, its performance on the test set is slightly bet-
ter than all the other algorithms. Moreover, it is visible that CqBoost’s and CB-Boost ’s
sparsity prevent them from the slight overfitting of MinCq. Furthermore, CqBoost seems
to profit more from early-stopping than CB-Boost, even if their sparsity is clear as they
have a better test performance than MinCq from the 30th voter. Finally, the experiments
do not reveal any visible difference in sparsity between CB-Boost and GB-CB-Boost.

So, thanks to the closed form solution used in the calculation of CB-Boost, its com-
puting time will always have an edge when compared to GB-CB-Boost. This, together
with the fact that, as expected (and empirically shown), GB-CB-Boost is less stable,
leads us to concentrate our analysis to CB-Boost for the remaining of the paper.

Table 2 Zero one loss on test

A result in bold means that, considering the standard deviation, the algorithm performed as well as the best
mean. A starred result means that the classifier returned the best mean

CB-Boost CqBoost MinCq GB-CB-Boost

Australian �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.���

Bupa �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.��� �.��� ± �.���

Cylinder �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.���

Hepatitis �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.�� ± �.���

Ionosphere 0.160 ± 0.014 �.��� ± �.��� �.��� ± �.��� ∗ 0.169 ± 0.01

Yeast �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.���

Balance �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ 0.071 ± 0.016

Pima �.��� ± �.��� ∗ �.��� ± �.��� 0.250 ± 0.016 �.�� ± �.��

MNist-0v9 �.��� ± �.��� ∗ 0.015 ± 0.002 �.��� ± �.��� �.��� ± �.���

MNist-5v3 �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.���

MNist-5v6 0.041 ± 0.003 0.040 ± 0.002 �.��� ± �.��� ∗ �.��� ± �.���

MNist-7v9 �.��� ± �.��� �.��� ± �.��� �.��� ± �.��� ∗ �.��� ± �.���

Awa-TvW �.��� ± �.��� ∗ 0.093 ± 0.003 �.�� ± �.��� 0.091 ± 0.009

1960 Machine Learning (2020) 109:1945–1986

1 3

5.4 Performance comparison: noise robustness equivalence

In this section, we compare CB-Boost and Adaboost considering accuracy. The aim here
is (1) to quantify how far CB-Boost is from Adaboost and (2) to evaluate their compared
robustness to noise. Please note that the version of Adaboost used for these experiments
is Adaboost.SAMME (Zhu et al. 2006), which is more robust to noise than the original.

Protocol We use the same framework as in Sect. 5.2 regarding datasets, train-test splits
and hyper-parameter optimization. A Gaussian distribution is used to add noise to the data
(see Appendix F.1 for a detailed protocol and an example). The MNist dataset requires a
special pre-processing to reduce its contrast in order for the noise to have an effect on clas-
sification. See Appendix F.2 for details.

Results In Fig. 3, we show a view of the results with each matrix presenting the
comparison between Adaboost and CB-Boost for each dataset (rows), and noise level

Fig. 3 Zero-one loss of CB-Boost and Adaboost. For each dataset (rows), we used several levels of
noise (columns). An orange square means that Adaboost is better than CB-Boost in zero-one-loss
(L(Ada) < L(CB-B)), and the difference between their scores is printed inside. A blue square means that
they are equivalent, when considering their standard deviation

Fig. 2 Zero-one loss on train (left) and − log(zero-one loss) on test (right) throughout the learning process
on MNist 0v9

1961Machine Learning (2020) 109:1945–1986

1 3

(columns). It shows that, except for the four first noise levels of ionosphere where the dif-
ference is noteworthy, no significant loss of accuracy is observed when using CB-Boost, as
the maximum difference between the other scores is 2.5%. In Appendix F.3, the numerical
results are provided.

5.5 Performance comparison: ensemble methods equivalence

We present the result of the performance comparison between CB-Boost and four other
ensemble methods : Adaboost (Freund and Schapire 1997), Bagging (Breiman 1996), Ran-
dom Forests (Breiman 2001), and Gradient Boosting (a) for which we use the same proto-
col as in Sect. 5.4. This experiment differs from Sect. 5.4 in the fact that we do not mean
the results on each dataset but instead, in Fig. 4 we plot one dot for each train/test split on
each dataset, for a matter of legibility.

Results In Fig. 4, the distance to the x = y line represents the difference in zero-one
loss. So, a dot under the line means that the ensemble method has lower loss and one over
the line means it has higher loss. One can see that CB-Boost is similar to the state of the art
for most of the datasets and train/test splits. The only perceptible tendency is that Bagging
is frequently worse than CB-Boost, the other methods are equivalent to CB-Boost.

(a) Random Forest (b) Gradient Boosting

(c) Bagging (d) Adaboost

Fig. 4 Each ensemble method’s zero-one loss against CB-Boost ’s one on the test set. A dot represents one
of the 10 splits of each dataset of Table 1

1962 Machine Learning (2020) 109:1945–1986

1 3

5.6 C‑bound approximation characterization

Here, we aim at empirically analyzing the approximation made by greedily minimizing
the C-bound instead of using a quadratic program solver. To do so, at each iteration of CB-
Boost, we run MinCq on the selected subset of voters to compute its optimal C-bound.

Protocol We use the MNist 4v9 dataset with the same sets as previously and pre-
defined hyper-parameters: CB-Boost ’s maximum number of iterations is set to 200, and
MinCq’s margin parameter to 0.05.

Results Figure 5 shows that there is a slight, but noticeable difference between the
C-bound of CB-Boost ’s majority vote and MinCq’s one. However, this difference only
has a small impact on CB-Boost ’s performance for the first 30 iterations in train and 80
iterations in test. So even if the expected difference in C-bound optimality is noteworthy,
it does not impact the performance of CB-Boost. Finally, the small gap between both the
C-bounds empirically suggests that CB-Boost keeps the qualities of CqBoost and MinCq.

6 Conclusion

In this paper, we presented CB-Boost, a greedy C-bound minimization algorithm. While
maintaining its predecessors’ sparsity and accuracy properties, it has much lighter computa-
tional demands. Its optimization process relies on a theoretical result allowing CB-Boost to
efficiently minimize the C-bound in one direction at a time. This algorithm keeps the train-
ing and generalization guarantees given by the C-bound (Lacasse et al. 2006) and has the
interesting property to allow a quantification of the decrease of its bound and training error.

Experimentally, the comparison of CB-Boost with relevant methods shows its real
improvement in computational demand, without loss of accuracy. Furthermore, experi-
ments shows that CB-Boost slightly improves the sparsity of the models, which is the main
property of CqBoost. Finally, it is competitive with four state of the art ensemble methods
with regards to performance, and with Adaboost in computational efficiency, sparsity and
noise robustness.

In future work, we will analyze deeper theoretical properties of CB-Boost, focusing
on its dual form, finding a stronger stopping criterion and adapting CB-Boost to infinite
hypothesis spaces.

Fig. 5 Zero-one-loss and
C-bound for CB-Boost and
the optimal C-bound version
MinCq(CB-Boost) on MNist
4v9. The dotted, dashed and
plain lines represent respectively
the C-bound, training and testing
error

1963Machine Learning (2020) 109:1945–1986

1 3

Acknowledgements This work has been supported by National Science and Engineering Research Council
of Canada (NSERC) Discovery grant 262067 and by the French National Research Agency (grant ANR-
15-CE23-0026). We warmly thank Robert Sadler and Sokol Koço for their proofreading.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

A Appendix: algorithms

Here, we briefly introduce MinCq (Germain et al. 2015) and CqBoost (Roy et al. 2016).
The notation is adapted to use our paper’s instead of the original authors’ to avoid any
confusion.

– � ≜

⎡⎢⎢⎢⎣

f1
�
x1
�

f2
�
x1
�
… f2n

�
x1
�

f1
�
x2
�

f2
�
x2
�
… f2n

�
x2
�

⋮ ⋮ ⋱ ⋮

f1
�
xm

�
f2
�
xm

�
… f2n

�
xm

�

⎤⎥⎥⎥⎦
, as the vote matrix, containing the vote of each

weak classifier in H and its complementary fn+j = −fj, j = 1..n on each example
xi, i = 1..m of the training set S , it is the matrix representing H ,

– � denotes the weight vector on the voters, corresponding to the weights � in CB-Boost,
– �m denotes the unitary vector of size m,
– � denotes the exact margin of the majority vote and �̃� , its minimum margin,
– � denotes a weight vector over the samples,
– � denotes a small positive real.

A.1 MinCq

MinCq is simply a bound-minimizer, and therefore, its pseudo code is solving a quadratic
program to output a weight vector on the hypothesis space, for details on the problem itself,
see (Germain et al. 2015).

Algorithm 2 MinCq
1: Solve

argmin
q

1
m

q�M�Mq

subject to
1
m

y�Mq = µ,

[InIn]q = µ, q ≥ 02n.

2: return q

http://creativecommons.org/licenses/by/4.0/

1964 Machine Learning (2020) 109:1945–1986

1 3

A.2 CqBoost

CqBoost is a bit more complex than MinCq, so we will analyze the main steps of the
pseudocode :

– Lines 1 to 3 initialize the problem with a null weight vector over the voters, a uni-
form distribution on the examples.

– For each iteration,

– Line 5 finds the voter with the best weighted edge, the edge being the dual of the
margin, it allows to find the voter that has the best decision, given the weights of
each example.

– And Line 10 solves a C-bound minimization problem to update the weights on the
voters and examples.

Let us introduce the quadratic program that is solved at Line 10,

And its dual with � , � , � being Lagrange multipliers

Algorithm 3 CqBoost
Require: T, number of iterations
1: q ← 0n

2: ω ← 1
m
1m

3: M̃ ← empty matrix
4: for t ← 1, . . . , T do
5: i ← argmaxi

∑m
k=1 ωkykMki

6: if
∑m

k=1 ωkykMki ≤ v + ε then
7: Leave loop
8: end if
9: Update M̃ with M’s i-th column
10: q,ω, ν ← solution of Eq. 1 or 2, considering M̃(of size m× t)
11: end for
12: return q

(1)

argmin
�,𝜌

1

m
𝜌⊤𝜌

subject to 𝜌 = diag(�)�̃�,
1

m
�⊤
m
𝜌 ≥ �̃�,

� ≥ �n, �⊤
n
� = 1.

(2)

argmin
�,𝛽,v

m

4
�
⊤
� −

𝛽

2
�⊤
m
� +

𝛽2

4
− 𝛽�̃� + 𝜈

subject to �̃⊤diag(�)� ≤ 𝜈�n,

𝛽 ≥ 0.

1965Machine Learning (2020) 109:1945–1986

1 3

Algorithm 4 Gradient boosting version of CB-Boost
Require: T # the maximum number of iterations
Require: H = h1, . . . , hn #Precomputed set of classifiers
1: α1, . . . , αn ← 0, . . . , 0
2: I1, . . . , IT ← 0, . . . , 0 # The list containing the indices of the chosen hypothesis
3: I1 ← arg max

k∈[n]
γ(hk) # Find the index of the voter of H with the highest margin

4: αI1 ← 1 # Initialize its weight with 1
5: for t in 2, . . . , T do
6: It ← arg max

k=1..n
−∇C (Fk) · hk # Find the best-gradient direction

7: αIt ← γ(hIt
)ν(FIt)−γ(FIt

)τ(FIt
,hIt

)

(γ(FIt
)−γ(hIt

)τ(FIt
,hIt

)) # Find the optimal weight in the direction

8: end for
9: return α1, . . . , αn

B Appendix: gradient boosting comparison

B.1 Getting a gradient boosting version of CB‑Boost

To build the gradient boosting version of CB-Boost, we follow the method presented in
Schapire and Freund (2012), with the C-bound as the choice of loss function, defined for
any F ∈ Conv(H) as

The gradient ∇C(F) =
(

�C(F(x1))
�F(x1)

,… ,
�C(F(xi))
�F(xi)

,… ,
�C(F(xm))
�F(xm)

)
 is given, ∀i ∈ [1..m] , by

C(F) = 1 −
1

m

�
m∑
i=1

yiF(xi)

�2

m∑
i=1

�
yiF(xi)

�2 .

1966 Machine Learning (2020) 109:1945–1986

1 3

Given this result, at iteration t of the gradient boosting algorithms finds the following direc-
tion of optimization, with Fk and hk defined as in Sect. 3.1:

Once this direction is found, the next goal is to find the best weight for the voter (or optimi-
zation step). Here, thanks to Theorem 3, the optimal weight is given by

Armed with these results, we present GB-CB-Boost in Algorithm 4 as the gradient boost-
ing variant of CB-Boost.

B.2 Difference between CB‑Boost and GB‑CB‑Boost

The only difference between the two greedy algorithms is the choice of the optimization
direction, made in step 12 of Algorithm 1:

and step 4 of Algorithm 4:

In CB-Boost, the direction is chosen as the one in which the C-bound has the lowest mini-
mum whereas in GB-CB-Boost, the choice is based on the maximum of the negative
gradient.

�C
�
F(xi)

�
�F(xi)

=
�

�F(xi)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −
1

m

�
∑
j≠i

yjF(xj) + F(xi)yi

�2

∑
j≠i

�
yjF(xj)

�2
+ (F(xi)yi)

2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1

m

2yi

�
∑
j≠i

yjF(xj) + F(xi)yi

���
∑
j≠i

yjF(xj)

�
F(xi)yi −

∑
j≠i

�
yjF(xj)

�2
�

�
∑
j≠i

�
yjF(xj)

�2
+ (F(xi)yi)

2

�2

=
2yi�(F)

�
�(F)F(xi)yi − �(F)

�

�(F)2
.

It = argmax
k=1..n

−∇C(Fk) ⋅ hk

= argmax
k=1..n

−

m∑
i=1

�C
(
Fk(xi)

)
�Fk(xi)

hk(xi)

�∗
It
=

�(hIt)�
(
FIt

)
− �(FIt

)�(FIt
, hIt)(

�(FIt
) − �(hIt)�(FIt

, hIt)
) .

It ← argmin
k∈[n]�{It−1}

Ck(�
∗
k
)

It ← argmax
k=1..n

−∇C(Fk) ⋅ hk .

1967Machine Learning (2020) 109:1945–1986

1 3

As seen in Sects. 5.1 and 5.2, it has an empirical impact on the computational effi-
ciency and on the stability of the algorithm, as CB-Boost is faster and more stable than
its gradient boosting counterpart. However, it does not have a significant impact on per-
formance nor sparsity.

Concerning sheer C-bound optimization, Fig. 6 shows that CB-Boost is as optimal as
gradient boosting, and even slightly better, particularly on MNist-5v3. Therefore, it would
be interesting to lead a more in-depth study on the differences between these variants. For
example, in Appendix C, a toy example points a case where gradient boosting needs one
more optimization step than our method to find the minimum of a toy loss.

C Appendix: intuitive understanding of direction choice on a toy
example

Here, we present a toy example that is meant to give the reader an intuition on the differ-
ence between gradient boosting bound minimization, and CB-Boost ’s C-bound minimiza-
tion process. To do so, we use a toy loss of two variables L ∶ x, y ↦ z and analyze how the
two approaches tackle the optimization problem. In Fig. 7, we plot it in two dimensions, a
3D plot is available here.5 This loss is convex and defined as

Fig. 6 The empirical (training) C-bound for CB-Boost and GB-CB-Boost on the four MNist datasets pre-
sented in Table 1 over 75 boosting iterations

5 https ://pagep erso.lis-lab.fr/bapti ste.bauvi n/toy_examp le.

https://pageperso.lis-lab.fr/baptiste.bauvin/toy_example

1968 Machine Learning (2020) 109:1945–1986

1 3

with c0, c1, c2 constants. In Fig. 7, we can see that when starting at the same place on the
loss function’s surface (the “Start” point), Gradient Boosting (GB) will choose the direc-
tion where the gradient is the lowest (x), and even with a perfectly tuned step size, will
have to use two iterations to reach the loss’ minima, as in this direction, it is not attainable.
However as CB-Boost ’s strategy is to find the direction in which the attainable minimum
is the lowest (y), regardless of the gradient, CB-Boost will find one minimum in just one
iteration. In Fig. 8, we projected the gradient directions and the function in 2D, in order to
have a clearer point of view.

This example is not meant to prove a theoretical nor empirical superiority but to point
the difference between the two methods.

L(x, y) =

{(
(x + c0)(y + c1)

)2
+ (y + c1)

2 − c2 �� x
2 + 2xc0 + c2

0
+ 1 >

c2

(y+c1)
2

0 otherwise,

Fig. 7 Toy convex loss in two dimensions in blue, paths of the algorithms in red (GB for gradient boosting
and CB for CB-Boost). The dotted surface is the minimum of the loss and dashed lines are the gradients
directions

Fig. 8 2D Projection of Fig. 7
gradient directions, the dashed
lines represent the gradient at the
starting point, and the red line
represents the mono-directional
optimization path that is avail-
able for the algorithm. The green
dots represent the optimal first
step for gradient boosting (GB1)
and CB-Boost (CB1)

1969Machine Learning (2020) 109:1945–1986

1 3

D Appendix: proofs

D.1 Proof of the equivalence between the distribution, and the weights version
of the C‑bound

Let us consider a set of weights {�1,… , �n} ∈ (ℝ+)n that do not sum to one, and the distri-
bution version Q� = {

�1

�
,… ,

�n

�
} with � =

n∑
s=1

�s.

D.2 Proof of Theorem 3

The proof that follows is not technically complex; it mainly relies on second order polyno-
mial analysis, but it is quite long. Therefore we propose in Sect. D.3 a graph version of it
that is easier to read and provides the main steps and implications.

In this proof, we will use the same notations as in the theorem,

– ∀i ∈ [m],Fk(xi) =
n∑

s = 1

s ≠ k

�shs(xi) is the fixed-weight majority vote,

– (�, hk) is the variable weight and its corresponding voter.

So

With, Fk(xi) ∈ ℝ and hk(xi) ∈ {−1, 1} ∀xi, i = 1…m and

C
S

{�1,…,�n}
= 1 −

1

m

�
m∑
i=1

yi

n∑
s=1

�shs(xi)

�2

m∑
i=1

�
yi

n∑
s=1

�shs(xi)

�2

= 1 −
1

m

1

�2

�
m∑
i=1

yi

n∑
s=1

�shs(xi)

�2

1

�2

m∑
i=1

�
yi

n∑
s=1

�shs(xi)

�2

= 1 −
1

m

�
m∑
i=1

yi

n∑
s=1

�s

�
hs(xi)

�2

m∑
i=1

�
yi

n∑
s=1

�s

�
hs(xi)

�2

= C
S

Q�

(3)Ck(�) = 1 −
1

m

�
m∑
i=1

yi
�
Fk(xi) + �hk(xi)

��2

m∑
i=1

�
Fk(xi) + �hk(xi)

�2 = 1 −
A2�

2 + A1� + A0

B2�
2 + B1� + B0

.

1970 Machine Learning (2020) 109:1945–1986

1 3

Deriving the C-bound with respect to � , we obtain

as the third order terms of the numerator are simplified.
With

So, with our notations

For the sake of brevity, we define P(�) = C2�
2 + C1� + C0.

Eventually, we will use only hk that are weak classifiers, so 𝛾(hk) > 0 . This implies
that 𝛾(Fk) > 0 because Fk is a linear combination, with only positive coefficients of weak
classifiers.

D.2.1 Analysis of B
2
˛
2 + B

1
˛ + B

0

Let us recall the definition of the denominator,

The only way to cancel this sum of squares is if ∀i ∈ [m]Fk(xi) = −�hk(xi) . Yet, we sup-
posed that 𝛾(hk) > 0 , so if ∀i ∈ [m]Fk(xi) = −�hk(xi) . So, either hk = −

Fk

�
 with 𝛼 > 0 ,

which is absurd, as we supposed 𝛾(Fk) > 0 and 𝛾(hk) > 0 , or hk = −
Fk

�
 with � ≤ 0 which is

absurd as we supposed � ≥ 0.
So our hypotheses lead to B2�

2 + B1� + B0 ≠ 0,∀� ∈ ℝ.

(4)

A0 = �(Fk)
2 =

(
1

m

m∑
i=1

yiFk(xi)

)2

,

A1 = 2�(hk)�(Fk),

A2 = �(hk)
2,

B0 = �
(
Fk

)
=

1

m

m∑
i=1

Fk(xi)
2,

B1 = 2�(Fk, hk) = 2
1

m

m∑
i=1

hk(xi)Fk(xi),

B2 = 1.

(5)C
�
k
(�) =

C2�
2 + C1� + C0

(B2�
2 + B1� + B0)

2
,

(6)

C2 = A1B2 − A2B1,

C1 = 2
(
A0B2 − A2B0

)
,

C0 = A0B1 − A1B0.

(7)

C2 = 2�(hk)
(
�(Fk) − �(hk)�(Fk, hk)

)
,

C1 = 2
(
�(Fk)

2 − �(hk)
2�
(
Fk

))
,

C0 = 2�(Fk)
(
�(Fk)�(Fk, hk) − �(hk)�

(
Fk

))
.

B2�
2 + B1� + B0 =

1

m

m∑
i=1

(
Fk(xi) + �hk(xi)

)2

1971Machine Learning (2020) 109:1945–1986

1 3

We will now analyse the behaviour of B2�
2 + B1� + B0 without any knowledge or

hypothesis on Ck(�) . We compute the discriminant

So as we proved earlier that B2�
2 + B1� + B0 could not be cancelled on ℝ , we have

D.2.2 Analysis of C�
k
(˛) and C

k
(˛)

Even if, in CB-Boost, � ∈ [0,+∞[, we will analyse these function on ℝ.
If we look closer to Ck(�) , we can see that its limits in ±∞ is 1 − A2

B2

 . Therefore, Ck(�)
has an asymptotic line in ±∞.

Moreover, thanks to (5) we know that the sign of C�
k
(�) only depends on the sign of

P(�).
Consequently, we will analyse the sign of P(�) by exhaustion.

• If C2 > 0 we have P(�) is a positive parabola as represented in the following Fig. 9.
Let’s analyse the possibilities concerning its roots.

– If P(�) has no real roots, we get a table as represented in Fig. 10.
 This is impossible, because Ck(�) is supposed to be strictly increasing and con-

tinuous.
 So P(�) not having real roots is ABSURD.
– If P(�) has exactly one real root, then

 We can see this equality as a second order polynom roots problem, so it can be ana-
lysed through this polynom’s discriminant,

 However, we proved in Eq. (9) that it is ABSURD.
 So P(�) can not have exactly one real root.
– Consequently, P(�) has two real roots:

(8)

� = B2
1
− 4B2B0

= 4�(Fk, hk)
2 − 4�

(
Fk

)

= 4
(
�(Fk, hk)

2 − �
(
Fk

))
.

(9)𝜏(Fk, hk)
2 − 𝜈

(
Fk

)
< 0.

(10)

�P = 0

⇔C2
1
− 4C2C0 = 0

⇔4
(
�(hk)

2�
(
Fk

)
+ �(Fk)

[
�(Fk) − 2�(hk)�(Fk, hk)

])2
= 0

⇔�(hk)
2�
(
Fk

)
+ �(Fk)

2 − 2�(Fk)�(hk)�(Fk, hk) = 0.

(11)

�P = 0

⇔4�(hk)
2�(Fk, hk)

2 − 4�(hk)
2�
(
Fk

)
≥ 0

⇔4�(hk)
2
(
�(Fk, hk)

2 − �
(
Fk

))
≥ 0.

1972 Machine Learning (2020) 109:1945–1986

1 3

 which leads to the table in Fig. 11. Thanks to the result on the asymptotic line, this
implies Ck(�) looking like Fig. 12 So �+ is the global argminimum of Ck(�) . In the
next section, we will prove that iy is admissible in CB-Boost ’s framework.

• If C2 < 0 we use similar methods, to prove that P(�) has two real roots, obtaining Figs. 13
and 14. So, in this case �− is the global argminimum.

�− =
−C1 −

√
�P

2C2

,

�+ =
−C1 +

√
�P

2C2

.

Fig. 9 The type of parabola that
illustrates P(�)

Fig. 10 Variation of Ck(�)
depending on the sign of P(�) if
it has no real roots

α

P(α)

Ck(α)

−∞ +∞

+

1− A2
B2

1− A2
B2

1− A2
B2

1− A2
B2

1973Machine Learning (2020) 109:1945–1986

1 3

α

P(α)

Ck(α)

−∞ α− α+ +∞

+ 0 − 0 +

1− A2
B2

1− A2
B2

Ck(α−)Ck(α−)

Ck(α+)Ck(α+)

1− A2
B2

1− A2
B2

Fig. 11 Variation of Ck(�) depending on the sign of P(�) if it has two real roots and C2 > 0

1− A2
B2

Ck(α−)

Ck(α+)

Fig. 12 Shape of Ck(�) , if P(�) has two real roots and C2 > 0

α

P(α)

Ck(α)

−∞ α− α+ +∞

− 0 + 0 −

1− A2
B2

1− A2
B2

Ck(α−)Ck(α−)

Ck(α+)Ck(α+)

1− A2
B2

1− A2
B2

Fig. 13 Variation of Ck(�) depending on the sign of P(�) if it has two real roots and C2 < 0

1974 Machine Learning (2020) 109:1945–1986

1 3

D.2.3 Possible argminima analysis

Preliminary results Following the previous analysis, we remind

Moreover, we will present two results before the proof by exhaustion.

– First of all, let us analyze Ck(0) with respect to the asymptotic line 1 − A2

B2

 So

 Let us note, that with the same method we can prove

– Secondly, we will focus on �P and its square root.

(12)

�P = C2
1
− 4C0C2,

�− =
−C1 −

√
�P

2C2

,

�+ =
−C1 +

√
�P

2C2

.

Ck(0) < 1 −
A2

B2

⇔1 −
A0

B0

< 1 −
A2

B2

⇔
A2

B2

<
A0

B0

⇔A2B0 < A0B2 # because B0 and B2 are positive

⇔C1 < 0.

(13)Ck(0) < 1 −
A2

B2

⇔ C1 < 0.

(14)Ck(0) ≥ 1 −
A2

B2

⇔ C1 ≥ 0.

�P =
[
2
(
�(hk)

2�
(
Fk

)
+ �(Fk)

[
�(Fk) − 2�(hk)�(Fk, hk)

])]2

1− A2
B2

Ck(α+)

Ck(α−)

Fig. 14 Shape of Ck(�) , if P(�) has two real roots and C2 < 0

1975Machine Learning (2020) 109:1945–1986

1 3

 In order to deduce
√
�P , we have to know the sign of

 It can be developed as a second order polynomial expression in �(hk)

 Its discriminant is

 which has the same sign as �(Fk, hk)
2 − �

(
Fk

)
 , which is negative, as seen earlier, in

Eq. 9.
 So, ∀�(hk) ∈ ℝ , 𝛾(hk)2𝜈

(
Fk

)
+ 𝛾(Fk)

[
𝛾(Fk) − 2𝛾(hk)𝜏(Fk, hk)

]
> 0 as its discrimi-

nant is negative and its evaluation in 0 is positive. So

Let us now pursue with the proof by exhaustion.
If C2 > 0

– Let us suppose Ck(0) ≥ 1 −
A2

B2

 . So Ck(0) is over the asymptotic line, so, somewhere on
the blue side of the function in Fig. 15. So, necessarily, the red part of the abscissa axis
is positive. Consequently 𝛼+ > 0.

– Now, let us suppose that Ck(0) < 1 −
A2

B2

 , which is equivalent to C1 < 0 , thanks to

Eq. 13 so �+ =
−C1+

√
�P

2C2

 , with C2 > 0 , −C1 > 0 and
√
𝛥P > 0 which implies 𝛼+ > 0.

�(hk)
2�
(
Fk

)
+ �(Fk)

[
�(Fk) − 2�(hk)�(Fk, hk)

]
.

�(hk)
2�
(
Fk

)
− �(hk)2�(Fk)�(F, h) + �(Fk)

2.

4�(Fk)
2�(Fk, hk)

2 − 4�
(
Fk

)
�(Fk)

2m = 4�(Fk)
2
(
�(Fk, hk)

2 − �
(
Fk

)
m
)
,

(15)
√
�P = 2

�
�(hk)

2�
�
Fk

�
+ �(Fk)

�
�(Fk) − 2�(hk)�(Fk, hk)

��
.

1− A2
B2

α− α+ α

Ck(α) = 1− A2
B2

Ck(α) ≥ 1− A2
B2

Fig. 15 Analysis of Ck(�) , if P(�) has two real roots and C2 > 0

1− A2
B2

α− α+ α

Ck(α) = 1− A2
B2

Ck(α) ≥ 1− A2
B2

Fig. 16 Analysis of Ck(�) , if P(�) has two real roots and C2 < 0

1976 Machine Learning (2020) 109:1945–1986

1 3

As a conclusion for C2 > 0,

If C2 < 0

– Symmetrically, if we suppose Ck(0) ≥ 1 −
A2

B2

 then, Ck(0) is on the blue side of the
curve in Fig. 16, so the red side of the abscissa axis is negative. So, 𝛼− < 0.

 Let us keep in mind that Ck(0) ≥ 1 −
A2

B2

⇒ 𝛼− < 0 . However, when we use Eq.14,
we have Ck(0) ≥ 1 −

A2

B2

⇔ C1 ≥ 0 . So

 Consequently, if C2 < 0 , then Ck(0) ≥ 1 −
A2

B2

⇒ �− ≥ 0 and Ck(0) ≥ 1 −
A2

B2

⇒ 𝛼− < 0 ,
which is absurd. So Ck(0) ≥ 1 −

A2

B2

 is absurd.
– Let us suppose that Ck(0) < 1 −

A2

B2

.
 We also suppose that �− ≥ 0 , so

 Which is absurd. So 𝛼− < 0 . So if Ck(0) < 1 −
A2

B2

 and 𝛼− < 0 then the lowest admissi-
ble C-bound value in CB-Boost is for zero.

Conclusion So if C2 < 0 , the hypothesis does not add value in terms of C-bound so the
optimal choice is to weigh it with 0.

On the other hand, if in a direction C2 > 0 , �+ is the global argminimum of Ck(�).
On Fig. 17, we draw a graph of this proof.

(16)C2 > 0 ⇒ 𝛼+ > 0.

Ck(0) ≥ 1 −
A2

B2

⇔C1 ≥ 0

⇔ − C1 ≤ 0

⇒ − C1 −
√
𝛥P ≤ 0

⇒

−C1 −
√
𝛥P

2C2

≥ 0 # because C2 < 0

⇒𝛼− ≥ 0.

(17)

𝛼− ≥ 0

⇒

−C1 −
√
𝛥P

2C2

≥ 0

⇒ − C1 −
√
𝛥P ≤ 0 # because we supposed that C2 < 0

⇒C1 ≥ −
√
𝛥P

⇒2
�
𝛾(hk)

2𝜈
�
Fk

�
+ 𝛾(Fk)

�
𝛾(Fk)m − 2𝛾(hk)𝜏(Fk, hk)

��
≥ −2

�
m𝛾(Fk)

2 − 𝛾(hk)
2𝜈
�
Fk

��

⇒2𝛾(Fk)
2m − 2𝛾(hk)𝜏(Fk, hk)𝛾(Fk) ≥ 0

⇒𝛾(Fk)m − 𝜏(Fk, hk)𝛾(hk) ≥ 0

⇒C2 ≥ 0.

1977Machine Learning (2020) 109:1945–1986

1 3

D.3 Graph of the proof

D.4 Proof of Property 1

D.4.1 Proof of the quantification

Let us analyze the C-bound of the vote at the beginning of iteration t + 1,

Ck(α) = 1− A2α
2+A1α+A0

B2α2+B1α+B0

lim
α→±∞

Ck(α) = 1− A2
B2C ′

k(α) =
C2α

2+C1α+C0=P(α)
(B2α2+B1α+B0)2

sg(C ′
k(α)) = sg(P(α))

Prior knowledge

B2α2 +B1α+B0 �= 0

τ(Fk, hk)2 − ν (Fk) < 0

No root One root

Two roots

if C2 > 0 if C2 ≤ 0

C1 < 0

argmin
α∈R+

Ck(α) = 0

if C1 > 0if C1 ≤ 0

argmin
α∈R+

Ck(α) = α+ > 0

Analysis of
P(α)

ABS

ABS

ABS

Fig. 17 This representation of the later proof shows the implications that lead to the result. The implications
containing the “ABS” notation represent proofs by contradictions

1978 Machine Learning (2020) 109:1945–1986

1 3

And at the beginning of iteration t,

So the numerators and denominators are

So we obtain CF

t+1
= 1 −

Nt+1

Dt+1

= 1 −
Nt+c

Dt+c
�
 . Yet, to be able to quantify the C-bound ’s

decrease, we need to focus on CF

t+1
− C

F

t
=

Nt

Dt

−
Nt+c

Dt+c
�
=

Ntc
�−Dtc

(Dt+c
�)Dt

.
Yet,

So

We subtract

So, combining with �It ’s expression found in Theorem 3,

C
F

t+1
= 1 −

�∑m

i=1
[yi(FIt

(xi) + �It hIt (xi)]
�2

∑m

i=1
[yi(FIt

(xi) + �hIt (xi)]
2

1

m
.

C
F

t
= 1 −

�∑m

i=1
[yiFIt

(xi)]
�2

∑m

i=1
FIt

(xi)
2

1

m
.

Nt+1 =
1

m2

(
m∑
i=1

[yi(FIt
(xi) + �It hIt (xi))]

)2

,

Dt+1 =
1

m

m∑
i=1

[FIt
(xi) + �It hIt (xi)]

2,

so for iteration t

Nt =
1

m2

(
m∑
i=1

[yiFIt
(xi)]

)2

,

Dt =
1

m

m∑
i=1

[FIt
(xi)]

2.

c =2�It�(FIt
)�(hIt) + �2

It
�(hIt)

2,

c� =2�It�(FIt
, hIt) + �2

It
,

Nt =�(FIt
)2,

Dt =�
(
FIt

)
.

Dtc =�
(
FIt

)
�(hIt)�It

(
2�(FIt

) + �It�(hIt)
)
,

Ntc
� =�(FIt

)2�It

(
2�(FIt

, hIt) + �It

)
.

Ntc
� − Dtc = −�It

(
�
(
Fk

)
�It�(hIt)

2�
(
FIt

)
− �It�(FIt

)2

−2�(FIt
)2�(FIt

, hIt) + 2�(FIt
)�(hIt)�

(
FIt

))
.

1979Machine Learning (2020) 109:1945–1986

1 3

Similarly,

So,

Then

In conclusion

D.4.2 Proof of positiveness

We have established that

So, sg(St) = sg(�
(
FIt

)
− �(FIt

, hIt)
2) , yet in Appendix D.1, Eq. 9, we had the property that

𝜏(FIt
, hIt)

2 − 𝜈
(
FIt

)
< 0 . So 𝜈

(
FIt

)
− 𝜏(FIt

, hIt)
2 > 0 , so St > 0.

Ntc
� − Dtc = −

(
�(hIt)�

(
FIt

)
− �(FIt

)�(FIt
, hIt)

)2(
�(FIt

)2 − 2�(FIt
)�(hIt)�(FIt

, hIt) + �(hIt)
2�
(
FIt

))
(
�(FIt

) − �(hIt)�(FIt
, hIt)

)2 .

(
Dt + c�

)
Dt = �

(
FIt

)(
�2
It
+ 2�It�(FIt

, hIt) + �
(
FIt

))

=
�
(
FIt

)(
�
(
FIt

)
− �(FIt

, hIt)
2
)(
�(FIt

)2 − 2�(FIt
)�(hIt)�(FIt

, hIt) + �(hIt)
2�
(
FIt

))
(
�(FIt

) − �(hIt)�(FIt
, hIt)

)2 .

Ntc
� − Dtc(

Dt + c�
)
Dt

= −
�It

(
�It�(hIt)

2�
(
FIt

)
− �It�(FIt

)2 − 2�(FIt
)2�(FIt

, hIt) + 2�(FIt
)�(hIt)�

(
FIt

))

�
(
FIt

)(
�2
It
+ 2�It�(FIt

, hIt) + �
(
FIt

))

= −

(
�(hIt)�

(
FIt

)
− �(FIt

)�(FIt
, hIt)

)2
�
(
FIt

)(
�
(
FIt

)
− �(FIt

, hIt)
2
) .

C
F

t
− C

F

t+1
=

(
1 −

Nt

Dt

)
−

(
1 −

Nt + c

Dt + c�

)

=

(
Nt + c

Dt + c�
−

Nt

Dt

)

=

(
Dtc − Ntc

�

(Dt + c)Dt

)

=

(
�(hIt)�

(
FIt

)
− �(FIt

)�(FIt
, hIt)

)2
�
(
FIt

)(
�
(
FIt

)
− �(FIt

, hIt)
2
) .

C
F

t
− C

F

t+1
=

(
�(hIt)�

(
FIt

)
− �(FIt

)�(FIt
, hIt)

)2
�
(
FIt

)(
�
(
FIt

)
− �(FIt

, hIt)
2
) .

C
F

t
− C

F

t+1
=

(
�(hIt)�

(
FIt

)
− �(FIt

)�(FIt
, hIt)

)2
�
(
FIt

)(
�
(
FIt

)
− �(FIt

, hIt)
2
) .

1980 Machine Learning (2020) 109:1945–1986

1 3

E Appendix: datasets

E.1 UCI datasets

We used the following datasets, from the UCI repository (Dua and Graff 2017)6 to test
CB-Boost ’s capacity to solve simple problems with few examples and/or a low dimension.
We chose Australian (690 × 14) , Balance (625 × 4) , Bupa (345 × 6) , Cylinder (540 × 35) ,
Hepatitis (155 × 19) , Ionosphere (351 × 34) , Pima (768 × 8) , Yeast (1484 × 8).

On every dataset, we generated 10 pairs of complementary decision stumps for each
attribute to build our hypothesis space. For each experiment, used one half of the dataset to
train our algorithms and the other half to test on unseen data.

E.2 MNist

To be able to analyse CB-Boost ’s behaviour on larger data, we used M-Nist (LeCun and
Cortes 2010)7 in which we selected four difficult couple of classes : (0,9), (5,3), (5,6) and
(7,9). As it has 784 attributes, we used 1 pair of complementary decision stumps for each
attribute for the hypothesis space and 4% of the dataset (∼ 471 ex.) to train and the remain-
ing examples (∼ 11000 ex.) to test.

E.3 Animal with attributes

Finally, to have a dataset with a large number of attributes, we used Animals with
Attributes (AwA) (Lampert et al.2009)8 by fusing two descriptors (surf-hist and cq-hist)
generating 4688 attributes. As each one on its own is barely relevant, we learned 2000
decision trees of depth 3 as the hypothesis space. They where trained on randomly sub-
sampled attributes (60% of the original dimension, with replacement). We selected two
classes: tiger and wolf, that are very confused and provide some challenge to differenti-
ate (we denote this dataset AwA-TvW). And one half of the dataset is used to train (546
ex.) and the other half to test (546ex.)

F Appendix: noise analysis

F.1 Data noising

In order to noise our datasets, we use a normal distribution, centred in 0 and of variable
standard deviation. This distribution is then scaled with the attribute’s range, added to
the data and capped to the limits of the attribute.

6 Available at https ://archi ve.ics.uci.edu/ml/datas ets.php.
7 Available at http://yann.lecun .com/exdb/mnist /.
8 Available at https ://cvml.ist.ac.at/AwA/.

https://archive.ics.uci.edu/ml/datasets.php
http://yann.lecun.com/exdb/mnist/
https://cvml.ist.ac.at/AwA/

1981Machine Learning (2020) 109:1945–1986

1 3

For example, for z a black and white pixel attribute, varying in [0, 255], to generate
a noise level of 0.5, a 0-centered normal distribution with standard deviation of 0.5,
N(0, 0.5) was used.

For each attribute (column) of each dataset, we used its upper and lower limit to generate
an adequate noise.

F.2 MNist noising

The MNist dataset required a supplementary step in the noising process, at it is mostly
comprised of black or white pixels. Indeed, this peculiarity made the previously introduced
noising process ineffective.Thus, the contrast of each image in the dataset was halved in
order for the noise to have a bigger impact on the performances of the studied algorithms.
In Fig. 18, the basic, and low contrast images are shown with and without noise, to picture

Noisy z =

⎧
⎪⎨⎪⎩

z + 255 ∗ N(0, 0.5) if z + 255 ∗ N(0, 0.5) ∈ [0, 255]

255 if z + 255 ∗ N(0, 0.5) > 255

0 if z + 255 ∗ N(0, 0.5) < 0

(a) Basic MNist image (b) Low contrast MNist image

(c) Basic noise level 0.25 (d) Low contrast noise level 0.25

Fig. 18 Effect of contrast reduction on the noising process

1982 Machine Learning (2020) 109:1945–1986

1 3

the impact of the contrast decrease. It is clear that reducing the contrast leads to a more dif-
ficult classification task once the dataset has been through the noising process.

F.3 Numerical results

See Tables 3 and 4.

Table 3 Numerical results for
noise analysis (dataset name :
noise std) for the UCI benchmark

CB-Boost Adaboost

Australian:0.05 0.148 ± 0.02 0.135 ± 0.016

Australian:0.1 0.154 ± 0.014 0.148 ± 0.015

Australian:0.15 0.148 ± 0.027 0.136 ± 0.02

Australian:0.2 0.162 ± 0.018 0.142 ± 0.011

Australian:0.25 0.177 ± 0.021 0.16 ± 0.015

Australian:0.3 0.199 ± 0.017 0.178 ± 0.016

Australian:0.35 0.187 ± 0.014 0.173 ± 0.011

Australian:0.4 0.239 ± 0.016 0.225 ± 0.013

Australian:0.45 0.245 ± 0.014 0.235 ± 0.019

Australian:0.5 0.245 ± 0.02 0.237 ± 0.018

Bupa:0.05 0.43 ± 0.027 0.416 ± 0.035

Bupa:0.1 0.429 ± 0.054 0.424 ± 0.039

Bupa:0.15 0.46 ± 0.031 0.436 ± 0.026

Bupa:0.2 0.457 ± 0.028 0.477 ± 0.034

Bupa:0.25 0.426 ± 0.03 0.442 ± 0.023

Bupa:0.3 0.455 ± 0.023 0.453 ± 0.032

Bupa:0.35 0.454 ± 0.032 0.445 ± 0.02

Bupa:0.4 0.466 ± 0.038 0.459 ± 0.027

Bupa:0.45 0.48 ± 0.035 0.466 ± 0.023

Bupa:0.5 0.463 ± 0.043 0.452 ± 0.017

Cylinder:0.05 0.303 ± 0.02 0.323 ± 0.021

Cylinder:0.1 0.313 ± 0.024 0.333 ± 0.015

Cylinder:0.15 0.317 ± 0.035 0.341 ± 0.025

Cylinder:0.2 0.363 ± 0.03 0.368 ± 0.03

Cylinder:0.25 0.358 ± 0.018 0.372 ± 0.023

Cylinder:0.3 0.374 ± 0.034 0.4 ± 0.028

Cylinder:0.35 0.405 ± 0.024 0.406 ± 0.03

Cylinder:0.4 0.381 ± 0.021 0.397 ± 0.028

Cylinder:0.45 0.4 ± 0.03 0.407 ± 0.019

Cylinder:0.5 0.409 ± 0.027 0.418 ± 0.029

1983Machine Learning (2020) 109:1945–1986

1 3

Table 3 (continued) CB-Boost Adaboost

Hepatitis:0.05 0.385 ± 0.02 0.383 ± 0.039

Hepatitis:0.1 0.38 ± 0.057 0.379 ± 0.055

Hepatitis:0.15 0.365 ± 0.045 0.341 ± 0.036

Hepatitis:0.2 0.395 ± 0.046 0.41 ± 0.04

Hepatitis:0.25 0.378 ± 0.055 0.378 ± 0.065

Hepatitis:0.3 0.398 ± 0.05 0.361 ± 0.044

Hepatitis:0.35 0.404 ± 0.058 0.405 ± 0.074

Hepatitis:0.4 0.416 ± 0.052 0.439 ± 0.034

Hepatitis:0.45 0.431 ± 0.038 0.436 ± 0.059

Hepatitis:0.5 0.443 ± 0.034 0.441 ± 0.05

Ionosphere:0.05 0.097 ± 0.027 0.159 ± 0.006

Ionosphere:0.1 0.099 ± 0.024 0.194 ± 0.028

Ionosphere:0.15 0.135 ± 0.031 0.212 ± 0.025

Ionosphere:0.2 0.188 ± 0.013 0.261 ± 0.031

Ionosphere:0.25 0.198 ± 0.041 0.261 ± 0.021

Ionosphere:0.3 0.212 ± 0.029 0.232 ± 0.019

Ionosphere:0.35 0.256 ± 0.021 0.287 ± 0.027

Ionosphere:0.4 0.27 ± 0.022 0.297 ± 0.034

Ionosphere:0.45 0.292 ± 0.025 0.304 ± 0.024

Ionosphere:0.5 0.318 ± 0.023 0.31 ± 0.031

Pima:0.05 0.255 ± 0.015 0.248 ± 0.011

Pima:0.1 0.29 ± 0.013 0.274 ± 0.012

Pima:0.15 0.319 ± 0.017 0.318 ± 0.013

Pima:0.2 0.326 ± 0.015 0.318 ± 0.019

Pima:0.25 0.346 ± 0.019 0.334 ± 0.017

Pima:0.3 0.32 ± 0.016 0.31 ± 0.012

Pima:0.35 0.373 ± 0.019 0.367 ± 0.012

Pima:0.4 0.374 ± 0.02 0.368 ± 0.017

Pima:0.45 0.371 ± 0.021 0.356 ± 0.012

Pima:0.5 0.374 ± 0.027 0.367 ± 0.013

Yeast:0.05 0.303 ± 0.007 0.306 ± 0.008

Yeast:0.1 0.316 ± 0.009 0.317 ± 0.01

Yeast:0.15 0.324 ± 0.013 0.318 ± 0.01

Yeast:0.2 0.317 ± 0.01 0.319 ± 0.01

Yeast:0.25 0.321 ± 0.008 0.315 ± 0.005

Yeast:0.3 0.313 ± 0.003 0.316 ± 0.002

Yeast:0.35 0.315 ± 0.006 0.318 ± 0.006

Yeast:0.4 0.319 ± 0.01 0.325 ± 0.008

Yeast:0.45 0.314 ± 0.003 0.321 ± 0.007

Yeast:0.5 0.315 ± 0.006 0.318 ± 0.006

1984 Machine Learning (2020) 109:1945–1986

1 3

Table 4 Numerical results for
noise analysis (dataset name :
noise std) for the bigger datasets

CB-Boost Adaboost

AwA-TvW:0.05 0.085 ± 0.007 0.089 ± 0.012

AwA-TvW:0.1 0.084 ± 0.006 0.084 ± 0.008

AwA-TvW:0.15 0.086 ± 0.006 0.087 ± 0.011

AwA-TvW:0.2 0.089 ± 0.009 0.093 ± 0.008

AwA-TvW:0.25 0.097 ± 0.01 0.099 ± 0.009

AwA-TvW:0.3 0.093 ± 0.007 0.101 ± 0.011

AwA-TvW:0.35 0.097 ± 0.008 0.107 ± 0.01

AwA-TvW:0.4 0.105 ± 0.008 0.104 ± 0.008

AwA-TvW:0.45 0.101 ± 0.009 0.113 ± 0.015

AwA-TvW:0.5 0.106 ± 0.008 0.115 ± 0.008

MNist 0v9:0.05 0.014 ± 0.001 0.013 ± 0.002

MNist 0v9:0.1 0.018 ± 0.002 0.016 ± 0.001

MNist 0v9:0.15 0.025 ± 0.002 0.022 ± 0.002

MNist 0v9:0.2 0.035 ± 0.006 0.028 ± 0.002

MNist 0v9:0.25 0.04 ± 0.004 0.033 ± 0.002

MNist 0v9:0.3 0.046 ± 0.003 0.041 ± 0.002

MNist 0v9:0.35 0.059 ± 0.004 0.055 ± 0.003

MNist 0v9:0.4 0.072 ± 0.006 0.067 ± 0.004

MNist 0v9:0.45 0.094 ± 0.005 0.083 ± 0.006

MNist 0v9:0.5 0.111 ± 0.006 0.098 ± 0.005

MNist 5v3:0.05 0.082 ± 0.005 0.075 ± 0.003

MNist 5v3:0.1 0.101 ± 0.005 0.089 ± 0.005

MNist 5v3:0.15 0.133 ± 0.008 0.118 ± 0.007

MNist 5v3:0.2 0.159 ± 0.006 0.145 ± 0.007

MNist 5v3:0.25 0.174 ± 0.006 0.166 ± 0.006

MNist 5v3:0.3 0.187 ± 0.006 0.188 ± 0.009

MNist 5v3:0.35 0.21 ± 0.007 0.21 ± 0.006

MNist 5v3:0.4 0.234 ± 0.007 0.236 ± 0.01

MNist 5v3:0.45 0.261 ± 0.008 0.255 ± 0.005

MNist 5v3:0.5 0.285 ± 0.008 0.281 ± 0.009

MNist 5v6:0.05 0.043 ± 0.002 0.041 ± 0.003

MNist 5v6:0.1 0.053 ± 0.004 0.048 ± 0.002

MNist 5v6:0.15 0.068 ± 0.006 0.061 ± 0.006

MNist 5v6:0.2 0.089 ± 0.008 0.077 ± 0.004

MNist 5v6:0.25 0.099 ± 0.008 0.089 ± 0.006

MNist 5v6:0.3 0.111 ± 0.006 0.106 ± 0.006

MNist 5v6:0.35 0.133 ± 0.004 0.124 ± 0.008

MNist 5v6:0.4 0.154 ± 0.007 0.143 ± 0.006

MNist 5v6:0.45 0.176 ± 0.006 0.167 ± 0.009

MNist 5v6:0.5 0.2 ± 0.007 0.19 ± 0.009

MNist 7v9:0.05 0.079 ± 0.004 0.074 ± 0.005

MNist 7v9:0.1 0.1 ± 0.009 0.09 ± 0.006

MNist 7v9:0.15 0.128 ± 0.004 0.109 ± 0.006

MNist 7v9:0.2 0.156 ± 0.006 0.135 ± 0.007

MNist 7v9:0.25 0.175 ± 0.005 0.151 ± 0.005

MNist 7v9:0.3 0.196 ± 0.005 0.172 ± 0.006

1985Machine Learning (2020) 109:1945–1986

1 3

References

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Catoni, O. (2007). PAC-Bayesian supervised classification: the thermodynamics of statistical learning.

arXiv preprint arXiv :0712.0248.
Cortes, C., Mohri, M., & Syed, U. (2014). Deep boosting. In: Proceedings of the thirty-first international

conference on machine learning (ICML) (2014).
Demiriz, A., Bennett, K. P., & Shawe-Taylor, J. (2002). Linear programming boosting via column genera-

tion. Machine Learning, 46(1), 225–254.
Dua, D., & Graff, C. (2017). UCI machine learning repository.
Dziugaite, G.K., & Roy, D.M. (2018). Data-dependent PAC-Bayes priors via differential privacy. In:

Advances in neural information processing systems, pp. 8440–8450.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applica-

tion to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statis-

tics, 29(5), 1189–1232.
Germain, P., Lacasse, A., Laviolette, F., & Marchand, M. (2009). PAC-Bayesian learning of linear classi-

fiers. In: Proceedings of the 26th ICML, pp. 353–360. ACM.
Germain, P., Lacasse, A., Laviolette, F., Marchand, M., & Roy, J. F. (2015). Risk bounds for the majority

vote: From a PAC-Bayesian analysis to a learning algorithm. Journal of Machine Learning Research,
16(1), 787–860.

Lacasse, A., Laviolette, F., Marchand, M., Germain, P., & Usunier, N. (2006). PAC-Bayes bounds for the
risk of the majority vote and the variance of the Gibbs classifier. In: B. Schölkopf, J.C. Platt, T. Hoff-
man (Eds.) Advances in neural information processing systems 19, pp. 769–776. MIT Press.

Lampert, C.H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes by between-
class attribute transfer. In: 2009 IEEE Conference on computer vision and pattern recognition, pp.
951–958. IEEE.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

Langford, J., & Shawe-Taylor, J. (2003). PAC-Bayes & margins. In: Advances in neural information pro-
cessing systems, pp. 439–446.

LeCun, Y., & Cortes, C. (2010). MNIST handwritten digit database.
Marchand, M., & Taylor, J. S. (2003). The set covering machine. Journal of Machine Learning Research, 3,

723–746.
McAllester, D. A. (1999). Some PAC-Bayesian theorems. Machine Learning, 37(3), 355–363.
McAllester, D. A. (2003). PAC-Bayesian stochastic model selection. Machine Learning, 51(1), 5–21.
Parrado-Hernández, E., Ambroladze, A., Shawe-Taylor, J., & Sun, S. (2012). PAC-Bayes bounds with data

dependent priors. Journal of Machine Learning Research, 13, 3507–3531.
Roy, J.F., Marchand, M., & Laviolette, F. (2016) A column generation bound minimization approach with

PAC-Bayesian generalization guarantees. In: A. Gretton, C.C. Robert (eds.) Proceedings of the 19th
international conference on artificial intelligence and statistics, proceedings of machine learning
research, vol. 51, pp. 1241–1249. PMLR, Cadiz, Spain. http://proce eding s.mlr.press /v51/roy16 .html.

Schapire, R. E., & Freund, Y. (2012). Boosting: foundations and algorithms. Cambridge: The MIT Press.
Seeger, M. (2002). PAC-Bayesian generalisation error bounds for gaussian process classification. Journal of

Machine Learning Research, 3, 233–269.
Seldin, Y., Cesa-Bianchi, N., Auer, P., Laviolette, F., & Shawe-Taylor, J. (2012). PAC-Bayes-bernstein ine-

quality for martingales and its application to multiarmed bandits. Proceedings of the Workshop on On-
line Trading of Exploration and Exploitation, 2, 98–111.

Table 4 (continued) CB-Boost Adaboost

MNist 7v9:0.35 0.221 ± 0.012 0.201 ± 0.008

MNist 7v9:0.4 0.246 ± 0.009 0.22 ± 0.007

MNist 7v9:0.45 0.265 ± 0.007 0.246 ± 0.006

MNist 7v9:0.5 0.287 ± 0.006 0.267 ± 0.006

http://arxiv.org/abs/0712.0248
http://proceedings.mlr.press/v51/roy16.html

1986 Machine Learning (2020) 109:1945–1986

1 3

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple kernel learning. Jour-
nal of Machine Learning Research, 7, 1531–1565.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.
Zhu, J., Rosset, S., Zou, H., & Hastie, T. (2006). Multi-class adaboost. Statistics and its Interface,. https ://

doi.org/10.4310/SII.2009.v2.n3.a8.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.4310/SII.2009.v2.n3.a8
https://doi.org/10.4310/SII.2009.v2.n3.a8

	Fast greedy -bound minimization with guarantees
	Abstract
	1 Introduction
	2 Context
	2.1 Basic notations and definitions
	2.2 Previous work: the -Bound & PAC-Bayesian guarantees
	2.3 Existing algorithms: MinCq & CqBoost

	3 CB-Boost: A fast -Bound minimization algorithm
	3.1 Optimizing the -Bound in one direction
	3.2 Optimally choosing the direction
	3.3 Presenting CB-Boost
	3.4 Remarks

	4 Theoretical results on training and generalization aspects
	4.1 Quantifying the empirical -Bound decrease
	4.2 Deriving the training error bound
	4.3 Generalization guarantees

	5 Experiments 4
	5.1 Computational time improvement
	5.2 Performance comparison: -bound-based algorithms equivalence
	5.3 Sparsity conservation
	5.4 Performance comparison: noise robustness equivalence
	5.5 Performance comparison: ensemble methods equivalence
	5.6 -bound approximation characterization

	6 Conclusion
	Acknowledgements
	References

