
Direct Induction Proof Challenge: Evaluating Large Language Models on Deeply
Nested Mathematical Induction

Risako Ando 1 Koji Mineshima 1 Mitsuhiro Okada 1

Abstract
We introduce a challenge designed to evaluate the
capability of Large Language Models (LLMs) in
performing mathematical induction proofs, with a
particular focus on nested induction. Our task re-
quires models to construct direct induction proofs
in both formal and informal settings, without re-
lying on any preexisting lemmas. Experimental
results indicate that current models struggle with
generating direct induction proofs, suggesting that
there remains significant room for improvement.

1. Introduction
It has become widely recognized in recent years that LLMs
possess a certain capacity for logical reasoning and its
arithmetical extensions, including the ability to construct
proofs (Lightman et al., 2024). However, many of these
successful instances might be attributable to the reuse and
combination of lemmas contained in the training data. This
corresponds to the use of pre-existing lemmas in libraries of
automated theorem proving and proof assistant systems.

In this study, we focus on proof construction within the
domain of elementary part of arithmetic, under conditions
that restrict access to such lemmas. Specifically, we in-
vestigate the extent to which LLMs can construct proofs
involving mathematical induction of varying complexity,
using the depth of nested induction as a measure of com-
plexity, in contrast to the complexity of formulas (Dean &
Naibo, 2024). Furthermore, we evaluate whether LLMs can
generalize to more complex induction proofs when given
examples of simpler ones in a few-shot prompting setting.

2. Related Work
Research on automating mathematical induction dates back
to the 1970s (Boyer & Moore, 1979), with foundational sys-

1Department of Philosophy, Keio University, Tokyo, Japan.
Correspondence to: Risako Ando <risakochaan@keio.jp>, Koji
Mineshima <minesima@abelard.flet.keio.ac.jp>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada.

tems such as the Boyer-Moore theorem prover establishing
early techniques for mechanized reasoning.

Modern proof assistants such as Coq and Lean provide ro-
bust support for inductive types and user-guided inductive
reasoning. However, despite these advancements, the full au-
tomation of inductive proofs remains a significant challenge.
In practice, users are still required to manually design induc-
tion schemas or supply key lemmas, and general-purpose
automation often fails to scale beyond relatively simple
proofs.

Recently, several benchmark suites have been proposed to
evaluate inductive theorem provers (Claessen et al., 2015;
Hajdú et al., 2021; Gauthier et al., 2023). While these
datasets have advanced the evaluation of inductive provers,
very few focus on deeply nested or multi-level induction,
which remains a major challenge for both automated and
neural proof systems.

Recent work on large language models (LLMs) has shifted
focus from answer-only evaluation to step-wise verification,
achieving impressive results on math benchmarks via pro-
cess supervision (Uesato et al., 2022; Lightman et al., 2024).
However, research specifically addressing mathematical in-
duction is still scarce.

Dean & Naibo (2024) provide a broader critique of LLM-
based mathematical reasoning, classifying theorems by
arithmetical complexity and highlighting key limitations
in current models (Romera-Paredes et al., 2024). In contrast,
our work focuses explicitly on mathematical induction—an
area where even symbolic provers struggle—and investi-
gates whether LLMs can construct valid induction proofs in
formal contexts.

3. Direct induction Proof Challenge
LLMs tend to employ induction in a shallow manner, often
relying on existing libraries of lemmas. To investigate how
well LLMs can support proofs involving nested induction,
we focus on what we call direct induction proofs. Suppose
an inductive data type is given, along with a set of primitive
recursive function definitions induced from it. When the
structural induction principle is provided as an inference
rule, we define a direct induction proof as a proof of a uni-

1



Direct Induction Proof Challenge

versally quantified equation that is constructed solely from
the given definitions and the structural induction principle—
that is, without invoking any auxiliary lemmas. We assume
equational logic as the background logic. An example of
direct induction proof is given in Appendix A.1.

Among various inductive data types, a fundamental case is
that of the natural numbers. Primitive Recursive Arithmetic
(PRA) (Skolem, 1967) corresponds to this setting, where
the inductive type is the natural numbers. For the purposes
of this study, we primarily focus on a fragment of PRA in
which addition and multiplication are defined directly. This
fragment is sufficiently rich in that it allows multiply nested
induction, making it a valuable first step for examining the
automation of direct induction proofs.

4. Experiments
4.1. Problem Set

To evaluate the capabilities of LLMs in constructing direct
induction proofs, we designed a benchmark consisting of
20 arithmetic statements involving addition and multiplica-
tion. These problems were selected to cover a spectrum of
increasing structural complexity in terms of the number of
variables and the depth of induction required. See Appendix
A.2 for the full list of statements and variable counts.

4.2. Proof Generation Tasks

For each problem, we instruct LLMs to generate two types
of proofs: informal proofs in natural language (English) and
formal proofs written in Lean 4 (https://lean-lang.
org/). For informal proofs, we manually examine the
correctness of proofs. For formal proofs, we use automatic
evaluation with Lean 4.

Informal Proof We conduct experiments on informal
proofs under two settings. First, in the Direct task, the use
of any lemmas is strictly prohibited. The model is required
to rely solely on the definitions of addition and multiplica-
tion, along with mathematical induction on natural numbers
(including nested induction when necessary). Prompt ex-
amples are provided in Appendix A.3. Second, we test the
Lemma task, where the use of lemmas is permitted, but
the model is required to provide a proof for each lemma it
uses. For both the Direct and Lemma tasks, we provided
two-shot examples. These included a proof of the statement
a + succ(0) = succ(a), and a proof of a + b = b + a
involving double induction (See Appendix A.1).

Formal Proof For formal proofs, in addition to the Direct
and Lemma tasks, we test a third task called the Library
task. In this setting, the use of lemmas from external sources
such as Lean’s Mathlib is allowed, but automated proof
tactics are strictly prohibited. In the formal proof setting,

we implemented a feedback loop based on Lean 4’s error
messages. The model was allowed to retry up to n times
(with n = 1, 5, 10) in an attempt to generate a correct proof.

Experimental Setting We use several large language mod-
els of varying sizes in our experiment: openai/gpt-4o-2024-
08-06, openai/gpt-3.5-turbo-0125, and meta-llama/llama-3-
70b-instruct. We set the temperature to 0.2 and the maxi-
mum number of output tokens to 2000, while leaving other
parameters at their default values.

Figure 1. The results of gpt-4o on each task in informal proofs.
The numbers indicate the number of correct proofs out of a total
of 20 problems.

4.3. Informal Proof Results

Figure 1 shows the results of the Direct and Lemma tasks in
informal proofs. Given the high cost of manual evaluation,
we limited our human assessment to the best-performing
model (gpt-4o). A common error pattern observed was
the failure to adhere to the provided definitions (see Ap-
pendix A.4, with proofs including unproven steps such as
a+succ(a) = succ(a+b) (right addition), even though our
definition is succ(a)+b = succ(a+b) (left addition). Thus,
we relax the condition and evaluate the results according to
the three criteria: (1) Direct Induction Proof: Correct as
a direct induction proof, where no step other than mathe-
matical induction and definitions appears; (2) Semi-Direct
Induction Proof: A direct proof except that it uses the right
addition or multiplication rules without proving them by in-
duction; (3) Indirect Proof: Neither direct nor semi-direct
but the proof is correct. Any proof that does not fall under
these three categories was considered incorrect.

When the evaluation criteria were relaxed to include semi-
direct induction proofs and indirect proofs, the model cor-
rectly answered 14 out of 20 problems. However, it achieved
only 5 correct answers out of 20 under the strict direct proof

2

https://lean-lang.org/
https://lean-lang.org/


Direct Induction Proof Challenge

Figure 2. The results of each task in formal proofs. Iteration refers to the number of times the error-feedback process was attempted.
Count refers to the number of correctly generated proofs out of 20 problems.

setting. Performance was poorer on the Lemma task, which
requires the model to formulate and prove auxiliary lem-
mas, providing detailed justification for each step. This
suggests that current models struggle with generating such
explanatory intermediate steps.

Regarding the generalization abilities of LLMs in theorem
proving, the following results were observed: (1) Despite
not being shown any examples involving multiplication,
the model was occasionally able to construct correct di-
rect induction proofs involving multiplication, indicating
a degree of generalization beyond addition (ID 8 in Ap-
pendix A.2). (2) Although only examples involving double
induction were provided, the model was able to correctly
prove a theorem requiring triple nested induction (ID 12 in
Appendix A.2).

4.4. Formal Proof Results

Figure 2 shows the results of the three tasks in formal proofs.
The models showed poor performance in constructing di-
rect induction proofs. Increasing the number of attempts
using error feedback did not improve performance on the
Direct or Lemma tasks. Performance on the Lemma task—
where the model is required to formulate and prove its own
auxiliary lemmas—was extremely poor. In contrast, per-
formance improved in the Library task, where the model
was allowed to refer to existing libraries. Similar to the
informal proof setting, the Lemma task requires the model
to provide detailed explanations for each proof step in the
form of lemmas. Again, this suggests that current models
are still weak at producing such explanatory reasoning.

5. Summary and Future Work
We proposed the Direct Induction Proof Challenge, a bench-
mark designed to evaluate LLMs’ ability to construct direct
mathematical induction proofs, particularly those involv-
ing nested induction, without relying on auxiliary lemmas.

Based on a fragment of Primitive Recursive Arithmetic
(PRA), we tested models in both informal (natural language)
and formal (Lean 4) settings across Direct, Lemma, and Li-
brary tasks.

Our results show that while LLMs sometimes generalize
beyond the few-shot examples provided in the in-context
learning setup (such as successfully applying triple induc-
tion or handling multiplication without direct prompts), they
still face significant challenges in producing strictly direct
proofs and in formulating and justifying intermediate lem-
mas.

For future work, We plan to extend our experiments within
the framework of PRA to encompass functions beyond ad-
dition and multiplication. We also intend to broaden our
investigation to include more general inductive data types,
allowing for an evaluation of mathematical induction in the
context of more general forms of structural induction.

References
Boyer, R. S. and Moore, J. S. A Computational Logic.

Academic Press, New York, 1979.

Claessen, K., Johansson, M., Rosén, D., and Smallbone,
N. Tip: Tons of inductive problems. In Intelligent
Computer Mathematics (CICM), volume 9150 of Lec-
ture Notes in Computer Science, pp. 333–337. Springer,
2015. URL https://github.com/tip-org/
benchmarks.

Dean, W. and Naibo, A. Artificial intelligence and inherent
mathematical difficulty. arXiv preprint arXiv:2408.03345,
2024. URL https://arxiv.org/abs/2408.
03345.

Gauthier, T., Brown, C. E., Janota, M., and Urban, J. A
mathematical benchmark for inductive theorem provers.

3

https://github.com/tip-org/benchmarks
https://github.com/tip-org/benchmarks
https://arxiv.org/abs/2408.03345
https://arxiv.org/abs/2408.03345


Direct Induction Proof Challenge

In Proceedings of 24th International Conference on Logic,
volume 94, pp. 224–237, 2023.

Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., and
Voronkov, A. Inductive benchmarks for automated rea-
soning. In Intelligent Computer Mathematics (CICM),
volume 12833 of Lecture Notes in Computer Science, pp.
124–129. Springer, 2021.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Skolem, T. The foundation of elementary arithmetic es-
tablished by means of the recursive mode of thought,
without the use of apparent variables ranging over infinite
domains. In van Heijenoort, J. (ed.), From Frege to Gödel:
A Source Book in Mathematical Logic, 1879–1931, pp.
302–333. Harvard University Press, 1967. Original work
published in 1923.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

4

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi


Direct Induction Proof Challenge

A. Appendix
A.1. Example of direct induction proof involving double-induction provided as few-shot

The following is an example of a direct induction proof provided as few-shot in the informal proof setting.

We show that for all natural numbers a and b, the following statement holds:
a + b = b + a

Now we prove the theorem by induction on a.

Case 1 (Base Case):
We prove 0 + b = b + 0 by induction on b. (Inner induction)

Case 1.1 (Base Case):
By definition, 0 + 0 = 0 = 0 + 0

Case 1-2 (Induction Step):
Assume induction hypothesis (ih): 0 + b = b + 0
We show: 0 + s(b) = s(b) + 0

0 + s(b) = s(b) (by definition of +)
= s(0 + b) (by definition of +)
= s(b + 0) (by ih) \\
= s(b) + 0 (by definition of +)

Case 2 (Induction Step):
Assume induction hypothesis (ih): a + b = b + a.
We show: s(a) + b = b + s(a).

s(a) + b = s(a + b) (by definition)
= s(b + a) (by ih)
= s(b) + a (by definition)

We prove s(b) + a = b + s(a) by induction on b. (Inner induction)

Case 2.1 (Base Case):
s(0) + a = s(0 + a) = s(a) = 0 + s(a)

Case 2.2 (Induction Step):
Assume induction hypothesis (ih’): s(b) + a = b + s(a)
Goal: s(s(b)) + a = s(b) + s(a)

s(s(b)) + a = s(s(b) + a) (by definition)
= s(b + s(a)) (by ih’)
= s(b) + s(a) (by definition)

Thus, we have shown that a + b = b + a for all natural numbers a and b.

A.2. Problems

The following shows the set of all 20 example problems we used in our experiments. The “Variable” column indicates the
number of parameters present in the corresponding statement.

ID Statement Variable

1 a+ 1 = 1 + a 1
2 2 + a = a+ 2 1
3 a× 1 = a 1
4 1× b = b× 1 1
5 (a+ 1) + 1 = a+ (1 + 1) 1
6 a× b = b× a 2
7 (a+ b) + 1 = a+ (b+ 1) 2
8 (a× 1)× c = a× (1× c) 2
9 (a+ 1)× c = (a× c) + (1× c) 2

10 1× (b+ c) = (1× b) + (1× c) 2
11 (a+ b) + c = a+ (b+ c) 3
12 a× (b+ c) = (a× b) + (a× c) 3
13 (a× b)× c = a× (b× c) 3
14 (a+ b)× c = (a× c) + (b× c) 3
15 (1 + (b+ c))× d = (1× d) + ((b× d) + (c× d)) 3
16 (a+ b)× (c+ d) = ((a× c) + (a× d)) + ((b× c) + (b× d)) 4
17 ((a+ b) + c) + d = a+ (b+ (c+ d)) 4
18 (a× b)× (c× d) = a× (b× (c× d)) 4
19 (a+ b)× (c× d) = (a× (c× d)) + (b× (c× d)) 4
20 ((a+ b)× c) + ((a+ b)× d) = (a+ b)× (c+ d) 4

5



Direct Induction Proof Challenge

A.3. Prompts

The following are prompt examples for the Direct Task in formal and informal proorfs.

Prompt example (Direct, Formal)
Prove the following statement in Lean 4, adhering to the strict constraints listed below.

{Statement}

Proof Constraints:
- Do not use any predefined lemmas, such as add_zero, add_comm, etc.
- Only use mathematical induction on natural numbers, including nested induction if necessary.
- Do not use any automated tactics (e.g., simp, ring, omega, or similar).
- Do not use syntax sugar such as |>.
- Use Lean 4 syntax and avoid using syntax that only works in Lean 3.
- Carefully follow the definitions of natural numbers, addition, multiplication as provided below.
- Use the sample proof below as a model for writing a correct proof.

Output Format:
- Provide the complete proof in Lean 4 code block format, starting and ending with triple backticks (‘‘‘lean‘‘‘).

{Example}

Prompt example (Direct, Informal)
Prove the following statement. Your proof must adhere to the following strict constraints:

{Statement}

- Do not invoke any preestablished lemmas such as the commutativity of addition or multiplication, or similar.
- Do not assume any unproven propositions such as "a + 0 = 0 for all natural numbers a".
- Use only mathematical induction on natural numbers, including nested induction if necessary.
- Adhere strictly to the definitions of natural numbers, addition, multiplication, as given below.
- Follow the structure of the sample proof provided.

{Example}

A.4. Definition

The following is a definition of addition and multiplication used in the prompt.

Definition (Formal)

inductive Nat where
| o : Nat
| s : Nat → Nat

def add : Nat → Nat → Nat
| o, b => b
| s a, b => s (add a b)

def mul : Nat → Nat → Nat
| o, _ => o
| s a, b => add (mul a b) b

infixl:60 " + " => add
infixl:70 " * " => mul

Definition (Informal)

We define natural numbers inductively:
- 0 is a natural number.
- If a is a natural number, then so is s(a), the successor of a.

Addition is defined recursively:
- 0 + b = b
- s(a) + b = s(a + b)

Multiplication is defined recursively:
- 0 * b = 0
- s(a) * b = (a * b) + b

6


