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Figure 1: MetaUrban enables the construction of infinite interactive urban scenes, supports multiple sensors,
and offers flexible user interfaces such as a mouse, keyboard, joystick, and racing wheel. The platform includes
10,000 diverse obstacles in urban scenes, 1,100 rigged human models each with 2,314 movements, vulnerable
road users, mobile machines with varied mechanical structures, and a terrain generation system to create complex
ground conditions. We highly recommend visiting our project page for video demonstrations.

ABSTRACT

Public urban spaces such as streetscapes and plazas serve residents and accom-
modate social life in all its vibrant variations. Recent advances in robotics and
embodied AI make public urban spaces no longer exclusive to humans. Food deliv-
ery bots and electric wheelchairs have started sharing sidewalks with pedestrians,
while robot dogs and humanoids have recently emerged in the street. Micro-
mobility enabled by AI for short-distance travel in public urban spaces plays a
crucial component in future transportation systems. It is essential to ensure the
generalizability and safety of AI models used for maneuvering mobile machines.
In this work, we present MetaUrban, a compositional simulation platform for
the AI-driven urban micromobility research. MetaUrban can construct an infinite
number of interactive urban scenes from compositional elements, covering a vast
array of ground plans, object placements, pedestrians, vulnerable road users, and
other mobile agents’ appearances and dynamics. We design point navigation and
social navigation tasks as the pilot study using MetaUrban for urban micromobility
research and establish various baselines of Reinforcement Learning and Imitation
Learning. We conduct extensive evaluation across mobile machines, demonstrating
that heterogeneous mechanical structures significantly influence the learning and
execution of AI policies. We perform a thorough ablation study, showing that the
compositional nature of the simulated environments can substantially improve the
generalizability and safety of the trained mobile agents. MetaUrban will be made
publicly available to provide research opportunities and foster safe and trustworthy
embodied AI and micromobility in cities. The code and data have been released.

∗Equal contribution.
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1 INTRODUCTION

Public urban spaces (Whyte, 2012) vary widely in type, form, and size, encompassing streetscapes,
plazas, and parks. They are crucial spaces for transit and transport (Geddes, 1949), as well as
providing stages to host various social events (Park et al., 1925). In recent years, these spaces have
also become key zones for the growing trend of micromobility (Mitchell et al., 2010; Abduljabbar
et al., 2021; Oeschger et al., 2020), a term that refers to small, lightweight vehicles like electric
scooters, e-bikes, and other mobile machines designed for short-distance travel. Micromobility is
becoming an increasingly important solution for improving urban transportation efficiency, reducing
environmental impact, and offering flexible alternatives to car ownership in cities.

As shown in Figure 2 (Top), food delivery bots navigate on the sidewalk to accomplish the last-mile
food delivery task, while elders and physically disabled people maneuver electronic wheelchairs and
mobility scooters on the street. Various legged robots like robot dog Spot from Boston Dynamics
and humanoid robot Optimus from Tesla are also forthcoming. We can imagine a future of such
automated micromobility that harnesses advanced AI models to improve situational awareness and
maneuver various mobile machines more intelligently and safely in complex urban environments.

Simulation platforms have played a crucial role in enabling systematic and scalable training of
embodied AI agents and safety evaluation before real-world deployment. However, most of the
existing simulators focus either on indoor household environments (Puig et al., 2018; Kolve et al.,
2017; Savva et al., 2019; Shen et al., 2021; Li et al., 2024; Gan et al., 2021) or outdoor driving
environments (Krajzewicz et al., 2002; Li et al., 2022b; Dosovitskiy et al., 2017). For example,
platforms like AI2-THOR (Kolve et al., 2017), Habitat (Savva et al., 2019), and iGibson (Shen
et al., 2021) are designed for household assistant robots in which the environments are mainly
apartments or houses with furniture and appliances; platforms like SUMO (Krajzewicz et al., 2002),
CARLA (Dosovitskiy et al., 2017), and MetaDrive (Li et al., 2022b) are designed for research on
autonomous driving and transportation focusing on roadways and highways. Yet, simulating complex
urban environments for micromobility tasks, with diverse layouts, terrains, obstacles, and complex
dynamics of pedestrians, is much less explored.

Delivery Robot Electric Wheelchair Robot DogMobility Scooter

Multifarious Terrains Diverse Obstacles Crowded Spaces with PedestriansLong Horizon Tasks in Large Scale Scenes

Figure 2: Motivation. (Top) Emerging automated micromobility. (Bottom) Unique challenges in micromobility.

Distinct from the household and driving tasks, micromobility plays an essential role in providing
accessibility (e.g., electric wheelchairs) and convenience (e.g., food delivery bots) in the public urban
space, while it also brings unique challenges for mobile machines and the underlying embodied
AI agents. Let’s follow the adventure of a last-mile delivery bot, who aims to deliver a lunch order
from a nearby pizzeria to the campus (Figure 2 (Bottom)). First, it faces a long-horizon task in large
scale scenes across several street blocks, which span a significantly larger space than the indoor
household environment. Second, it needs to deal with multifarious terrains, such as fragmented
curbs and rugged ground caused by tree roots on sidewalks, which are seldom seen in indoor and
driving environments. Then, it must safely navigate the cluttered street full of diverse obstacles like
trash bins, parked scooters, and potted plants, which is absent in driving scenarios while with large
obstacles variations compared to indoor scenes. In addition, it needs to handle crowded spaces with
pedestrians to avoid collisions, especially taking care of disabled people in wheelchairs, which do
not exist in indoor and driving environments. Thus, the large scales, multifarious terrains, diverse
obstacles, and dense pedestrians bring unique challenges to AI-driven mobile machines moving

2



Published as a conference paper at ICLR 2025

in cities, as well as the design of simulation environments for the training and evaluation of the
embodied AI models.

In this work, we present MetaUrban – a compositional simulation platform aiming to facilitate
the research of AI-driven micromobility. First, we introduce Hierarchical Layout Generation, a
procedural generation approach that can generate infinite layouts hierarchically from street blocks to
sidewalks, functional zones, and object locations. It can generate scenes at an arbitrary scale with
various connections and divisions of street blocks, obstacle locations, and complex terrains. Then, we
design the Scalable Obstacle Retrieval, an automatic pipeline for acquiring an arbitrary number of
high-quality objects with real-world distribution, to fill the urban space. We first compute the object
category distribution from worldwide urban scene data to form a description pool. Then, with the
sampled descriptions from the pool, we design a VLM-based open-vocabulary searching schema,
which can effectively retrieve objects from large-scale 3D asset repositories. These two modules are
critical for improving the generalizability of trained agents.

Finally, we propose the Cohabitant Populating method to generate complex dynamics in urban
spaces. We first tailor recent 3D digital human and motion datasets to get 1,100 rigged human models,
each with 2,314 movements. Then, to form safety-critical scenarios, we integrate Vulnerable Road
Users (VRUs) like bikers, skateboarders, and scooter riders. As the subjects of micromobility, we
include various mobile machines – the delivery bot, electric wheelchair, mobility scooter, robot dog,
and humanoid robot. Then, based on path planning algorithms, we can get complex trajectories
among hundreds of environmental agents simultaneously with collision and deadlock avoidance.
Also, enabled by MetaUrban’s flexible user interfaces (mouse, keyboard, joystick, and racing wheel),
users can directly apply human-operated trajectories to agents, which provides an easy way to collect
demonstration data for agent training. In addition, we impose a series of traffic rules to regulate all
agent behaviors. It is critical for enhancing the safety of the mobile agents.

Based on MetaUrban, we construct a large-scale dataset, MetaUrban-12K, that includes 12,800
training scenes and 1,000 test scenes. The mean area size is 20,000m2, while the episode length is
410m on average. As a pilot study, we introduce Point Navigation and Social Navigation, which
are the two most fundamental tasks for mobile machines moving in urban spaces, as a starting
point for AI-driven micromobility research. We build comprehensive benchmarks for these two
tasks, in which we establish extensive baseline models, covering Reinforcement Learning, Safe
Reinforcement Learning, Offline Reinforcement Learning, and Imitation Learning. Then, we make
extensive evaluations across mobile machines to delve into the performance influence of varied
mechanical structures (such as engine force, wheel friction, and wheelbase) on the learning and
execution of AI policies. In the ablation study, we demonstrate that the compositional nature of
the simulated environments can substantially improve the generalizability and safety of the trained
mobile agents. We will make MetaUrban publicly available to enable more research opportunities for
the community and foster safe and trustworthy embodied AI and micromobility in cities.

2 RELATED WORK

Many simulation platforms have been developed for embodied AI research, depending on the target
environments – such as indoor homes and offices, driving roadways and highways, and crowds in
warehouses and squares. We compare representative ones with the proposed MetaUrban simulator.

Indoor Environments. Platforms for indoor environments are mainly designed for household assis-
tant robots, emphasizing the affordance, realism, and diversity of objects, as well as the interactivity
of environments. VirtualHome (Puig et al., 2018) pivots towards simulating routine human activities
at home. AI2-THOR (Kolve et al., 2017) and its extensions, such as ManipulaTHOR (Ehsani et al.,
2021), RoboTHOR (Deitke et al., 2020), and ProcTHOR (Deitke et al., 2022b), focus on detailed
agent-object interactions, dynamic object state changes, and procedural scene generation, alongside
robust physics simulations. Habitat (Savva et al., 2019) offers environments reconstructed from 3D
scans of real-world interiors. Its subsequent iterations, Habitat 2.0 (Szot et al., 2021) and Habitat
3.0 (Puig et al., 2023b), introduce interactable objects and deformable humanoid agents, respectively.
iGibson (Shen et al., 2021) provides photorealistic environments. Its upgrades, Gibson 2.0 (Li et al.,
2021), and OmniGibson (Li et al., 2024), focus on household tasks with object state changes and
a realistic physics simulation of everyday activities, respectively. ThreeDWorld (Gan et al., 2021)
targets real-world physics by integrating high-fidelity simulations of liquids and deformable objects.
However, unlike MetaUrban, these simulators are focused on indoor environments with particular
tasks like object rearrangement and manipulation.
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Driving Environments. Platforms for driving environments are mainly designed for autonomous
vehicle research and development. Simulators like GTA V (Martinez et al., 2017), Sim4CV (Müller
et al., 2018), AIRSIM (Shah et al., 2018), CARLA (Dosovitskiy et al., 2017), and its extension
SUMMIT (Cai et al., 2020) offer realistic environments that mimic the physical world’s detailed
visuals, weather conditions, and day-to-night transitions. Other simulators enhance efficiency and
extensibility at the expense of visual realism, such as Udacity (Team, b), DeepDrive (Team, a),
Highway-env (Leurent, 2018), and DriverGym (Kothari et al., 2021). MetaDrive (Li et al., 2022b)
trades off between visual quality and efficiency, offering a lightweight driving simulator that can
support the research of generalizable RL algorithms for vehicles. Although some of the simula-
tors (Martinez et al., 2017; Dosovitskiy et al., 2017) involve traffic participants other than vehicles,
such as pedestrians and cyclists, all of them focus on vehicle-centric driving scenarios and neglect
the stage for urban micromobility – public urban spaces like sidewalks and plazas.

Social Navigation Environments. Other than indoor and driving environments, social navigation
platforms emphasize the social compatibility of robots. Simulators like Crowd-Nav (Chen et al.,
2019), Gym-Collision-Avoidance (Everett et al., 2018), and Social-Gym 2.0 (Sprague et al., 2023),
model scenes and agents in 2D maps, focusing more on the development of path planning algorithms.
Other simulators, such as HuNavSim (Pérez-Higueras et al., 2023), SEAN 2.0 (Tsoi et al., 2022),
and SocNavBench (Biswas et al., 2022), upgrade the environment to 3D space and introduce human
pedestrians to support the development of more complex algorithms. Social navigation platforms
focus on crowd navigation, with oversimplified objects and surrounding environmental structures in
the scenes, making them not applicable to complex urban micromobility tasks. In contrast, MetaUrban
supports large-scale urban space simulation with real-world scenes (such as street facilities and
terrains), providing significantly rich semantics and superior complexity of environments. In addition,
MetaUrban supports the cross-machine evaluation of generalizability and safety with different
mechanical structures. These features make it a unique choice for urban micromobility.

In summary, none of the recent simulation platforms have been constructed for urban micromobility.
The proposed simulator MetaUrban is the first simulator designed for AI-driven urban micromobility
research. It differs from previous simulators significantly in terms of complex scenes (with large
scales and multifarious terrains), diverse obstacles, vibrant dynamics, different types of mobile
machines like delivery bots, electric wheelchairs, and mobility scooters, and intricate simulated
interactions. Please refer to Appendix B.6 for a detailed comparison table with existing simulators in
the dimensions of scale, sensor, and features, where MetaUrban shows a remarkable superiority. We
believe MetaUrban can provide a lot of new research opportunities for AI-driven urban micromobility.

3 METAURBAN SIMULATOR

MetaUrban is a compositional simulation platform that can generate infinite training and evaluation
environments for AI-driven urban micromobility. We propose a procedural generation pipeline, as
the basis of MetaUrban, for constructing infinite interactive scenes with different specifications. As
shown in Figure 3, MetaUrban uses a structured description script to create urban scenes. Based
on the script information about street blocks, sidewalks, objects, agents, and more, it starts with the
street block map, then plans the ground layout by dividing different function zones, then places static
objects, and finally populates dynamic agents.

Figure 3: Procedural generation. MetaUrban can automatically generate complex urban scenes with its
compositional nature. From the second to the fourth column, the top row shows the 2D road maps, and the
bottom row shows the bird-eye view of 3D scenes.
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This section highlights three key designs in the MetaUrban simulator to support exhibiting three
unique characteristics of urban spaces respectively – complex scenes (with large scales and multifari-
ous terrains), diverse obstacles, and vibrant dynamics. Section 3.1 introduces Hierarchical Layout
Generation, which can infinitely generate diverse layouts with different functional zone divisions,
object locations, and terrains that are essential for the generalizability to scene diversity of agents.
Section 3.2 introduces Scalable Obstacle Retrieval, which harnesses worldwide urban scene data to
obtain real-world object distributions in different places, and then builds large-scale, high-quality
static objects set with VLM-enabled open-vocabulary searching. It is crucial for further enhancing
the generalizability to obstacle diversity of agents. Section 3.3 introduces Cohabitant Populating, in
which we leverage the advancements in digital humans to enrich the appearances, movements, and
trajectories of pedestrians and vulnerable road users, as well as incorporate other agents to form a
vivid cohabiting environment. It is critical for improving the safety of the mobile agents.

3.1 HIERARCHICAL LAYOUT GENERATION

The complexity of scene layouts, i.e., the connection and categories of blocks, the specifications of
sidewalks and crosswalks, the placement of objects, as well as the terrains, is crucial for enhancing
the generalizability of trained agents maneuvering in public spaces. In the hierarchical layout
generation framework, we start with a ground plan that samples categories of street blocks and
divides sidewalks into different functional zones. Then, we allocate various objects procedurally
conditioned on functional zones. Finally, we implement a terrain generation system to synthesize
various ground conditions. With the above procedures, we can get infinite urban scene layouts with
different specifications of sizes, object locations, and terrains.

Ground plan. We design 5 typical street block categories, i.e., straight, intersection, roundabout,
circle, and T-junction. In the simulator, to form a large map with several blocks, we can sample the
category, number, and order of blocks, as well as the number and width of lanes in one block, to get
different maps. Then, each block can simulate its own walkable areas – sidewalks and crosswalks,
which are key areas for urban spaces with plenty of interactions.

Figure 4: Ground plan. (Left) Sidewalk is divided into four func-
tional zones – building, frontage, clear, and furnishing zone. (Right)
Seven typical sidewalk templates – from (a) to (g).

As shown in Figure 4 (Left), ac-
cording to the Global Street Design
Guide (Initiative & of City Transporta-
tion Officials, 2016) provided by the
Global Designing Cities Initiative, we
divide the sidewalk into four func-
tional zones – building zone, frontage
zone, clear zone, and furnishing zone.
Based on their different combinations
of functional zones, we further con-
struct 7 typical templates for side-
walks (Figure 4 (Right)). To form a
sidewalk, we can first sample the layout from the templates and then assign proportions for different
function zones. For crosswalks, we provide candidates at the start and the end of each roadway,
which support specifying the needed crosswalks or sampling them by a density parameter.

Terrain generation. We develop a procedural terrain generator by connecting sampled terrain
primitives similar to the method adopted in (Lee et al., 2024), which uses the Wave Function Collapse
(WFC) method (Gumin, 2016) to ensure smooth transitions between neighboring terrain primitives.
We defined five types of terrain primitives, including slops, steps, stairs, ramps, and rough at different
heights. After the mesh was generated, textures with different friction coefficients were added to the
terrain to simulate different materials of the ground. This method allows for the generation of a wide
variety of terrain combinations, reflecting the complex environments that agents may encounter.

Object placement. After determining the ground layout, we can place objects on the ground. We
divide objects into three classes. 1) Standard infrastructure, such as poles, trees, and signs, are placed
periodically along the road. 2) Non-standard infrastructure, such as buildings, bonsai, and trash
bins, are placed randomly in the designated function zones. 3) Clutter, such as drink cans, bags,
and bicycles, are placed randomly across all functional zones. We can get different street styles by
specifying an object pool while getting different compactness by specifying a density parameter.
Please refer to Appendix B.1 for more details.
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Figure 5: Scalable obstacle retrieval. (a) Real-world distribution extraction. We get object distribution for urban
spaces from three sources: academic datasets, Google Street data, and text description data. (b) Open-vocabulary
search. We use the VLM to get image and text embedding, respectively. Then, based on the relevant scores, we
can get the objects with high rankings.

3.2 SCALABLE OBSTACLE RETRIEVAL

Hierarchical layout generation decides the scene’s layout and where to place the objects. However, to
make the trained agents generalizable when navigating through scenes composed of various objects
in the real world, what objects to place is another crucial question. In this section, we propose the
Scalable Obstacle Retrieval pipeline, in which we first get real-world object distributions from web
data, and then retrieve objects from 3D asset repositories through an open-vocabulary search schema
based on VLMs. This pipeline is flexible and extensible: the retrieved objects can be scaled to
arbitrary sizes as we continue to exploit more web data for scene descriptions and include more 3D
assets as the candidate objects.

Real-world object distribution extraction. Urban spaces have unique structures and object dis-
tributions, such as the infrastructure built by the urban planning administration and clutters placed
by people. Thus, we design a real-world distribution extraction method to get a description pool
depicting the frequent objects in urban spaces. As illustrated in Figure 5 (a), we first leverage off-
the-shelf academic datasets for scene understanding, CityScape (Cordts et al., 2016) and Mapillary
Vistas (Neuhold et al., 2017), to get a list of 90 objects that are with high frequency to be put in
the urban space. However, the number of objects is limited because of the closed-set definitions in
the image datasets. We introduce two open-set sources to get broader object distribution from the
real world. 1) Google Street data. We first collect 25,000 urban space images from 50 countries
across six continents. Then, we harness GPT-4o (OpenAI, 2024) and open-set segmentation model
Grounded-SAM (Ren et al., 2024) to get 1,075 descriptions of objects in the public urban space.
2) Urban planning description data. We further get a list of 50 essential objects in public urban
spaces through a thorough survey of 10 urban design handbooks. Finally, by combining these three
data sources, we can get an object description pool with 1,215 items of descriptions that form the
real-world object category distribution.

Open-vocabulary search. The recent development of large-scale 3D object repositories (Deitke
et al., 2023b; 2024; Wu et al., 2023) enables efficiently constructing a dataset for a specific scene.
However, these large repositories have three intrinsic issues to harness these repositories: 1) most
of the data is unrelated to the urban scene, 2) the data quality in large repositories is uneven, and 3)
the data has no reliable attribute annotations. To this end, we introduce an open-vocabulary search
method to tackle these issues. As shown in Figure 5 (b), the whole pipeline is based on an image-text
retrieval architecture. We first sample objects from 3D object repositories (e.g., Objaverse (Deitke
et al., 2023b), Objaverse-XL (Deitke et al., 2024) and OmniObject3D Wu et al. (2023)) to get
projected multi-view images. Here, a naive uniform view sampling will bring low-quality harmful
images. Following (Luo et al., 2023; 2024), we select and prioritize informative viewpoints, which
significantly enhance retrieval effectiveness. Then, we leverage the encoder of a Vision Language
Model BLIP (Li et al., 2022a) to extract features from projected images and sampled descriptions
from the object description pool, respectively, to calculate relevant scores. Then, we can get target
objects with relevant scores up to a threshold. This method lets us get an urban-specific dataset with
10,000 high-quality obstacles in real-world category distributions.

3.3 COHABITANT POPULATING

Different from indoor household spaces and driving spaces, urban spaces have complex interactions
brought by humans and other mobile agents. Thus, the simulation of the dynamics of diverse
environmental agents in urban spaces is critical for the ego-agent’s safety. So far, we get static
urban scenes with hierarchical layout generation and scalable obstacle retrieval. In this section, we
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will describe how to populate these static urban scenes with varied agents regarding appearances,
movements, and trajectories through Cohabitant Populating.

Appearances. Following BEDLAM (Black et al., 2023) and AGORA (Patel et al., 2021), we represent
humans as parametric human model SMPL-X (Pavlakos et al., 2019), in which the 3D human body is
controlled by a set of parameters for pose θ, shape β, and facial expression ϕ, respectively. Then,
built upon SynBody (Yang et al., 2023)’s asset repository, we procedurally generate 1,100 3D rigged
human models sampled from 68 garments, 32 hairs, 13 beards, 46 accessories, and 1,038 cloth and
skin textures. To form safety-critical scenarios, we also include vulnerable road users like bikers,
skateboarders, and scooter riders. For the other agents, we incorporate the 3D assets of COCO
Robotics, Starship’s and Yandex’s delivery bots, Drive Medical’s electric wheelchair, Pride Go-Go’s
mobility scooter, Boston Dynamic’s robot dog, and Agility Robotics’ humanoid robot. In a simulated
environment, we can randomly sample the target density of agents from the 3D human models,
vulnerable road users, and mobile agents.

Movements. We provide two kinds of human movements in the simulator – daily movements
and unique movements. Daily movements provide the basic human dynamics in daily life, i.e.,
idle, walking, and running. Professionals manually produce them to make them in a natural cycle.
Special movements are the complicated dynamics that appear randomly in public spaces, such as
dancing, singing, and exercising. We harness the BEDLAM dataset (Black et al., 2023) to obtain
this movement. Since naively using BEDLAM’s movements to MetaUrban will bring axis and mesh
offset issues, we manually check and repair all of the 2,311 movements before the integration. In the
simulator, for human models, we can specify part of them with daily movements that are switched by
their speeds, while the others with unique movements are sampled from special movement clips. For
legged and wheeled agents, we provide walking and maneuvering movements, respectively.

Trajectories. Realistic trajectories of mobile agents are crucial for urban scene simulation. We
simulate the human and other mobile agents’ trajectories using the ORCA (Van Den Berg et al.,
2011) social forces model. ORCA (Van Den Berg et al., 2011) uses a joint optimization and a
centralized controller that guarantees that agents will not collide with each other or any other objects
identified as obstacles. However, the ORCA model is non-cooperative, i.e. each agent pursues its
own goal and does not consider other agents’ goals. It will easily lead to deadlocks, especially in
confined areas, such as narrow sidewalks and successive roadblocks. Thus, we further integrate the
Push and Rotate (P&R) algorithm (De Wilde et al., 2014) into the trajectory planning pipeline – a
multi-agent path-finding algorithm that can resolve any potential deadlock by local coordination.
With MetaUrban’s flexible user interfaces (mouse, keyboard, joystick, and racing wheel), users can
also directly apply human-operated trajectories to agents, which supports the demonstration data
collection for agent training. Finally, we regulate all agents to make them comply with several traffic
rules, such as traffic lights and speed limit signs. It can further enhance the social compliance of their
trajectories. In the simulator, we can randomly sample the start and end locations within walkable
areas for humans and all other agents to get their trajectories.

4 EXPERIMENTS

In this section, we first introduce the data and evaluation metrics used in all the experiments. In
Section 4.1, we build comprehensive benchmarks for two core tasks in micromobility – point
navigation and social navigation, across seven typical baseline models. In Section 4.2, we make
evaluations across different mobile machines to delve into the influence of mechanical structures,
such as engine force, wheel friction, and wheelbase, on their capability when learning and executing
policies. In Section 4.3, we evaluate the generalizability and scaling ability of the MetaUrban
platform, and reveal the effects of the density of static objects and dynamic agents.

Data. Based on the MetaUrban simulator, we construct the MetaUrban-12K dataset, includ-
ing 12,800 interactive urban scenes for training (MetaUrban-train) and 1,000 scenes for testing
(MetaUrban-test). Scenes in this dataset are connected by one to three street blocks covering an
average of 20,000m2 areas. There are an average of 0.03 static objects per m2 and the average
distance of objects is 0.7m. There are 10 dynamic agents per street block, including pedestrians,
vulnerable road users, and other agents. The average episode length is 410m. These form significantly
challenging scenes for agents to navigate through, which are crowded and have long horizons. We
further construct an unseen test set (MetaUrban-unseen) with 100 scenes for the unseen evalua-
tions. To enable the fine-tuning experiments, we construct a training set of 1,000 scenes with the
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same distribution of MetaUrban-unseen, termed MetaUrban-finetune. Appendix C provides detailed
descriptions, and statistics of the MetaUrban-12K dataset.

Evaluation metrics. The agent is evaluated using the Success Rate (SR) and Success weighted by
Path Length (SPL) (Anderson et al., 2018; Batra et al., 2020) metrics, which measure the success
and efficiency of the path taken by the agent. For SocialNav, except Success Rate (SR), the Social
Navigation Score (SNS) (Deitke et al., 2022a), is also used to evaluate the social complicity of the
agent. For both tasks, we further report the Cumulative Cost (CC) (Li et al., 2022b) to evaluate the
safety properties of the agent. It records the crash frequency to obstacles or environmental agents.
Table 1: Benchmarks. The benchmark of PointNav and SocialNav tasks on the MetaUrban-12K dataset. Seven
representative methods of RL, safe RL, offline RL, and IL are evaluated for each benchmark. indicate the
best performance among online methods (RL and Safe RL). indicates the best performance among offline
methods (offline RL and IL).

Category Method
PointNav SocialNav

Test Unseen Test Unseen

SR↑ SPL↑ Cost↓ SR↑ SPL↑ Cost↓ SR↑ SNS↑ Cost↓ SR↑ SNS↑ Cost↓
RL PPO (Schulman et al., 2017) 66% 0.64 0.51 49% 0.45 0.78 34% 0.64 0.66 24% 0.57 0.51

Safe RL PPO-Lag (Ray et al., 2019) 60% 0.58 0.41 60% 0.57 0.53 17% 0.51 0.33 8% 0.47 0.50
PPO-ET (Sun et al., 2021) 57% 0.53 0.47 53% 0.49 0.65 5% 0.52 0.26 2% 0.50 0.62

Offline RL IQL (Kostrikov et al., 2021) 36% 0.33 0.49 30% 0.27 0.63 36% 0.67 0.39 27% 0.62 3.05
TD3+BC (Fujimoto & Gu, 2021) 29% 0.28 0.77 20% 0.20 1.16 26% 0.61 0.62 32% 0.64 1.53

IL BC (Bain & Sammut, 1995) 36% 0.28 0.83 32% 0.26 1.15 28% 0.56 1.23 18% 0.54 0.58
GAIL (Ho & Ermon, 2016) 47% 0.36 1.05 40% 0.32 1.46 34% 0.63 0.71 28% 0.61 0.67

4.1 BENCHMARKS

In micromobility, the core and foundational function for a mobile machine is to navigate from point
A to point B within a bustling urban environment (Mitchell et al., 2010; Gössling, 2020). In this
function, there are two main commands: 1) not collide with static objects (infrastructures and clutters),
and 2) not bump into moving objects (pedestrians and other agents). To this end, we design two
foundational tasks – point navigation and social navigation, to evaluate the generalizability and safety
of recent state-of-the-art embodied AI models on a typical wheeled mobile machine3, i.e., COCO
Robotics Delivery Bot4.

Tasks. We design two common tasks in urban scenes: Point Navigation (PointNav) and Social
Navigation (SocialNav). In PointNav, the agent’s goal is to navigate to the target coordinates in static
environments without access to a pre-built environment map. In SocialNav, the agent is required to
reach a point goal in dynamic environments that contain moving environmental agents. The agent
shall avoid collisions or proximity to environmental agents beyond thresholds to avoid penalization
(distance <0.2 meters). The agent’s action space in the experiments consists of acceleration, brake,
and steering. The observations contain a vector denoting the LiDAR signal, a vector summarizing the
agent’s state, and the navigation information that guides the agent toward the destination.

Models. We build two benchmarks on the MetaUrban-12K dataset for PointNav and SocialNav
tasks. We evaluate 7 typical baseline models, across Reinforcement Learning (PPO (Schulman et al.,
2017)), Safe Reinforcement Learning (PPO-Lag (Ray et al., 2019), and PPO-ET (Sun et al., 2021)),
Offline Reinforcement Learning (IQL (Kostrikov et al., 2021) and TD3+BC (Fujimoto & Gu, 2021)),
and Imitation Learning (BC (Bain & Sammut, 1995) and GAIL (Ho & Ermon, 2016)). We train all
these baseline models on the MetaUrban-train dataset and then evaluate them on the MetaUrban-test
set. We use the demonstration data provided in MetaUrban-12K for offline RL and IL training. We
further make unseen evaluations on the MetaUrban-unseen set to demonstrate the generalizability of
models trained on the MetaUrban-12K dataset while directly tested on unseen environments. Please
refer to Appendix D for details of models, rewards, and hyperparameters.

3Note that MetaUrban provides an easy-to-use interface for users to benchmark the navigation ability of
any mobile machine they want to evaluate, such as electric wheelchairs, robot dogs, and humanoids. In a
navigation-locomotion framework (Lee et al., 2024), an off-the-shelf locomotion module can be fixed for one
machine; users can change the navigation module independently to benchmark.

4https://www.cocodelivery.com/
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Results. Table 1 shows the results in the PointNav and SocialNav benchmarks. We can draw two
key observations from the results. 1) The tasks are far from being solved. The highest success
rates are only 66% and 36% for PointNav and SocialNav tasks achieved by the baselines, indicating
the difficulty of these tasks in the urban environments composed by MetaUrban. Note that these
benchmarks are built on a medium level of object and dynamic density; increasing the density will
further degrade the performances shown in ablation studies. 2) Models trained on MetaUrban-12K
have strong generalizability in unseen environments. With unseen evaluation, models can still achieve
41% and 26% success rates on average for PointNav and SocialNav tasks. These results are strong
since the models generalize to not only unseen objects and layouts but also unseen dynamics of
environmental agents. It demonstrates that the compositional nature of MetaUrban, supporting the
coverage of a large spectrum of complex urban scenes, can successfully empower generalization
ability to the trained models. In addition, other interesting observations include: SocialNav is
much harder than PointNav due to the dynamics of the mobile environmental agents, and Safe RL
remarkably improves the safety properties at the expense of effectiveness.

4.2 EVALUATION ACROSS MOBILE MACHINES

Different mobile machines have heterogeneous mechanical structure design specifications, which
have a huge influence on their navigation behaviors and capabilities. MetaUrban can evaluate
different mechanical structures and designs of mobile machines before deployment and volume
production. In this section, we evaluate three typical wheeled mobile machines (a delivery bot,
an electric wheelchair, and a mobility scooter) with large design variations, and investigate the
relationship between mechanical structures and performance in policy learning. Further, we also
investigate the influence of mechanical structures in policy execution on different terrains, as detailed
in Appendix D.3.
Table 2: Evaluation of policy learning across mobile machines. and indicate the best and worst
performance among machines in the straight street block (“S”). and indicate the best and worst performance
among machines in the intersection street block (“X”).

COCO (base) COCO (mod-1) COCO (mod-2) Wheelchair Mobility Scooter
Max speed vmax (km/h) 30 10 30 5 45

Max steering smax (degree) 40 40 10 5 45
Wheel friction µ 0.7 0.7 0.7 0.7 0.7

Engine force F (N ) 350 ∼ 550 350 ∼ 550 350 ∼ 550 100 ∼ 200 450 ∼ 650
Brake force B (N ) 35 ∼ 80 35 ∼ 80 35 ∼ 80 35 ∼ 80 35 ∼ 80

SR↑ (S | X) 47% 41% 62% 56% 17% 22% 13% 16% 36% 31%
SPL↑ (S | X) 0.46 0.38 0.61 0.53 0.15 0.20 0.11 0.14 0.33 0.28
Cost↓ (S | X) 0.32 1.50 0.28 1.64 0.35 1.21 0.30 1.10 0.34 1.43

In this experiment, we evaluate the influence of mechanical structures on policy learning in a static
obstacle avoidance task. We follow the setting of PointNav experiments in Section 1. We perform
PPO model training on three mobile machines, having significant disparities in max speed, max
steering, wheel friction, engine force, and brake force. In addition, apart from comparing different
machines, we compare different variations of one machine, i.e., COCO (base), COCO (mod-1), and
COCO (mod-2), to find a better specification that can satisfy the demands of different use cases. We
evaluate all five models in straight street blocks (mainly static obstacles) and intersection street blocks
(dense interactions with pedestrians) to test their behaviors in different scenarios, which are noted as
“S” and “X” in Table 2. We use “Success Rate (SR)” and “Success weighted by Path Length (SPL)”
to measure the mobility of agents, while use “Cost” to measure the safety of agents.

Results are shown in Table 2. The wheelchair has the most conservative design, with the lowest
max speed, max steering angle, and engine force. It achieves the best performance in Cost at the
intersection scenario, which indicate the conservative design significantly improve its safety when
navigating through the crowd. However, it has the worst performance in both straight and intersection
street blocks, which indicates conservative design will influence the mobility of a machine to some
degree. The mobility scooter has the most aggressive design, with the highest max speed, max
steering angle, and engine force. It can achieve better performance than the wheelchair and COCO
(mod-2). However, it has a larger Cost than the wheelchair and COCO (mod-2) on average, especially
in the intersection scenario, which indicates a degradation of safety ability caused by its aggressive
design. The COCO (base) and its variations have a medium design between the wheelchair and
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mobility scooter. Comparing COCO (base) with its variations, we can observe that based on the
raw design, decreasing its max speed (mod-1) to 10km/h can significantly improve its performance
in both mobility and safety, while decreasing its max steering angle will diminish its performance
remarkably. These results could assist designers in finding improved mechanical structures for mobile
machines to meet various application scenarios.

4.3 ABLATION STUDY

In this section, we evaluate the generalizability, scaling ability, and effects of the density of static
objects and dynamic agents. For unified evaluations, we use PPO for all ablation studies. Except for
the results on dynamic density, we use the PointNav task. Observations and hyperparameters remain
the same for model training across different evaluations.

Figure 6: Ablation study. (a) Evaluation of generalizability. (b) Evaluation of scaling ability. (c) Evaluation of
the density of static objects. (d) Evaluation of the density of dynamic agents.

Evaluation of generalizability. To evaluate the generalizable ability of agents trained on data
generated by MetaUrban, we compare the success rate of four settings in Figure 6 (a). Setting-
1 and Setting-2 are the results of training on MetaUrban-train while testing on MetaUrban-test
and MetaUrban-unseen, respectively. We can observe a performance drop on MetaUrban-unseen.
However, the unseen evaluation results still achieve 49% success rate facing various out-of-distribution
scenes, demonstrating the strong generalizability of models trained on large-scale data created by
MetaUrban. Setting-3 and Setting-4 are the results of direct training on MetaUrban-finetune, and
fine-tuning on MetaUrban-finetune from the pre-trained model on MetaUrban-train. Compared
between Setting-2 and Setting-3, we can observe an obvious performance drop, which is caused by
an underfitting of the insufficient and complex fine-tuning data. Setting-4 outperforms Setting-3 by
a large margin, demonstrating that the model trained on the MetaUrban-12K dataset can provide
informative priors as good initializations for quick tuning.

Evaluation of scaling ability. To evaluate the scaling ability of MetaUrban’s compositional archi-
tecture, we train models on a different number of generated scenes, from 5 to 1,000. As shown in
Figure 6 (b), the performance improves remarkably from 12% to 46%, as we include more scenes for
training, demonstrating the strong scaling ability of MetaUrban. MetaUrban’s compositional nature
has the potential to extend more diverse scenes with a larger element repository in the future, which
could further boost the agent’s performance.

Evaluation of static and dynamic density. To evaluate the influence of static object density and
dynamic environmental agents, we evaluate the different proportions of them on the PointNav and
SocialNav tasks, respectively, from 1% to 100%. As shown in Figure 6 (c) and (d), with the increasing
density of both static objects and dynamic agents, the success rates of both train and test experience
dramatic degradations, demonstrating the challenges for embodied agents when facing crowded
scenes. In our experiments, we observe many interesting failure cases that can indicate promising
future directions to improve AI’s performance. We showcase some videos on the project page.

5 CONCLUSION

We propose a new compositional simulator, MetaUrban, to facilitate embodied AI and micromobility
research in urban scenes. MetaUrban can generate infinite interactive urban environments with
complex scenes, diverse obstacles, and diverse movements of pedestrians and other mobile agents.
These environments used as training data can significantly improve the generalizability and safety of
the embodied AI underlying mobile machines. We commit ourselves to developing the open-source
simulator and fostering community efforts to turn it into a sustainable infrastructure.
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APPENDIX

In the appendix, we present more details of MetaUrban. In Section A, we illustrate samples of static
and dynamic scenes, as well as static and dynamic assets in MetaUrban. In Section B, we elaborate on
the technical details of the MetaUrban simulator. In Section C, we will give the construction details
and statistics of the MetaUrban-12K dataset. In Section D, we will present details of implementations
of our benchmarks and experiments of the cross-machine evaluation, social interaction evaluation,
and cross-sensor evaluation. In Section E, we delve into and validate unique challenges in urban
micromobility. In Section F, we provide the datasheet of MetaUrban and MetaUrban-12K dataset. In
Section G, and H, we evaluate the performance and robustness of models trained on MetaUrban. In
Section I, we discuss the impacts, limitations, real-world deployment support, multi-agent learning
support, sustainable ecosystem building, and future work of MetaUrban.
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A METAURBAN VISUALIZATION

A.1 STATIC SCENE SAMPLES

Street blocks. We design five typical street block categories – straight, curve, intersection, T-junction,
and roundabout. In the simulator, to form a large map with several blocks, we can sample the category,
number, order, lane number, and other related parameters of the blocks. We use the algorithm Block
Incremental Generation (BIG) proposed in MetaDrive (Li et al., 2022b) to generate the target road
network defined by users. Figure 7 provides demonstrations of generated street maps composed of
different numbers of blocks.

Figure 7: Examples of block maps. Generated block maps with a different number of street blocks.

Ground layouts. We construct seven typical templates for sidewalks, more details about the design
and the generation process are given in the Section B.1.

As shown in Figure 8, different types of sidewalks can be sampled on the same street block; each type
has its unique division and specification of functional zones. Figure 9 further shows several block
maps with a different type of sidewalks.
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Figure 8: Examples of sidewalks. Generated sidewalks with seven templates (a) to (g).

Figure 9: Examples of block maps with sidewalks. Generated block maps with a different type of sidewalks.

Static objects. To generate static objects, we build the object placement distribution conditioned on
geometric zones of sidewalks, which will be discussed in Section B.1. To better distinguish between
the difficulty of scenes on the same road network, we use the object density ρs to control the crowding
level on the sidewalk. This indicates the ratio of the minimum distance to the default distance between
objects. Figure 10 shows block maps with different object densities. We can observe that when the
density increases, the walkable region will become more and more crowded. Figure 11 further gives
ego-view results by randomly sampling viewpoints on block maps.
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Figure 10: Examples of block maps with different object densities. Each row is 5 randomly sampled block
maps with one object density, from 20% to 200%.

Figure 11: Examples of ego-view results in static scenes. Each row is a different object placement with the
same object density (60%). For each row, we sample 4 viewpoints to show ego-view results.
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A.2 DYNAMIC SCENE SAMPLES

Dynamic agents such as pedestrians, vulnerable road users like bikers (skateboarders, scooter riders),
mobile machines (delivery bots, electric wheelchairs, robot dogs, and humanoid robots), and vehicles
will be present in the environment. The density of dynamic agents can be controlled with dynamic
density ratio ρd. Figure 12 shows ego-view results by randomly sampling viewpoints on block maps.
The urban spaces are well populated with different agents.

Figure 12: Examples of ego-view results in dynamic scenes. Each row is a different specification of dynamics
(appearances, movements, and trajectories) with the same dynamic density (100%). For each row, we sample 4
viewpoints to show ego-view results.

A.3 STATIC ASSET SAMPLES

We provide 10,000 high-quality static object assets. The roadside infrastructure is divided into three
categories: 1) Standard infrastructure, including poles, trees, and signs, is placed at regular intervals
along the road. 2) Non-standard infrastructure, such as buildings, bonsai, and trash bins, is placed
randomly within designated zones. 3) Clutter, such as drink cans, bags, and bicycles, is scattered
randomly across all functional zones. Figure 13 14 and 15 show examples of these three categories
respectively.
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Figure 13: Examples of static objects – standard infrastructure.

22



Published as a conference paper at ICLR 2025

Figure 14: Examples of static objects – non-standard infrastructure.
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Figure 15: Examples of static objects – clutter.
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A.4 DYNAMIC ASSET SAMPLES

Human assets. MetaUrban provides 1,100 rigged 3D human models, sampled from 68 garments,
32 hairs, 13 beards, 46 accessories, and 1,038 cloth and skin textures from SynBody (Yang et al.,
2023) dataset. Figure 16 shows 35 randomly sampled humans, demonstrating their diversity with
large variations.

Figure 16: Examples of dynamics – rigged humans.
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Vulnerable road user assets. MetaUrban provides 5 kinds of vulnerable road users to form safe-
critical scenarios. They are bikers, skateboarders, scooter riders, and electric wheelchair users, as
shown in the first row of Figure 17. Note that electric wheelchairs, as a human-AI shared control
system, can also be seen as mobile machines, not only vulnerable road users. As shown in the
second row of Figure 17, we can use different human subjects to obtain various variations for electric
wheelchair users.

Figure 17: Examples of dynamics – vulnerable road users.

Mobile machine assets. MetaUrban provides 6 kinds of mobile machines: Starship, Yandex Rover,
and COCO Robotics’ delivery bots, Boston Dynamic’s robot dog, Agility Robotics’ humanoid
robot, and Drive Medical’s electric wheelchair. Figure 18 shows the first 5 assets, while the electric
wheelchair, as a cross-category asset (vulnerable road user and mobile machine), is shown in
Figure 17.

Figure 18: Examples of dynamics – mobile machines.

Vehicle assets. MetaUrban provides 37 kinds of vehicles, covering different body types, sizes, and
appearances. Figure 19 shows 10 randomly sample vehicles.

Figure 19: Examples of dynamics – vehicles.
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B METAURBAN SIMULATOR

B.1 LAYOUT GENERATION

This section gives details about the process we developed to procedurally generate scenes with
sidewalks and crosswalks, as well as sample and place static objects on the sidewalk.

Ground plan. As shown in Figure 20 (Top), we define 4 functional zones and 6 geometric zones
for sampling the type of sidewalks and choosing the distribution of parameters for each sidewalk

component. As shown in Figure 20 (Bottom), we construct 7 typical templates for sidewalks; each
type of them has its unique distribution of geometric zones. To match the distribution with the real
world, we set the distribution of the zone width to a uniform distribution for each geometric zone;
the maximum and minimum values of the uniform distribution are set according to the Global Street
Design Guide (Initiative & of City Transportation Officials, 2016) provided by the Global Designing
Cities Initiative.

Figure 20: Architecture of ground layouts. (Top) The mapping from functional zones to geometric zones.
(Bottom) Specifications of geometric zones for 7 sidewalk templates.

To generate a scene, we will first sample the template of the sidewalk z from its distribution z ∼
ZT , ZT = {z1, z2, ..., z7}, followed by the sampling of widths of each geometric zone wi ∼
fw(z, i), ∀i ∈ {1, 2, ..., 7}, where fw(z, i) is the width distribution of the ith geometric zone under
the sidewalk template z.

Crosswalks are crucial for the connectivity of scenes. MetaUrban provides candidates at the beginning
and end of each roadway of a block. Then, locations of the crosswalk can be controlled by a crosswalk
density parameter or be specified by users directly.

Object placement. Figure 21 illustrates the iterative process of placing objects in the scene. First, we
convert the polygon of the geometric zone of the sidewalk into rectangles. We will place objects on
each functional zone or geometric zone independently. At each iteration of generating on the specific
zone, we can obtain rectangles that are not occupied. Then we check from the starting region to the
ending region for the current retrieved object class. We place it if possible, or we start to place the
next class. In the simulator, we use rectangle bounding boxes to represent all objects physically to
adopt this object placement method.

B.2 OBJECT RETRIEVAL

Distribution extraction. Distinguished from the recent indoor simulation platform, there are no
ready-to-use high-quality asset datasets for urban spaces. Urban spaces have their unique data
distribution, such as the infrastructure built by the urban planning administration (“fire hydrants”
and “bus stops”) and clutters placed by people (“scooters” and “advertising boards”). Thus, we
design a real-world distribution extraction method to get a description pool depicting what objects
are frequently shown in urban spaces.
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Figure 21: Iterative object placement.

We first leverage off-the-shelf scene understanding datasets – Mapillary Vistas (Neuhold et al., 2017)
and CityScape (Cordts et al., 2016). Using the provided annotation polygon, we find the overlapping
object with the sidewalk and get a list of 90 objects that are with high frequency t1o be put in the
urban space (such as “tree” and “bench”). However, the number of objects is limited because of the
closed-set definitions in the image datasets. To get broader object distribution from the real world, we
introduce two open-set sources – worldwide Google Street data and urban planning description data.

For the Google Street data, we collect 25,000 urban space images from 50 countries across six
continents. The selection of image locations was performed by randomly sampling points along
the major roads of cities using OpenStreetMap’s (OpenStreetMap contributors, 2017) road network.
Image orientation was determined based on road gradient to enhance the relevance of captured scenes.
For object detection in these images, we initially employed GPT-4o (OpenAI, 2024) to generate a list
of candidate objects. This was followed by the application of Grounded-Dino (Liu et al., 2023c) to
obtain bounding boxes for these objects. We refined these boxes using non-maximum suppression
(NMS) to ensure the accuracy of object identification.

Further refinement was achieved through the use of the Grounded-SAM model (Ren et al., 2024), an
open-set segmentation approach, which filtered the bounding boxes to identify objects specifically
located in public urban spaces. A key part of our method involves determining overlaps between
identified objects and sidewalks. For each object detected, we calculate its spatial intersection with
sidewalk regions derived from the datasets. This overlap analysis helps in curating a list of objects
that are relevant to public urban spaces.

To address the diverse descriptions generated by GPT-4o (OpenAI, 2024) and ensure semantic
uniformity, we cluster the embeddings of descriptions using DBSCAN (Ester et al., 1996), which
result in 1,075 distinct object clusters with unique descriptors, such as "a gray trash bin" and "potted
cactus". We use “all-mpnet-base-v2” model from SentenceTransformers (Reimers & Gurevych, 2019)
to embed each description.

For the urban planning description data, we get a list of 50 essential objects in public urban spaces
(such as “drinking fountains” and “bike racks”) through a thorough survey of urban design handbooks.
Finally, by combining these three data sources, we can get an object description pool with 1,215
items of descriptions that can form the real-world object category distribution.

Figure 22 illustrates the distribution of objects in urban space extracted from all of the worldwide col-
lected data. Houses, gates, and trees emerge as universal elements, dominating the urban landscapes
across all depicted countries, reflecting their fundamental role in both urban and rural settings.

Figure 23 illustrates the object distribution of example countries from 6 continents, showcasing
distinct environmental and cultural characteristics through object prevalence. The data also highlights
notable regional distinctions: Japan, for instance, features a higher incidence of poles and road cones,
hinting at unique aspects of its urban infrastructure. In contrast, Brazil’s considerable frequency of
gates and metal gates suggests prominent architectural and security preferences. Such variances not
only reveal the diverse urban aesthetics and functional priorities across different regions but also
enhance our understanding of how specific objects can define the character and utility of public spaces
globally. This comparative analysis of object distributions contributes significantly to constructing
region-specific sidewalks’ simulation environments.
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Figure 22: Distribution of objects in urban spaces for all collected data worldwide.
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Figure 23: Distribution of objects in urban spaces across different countries. Two example images are shown
together with each distribution figure, demonstrating large variations among different countries.
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Open-vocabulary search. To effectively retrieve digital assets corresponding to the object de-
scription pool, we developed a robust pipeline utilizing the Objaverse (Deitke et al., 2023c) and
ObjaverseXL (Deitke et al., 2023a) repositories, known for their extensive digital assets. The process
begins with the extraction of digital assets using a multi-threaded approach for further processing.
Each downloaded asset is then rendered into 20 distinct images, capturing various angles to provide
a comprehensive visual representation. Following (Luo et al., 2023; 2024), viewpoints with higher
quality are used for the calculation of visual feature embedding.

For the matching process, we leverage the BLIP2 (Li et al., 2023) model, a pre-trained feature
extractor, to align visual data with our textual descriptions. This involves processing the images to
extract visual features and concurrently transforming textual descriptions into embeddings. These
embeddings are compared using cosine similarity to determine the semantic correspondence between
text and images, allowing us to identify and collect the digital assets that best match the descriptions.

Once the assets are collected, a meticulous review process is initiated for each category. We manually
inspect each asset, filtering out those that are of low resolution, lack realism or do not meet our quality
standards. The selected assets are then uploaded into MetaUrban to adjust asset characteristics such
as size, position, and orientation. This meticulous curation ensures that only high-quality digital
assets are incorporated into our static object dataset.

Object repository extension. MetaDrive provides an interface for including objects enabled by
recent advances in 3D content generation, such as 3D object reconstruction (Liu et al., 2023b; Kerbl
et al., 2023) and generation (Poole et al., 2023; Chen et al., 2023). Thus, one can easily further
extend the object repository with generated contents. Also, this function can work together with
scene customization (Section B.4) to get customized scenes with specific objects.

B.3 COHABITANT POPULATING

Appearances. We include 1,100 3D human models, 5 kinds of vulnerable road users – bikers,
skateboarders, scooter riders, and electric wheelchair users, and 6 kinds of mobile machines as
cohabitants in the MetaUrban simulator. The number of dynamic agents in a scene can be set by the
parameters respectively. The environment initialization time and RAM usage are only proportional to
the number of individual agents. For example, 100 same agents will take the same initialization time
and RAM usage as one. This schema can be used to significantly increase the maximum number of
spawned agents for a specific hardware.

Movements. We include 3 daily movements – idle, walking, and running, as well as 2,311 unique
movements from the BEDLAM (Black et al., 2023) dataset. All of the motion sequences are trimmed
and checked by designers one by one to ensure their quality. With the same skeletal binding, all of
the unique movements can be transferred to all of the 3D human models directly. Thus, we can get
1,100 × 2,311 numbers of human-motion pairs.

Trajectories. We harness ORCA (Van Den Berg et al., 2011) and Push and Rotate (P&R) algo-
rithm (De Wilde et al., 2014) to get the trajectories of all dynamic agents. First, we build the 0-1
mask that indicates whether the grid is a walkable region or not. Then, we sample the start and ending
points for each agent randomly, followed by generating their 2D trajectories by using the model of
ORCA (Van Den Berg et al., 2011) and P&R (De Wilde et al., 2014). The trajectory plan process is
efficient, running within 5s for 100 agents on a Core i9 CPU processor. Vehicles will also be added in
dynamic scenes. All traffic vehicles will follow IDM policies, as MetaDrive (Li et al., 2022b) does.

B.4 SCENE CUSTOMIZATION

MetaUrban supplies various compositional elements, such as street blocks, objects, pedestrians,
vulnerable road users, and other mobile agents’ appearances and dynamics. With just a few simple
lines of specification, it is easy to create customized urban spaces of interest, such as street corners,
plazas, and parks.

B.5 USER INTERFACE

MetaUrban provides user interfaces for two purposes: 1) Demonstration data collection for Offline RL
and IL. 2) Object labeling and scene customization. For demonstration data collection, MetaUrban
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provides interfaces for mouse, keyboard, joystick, and racing wheel. We can easily collect human
expert demonstrations as shown in Figure 24. In addition, MetaUrban provides tools for object
labeling – size, orientation, and attributes, and scene customization – assigning the locations of the
selected objects.

Figure 24: Demonstration data collection with the user interface.

B.6 SIMULATOR COMPARISON

We will compare MetaUrban with other simulators below in Table 3, through the scale, sensor,
and feature dimensions. For the scale, MetaUrban can generate infinite scenes with a procedural
generation pipeline. It provides the largest number of humans (1,100) and movements (2,314) among
all simulation environments. For objects, so far, we have provided 10,000. Compared to other
simulators, all of the objects from MetaUrban are urban-specific. Also, we provide an interface to
extend object data to any size easily with recent advances in 3D content generation (Section B.2).
For the sensor, MetaUrban provides RGBD, semantic, and lidar. For the feature, different from other
simulators, MetaUrban provides real-world distribution of the object’s categories and uses a more
sophisticated path plan algorithm to get the natural agent’s trajectories. It also provides flexible
user interfaces – mouse, keyboard, joystick, and racing wheel, which vastly ease the collection
of human expert demonstration data. MetaUrban uses PyBullet as its physical engine, which is
open-source and highly accurate in physics simulation, providing a cost-effective and flexible solution
for future developments. MetaUrban uses Panda3D (Goslin & Mine, 2004) for rendering, which is a
lightweight, open-source game engine with seamless Python integration, providing a flexible and
accessible development environment.

Table 3: Comparison of Embodied AI simulators. We compare MetaUrban to simulators specialized for three
environments – indoor, driving, and social navigation environments.

Scale Sensor Feature

Simulator # of
Scenes

# of
Objects

# of
Rigged Humans

# of
Human Motions RGBD Semantic LiDAR Acoustic Object Category

Distribution
Env. Agent
Trajectory User Interface Physics Engine Scenario

HuNavSim (Pérez-Higueras et al., 2023) 5 ✗ 5 6 ✗ ✗ ✗ ✗ ✗ Social Force ✗ Gazebo Social
SEAN 2.0 (Tsoi et al., 2022) 3 34 <100 1 ✓ ✗ ✗ ✗ Manual Social Force ✗ Unity Social
SocNavBench (Biswas et al., 2022) 4 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Social

SUMO (Krajzewicz et al., 2002) ∞ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Driving
CARLA (Dosovitskiy et al., 2017) 15 66,599 49 1 ✓ ✓ ✓ ✓ Manual Rule-based Keyboard, Joystick Unreal4 Driving
MetaDrive (Li et al., 2022b) ∞ 5 1 1 ✓ ✓ ✓ ✓ Manual Rule-based ✓ PyBullet Driving

AI2-THOR (Kolve et al., 2017) 120 609 ✗ ✗ ✓ ✓ ✗ ✓ Manual ✗ Mouse Unity Indoor
ThreeDWorld (Gan et al., 2021) 15 200 ✗ ✗ ✓ ✓ ✗ ✓ Manual ✗ VR Flex Indoor
iGibson 2.0 (Li et al., 2021) 15 1,217 ✗ ✗ ✓ ✓ ✗ ✗ Manual ✗ Mouse, VR PyBullet Indoor
ProcTHOR (Deitke et al., 2022b) ∞ 1,547 ✗ ✗ ✓ ✓ ✗ ✓ Manual ✗ ✗ Unity Indoor
OmniGibson (Li et al., 2024) 306 5,215 ✗ ✗ ✓ ✓ ✓ ✗ Manual ✗ ✗ PhysX Indoor
Habitat 3.0 (Puig et al., 2023b) 211 18,656 12 3 ✓ ✓ ✗ ✗ Manual Rule-based Mouse, Keyboard, VR Bullet Indoor

MetaUrban ∞ 10,000 1,100 2,314 ✓ ✓ ✓ ✗ Real-world ORCA Mouse, Keyboard PyBullet Urban+P&R Joystick, Racing Wheel

C METAURBAN-12K DATASET

Data. Based on the MetaUrban simulator, we construct the MetaUrban-12K dataset, includ-
ing 12,800 interactive urban scenes for training (MetaUrban-train) and 1,000 scenes for testing
(MetaUrban-test). For the train and test sets, we sample randomly from the 6 templates (a-f) of
sidewalks shown in Figure 4 (right) with the same distributions of objects and dynamics. We further
construct an unseen test set (MetaUrban-unseen) with 100 scenes for zero-shot experiments, in which
we sample from the unseen template (g) – Wide Commercial Sidewalk, unseen objects, trajectories
of agents with further designers’ manual adjustments according to real-world scenes. In addition,
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to enable the fine-tuning experiments, we construct a training set of 1,000 scenes with the same
distribution of MetaUrban-unseen, termed MetaUrban-finetune. 12K scenes can be generated in 12
hours on a local workstation. Notably, our MetaUrban platform can easily extend the scale of urban
scenes from a multi-block level to a whole city level. To enable the Offline RL and IL training, we
collect expert demonstration data from a well-trained RL agent and human operators, forming 30,000
steps of high-quality demonstration data. The success rate of the demonstration data is 60%, which
can be taken as a reference for the experiments of Offline RL and IL.

Statistics. Figure 25 shows distributions of the number of objects (left), areas occupied by objects
(middle), and episode length (right). As shown in the distribution of object numbers, there are lots
of objects in each scenario with a minimal value of 300. As shown in the distribution of objects’
areas, objects in the dataset cover large areas, which complies with a normal distribution centered
at 5250m2. As shown in the distribution of episode length, more than 20% of them are more than
800 steps. From these distributions, we can observe that scenes are significantly challenging in
MetaUrban-12K for agents to navigate through, which are crowded and with long horizons.

Figure 25: MetaUrban-12K statistics. (Left) Distribution of object numbers in the scene. (Middle) Distribution
of areas occupied by objects in the scene. (Right) Distribution of episode length in the scene.

D EXPERIMENT DETAILS

This section discusses the settings of environments, action spaces, observation spaces, evaluation
metrics, training details for methods, as well as the reward and cost in the benchmarks of Point
Navigation (PointNav) and Social Navigation (SocialNav), respectively.

D.1 POINTNAV EXPERIMENTS

Environments. For PointNav experiments, there are only static objects besides the ego agent in
the environment. To evaluate the trained policy, we split seven types of sidewalks into six types for
training and validation with one for test. The one used for the test is the Wide Commercial Sidewalk,
in which the frontage zone buffer will be, as well as some unseen objects.

We use delivery bots as the ego agent in our experiments. The task of agents in PointNav experiments
is following the trajectory in the environment that navigates from start points to ending points,
ensuring that it does not collide with other objects. To generate such a task, we harness ORCA (Van
Den Berg et al., 2011) and Push and Rotate (P&R) algorithm (De Wilde et al., 2014) to get the
trajectory of the ego agent after placing objects. The process is the same as discussed in Section B.3.
Notably, there may be some trajectories with small moving distances, we set a threshold of 5m
to filter out scenarios with small moving distances for testing to evaluate different methods more
effectively.

Action spaces. We use the same continuous action space as MetaDrive (Li et al., 2022b), which is
a 2-dimensional vector that normalized to [−1.0, 1.0] indicating the acceleration and steering rate
of the agent. Considering that the dynamics of a delivery bot is different from a vehicle, we change
some core parameters like maximum velocity, maximum acceleration, maximum steering rate.
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Observation spaces. Multi-modal observations are provided by MetaUrban, including RGB, Depth,
Semantic Map, and LidAR. We use LidAR in all of our experiments for its 3D information of the
surrounding environment, which provides distance and direction of the nearest object within a 50m
maximum detecting distance centering at the ego.

Evaluation metrics. For PointNav, an episode is considered successful if the agent issues the
DONE action, defined as completing 95% of the set route within 1,000 maximum steps. The agent is
evaluated using the Success Rate (SR) and Success weighted by Path Length (SPL) (Anderson et al.,
2018; Batra et al., 2020) metrics, which measure the effectiveness and efficiency of the path taken by
the agent. Additionally, to measure the safety performance of the trained policy, we define the cost
function by two events, i.e., crashing with objects on the sidewalk or buildings in the building zone.
+1 cost is given once those events occur.

Methods. In our study, we employ a diverse set of 7 baseline models to establish comprehensive
benchmarks on MetaUrban. These models span various domains, including Reinforcement Learning,
Safe Reinforcement Learning, Offline Reinforcement Learning, and Imitation Learning.

Reinforcement learning. In the realm of Reinforcement Learning, we use the Proximal Policy
Optimization (PPO) (Schulman et al., 2017) for evaluation. PPO is a widely adopted and effective
method that strikes a balance between sample complexity and ease of tuning, and it is easy to scale as
it adopts parallel and distributed training well. The agent in this setting is trained to maximize the
reward, which we carefully design to encapsulate the desired behavior of the agent in the MetaUrban
environment. The specifics of the reward structure will be discussed in the subsequent paragraph. We
train the PPO using the same set of hyperparameters with 128 parallel environments, which occupy
128 processes. The total training time is 12 hours, and 5M environment steps for PointNav on a single
Nvidia A5000 GPU. The detailed hyperparameters are provided in Table 4.

Table 4: Hyper-parameters of RL and SafeRL for PointNav.

PPO/PPO-Lag/PPO-ET Hyper-parameters Value
Environmental horizon T 1,000
Learning rate 5e-5
Discount factor γ 0.99
GAE parameter λ 0.95
Clip parameter ϵ 0.2
Train batch size 25,600
SGD minibatch size 256
Value loss coefficient 1.0
Entropy loss coefficient 0.0

Cost limit 1

Safe reinforcement learning. As driving in urban spaces is a safety-critical application, it is important
to evaluate Safe Reinforcement Learning (SafeRL) algorithms. In the domain of SafeRL, we utilize
two approaches: PPO with a Lagrangian constraint (PPO-Lag) (Ray et al., 2019) and PPO with
modeling of Early Terminated Markov Decision Processes (PPO-ET) (Sun et al., 2021). Both methods
aim to ensure that the learned policies adhere to specific safety constraints while optimizing the
reward. PPO-Lag incorporates a Lagrangian term into the objective function to enforce the constraints,
while PPO-ET changes the modeling of the Constrained Markov Decision Process (CMDP) to a new
unconstrained MDP, the optimal policy that coincidences with the original CMDP.

For PPO-Lag (Ray et al., 2019), it considers the learning objectivate as Equation 1 rather than adding
negative cost as rewards.

max
θ

min
λ≥0

Eτ [Rθ(τ)− λ(Cθ(τ)− d)] (1)

where Rθ, Cθ, θ, and d are episodic reward, episodic cost, parameters of the policy, and given cost
threshold, respectively.

The rule for PPO-ET (Sun et al., 2021) is to stop when the constraint cost exceeds a given value,
which can be easily implemented in practice.
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We implement both of these SafeRL methods based on OmniSafe (Ji et al., 2023). We train both of
them with 50 parallel environments and the training takes 12 hours for PointNav on a single Nvidia
A5000 GPU. The detailed hyperparameters are provided in Table 4.

Offline reinforcement learning. For Offline Reinforcement Learning, we employ two prominent
methods: Implicit Q-Learning (IQL) (Kostrikov et al., 2021) and Twin Delayed Deep Deterministic
Policy Gradient with Behavior Cloning (TD3+BC) (Fujimoto & Gu, 2021). We create the dataset for
PointNav by combining 20% human demonstrations with 80% demonstrations from a well-trained
PPO policy, consisting of 30,000 samples with approximately 60% success rate. The training is
purely offline and takes around 2 hours on a single Nvidia A5000 GPU for 100 epochs. The detailed
hyperparameters for IQL and TD3+BC are provided in Table 5 and 6, respectively.

Table 5: Hyper-parameters of IQL.

IQL Hyper-parameters Value
Learning rate 1e-4
Discount factor γ 0.99
Target critic update ratio 5e-3
Inverse temperature β 3.0
Log std range (-5.0, 2.0)
Expectile 0.7

Table 6: Hyper-parameters of TD3+BC.

TD3+BC Hyper-parameters Value
Learning rate 1e-4
Discount factor γ 0.99
Target critic update ratio 5e-3
Actor update delay 2
BC loss coefficient 2.5

Imitation learning. For Imitation Learning algorithms, we use the same high-quality mixed demon-
stration used in Offline Reinforcement Learning. In the Imitation Learning setting, the agent learns
to mimic the behavior shown in the expert demonstration, and it is differentiated from Offline Re-
inforcement Learning in the sense that the agent does not have access to the rewards. We employ
two well-established methods: Behavior Cloning (BC) (Bain & Sammut, 1995) and Generative
Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016). BC is a straightforward approach that
trains the agent to directly match the actions of the expert given the observed states. GAIL, on the
other hand, formulates the imitation learning problem as a two-player game between the agent and a
discriminator, which tries to distinguish between the agent’s behavior and the expert’s demonstrations.
The detailed hyperparameters for IQL and TD3+BC are provided in table 7 and 8, respectively.

Table 7: Hyper-parameters of BC.

BC Hyper-parameters Value
Dataset size 30,000
Learning rate 1e-4
SGD batch size 64
SGD epoch 40

Reward and cost. The reward function is composed as follows:

R = Rterm + c1Rdisp + c2Rlateral + c3Rsteering + c4Rcrash (2)

Specifically,
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Table 8: Hyper-parameters of GAIL.

GAIL Hyper-parameters Value
Dataset size 30,000
SGD batch size 64
Sample batch size 12,800
Generator Learning rate 1e-4
Discriminator Learning rate 3e-3
Generator optimization epoch 5
Discriminator optimization epoch 2,000
Clip parameter ϵ 0.2

• Terminal reward Rterm: a sparse reward set to +5 if the vehicle reaches the destination, and
−5 for out of route. If given Rterm ̸= 0 at any time step t, the episode will be terminated at
t immediately.

• Displacement reward Rdisp: a dense reward defined as Rdisp = dt − dt−1, wherein the dt
and d1 denote the longitudinal position of the ego agent in Frenet coordinates of current
lane at time t and t− 1, respectively. We set the weight of Rdisp as c1 = 0.5.

• Lateral reward Rlateral: a dense reward defined as Rlateral = −||lt||, wherein the lt denotes
the lateral offset of the ego agent in Frenet coordinates of current lane at time t, which is
designed to prevent agent driving on non walkable areas. We set the weight of Rlateral as
c2 = 1.0.

• Steering smoothness reward Rsteering: a dense reward defined as Rsteering = −||st −
st−1|| · vt, wherein the st and st−1 denotes the steering of the agent at t and t− 1, respec-
tively. And vt denotes the speed of the agent at time t. This reward term is designed as a
regularization to prevent the agent changing the steering too frequently. We set the weight
of Rsteering as c3 = 0.1.

• Crash reward Rcrash: a dense negative reward defined as −1(ct), wherein the ct denotes the
collision between agents and any other objects at time t and 1(·) is the indicator function.
It’s notable we do not use the termination strategy for collision as in MetaDrive (Li et al.,
2022b). We set the weight of Rcrash as c4 = 1.0.

And for benchmarking Safe RL algorithms, collision to any objects raises a cost +1 at each time step.

D.2 SOCIALNAV EXPERIMENTS

Environments. For SocialNav experiments, most settings are the same as the ones in PointNav.
The most important difference is that dynamic agents will also be present in the environment. The tra-
jectories of environmental agents are generated together by using the model of ORCA (Van Den Berg
et al., 2011) with P&R (De Wilde et al., 2014). Since vehicles are inherited from MetaDrive (Li et al.,
2022b), we use the same parameter to control its density, i.e., traffic density 0.05 in our experiments.

Evaluation metrics. For SocialNav, an episode is considered successful if the agent issues the
DONE action, defined as completing 95% of the set route within 1,000 maximum steps. The agent
is evaluated using the Success Rate (SR) and Social Navigation Score (SNS) (Deitke et al., 2022a),
which is the average of Success weighted by Time Length (STL) and Personal Space Compliance
(PSC). SNS measures the agent in terms of safety and efficiency.

Methods. We benchmark the same methods as in PointNav experiments with the same hyperpa-
rameters. However, due to the involvement of lots of dynamic agents, the training speed of SocialNav
is about approximately 1/3 of PointNav on online methods. The cost scheme is defined as raising a
cost of +1 at each time step if the ego agent crashes with any agents, vehicles, or objects.
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D.3 EVALUATION ACROSS MOBILE MACHINES

In this experiment, we evaluate the influence of mechanical structures in policy execution on different
terrains. We conduct experiments on three types of wheeled mobile machines – a delivery bot,
an electric wheelchair, and a mobility scooter, with remarkably different specifications, such as
wheelbase, wheel radius, and wheel width. We designed three sufficiently long runways with three
kinds of terrains: slopes, stairs, and roughs. From the starting point, each runway has a gradually
increasing difficulty. Slopes will have an increasingly steeper angle; stairs will have increasingly
higher step heights; roughs will have increasingly larger bumps. We apply the same "moving forward"
policy to each mobile machine to test the longest distance and time duration they can travel before
termination, and report the metrics of x-displacement (m) and Time to fall (s) (Agarwal et al., 2023)
respectively. Terminal conditions are getting stuck, slowing down significantly, and toppling over.

Results are shown in Table 9. The mobility scooter, which has the largest wheelbase, wheel width,
and radius, achieves the best performance in the slopes test. It indicates that a larger wheelbase
increases stability and reduces the risk of tipping backward on steep inclines, while wheel width and
radius help in better traction on slopes. All three machines show similar but poor performance in the
stairs test. It indicates the inherent defect of wheeled mobile machines and emphasizes the importance
of accessibility in public urban spaces. The delivery bot, which has the smallest wheelbase, wheel
width, and radius, achieves poor performance on all three tests. It indicates that although the delivery
bot’s structure gives it good maneuverability on flat surfaces, it comes at the cost of losing stability
on complex terrains.

Table 9: Evaluation of policy execution across mobile machines. For each row of different terrains,
indicates the best performance among the three machines.

Terrain x-displacement (m) ↑ Time to fall (s) ↑
Delivery Bot Wheelchair Mobility Scooter Delivery Bot Wheelchair Mobility Scooter

Wheelbase (m) 0.45 0.5 0.6 0.45 0.5 0.6
Wheel radius (m) 0.1 0.15 0.2 0.1 0.15 0.2
Wheel width (m) 0.1 0.1 0.15 0.1 0.1 0.15

Slopes 31.90 34.58 38.07 6.3 6.9 7.7
Stairs 38.55 38.94 38.67 7.0 7.8 7.2

Roughs 28.06 31.91 34.17 5.8 6.4 6.7

D.4 EVALUATION ON SOCIAL INTERACTIONS

In this experiment, we evaluate the agent’s capability to handle complex social interactions. We
follow SEAN 2.0 Tsoi et al. (2022) to design five interaction scenarios: Cross Path, Down Path,
Leave Group, Join Group, and Empty. These five scenarios can be defined as below:

• Cross Path: A robot is positioned at pr with orientation or. Nearby, there is an agent located
at pa, moving with velocity va and orientation oa, where oa is perpendicular to or.

• Down Path: A robot is positioned at pr with orientation or. Nearby, there is an agent at pa,
moving with velocity va and orientation oa, where oa is parallel to or.

• Leave Group: A robot currently at position pr originated from a starting position p′
r, which

made it a member of a group centered at cg. The robot is near an agent at pa, who is still
part of the same group.

• Join Group: A robot positioned at pr has a navigation target p′′
r , which will place it within

a group centered at cg. The robot is also near an agent at pa, who is already a member of
the group.

• Empty: A robot located at pr has no other agents in its vicinity.

We evaluate the model trained on the SocialNav task, which has encountered diverse, randomly
generated behaviors. We then test it on unseen interaction scenarios to assess its generalizability in
social interactions. The results are shown in Table 10. We can draw three critical insights from the
results.
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1) Superior performance in simple scenarios. The model achieves the best performance in the “Empty”
scenario, with the highest Success Rate (70%), perfect Social Navigation Score (1.00), and lowest
Cost (0.30). This highlights the agent’s strength in non-social or low-interaction environments but
also underscores its limitations in handling complex social dynamics.

2) Difficulty in coordinating parallel movements. The “Down Path” scenario exhibits the lowest
Success Rate (50%) and Route Completion (66.72%), indicating that parallel movement with nearby
agents poses significant challenges. This suggests the need for improved adaptability to dynamic,
aligned trajectories.

3) Task completion vs. safety trade-off. The “Leave Group” scenario achieves the highest Route
Completion (82.90%), showcasing strong task-oriented behavior. However, it also incurs the highest
Cost (12.90), reflecting a trade-off between completing tasks and maintaining safety in socially dense
situations.

Table 10: Evaluation on social interaction scenarios. For each row of different matrics, and indicates the
best and worst performance among five scenarios.

Scenario Cross Path Down Path Leave Group Join Group Empty

SR ↑ 60% 50% 60% 60% 70%
Route Completion (%) ↑ 80.46% 66.72% 82.90% 74.31% 79.05%

SNS ↑ 0.96 0.95 0.92 0.99 1.00

Cost ↓ 4.30 7.80 12.90 1.70 0.30

D.5 EVALUATION ON DIFFERENT SENSORS

In this experiment, we assess performance changes using different sensors: LiDAR, Depth, and RGB.
We perform experiments on the PointNav task and train RL models using the PPO (Schulman et al.,
2017) algorithm. To evaluate the models’ ability to generalize to unseen scenarios, we test them on
the MetaUrban-unseen dataset.

The results in Table 11 highlight the performance differences among LiDAR, Depth, and RGB
sensors. LiDAR demonstrates superior performance across all metrics. This indicates that LiDAR’s
precise spatial information enables more efficient and safe navigation in unseen scenarios. Depth
sensors show moderate performance, reflecting challenges in extracting accurate spatial features in
complex urban environments. RGB sensors perform the worst across all metrics, likely due to the lack
of 3D information and higher sensitivity to environmental variations. These results underscore the
importance of robust spatial sensing, with LiDAR offering the most reliable input for generalizable
navigation in unseen scenarios.

Table 11: Evaluation on different sensors. For each row of different matrics, indicates the best performance
among the three sensors.

Sensor LiDAR Depth RGB

SR (%) ↑ 87.77% 60.00% 54.00%
Route Completion (%) ↑ 92.26% 69.36% 57.28%
SPL ↑ 0.54 0.31 0.23

Cost ↓ 1.03 1.40 3.20

E UNIQUE CHALLENGES IN URBAN MICROMOBILITY

In this section, we delve into and validate four unique challenges a mobile machine will encounter in
public urban space, which is the stage of urban micromobility tasks, distinct from previous indoor
and driving environments, i.e., long horizon tasks in large-scale scenes, multifarious terrains, diverse
obstacles, and dense pedestrians.
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Long horizon tasks in large-scale scenes. In urban spaces, mobile machines need to perform long-
horizon tasks with large-scale scenes connected with several street blocks, which are several orders of
magnitude larger than indoor environments. We compare the performance of two models trained with
different episode length settings. Setting-1: mean length with 10m (a common length following the
indoor environment ProcThor (Deitke et al., 2022b)). Setting-2: mean length with 410m (a common
length in urban micromobility tasks). Both models are then tested on the MetaUrban-test dataset. As
shown in Table 12 (Left), the model trained with Setting-1 achieves poor performances when testing
on the urban environments. However, when trained in an urban environment with a longer episode
length (Setting-2), the model’s performance improves dramatically. It indicates that long-horizon
tasks in large-scale scenes bring a unique challenge to mobile machines, and validate the necessity of
procedural generation of large-scale urban scenes in MetaUrban.

Table 12: Unique challenges validation. (Left) Long horizon tasks in large-scale scenes. (Right) Dense
pedestrians.

Setting-1 Setting-2
SR↑ 10% 41%
SPL↑ 0.08 0.38

Setting-1 Setting-2 Setting-3 Setting-4
SR↑ 24% 16% 10% 8%

Cost↓ 0.51 0.75 0.74 0.68

Multifarious terrains. In indoor environments, most of the grounds are smooth and even, while
in driving environments, roadway surfaces can only have slight cracks and damage. Yet, in public
urban spaces, mobile machines will encounter multifarious complex terrains, such as slopes, stairs,
and roughs. As shown in Table 9, different terrains will deeply influence the performance of mobile
machines with different mechanical structures, such as wheelbase, wheel radius, and width, etc..
Results show that along with the increasing difficulty of terrains, all of the machines will fail because
of getting stuck, barely moving, or toppling over. It indicates that multifarious terrains bring a unique
challenge to mobile machines, and validate the necessity of the terrain generation system designed in
MetaUrban.

Diverse obstacles. In indoor environments, even though there are many objects, the distribution has
a large variation compared to urban spaces. In driving environments, there are only a few obstacles
on roadways, such as cones and barriers. As shown in Figure 26, we compare the distribution of
object category in MetaUrban with that in ProcThor (Deitke et al., 2022b), a state-of-the-art indoor
simulation environment. We can observe a significant variation in object category distributions
between public urban spaces and indoor spaces, although these two scenarios both accommodate a
lot of objects. The diversity, particularity, and concentration of obstacles in urban spaces present a
unique challenge for mobile machines. The statistical results validate the necessity of the pipeline of
scalable obstacle filling in MetaUrban.

Figure 26: Object category distributions. Red: Distribution of object category in urban spaces. Blue:
Distribution of object category in indoor spaces.

Dense pedestrians. In indoor environments, humans will share walkable spaces with humans;
however, there are only 3-5 people in one room in common (as shown in Habitat 3.0 (Puig et al.,
2023b)). In driving environments, except the intersections, there exist barely any shared spaces for
pedestrians and vehicles. In contrast, in public urban spaces, almost all of the spaces for mobile
machines are shared with pedestrians. We compare models trained with different pedestrian densities
and locations. Setting-1: 10 pedestrians per 100-meter episode (a common scenario in an urban
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environment). Setting-2: 5 pedestrians per 100-meter episode (a common scenario in an indoor
environment). Setting-3: 10 pedestrians per 100-meter episode but only shown in intersections (a
common scenario in a driving environment). All the three models are then tested on the MetaUrban-
test dataset. Setting 4: using the model trained in Setting-1 and testing on a density of 30 pedestrians
per 100-meter episode (a crowd scenario in an urban environment).

Results are shown in Table 12 (Right). We take Setting-1 as a reference. With fewer pedestrians in
Setting-2, the success rate will decrease, and the cost will increase significantly, indicating a higher
frequency of bumping into pedestrians. With different distribution but the same pedestrian density in
Setting-3, both success rate and cost degrade dramatically, indicating the unique challenge of sharing
walkable regions with pedestrians. In Setting 4, we further increase the pedestrian’s density and
see a huge degradation in success rate but a moderate degradation in Cost. It indicates that having
more pedestrians poses a significant challenge for the agent to reach the goal point. Interestingly, the
agent still attempts to avoid pedestrians due to its effective training in public urban spaces. Results
demonstrate that the high pedestrian density and interaction frequency in public urban spaces will
place a unique challenge for mobile machines. It also validates the importance of the Cohabitant
Populating module in MetaUrban.
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F DATASHEET

Motivation

For what purpose was the dataset
created?

The dataset was created to enable agents training on diverse
scenes and facilitate AI-driven urban micromobility research.

Who created and funded the
dataset?

This work was created and funded by the MetaUrban team
at the University of California, Los Angeles.

Composition

What do the instances that comprise
the dataset represent?

Each instance is a JSON file including the configuration of
our MetaUrban environment and a specific seed.

How many instances are there in
total (of each type, if appropriate)?

There are 12,800 urban scenes released in the MetaUrban-
12K dataset, along with the code to sample substantially
more.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

We offer 12,800 urban scenes, with the ability to generate
more using procedural generation scripts.

What data does each instance con-
sist of?

Each scene is specified as a JSON file including the configu-
ration of our MetaUrban environment and a specific seed.

Is there a label or target associated
with each instance?

No.

Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit (e.g.,
users’ movie ratings, social net-
work links)?

Each urban scene is created independently, so there are no
connections between the scenes.

Are there recommended data splits? Yes. See Section 4 in the main paper.

Are there any errors, sources
of noise, or redundancies in the
dataset?

No.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources (e.g., websites,
tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

No.

Collection Process

How was the data associated with
each instance acquired?

Each scene was procedurally generated.
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If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset consists of 12,800 scenes, each by sampling the
parameters of its composed elements.

Who was involved in the data col-
lection process?

The authors were the sole individuals responsible for creating
the dataset.

Over what timeframe was the data
collected?

Data was collected in Sept. 2024.

Were any ethical review processes
conducted?

No.

Preprocessing/Cleaning/Labeling

Was any preprocess-
ing/cleaning/labeling of the
data done?

We label each object’s location area and pivots to make them
spawn in target functional zones and face a natural direction.

We use VLMs to automatically label 2D images of cities
worldwide, which enables the extraction of real-world cate-
gory distribution of objects in urban spaces.

Was the “raw” data saved
in addition to the prepro-
cessed/cleaned/labeled data?

There is no raw data.

Is the software that was used to pre-
process/clean/label the data avail-
able?

The code related to preprocessing, cleaning, and labeling the
data will be made available.

Uses

Has the dataset been used for any
tasks already?

Yes. See Section 4 of the main paper.

What (other) tasks could the dataset
be used for?

The scenes can be used in a wide variety of tasks in urban
micromobility, embodied AI, computer vision, and urban
planning.

Is there anything about the com-
position of the dataset or the
way it was collected and prepro-
cessed/cleaned/labeled that might
impact future uses?

No.

Are there tasks for which the
dataset should not be used?

Our dataset can be used for both commercial and non-
commercial purposes.

Distribution

Will the dataset be distributed to
third parties outside of the entity
on behalf of which the dataset was
created?

Yes. We plan to make the entirety of the work open-source,
including the code used to generate scenes and train agents,
the scripts to get the MetaUrban-12K dataset, and the asset
repositories.

How will the dataset be distributed? The scene files will be distributed with a custom Python
package.

The code, asset, and repositories will be distributed on
GitHub.
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Will the dataset be distributed un-
der a copyright or other intellectual
property (IP) license, and/or under
applicable terms of use (ToU)?

The scene dataset, 3D asset repository, and code will be
released under the Apache 2.0 license.

Have any third parties imposed IP-
based or other restrictions on the
data associated with the instances?

For 3D human assets, we use Synbody (Yang et al., 2023).
Its license is CC BY-NC-SA 4.0. For movement sequences,
we use BEDLAM (Black et al., 2023). See https://
bedlam.is.tue.mpg.de/license.html for its li-
cense.

Do any export controls or other
regulatory restrictions apply to the
dataset or to individual instances?

No.

Maintenance

Who will be support-
ing/hosting/maintaining the
dataset?

The authors will be providing support, hosting, and maintain-
ing the dataset.

How can the
owner/curator/manager of the
dataset be contacted?

For inquiries, email <metaurban_team@gmail.com>.

Is there an erratum? We will use GitHub issues to track issues with the dataset.

Will the dataset be updated? We will continue adding support for new features to make
the urban scenes more diverse and realistic. We also intend
to support new tasks in the future.

If the dataset relates to people, are
there applicable limits on the reten-
tion of the data associated with the
instances (e.g., were the individu-
als in question told that their data
would be retained for a fixed period
of time and then deleted)?

The dataset does not relate to people.

Will older versions of the
dataset continue to be sup-
ported/hosted/maintained?

Yes. Revision history will be available for older versions of
the dataset.

If others want to ex-
tend/augment/build on/contribute
to the dataset, is there a mechanism
for them to do so?

Yes. The work will be open-sourced, and we intend to offer
support to assist others in using and building upon the dataset.

Table 13: A datasheet (Gebru et al., 2021) for MetaUrban and MetaUrban-12K.
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G PERFORMANCE

Single environment performance. We measure the single-environment performance of MetaUrban
under varying street blocks, different densities of static objects, and dynamic agents in the scene. All
experiments are conducted on a single Nvidia V100 GPU and in a single process. For the environment,
there are approximately 200 objects covering 1500m2 on average. We sample 1,000 steps for actions
and run 10 times to report the average and standard error results of FPS. For the RGB and depth
image, we use the 128×128 resolution. On average, for the RGB, Depth, and LiDAR observation,
we achieve 50±15, 60±10, and 120±12 FPS in training, respectively. The current simulation FPS
performance has made MetaUrban applicable to many scenarios. It is faster than real-time in a
single environment and is efficient for on-screen model testing, demonstration data collection, and
human-in-the-loop learning.

The performance is closely dependent on the various enabled simulation features. In experiments,
users can choose to turn off some features based on specific experimental needs. Taking the result of
RGB sensor as “Baseline”, we report the performance of the setting without advanced features in
the column “Simplification” of Table 14, such as shadows, sky rendering, and high-precise physical
simulation. This can improve the mean performance by 8 FPS. To balance feature customization with
performance, we will provide users with flexible interfaces that allow them to switch specific features
based on their requirements.

Multiple environments performance. To further enhance the simulation efficiency, we have added
support for distributed training, enabling scalable performance on multiple environments across
multiple machines, which makes the single environment FPS not a bottleneck of model training. We
report the performance changing with different numbers of environments in Table 14. It achieves
up to 685 FPS on a single GPU with 32 environments running in parallel. The performance scales
consistently with additional environments, ensuring efficiency for large-scale training tasks.

Table 14: Performance of different settings.

Settings Baseline Simplification 8 Envs 16 Envs 32 Envs
FPS (mean) 50 58 205 479 685

H ROBUSTNESS

We trained PPO on PointNav with different seeds and found that the variance of the performance
across different seeds is small. The success rate of the PPO agents is 0.695±0.014 on the MetaUrban-
test set and 0.638± 0.060 on the MetaUrban-unseen set.

I DISCUSSION

Impact. As the first urban space simulator, MetaUrban could benefit broad areas across Embodied
AI, Economy, and Society. 1) Embodied AI. MetaUrban contributes to advancing areas such as robot
navigation, social robotics, and interactive systems. It could facilitate the development of robust
AI systems capable of understanding and navigating complex urban environments. 2) Economy.
MetaUrban could be used in businesses and services operating in urban environments, such as last-
mile food delivery, assistive wheelchairs, and trash-cleaning robots. It could also drive innovation
in urban planning and infrastructure development by providing simulation tools and insights into
how spaces are utilized, thereby enhancing the economic and societal efficiency of public urban
spaces like sidewalks and parks. 3) Society. By enabling the safe integration of robots and AI systems
in public spaces, MetaUrban could support the development of assistive technologies that can aid
in accessibility and public services. Using AI in public spaces might foster new forms of social
interaction and community services, making urban spaces more livable and joyful. 4) Potential
negative societal impacts. The integration of AI and robots in urban environments, while beneficial,
raises several concerns. Increased surveillance could infringe on privacy, while automation may
lead to job displacement and exacerbate economic inequalities. Societal dependency on technology
poses risks of dysfunction during failures, and the presence of robots might alter social norms and
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interactions. Thus, the environmental impact of manufacturing and operating urban simulators must
be carefully managed. Addressing these issues is crucial for ensuring that the benefits of such
technologies are realized without detrimental societal consequences.

Limitations. 1) Real-world scene distribution. In this work, we extract object category distribution
from real-world data of urban spaces. Other than the real-world distribution of object categories,
the distribution of object location and scene layout is also important for constructing specialized
scenes for agent training. Extraction of such distribution relies on an accurate reconstruction of 3D
scenes from real-world videos or even images, and thus is extremely challenging. An interesting
direction is extracting real-world scene distribution from in-the-wild videos, including object category,
object location, and scene layout. Then, we can build a digital twin of a target scene for the agent’s
training. It could help to develop scene-specific agents. 2) Interactive agent behaviors. In this
work, we construct the environmental agents‘ dynamic with deterministic methods, determining
their movements and trajectories with rules. However, in the real world, all environmental agents
are interactive; their behaviors are affected by each other and the surrounding environments. An
interesting research direction is to endow personal traits like job, personality, and purpose to agents
and harness the advances of LLMs (Achiam et al., 2023) and LVMs (Liu et al., 2023a) to form
social (Puig et al., 2023a) and interactive behaviors (Park et al., 2023) of agents in urban scenes
spontaneously. 3) Robots’ additional capability learning. In urban micromobility, safe navigation
through the city is the primary goal for mobile machines. However, additional capabilities, such as
locomotion and manipulation, can enable robots to perform more complex tasks in urban spaces. Thus,
an important direction is to extend MetaUrban to support additional capabilities learning gradually.
It could enable various complex but important services in urban environments. 4) Efficiency. In
this work, different from indoor scenes and driving simulators, MetaUrban supports generating
complex interactive urban scenes with arbitrary scales. However, with the increase in scale, the
number of objects and dynamic agents will surge dramatically, which will bring the degradation
of the efficiency of physical simulation and rendering. A promising direction is to integrate more
sophisticated physical engines and renders.

Real-world deployment support. We position MetaUrban as an Embodied AI simulator that aims
to enable fast model training and evaluation before real-world deployment of the physical robots. We
followed the standards of existing popular embodied AI simulators, i.e., AI2-THOR (Kolve et al.,
2017), Habitat (Savva et al., 2019), and ProcTHOR (Deitke et al., 2022b), so there is no real-world
experimentation provided in the current version.

We will support the long-term development and maintenance of MetaUrban to become a sustainable
infrastructure for the community, so we fully recognize that real-world experiments are essential
for practical applications. Thus, based on the current MetaUrban simulator, we are constructing an
end-to-end experimentation component that extends the simulation to the real-world deployment of
robots.

Real-World	Deployment	on	Robots ROS	2	Support

Figure 27: Sim-to-real support. (left) Real-world deployment on two typical robots. (Right) The ROS 2 is
supported by MeteUrban.

Preliminary experiments with Unitree’s Go2 quadruped robot and COCO Robotics’ wheeled robot
(as shown in Figure 27 (Left)) showed that training robots with abstract observations, such as
depth maps, combined with domain randomization, already achieved good transferability to real-
world environments. These real-world evaluations offer valuable insights that can inform the future
development roadmap of MetaUrban.
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To support the real-world deployment for broad users, MetaUrban fully supports ROS 2 (as shown
in Figure 27 (Right)). We enabled seamless communication between the simulator and the ROS
2 ecosystem. This support allows users to control robots, pedestrians, and other mobility devices
directly through ROS 2 nodes and topics, ensuring smooth integration with existing robotics software
pipelines. Currently, we are actively building benchmarks in real-world experiments and will provide
a detailed analysis in the final version.

Multi-agent learning support. MetaUrban has supported multi-agent learning. We have defined
three multi-agent tasks so far: 1) traffic management at crosswalks, 2) charging queue racing, and 3)
package handoff between robots.

1) Traffic management at crosswalks. Task definition: N robots navigate through a shared crosswalk
while heading to unique target points. They must coordinate to avoid collisions with other robots and
dynamic obstacles. Example scenario: Eight robots approach a crosswalk from different directions.
Each robot carrying time-sensitive packages must decide its crossing strategy to minimize delays
while ensuring safety in a congested urban environment (Figure 28 (a)).

2) Charging queue racing. Task definition: N robots compete for access to M charging stations
while balancing battery constraints and delivery deadlines. They must decide whether to queue,
continue tasks, or seek alternative stations. Example scenario: Twelve robots with varying battery
levels approach eight charging stations. One robot with a critically low battery must secure a spot to
avoid running out of charge, while others evaluate trade-offs between waiting in a queue and traveling
farther to an available station to meet delivery deadlines (Figure 28 (b)).

3) Package handoff between robots. Task definition: N robots collaborate to deliver packages via K
predefined handoff points. Robots must strategically select handoff points and partners to optimize
delivery time and energy usage. Example scenario: A robot carrying a package has a low battery and
cannot reach the distant delivery location. It heads to a nearby handoff point, where another robot,
fully charged and closer to the destination, takes over the package, ensuring timely delivery without
interruptions (Figure 28 (c)).

We will release the code for multi-agent learning on the three tasks described above in the first
official version. Additionally, we will continuously integrate new multi-agent micromobility tasks
into MetaUrban to enhance community support.

(a)	Traffic	Management	at	Crosswalks (b)	Charging	Queue	Racing (c)	Package	Handoff	between	Robots
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Figure 28: Multi-agent learning support.

Sustainable ecosystem building. Building a sustainable ecosystem for MetaUrban requires ad-
dressing several critical aspects to ensure its long-term viability, adaptability, and impact. Following
Business Model Generation (Osterwalder & Pigneur, 2010), we identify six critical aspects for
MetaUrban as delivering clear value to users, establishing strategic partnerships, fostering strong
community engagement, ensuring accessibility through effective channels, maintaining a robust
financial model, and optimizing operational costs. Together, these elements enable MetaUrban
to thrive as an open-source infrastructure that supports research, development, and deployment in
micromobility and embodied AI.

Value propositions. Providing meaningful value to users is essential for the growth of an ecosystem.
MetaUrban shortens development time and reduces research and development (R&D) costs through
efficient simulation. It also accelerates research and equips students with in-demand skills, which
enhances their employability. These value propositions attract a diverse range of stakeholders from
academia, industry, and government, creating a strong foundation for widespread adoption and
collaboration.
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Key partners. Strategic partnerships are crucial for the growth and sustainability of MetaUrban.
Collaborating with research institutions, technology companies, and government organizations grants
access to advanced technologies, expertise, and funding. These partnerships enhance the platform’s
credibility and ensure that its development aligns with real-world needs, making MetaUrban an
essential resource for both research and practical applications.

Customer relationships. Establishing strong relationships with the community is essential for ensuring
user retention and encouraging active participation in the ecosystem. MetaUrban engages users
through workshops, competitions, and networking events. Additionally, it offers technical support via
Slack groups and GitHub issues. These initiatives create a collaborative environment where users
can contribute, share knowledge, and influence the platform’s development while addressing their
specific needs.

Channels. Effective communication and collaboration channels are vital for accessibility and user
engagement. MetaUrban utilizes a dedicated website, an open-source repository, a professional
document, and a chat group for discussions. These channels allow for the easy sharing of updates,
encourage contributions, and provide spaces for collaborative problem-solving, ensuring that users
can interact with the platform effortlessly and derive maximum benefit from it.

Revenue streams. Sustainable funding is essential for achieving long-term success. MetaUrban obtains
financial support from a variety of sources, including public research programs, government grants,
and sponsorships from technology stakeholders. This diverse revenue model guarantees stability
and enables ongoing investments in platform enhancements, community events, and operational
maintenance.

Cost structure. Effectively managing operational costs enables MetaUrban to allocate resources to
areas that create a significant impact. The cost structure emphasizes costs in development labor,
server, and infrastructure expenses, and sponsorship of competitions. These expenditures foster
innovation, support the community, and uphold the platform’s technical quality, ensuring it remains a
valuable tool for users.

By addressing these interconnected aspects, MetaUrban will create a sustainable and collaborative
open-source ecosystem. This strategic approach ensures the platform continues to support cutting-
edge research and real-world applications in micromobility and embodied AI, fostering innovation
and creating lasting impact across academia, and industry.

Future work. 1) Foundation model. MetaUrban can easily generate infinite urban scenes with
a large quantity of semantics and complex interactions, which could facilitate the pre-training of
foundation models (like LLMs and LVMs) that can be used for downstream agent learning tasks. 2)
Human-robot cohabitate. Mobile machines have started emerging in the urban space, which makes it
no longer exclusive to humans. We plan to work with urban sociologists to study the influence of
robots on human urban life through both simulation and field experiments. 3) Improve limitations.
The directions discussed in limitations and sim-to-real gaps are also meaningful future work we will
conduct. In summary, MetaUrban, as a new urban environment simulator, will bring a lot of new
interesting research directions. We are dedicated to maintaining MetaUrban in the long term and
supporting the community’s efforts to develop it into a sustainable infrastructure.
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