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Abstract

Large Language Models (LLMs) have shown impressive per-
formance on various language processing tasks, but often
struggle with complex, multi-step tasks such as travel plan-
ning. To address this challenge, extensions like LLM-modulo
systems and agentic approaches have been proposed, each
with its own strengths and limitations. This paper examines
the unique strengths and limitations of these approaches, us-
ing the Travel Planner benchmark as a case study. We analyze
the results and propose a new hybrid task planner approach to
address the challenges of solving multi-step tasks with LLMs,
highlighting implications for future research in this area.

1 Introduction
Large Language Models (LLMs) have emerged as a pow-
erful tool for solving a variety of complex tasks. Currently,
there is a growing interest in applying LLMs towards solving
multi-step tasks such as travel planning or mission planning.
However, LLMs have frequently shown disappointing re-
sults on these multi-step tasks. In benchmarks such as Travel
Planner (Xie et al. 2024), even GPT-4 only achieves a 0.6%
success rate for solving a user request.

To improve the performance of LLMs on multi-step tasks,
extensions to LLMs have been proposed such as LLM-
modulo systems (Kambhampati et al. 2024b; Gundawar
et al. 2024) and other agentic approaches (Yao et al. 2022;
Fourney et al. 2024). Many of these approaches couple
LLM(s) with external verifiers in order to provide guarantees
on their accuracy. In this paper, we explore some of the chal-
lenges encountered by these approaches. Using the Travel
Planner benchmark, we find that many LLM approaches
lack an ability to generate a model of the problem they are
solving and are unable to do planning about the solving pro-
cess. Without explicit human guidance, this deficiency re-
duces the likelihood that LLM can successfully complete a
given multi-step task.

To address this, we propose a new approach that provides
additional planning guidance to the LLM. Our approach sep-
arates the task into Planning and Acting phases that mirror
recent developments in planning (e.g., (Ghallab, Nau, and
Traverso 2016)(Ghallab, Nau, and Traverso to appear)1):

1Preprints available at https://projects.laas.fr/planning/

• Planning phase: A Hierarchical Task Network planner
provides guidance, via a plan, to an LLM that describes
what needs to be done.

• Acting phase: An agentic LLM operationalizes the plan
by determining how to accomplish each action in it.

Together, these approaches limit the kinds of hallucination
errors that an LLM typically produces.

We present preliminary results of our new approach show-
ing that it more than doubles the success rate of an agen-
tic LLM system in completing the initial steps of the Travel
Planning task. We then provide a detailed analysis of the re-
sults and discuss the implications for future research in this
area.

2 Related Work
LLMs for planning: There is a large debate on whether
LLMs are capable of classical planning tasks. There are
many papers that directly apply LLMs toward planning tasks
with varied success (Silver et al. 2024). There also exist sur-
vey papers of LLM-based agents planning that categorizing
recent works into Task Decomposition, Plan Selection, Ex-
ternal Module, Reflection, and Memory (Huang et al. 2024).
On the other hand, there are also many other papers that sug-
gest that LLMs lack the capability to plan (Verma, Bhambri,
and Kambhampati 2024; Kambhampati 2024).

Beyond applying LLMs directly to planning, there have
also been indirect approaches that couple an LLM with a
classical planner in a similar manner to the HaoTP approach
(Hao et al. 2024) discussed in this paper. One approach is
to have the LLM translate a given planning problem into a
PDDL specification and then use a classical planner to gen-
erate a solution (Liu et al. 2023). Other than this end-to-
end approach, LLMs have been applied to many domains to
generate various planning representations such as temporal
logic (Chen et al. 2023), task decompositions (Zhang et al.
2021), and PDDL (Guan et al. 2023).

Reasoning with LLMs: The advent of ChatGPT-o1
model changes the landscape of LLM reasoning capabili-
ties. (Valmeekam et al. 2024) evaluate the planning capabil-
ities of the o1-preview and o1-mini models on both plan-
ning and scheduling benchmarks. The “LLM as a Master-
mind” paper (Zhang et al. 2024a) surveys the use of Large
Language Models (LLMs) in strategic reasoning, a form of
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reasoning requiring understanding and predicting adversary
actions in multi-agent settings, highlighting scopes, applica-
tions, methodologies, and evaluation metrics.

Agentic LLMs: Agentic LLMs are a compound or hybrid
system to accomplish tasks. There has been growing inter-
est in incorporating LLMs into agentic workflows. One of
the first approaches in this area was the ReAct framework
(Yao et al. 2022) where agent reasoning choices are inter-
leaved with action selection in order to interact with exter-
nal environments. Another paper introduced ExpeL (Zhao
et al. 2024), an agent that learns from experiences and nat-
ural language to make informed decisions without requiring
parametric updates, addressing the challenges of resource-
intensive fine-tuning and limited access to state-of-the-art
LLMs.

LLM Tool Use: To supplement capabilities in domains
where LLMs have poor performance, it is common to allow
LLMs to interface with external tools. These tools enhance
the LLMs with capabilities that they might otherwise not
have (Wang et al. 2024) and there are numerous papers cov-
ering various aspects of this field of research (Huang et al.
2024; Li et al. 2024).

LLMs and memory: One way to enhance the perfor-
mance of language models on domain-specific tasks is
known as Retrieval-Augmented Generation (RAG) (Izacard
et al. 2023; Lewis et al. 2020). In this approach, the LLM
is combined with a non-parametric memory index (e.g. a
vector index) and retrieved data is fed back into the LLM
context when needed. There are various mechanisms for en-
hancing LLMs with memory (Zhang et al. 2024b) including
the notetaking method described in this paper.

3 Multi-step Tasks
Before we discuss how to solve multi-task problems, we
need to describe them generally, and travel planner specif-
ically. A multi-step task differs from a planning problem in
classical planning.

In classical planning, a planning problem consists of a de-
scription (or model) of the problem, an initial condition of
the world, a set of actions that can be used to change the state
of the world, and a goal condition. In contrast, in a multi-step
task, we assume that the problem description (or model) is
not directly given (or fully provided) to the system. Instead,
portions of the problem description are located in external
databases. A solution to a multi-step task includes actions
taken (e.g. API requests) to acquire necessary external data.

In the case of the Travel Planner benchmark, we can for-
mulate a travel planning problem as multi-step task that con-
tains a planning problem. Specifically, the Travel Planner
task can be broken up into two model building problems
(information gathering and external tool use) followed by
a classical planning problem:

1. Information Gathering: The first step of the task is to
gather information such as the user request, the con-
straints that need to be satisfied, and what tools are nec-
essary and how to use them.

Figure 1: Example JSON translation of an NL request

2. External Tool Use: The second step is to determine what
calls to the external tools/APIs are necessary to solve a
given user request. We assume that there are a set of ex-
ternal tools that are necessary to interact with to solve
the problem (e.g. a flight search tool). The LLM could
choose not to obey this step, but then it would be impos-
sible to solve the problem.

3. Planning: After obtaining the data from external tools,
the next step of the task is to combine the data into a
viable travel plan.

In Xie et al. (2024), GPT4 was shown to achieve a 0.6%
success rate on the benchmark when applied to the travel
planner task as an end-to-end system. In Hao et al. (2024),
a success rate of 93.9% (with limitations on its generaliz-
ability) was achieved when the LLM was used to solve the
external tool use sub-problem and the z3 library was used to
solve the planning sub-problem.

In this paper, we will investigate the challenges of design-
ing an LLM system that can solve a multi-step task. A sys-
tem designed to solve multi-step tasks should satisfy the fol-
lowing criteria:

1. Generalizability: The system should not require the exis-
tence of a pre-built solution.

2. End-to-end: The system should solve both the model
building and planning subproblems of a multi-step task.

We will first study the system from Hao et al. (2024), which
we will term HaoTP to understand what parts of a multi-
step task LLMs are currently able to perform. HaoTP does
not satisfy the two aforementioned criteria, so following this
initial study, we will propose an agentic system designed as
an end-to-end solution for multi-step tasks. For our imple-
mentations, we will employ Codestral-22b as the LLM.

4 LLMs for constraint models
To start off, we give a brief description of the approach
from Hao et al. (2024) with respect to each of the three sub-
problems in Travel Planner.

1. Information Gathering: The first step of the approach is
to take a Natural Language (NL) request and convert
the request into a JavaScript Object Notation (JSON) re-
quest. An example output of this step can be seen in Fig.
1 which is the output of the system for a travel planning
request for a trip from Detroit to San Diego from March
5th to Marth 7th, 2022 on a budget of $3,000.



Process Step
§ Method Information Gathering Tool Use Planning Implementation

End-to-End ReAct LLM LLM LLM (Xie et al. 2024)
4 LLM for constraint models LLM Few shot LLM SMT solver (Hao et al. 2024)
5 Agentic LLM system LLM LLM via Python LLM via Python This paper
6 Task Planner LLM Guided LLM via Python LLM via Python ”

Table 1: LLM approaches and their solutions for Travel Planner subtasks

Figure 2: Forward pass LLM system for Travel Planning

2. External Tool Use: The second step of the pipeline
(JSON-Steps) involves feeding the JSON request from
the previous step back into the LLM and asking for
”steps” or pseudo-code. The prompt for this step includes
several examples of the pseudo-code. In this case, the
tool use problem is selecting the correct python state-
ments to make calls to the tool APIs.
The third step of the pipeline (Steps-Code) is also part of
the tool use task where pseudo-code from the previous
step is translated into actual python code that defines a
constraint model using the z3 library. Like in the (JSON-
Steps) part of the pipeline, examples of python code are
provided for the LLM to use as few-shot examples.

3. Planning: After the final python code is written, the en-
tire file is executed, which calls an SMT solver (the z3
library) that returns a final solution to the travel planning
request.

The pipeline can be seen in Fig. 2 where the LLM is used to
generate each of the white boxes in the flow that start from
the NL request.

4.1 Generalizability
Kambhampati et al. (2024a) found that LLMs are capable of
implementing functions for checking the validity of individ-
ual constraints. Thus, it may be possible to directly generate
the code or the constraints for an SMT solver without rely-
ing on prior examples. To test this hypothesis, we attempt to
replicate the system from Hao et al. (2024) but without the
few shot examples that are provided during the tool use task.
For example, instead of an explicit example of the pseudo-
code we want to generate, we provide an explanation of the
coding process as in Fig. 3.

Fig. 4 gives an example where this replication is success-
ful. In the example, a flight time preference for flights that
depart before 5PM is added to the original request. We can
observe in the generated code that the LLM correctly adds
additional constraints so that the chosen flights do not have
DepTime after 1700 (5PM). In this case, the LLM is capable
of adding simple constraints without any prior code exam-
ples. However, while testing this more general approach, we
ran into several issues.

Lack of a world model One of the issues we noticed
when we implemented this approach is that the LLM often
overlooked certain constraints, particularly commonsense
spatio-temporal ones that are implicit in the TravelPlanner
benchmark. For example, consider a travel plan that involves
traveling from city A to city B on day 1 with a flight from
10 AM to 2 PM. In this scenario, the LLM should logically
infer that breakfast should take place in city A and dinner in
city B. However, this type of spatio-temporal reasoning can
be challenging for LLMs, and often they fail to maintain this
constraint, even when explicitly instructed to do so.

A valid solution to a spatio-temporal constraint is quite
complex compared to the free-form generated constraint in
Fig. 4. To properly encode the constraint, it is necessary to
calculate a temporal model of where the travel group is dur-
ing the trip and the LLM is unable to reason that producing
this model is necessary.

Higher order (meta) considerations The implementation
of a constraint model can have a dramatic impact on the
tractability of solving the model. In our experiments, we ob-
served that the LLM does not take this principle into account
at all. In Hao et al. (2024), the solution is constructed with
backbone code such that for a travel plan with a destination
of multiple cities, there is a loop that iterates through possi-
ble solution city selections (and will exit if one of these city
selections results in a satisfiable problem). However, without
this guidance, the LLM will choose to write a brute force
constraint model where city assignments are also included
as variables to solve for. The resulting model can easily end
up being intractable.

Repair looping It is reasonable to assume that the code
generated by an LLM does not compile or has runtime issues
during the first generation pass (as is the case in most code
that humans write). This could be due to a variety of reasons
(such as hallucinating function names). We can ask the LLM
to fix this issue using an LLM-modulo approach (Kambham-
pati et al. 2024a) where the code that is generated is then
executed and the error message (if any) is then sent as a



Figure 3: An example of coding process instructions that would be given to an LLM for how to code a solution to the Travel
Planning.

Figure 4: An example of free form coding. The LLM is allowed the flexibility to generate arbitrary code to write constraints for
unseen requests preferences (in this case for evening flights before 5PM)

Figure 5: Example LLM-modulo approach for code-repair.

back-prompt to the LLM to fix any code generation issues
(see Fig. 5).

This process can be iterated until the code can pass
through the code verifier. We have observed that this LLM-
modulo approach is capable of fixing small errors and can
sometimes address the problem of hallucinating functions.
However, this approach does not work all of the time. Oc-
casionally, the LLM will modify an error in generated code
into another error and then in the subsequent pass modifying
it back into the initial error. This creates a repair loop where
the generated code will alternate between two erroneous so-
lutions.

Although one can imagine that simply extending the con-
text of the LLM may solve this issue, there is no reason to
assume that the length of the repair loop has any limit. In
more complex code, it could be the case that changing code
in one location breaks functionality in a different location,
and an iterative repair approach could loop through the steps
of this cycle endlessly.

5 Agentic LLMs
To design an end-to-end system to solve a multi-step task,
we will investigate agentic LLM approaches.

In this paper, we define agentic LLMs as systems that are
designed to interact with external tools (such as Wikipedia

Figure 6: Simple agentic LLM approach



or other local databases) and incorporate LLMs as drivers of
acting, planning, and/or evaluation; external here references
anything that is external to the LLM model. For this section,
we will study the capabilities and limitations of the agen-
tic LLM system we developed that is displayed in Fig. 6.
In this system, an agent LLM is responsible for giving or-
ders to three other LLMs (coding, code repair, and verifier)
in order to solve an overarching task. The agent LLM is
prompted with a task specification and a list of actions and
asked to choose an action. It is also allowed access to a note
file which it can use to store short term memory. The goal
of the agent LLM is to build a model of the problem in its
short-term memory file and then use this model to instruct
the other LLMs/system components to solve the problem.
To the best of our knowledge, this is the first investigation
into having the LLM determine by itself what to write down
in a provided notes file.

For this system, we define the following actions:
1. Read: open and read any of the permissible files (red and

yellow boxes in Fig. 6).
2. Write: overwrite the text in any of the write-able files

(yellow boxes in Fig. 6)
3. Code: send a coding request for a secondary coding LLM

to produce code according to the contents of instruc-
tions.txt.

4. Execute: execute the Python script written by the coding
LLM to solver.py.

5. Repair: send a request to a code repair LLM to attempt
to fix the current working Python script.

6. Verify: send a request to a verifier LLM to check if the
solution provided in output.txt is valid.

At each iteration of the agentic system, the agent LLM will
respond with one of the above actions which is then pro-
cessed accordingly by the external environment.

5.1 Capabilities
Like with the system from (Hao et al. 2024), we provide a
description of how this agentic system solves each part of
the Travel Planning problem.
1. Information Gathering: The first step of the approach is

to read each of the relevant files in the files provided (e.g.
problem specification, tool specification, user request)
and summarize their contents in the notes file.

2. External Tool Use: The second step of the approach is to
use the information recorded in the notes file and write
python code for the tool calls. The LLM then needs to
record the output of the tool calls for the subsequent plan-
ning step.

3. Planning: The last step is to solve the planning problem.
The LLM can attempt to do this by itself (i.e. like in the
ReAct approch) or can write a solver that plans over the
data obtained from the tool calls in the previous step.

The agentic approach is capable of synthesizing informa-
tion from multiple documents. An example of this capabil-
ity can be seen in Fig. 8, where the LLM reads three inde-
pendent files as its first three actions and subsequently sum-

marizes the important points of these files in its short-term
memory file.

The LLM is also capable of writing well-formed instruc-
tions for a coding LLM to execute as can be seen in Fig. 7. In
the example shown in the figure, the LLM reads the Python
source code for the Flights tool and correctly conveys the
proper arguments to use the tool to the coding LLM.

5.2 Limitations
While this is certainly a step in the right direction, the agen-
tic LLM is not consistent in producing these results. For
example, instead of choosing to record relevant facts about
the problem in its short-term memory as in Fig. 8, the LLM
could choose to only record a history of its goals. Although
this record can be helpful for assisting the LLM in planning
its next course of action, it is not helpful for solving the ac-
tual problem.

Another limitation is that the agent LLM does not always
give the coding LLM enough information to work with. For
example, the agent LLM could send an instruction “use the
Flights tool to search for flights from Detroit to San Diego”
without specifying how exactly to use the tool.

Unknown Unknowns A major recurring theme is that
LLMs are unable to determine what information they lack
when attempting to perform a task. In the dialogue between
the agent LLM and the coding LLM, it is common that the
agent LLM does not know that the coding LLM does not
know how to use a given tool. Furthermore, it is even diffi-
cult to get a coding LLM to determine that it does not have
enough information to provide a solution. This is true even if
we directly prompt the coding LLM to reject coding requests
that do not provide enough information. Instead of rejecting
the instruction given by the agent LLM, it is more common
for the coding LLM to hallucinate an answer to the instruc-
tion such as writing code to call erroneous functions (e.g.
calling an erroneous search flights method instead of
the correct run method).

6 Task Planner LLM
We propose that a recurring theme throughout the limita-
tions that we have discussed so far is that LLMs lack what
we would term a recipe for solving multi-step problems. Be-
yond the direct problem of planning a given travel itinerary,
we must also consider how the LLM chooses to solve a given
problem.

In the hybrid approach from Hao et al. (2024), a major
limitation is that the LLMs follow a strict structure for what
they are allowed to generate. To support this, significant
human effort is required to engineer a structural backbone
which can make these two approaches impractical in many
situations. In this case the LLM does not have a choice of
how to solve the problem. This choice was already provided
by the supporting code and prompts.

In our experiments on modifications to HaoTP, there is
less of a supporting structure which allows for less human
input required as well as greater solution creativity but also
increases the likelihood of issues such as constraint blind-
ness. Without knowing the exact steps to take to solve the



Figure 7: Agentic LLM instruction writing capability

Figure 8: Agentic LLM information gathering capability.
The agent LLM correctly decides to view the request, prob-
lem specification, and tool specification files and then gen-
erates a summary of their contents for later use (tool notes
omitted for length).

problem, the LLM can miss important constraints such as
spatio-temporal consistency.

In the agentic approach, there is the least supporting struc-
ture, but in return there is the greatest chance of process de-
railment. The LLM does not commit to a consistent process
for gathering information, storing it, and conveying it. Con-
sequently, it is easy for such systems to get stuck or hal-
lucinate answers that they have not yet obtained sufficient
information to provide.

6.1 HTN Planning
To address the issues, we will combine the agentic LLM ap-
proach with a task planning subsystem. Specifically, we will
employ a component based on Hierarchical Task Network
(HTN) planning.

Formally, we define an HTN planning domain as
(S,A, T,M) where S is the possible states of the world, A is
a set of primitive tasks, T is a set of compound tasks, and M
is a set of decomposition methods that describe how a task
can be decomposed into subtasks. Specifically, a method
m ∈ M is (tm ∈ T, prem, subm), where tm is the task to

be decomposed, prem is a list of preconditions that specifies
whether a method is applicable given a state s and subm is a
(possibly ordered) list of subtasks (primitive or compound).
Planning proceeds by using the methods to recursively de-
compose tasks into smaller and smaller subtasks until prim-
itive tasks are reached.

Using Fig. 10 as our task network, we can look at the
method for decomposing choose flights:
• Task name: the task to decompose is choose
flights

• Precondition: the preconditions are that the origin, desti-
nation(s), and dates of the travel plan are present in the
notes.

• Subtasks: understand flights tool, choose
departing flight, choose returning
flight

In our planning domain, the state of the world consists of the
contents of the files in the agentic LLM system (e.g. red and
orange boxes Fig. 6). The preconditions and effects consist
of arbitrary natural language statements (and their conjunc-
tions, disjunctions, negations, etc.). To determine whether a
given effect is satisfied, we will use an LLM verifier LLM
evaluate the state of the world (e.g. the system files) with
respect to the given effect.

6.2 A task planning subsystem
The task planning subsystem will contain a repository of
recipes (i.e. Hierarchical Task Networks ) that describe how
to solve problems. We leverage the two-pronged planning
and acting approach of Ghallab, Nau, and Traverso (2016,
to appear). The task planner creates a set of descriptive ac-
tions of what the LLM needs to do, as shown in Figure 10.
At each iteration of the system, the LLM uses these descrip-
tions to decide how to do the action; we use the approach
from §5.

The general flow of this subsystem can be seen in Fig. 9.
The agent LLM sends a verification request to the verifier
LLM, which checks the completion of the current task with
respect to the current state of the file system. If the check is
successful, the current task is updated and the result of the
verification request is sent back to the agent LLM.

For our subsystem we will use a hierarchical task network
(HTN) to represent the recipes for how to solve problems.
An example of such a task network for the Travel Planner
problem can be seen in Fig. 10. The HTN breaks down the



Figure 9: Task planning subsystem

Figure 10: An example task network for the Travel Planner
problem

overarching planning task into smaller subtasks for the LLM
to follow.

As an example, consider the understand user
request task that the LLM needs to accomplish at the
start of generating a travel plan. To successfully complete
this task, the LLM needs to read the file that has the rele-
vant user request and take notes on any information needed
to generate a travel plan. A representation of this task node
in JSON format can be seen in Fig. 11.

During the verification request, the verifier LLM is asked
whether the information contained in the effect files satisfy
the intended effect of the task. In this example, the intended
effect of the understand user request task is that

Figure 11: Example of a primitive task node

the agent LLM’s short term memory file contains informa-
tion that matches the user request file.

For this work, we employ an LLM as the primary verifier,
but we could also use external verifiers with guarantees for
certain subtasks. The primary advantage of this setup is that
the task network can guide the LLM towards a consistent
process when solving problems.

6.3 Preliminary Results
To study the effectiveness of this additional task network
component, we perform a ablation study on a modified ver-
sion of the Travel Planner task which includes the informa-
tion gathering step not evaluated in past work. The general
task is as follows:

• Direct Prompt Information: The LLM agent is provided
information about a list of accessible files and what their
overarching goal is (e.g., to generate a travel plan) but
none of the specific details of how to accomplish it.

• Accessible Information: The LLM can access descrip-
tions and the source code of various tools (e.g., Flight-
Search) in the list of accessible files. We emphasize that
this information is not provided in the prompt but only in
files that the LLM can choose to read.

• Metrics: Since it is computationally intensive to generate
a full travel plan using an agentic LLM architecture, we
limit the maximum number of system steps (where each
step is a prompt to the agent LLM for an action to take)
to 20. To evaluate the methods, we check whether the
LLMs have successfully booked departing and returning
flights between the origin and destination(s) in the user
request.

To simplify our verification, we use requests from the train
set from the Travel Planner benchmark that are coupled with
ground truth annotated plans. The results on this limited set
can be seen in Fig. 12.

Using the task planner helps avoid a common kind of hal-
lucinations and eliminates the need for repair loops.

For example, the LLM needs a specification of what a
tool does in its short term memory before trying to write
code for that tool. Adding an explicit task to do this al-
lows the task planner to facilitates such knowledge retrieval
(rather than rely on the LLM), which reduces the occur-
rence of function name hallucinations, such as calling an er-
roneous search flights method instead of the correct
run method. The reduction of these hallucinations in turn
reduces the probability that the agentic LLM initializes an
infinite repair loop which will prevent it from making fur-
ther progress.

7 On LLMs and Code Safety
In our experiments with agentic LLMs, one concerning be-
havior we noticed was execution of out-of-scope code in
Python. To sandbox our agent LLM, we set up the environ-
ment that processes agent commands to allow the LLM to
only read and write to a pre-specified list of approved files
(this list is also given to the LLM). However, we did not limit
the corresponding code generation capabilities (to allow for



Figure 12: Success rate of LLM, with and without a task
planner, on the first steps of solving a task in the travel plan-
ner benchmark.

greater problem solving creativity). This lack of limitations
led to two critical unseen side effects:

• Attempted code installation: In one instance, our agen-
tic LLM generated code that depended on python li-
braries that were not installed in the development envi-
ronment it was running in. Instead of changing the code
to some supported library, it attempted to programmat-
ically install the python library within the python script
being written.

• File writing bypass: In several instances, in order to save
the results from tool calls, the agent LLM will tell the
coder LLM to save the retrieved data into a local text file.
This file may not necessarily be on the list of approved
files.

It is important to emphasize that prompt restrictions are not
a sufficient guard against unintended agent behavior. In par-
ticular, the prompt for the agent LLM specifically mentions
that it only has read/write access to the pre-approved file list
and the prompt for the coding LLM includes an instruction
to ignore requests to write to any other file.

8 Conclusion and Future Work
In conclusion, we have discussed several distinct approaches
to utilizing Large Language Models (LLMs) for various
tasks. Our findings indicate that while LLMs can be success-
fully employed as form fillers and code editors (e.g., Hao
et al. (2024)), their reliance on an existing codebase limits
their applicability to other domains. The use of LLMs for
free-form coding offers flexibility in handling user requests
without a pre-existing codebase, but this flexibility also in-
troduces challenges. Adjusting the structure of the response
addresses some of these issues, but LLMs can still generate
erroneous results.

A large number of errors when using an LLM for plan-
ning seem to be a failure to incorporate a world model into

formulating problem solving process. Some problem solv-
ing paths for a given multi-step task are not sufficient or
efficient computationally. To address these challenges, we
propose an hybrid task planner agentic LLM system that
interacts with external information gathering tools to con-
struct a model of the task to be solved. The steps that the
LLM takes are guided via planning on a Hierarchical Task
Network. The task planning constrains the possible problem
solving paths to be more limited thus increasing the likeli-
hood that the LLM can successfully complete the multi-step
task. By standardizing these steps and adding intermediate
verification, we reduce several common errors such as hal-
lucinating tool types or data that has not yet been seen. We
plan to do more work on benchmarking the behavior of these
hybrid systems on more domains and with stronger models
(beyond Codestral-22b), especially on their ability to pre-
vent error cascading that is frequently present in multi-step
tasks.

The task networks in the hybrid task planner system are
currently handwritten by a human. This can run into simi-
lar issues with portability as the approach from Hao et al.
(2024). As mentioned in the related work section, there is a
great deal of work for generating planning models such as
PDDL from text descriptions using LLMs. It is conceivable
that given documentation on the processes to solve multi-
step problems such as travel planner, an LLM could be used
to generate these task networks. To increase the effective-
ness this approach, we can borrow techniques from curricu-
lum learning where the LLM can first start off by building
task networks for simple tasks before gradually building up
to more complex and longer tasks (e.g., growing the task net-
work node by node). There are also alternative approaches
such as LLM-based optimization which could be used to op-
timize over candidate task networks.
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A Additional Figures

Figure A.1: LLM constraint generation error: the top comment line is the pseudo-code input and bottom two comment lines are
the LLM’s response.



Figure A.2: LLM repair looping error. The LLM corrects the code from m.evaluate (green) to m.eval (yellow) (top) and then on
the subsequent editing pass from m.eval (yellow) to m.evaluate (green) (bottom).

Figure A.3: LLM generated goal history. Instead of generating a summary of document contents in its short term memory as in
Fig. 8, the LLM could instead choose to populate its short term memory with a history of its goals.



Figure A.4: Instructions for a coding LLM in the agentic system to reject instructions with insufficient information. We attempt
to encourage the coding LLM to reject orders from the leader LLM in cases where it does not have enough information to
generate correct code. However, this is not sufficient and the coding LLM can choose to follow the instructions regardless of
this constraint.


