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ABSTRACT

A fundamental shortcoming of deep neural networks is their specialization to a
single task and domain. While multi-domain learning enables the learning of
compact models that span multiple visual domains, these rely on the presence of
domain labels, in turn requiring laborious curation of datasets. This paper pro-
poses a less explored, but highly realistic new setting called latent domain learn-
ing: learning over data from different domains, without access to domain annota-
tions. Experiments show that this setting is challenging for standard models and
existing multi-domain approaches, calling for new customized solutions: a sparse
adaptation strategy is formulated which enhances performance by accounting for
latent domains in data. Our method can be paired seamlessly with existing mod-
els, and benefits conceptually related tasks, e.g. empirical fairness problems and
long-tailed recognition.

1 INTRODUCTION

Datasets have been a major driving force behind the rapid progress in computer vision research in
the last two decades. They provide a testbed for developing new algorithms and comparing them to
existing ones. However, datasets can also narrow down the focus of research into overspecialized
solutions and impede developing a broader understanding of the world.

In recent years this narrow scope of datasets has been widely questioned (Torralba & Efros, 2011;
Tommasi et al., 2017; Recht et al., 2019) and addressing some of these limitations has become a
very active area of research. Two actively studied themes to investigate broader learning criteria are
multi-domain learning (Nam & Han, 2016; Bulat et al., 2019; Schoenauer-Sebag et al., 2019) and
domain adaptation (Ganin et al., 2016; Tzeng et al., 2017; Hoffman et al., 2018; Xu et al., 2018;
Peng et al., 2019a; Sun et al., 2019b). While multi-domain techniques focus on learning a single
model that can generalize over multiple domains, domain adaptation techniques aim to efficiently
transfer the representations that are learned in one dataset to another.

Related themes have also been studied in domain generalization (Li et al., 2018; 2019b;a; Gulrajani
& Lopez-Paz, 2020) and continual learning (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017;
Riemer et al., 2019), where the focus lies on learning representations that can generalize to unseen
domains, and to preserve knowledge acquired from previously seen tasks, respectively.

While there exists no canonical definition for what exactly a visual domain is, previous works in
multi-domain learning assume that different subsets of data exist, with some defining characteristic
that allows them to be separated from each other. Each subset, indexed by d = 1, . . . , D, is as-
signed to a pre-defined visual domain, and vice-versa multi-domain methods then use such domain
associations to parameterize their representations and learn some pθ(y|x, d).

In some cases domains are intuitive and their annotation straightforward. Consider a problem where
images have little visual relationship, for example joint learning of Omniglot handwritten symbols
(Lake et al., 2015) and CIFAR-10 objects (Krizhevsky & Hinton, 2009). In this case, it is safe to
assume that encoding an explicit domain-specific identifier into pθ is a good idea, and results in the
multi-domain literature provide clear evidence that it is beneficial to do so (Rebuffi et al., 2018; Liu
et al., 2019a; Guo et al., 2019a; Mancini et al., 2020).
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Figure 1: In multi-domain learning every sample has a domain label. Latent domain learning studies
how models may best be learned without this information.

The assumption that domain labels are always available has been widely adopted in multi-domain
learning; however this assumption is not without difficulty. For one, unless the process of domain
annotation is automated due to combining existing datasets as in e.g. Rebuffi et al. (2017), their
manual collection, curation, and domain labeling is very laborious.

And even if adequate resources exist, it is often difficult to decide the optimal criteria for the anno-
tation of d: some datasets contain sketches, paintings and real world images (Li et al., 2017), others
images captured during day or night (Sultani et al., 2018). Automatically collected datasets (Thomee
et al., 2016; Sun et al., 2017) contain mixtures of low/high resolution images, taken with different
cameras by amateurs/professionals. There is no obvious answer which of these should form their
own distinct domain subset.

Moreover, the work of Bouchacourt et al. (2018) considers semantic groupings of data: they show
that when dividing data by subcategories, such as size, shape, etc., and incorporating this information
into the model, then this benefits performance. Should one therefore also encode the number of
objects into domains, or their color, shape, and so on?

Given the relatively loose requirement that domains are supposed to be different while related in
some sense (Pan & Yang, 2009), these examples hint at the difficulty of deciding whether domains
are needed, and – if the answer to that is yes – what the optimal domain criteria are. And note that
even if such assignments are made very carefully for some problem, nothing guarantees that they
will transfer effectively to some other task.

This paper carefully investigates this ambiguity and studies two central questions:

1. Are domain labels always optimal for learning multi-domain representations?
2. How can models best be learned that generalize well over visually diverse domains, without

domain labels?

To study this problem, we introduce a new setting (c.f. Fig. 1) in which models are learned over
multiple domains without domain annotations — latent domain learning for short.

While latent domain learning is a highly practical research problem in the context of transfer learn-
ing, it poses multiple challenges that have not been previously investigated in connection with deep
visual representation learning. In particular, we find that the removal of domain associations leads to
performance losses for standard architectures due to imbalances in the underlying distribution and
different difficulty levels of the associated domain-level tasks.

We carry out a rigorous quantitative analysis that includes concepts from multi-domain learning (Re-
buffi et al., 2018; Chang et al., 2018), and find that their performance benefits do not directly extend
to latent domain learning. To account for this lost performance, we formulate a novel method called
sparse latent adaptation (Section 3.2) which enables internal feature representations to dynamically
adapt to instances from multiple domains in data, without requiring annotations for this. Moreover,
we show that latent domain methods appear to benefit single domain data and real world tasks, such
as fairness problems (Appendix F), and long-tailed recognition (Appendix G).

2 LATENT DOMAIN LEARNING

This section provides an overview over latent domain learning and contrasts it against other types of
related learning problems, in particular multi-domain learning.
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Table 1: A comparison of latent domain learning versus unsupervised, latent source (Mancini et al.,
2018) and semi-supervised DA, domain generalization, and multi-domain learning. Sd denotes a
labeled dataset from the d’th domain, Pd are partially labeled, Ud, Ũd unlabeled.

Setting Domain Labels Training Data Evaluation Data

Unsupervised DA Yes S1, . . . , SD, UD+1 ŨD+1

Latent Source DA No Smixture, UD+1 ŨD+1

Semi-supervised DA Yes S1, . . . , SD, PD+1 UD+1

Domain Generalization Yes S1, . . . , SD UD+1

Multi-Domain Learning Yes S1, . . . , SD U1, . . . , UD

Latent Domain Learning No Smixture U1, . . . , UD

2.1 PROBLEM SETTING

When learning on multiple domains, the common assumption is that data is sampled i.i.d. from a
mixture of distributions Pd with domain indices d = 1, . . . , D. Together, they constitute the data-
generating distribution as P =

∑
d πdPd, where each domain is associated with a relative share

πd = Nd/N , with N the total number of samples, and Nd those belonging to the d’th domain.
In multi-domain learning, domain labels are available for all samples (Nam & Han, 2016; Rebuffi
et al., 2017; 2018; Bulat et al., 2019), such that the overall data available for learning consists of
DMD = {(xi, di, yi)} with i = 1, . . . , N .

In latent domain learning the information associating each sample xi with a domain di is not avail-
able. As such, domain-specific labels yi cannot be inferred from sample-domain pairs (xi, di) and
one is instead forced to learn a single model fθ over the latent domain dataset DLD = {(xi, yi)}.
While latent domain learning can include mutually exclusive classes and disjoint label spaces
Y1 ∪ · · · ∪ YD (as in long-tailed recognition, see Appendix G), we mainly focus on the setting of
shared label spaces, i.e. Yd = Yd′ . For example a dataset may contain images of dogs or elephants
that can appear as either photos, paintings, or sketches.

Latent domains have previously attracted interest in the context of domain adaptation, where the lack
of annotations was recovered through hierarchical Hoffman et al. (2012) and kernel-based cluster-
ing (Gong et al., 2013), via exemplar SVMs (Xu et al., 2014), or by measuring mutual information
(Xiong et al., 2014). More recent work corrects batch statistics of domain adaptation layers us-
ing Gaussian mixtures (Mancini et al., 2018), or studies the shift from some source domain to a
target distribution that contains multiple latent domains (Peng et al., 2019b; Matsuura & Harada,
2020). Latent domain learning however differs fundamentally from these works: Table 1 contains a
comparison to existing transfer learning settings.

A common baseline in multi-domain learning is to finetune D models, one for each individual
domain (Rebuffi et al., 2018; Liu et al., 2019a). This requires learning a large number of parameters
and shares no parameters across domains, but can serve as a strong baseline to compare against. We
show that in many cases, even when domains were carefully annotated, a dynamic latent domain
approach can surpass the performance of such domain-supervised baselines (see Section 4).

2.2 OBSERVED VS. UNIFORM ACCURACY

Consider a problem in which the data is sampled i.i.d. from P = πaPda + πbPdb , i.e. two hidden
domains. When domain labels are not available in the data, a standard strategy is to treat all samples
equally, and measure the observed accuracy:

OAcc[f ] = E(xi,yi)∼P[1yf(xi)
=yi ], (1)

where yf denotes the class assigned to sample xi by the model f , and yi its corresponding label for
training. The OAcc has a problematic property: if P consists of two imbalanced domains such that
πa ≥ πb, then the performance on da dominates it. For example if da has a 90% overall share, and
the model perfectly classifies this domain while obtaining 0% accuracy on db, then OAcc would still
assume 0.9, hiding the underlying damage to domain db.
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This motivates alternative formulations for latent domain learning, to anticipate (and account for)
imbalanced domains in data. If it is possible to identify some semantic domain labeling (as typ-
ically included in multi-domain/domain adaptation benchmarks), one can compare performances
across individual subgroups. This allows picking up on domain-specific performance losses which
traditional metrics (such as OAcc) fail to capture.

Where this is possible, we therefore propose to also measure latent domain performance in terms of
uniform accuracy which decouples accuracies from relative ground-truth domain sizes:

UAcc[f ] =
1

D

D∑
d=1

E(xi,yi)∼Pd
[1yf (xi)=yi ]. (2)

Returning to the above example, a uniform measurement reflects the model’s lack of performance
on db as UAcc = 0.5. Once again note while ground-truth domain annotations are required in order
to compute uniform accuracy, these are never used to train latent domain models.

3 METHODS

To enable robust learning in the new proposed setting, we formulate a novel module called sparse
latent adaptation which can adaptively account for latent domains. Section 3.1 reviews adaptation
strategies popular in the multi-domain context, which our method extends (and generalizes).

3.1 LATENT ADAPTATION

When domain labels d are available (not the case in latent domain learning) one strategy established
by Rebuffi et al. (2017) is to modulate networks by constraining the layerwise transformation of
residual networks (He et al., 2016) Φ(x) = x + f(x) to allow at most a linear change Vd per each
domain from some pretrained mapping Φ0 (with f0 in every layer), whereby Φ(x)−Φ0(x) = Vdx.
Note the slight abuse of notation here in letting x denote a feature map with channels C. Rearranging
this yields:

Φ(x, d) = x+ f0(x) +

D∑
d=1

gdVd(x), (3)

with a domain-supervised switch that assigns corrections to domains, i.e. gd = 1 for d associated
with x and 0 otherwise. Each Vd is parametrized through 1x1 convolutions, and f0 denotes a shared
3x3 convolution obtained e.g. on ImageNet (Deng et al., 2009). This builds on the assumption that
models with strong general-purpose representations require minimal changes to adapt to new tasks
(Bilen & Vedaldi, 2017), making learning each Vd sufficient, while f0 remains as is. Such adaptation
strategies have been successfully used in few shot learning (Li et al., 2021) and NLP (Stickland &
Murray, 2019) to restrict the number of learnable parameters there.

In latent domain learning access to d is removed, resulting in two new challenges: we have no a
priori information about the right number of corrections {Vd}, and we cannot use d to decide which
one of these to apply.

To mitigate the lack of domain labels d, first we assume that input data is constituted by K latent
distributions Pk. Second we propose to replace the switch gd with a learnable gating mechanism
g1(x), . . . , gK(x) that assigns each sample x to latent domains as follows:

Φ(x) = x+ f0(x) +

K∑
k=1

gk(x)Vk(x), (4)

The gates gk control which convolution is applied to which sample x, and correspond to a categorical
variable over K categories, i.e. 0 ≤ gk ≤ 1 and

∑
k gk = 1. Note in particular how parametric

dependency of Φ on d is removed. How to best choose K is discussed in more detail in Section 4.

While we motivate our latent domain module from learning over multiple domains, the main goal is
not to recover the domain labels annotated in some datasets. When optimizing some loss (standard
cross-entropy in the classification case), there is no guarantee that the learned Vk will correspond to
an annotated visual domain and many additional factors (shape, pose, color, etc.) can enter them as
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well. Latent domain models are simply optimized to produce the lowest training error, and in fact
seldom recover ground-truth domains (c.f. Fig. 5). Note the broader concept presented here may in
principle also be incorporated with other multi-task concepts (Perez et al., 2018; Guo et al., 2019a),
adaptation strategies however stand out due to their methodological simplicity.

Different options exist for parametrizing the gating function g : X → G ⊆ RK . An ideal gating
mechanism for latent domain learning would fulfill two seemingly incompatible properties: be able
to filter latent domains in some layers (requiring a discrete gate), but also share parameters between
related latent domains in other layers (smooth gates). The next section proposes how this can be
resolved without requiring task relationships (Vandenhende et al., 2020) or outer optimization loops
(Wu et al., 2018) through the use of sparseness.

3.2 SPARSE LATENT ADAPTERS (SLA)

We parameterize the gating function g with a small linear transformation W : C → RK that consti-
tutes the pre-activation q=Wϕ(x) within the gates, where ϕ : X → C denotes an average pooling
projection onto the channels.

A crucial choice is whether the activation for q ∈ RK should map to a discrete space G = {0, 1}K
or a continuous G = [0, 1]K in which the Vk are shared.

We propose a different strategy that lets gates be smooth when appropriate, but a threshold τ allows
for sparse (or discrete) outputs fτ (q) = [q − τ(q)]+ with [·]+ = max(0, ·). Crucially fτ can be
solved in a differentiable manner (Martins & Astudillo, 2016) by sorting q1 ≥ · · · ≥ qK , solving
k∗ = max{k | 1 + kqk >

∑
j≤k qj} and computing τ = [(

∑
j≤k∗ qj)− 1]/k∗.

Consider q = [0.1, 1.0, 0.5] for which sparse activation results in fτ (q) = [0.0, 0.75, 0.25] while
softmax yields [0.202, 0.497, 0.301]. Sparse activation filters out q1, while sharing between q2 and
q3. We may now define:

SLA(x) , x+ f0(x) +

K∑
k=1

[
fτ ◦W ◦ ϕ(x)

]
k
Vk(x), (5)

where [·]k picks the k’th element of the gating sequence. To the best of our knowledge sparse
activation strategies were never previously employed for expert models in computer vision and have
so far been restricted to the NLP setting (Deng et al., 2017; Peters et al., 2019). Note SLA generalizes
residual adaption (Rebuffi et al., 2017; 2018), which is recovered by setting K= 1.

While gating is subject to complex interactions such as negative transfer (Rosenbaum et al., 2019),
our ablations in Table 5 clearly show that taking a sparse perspective – which allows the model
to assume either continuous or discrete forms – outperforms the alternative of a priori fixing ei-
ther smoothness through self-attention (Lin et al., 2017b), or discrete Gumbel-based sampling (Jang
et al., 2016). Note this choice between discrete (Veit & Belongie, 2018; Guo et al., 2019b) and con-
tinuous mechanisms (Shazeer et al., 2017; Sun et al., 2019a; Wang et al., 2019) delineates previous
work that employs differentiable gates.

A softmax-activated model can in principle also learn to suppress individual preactivation compo-
nents by letting some qk go to −∞. This however requires either learning extra calibration parame-
ters at every layer, defining a hard cutoff value (Shazeer et al., 2017) (thereby removing differentia-
bility), or very large row-norms within the linear mapping W— a highly unlikely outcome given the
several mechanisms found in state-of-the-art models (in particular weight decay, norm-penalties, or
BN (Ioffe & Szegedy, 2015)) which act as direct counterforces to this.

4 EXPERIMENTS

We evaluate our proposed methods on three latent domain benchmarks: Office-Home, PACS, and
DomainNet (c.f. Fig. 6, which shows example images from these benchmarks). The main goal here
is not to compare to existing multi-domain or domain adaptation methods that these datasets were
initially designed for, but to study our two central research questions: whether domain labels are
useful for effectively learning over multiple domains, and whether one can learn such representations
without domain labels.
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Table 2: Per-domain performance on Office-Home. Multi-domain (MD) baselines use domain an-
notations, and latent domain (LD) models do not. Best overall performance underlined; best latent
domain performance in bold.

Type Params A C P R OAcc UAcc

Proportion πd — — 15.57 28.01 28.48 27.95 — —
RA (Rebuffi et al., 2018) MD 8.8 mil 48.05 76.12 80.74 67.78 70.73 68.17
Domain-Adv. (Ganin et al., 2016) MD 7.8 mil 55.14 72.85 81.98 68.81 71.57 69.70
4×ResNet26 MD 24.8 mil 52.47 79.95 85.02 70.01 74.34 71.86

ResNet26 LD 6.2 mil 50.10 76.80 78.83 63.36 69.47 67.27
ResNet56 LD 14.0 mil 52.26 78.47 80.80 66.34 71.66 69.47
RA (Rebuffi et al., 2018) LD 6.9 mil 58.44 79.15 81.55 72.13 74.65 72.82
MLFN (Chang et al., 2018) LD 7.6 mil 50.72 78.81 81.36 64.56 71.18 68.86
MMLD (Matsuura & Harada, 2020) LD 7.8 mil 59.63 67.89 81.16 74.35 72.19 70.76
SLA LD 7.6 mil 60.72 78.05 83.73 77.08 76.70 74.89

We also examine a recent fairness benchmark (see Appendix F), and show that SLA improves robust-
ness under single domain long-tailed distributions (Appendix G). All experiments were implemented
in PyTorch (Paszke et al., 2017).1

Optimization In all experiments, we couple our method with a ResNet26 model pretrained on a
downsized version of ImageNet that was used in previous work by Rebuffi et al. (2018). In SLA only
gates and corrections are learned, the residual backbone f0 remains fixed at its initial parameters,
which implicitly regularizes the model (Rebuffi et al., 2017). Training is carried out for 120 epochs
using stochastic gradient descent (momentum parameter of 0.9), batch size of 128, weight decay of
10−4, and an initial learning rate of 0.1 (reduced by 1/10 at epochs 80, 100).

All experiments follow the preprocessing of Rebuffi et al. (2017; 2018), alongside standard augmen-
tations such as normalization, random cropping, etc. Accuracies are averaged over five seeds.

Increasing the number of corrections K within SLA results in small, consistent performance gains.
As K = 2 already represents a solid boost from the baseline of having no adapters, we focus on this
result in the main part, and report results for higher K alongside variances in Appendix C.

Office-Home The underlying data contains a variety of objects classes (alarm clock, backpack,
etc.) among four domains: art, clipart, product, and real world (Venkateswara et al., 2017). In Ta-
ble 2 we show results for d-supervised multi-domain (MD) approaches: RA (Rebuffi et al., 2018),
domain-adversarial learning (Ganin et al., 2016) and a baseline of 4×ResNet26, one for each do-
main. For latent domain (LD) baselines, we then learn a single ResNet26, this time as a latent
domain model over all domains. Next, we couple SLA with the very same ResNet26.

Learning a single ResNet26 over latent domains with no access to d-labels significantly harms per-
formance. This problem is not addressed by simply increasing the depth of the network: while
accuracy improves slightly, a ResNet56 exhibits the same performance losses — in particular on the
latent domains product (P) and real world (R).

While residual adaptation (RA) (Rebuffi et al., 2018) was shown to work extremely well in many
multi-domain scenarios, performance here is sub-par, regardless of whether it accesses d (MD: one
Vd per-domain) or not (LD). This likely results from linear modules being reserved for each d when
using annotations, enabling no native cross-domain sharing of parameters. When d is hidden on the
other hand, the model is forced to share a single linear adaptation module V between all four hidden
domains, without the flexible gating we propose in SLA.

Learning annotations through latent domain clustering and coupling this with domain-adversarial
gradient reversal as in MMLD (Matsuura & Harada, 2020) increases performance relative to its d-
annotated counterpart (Ganin et al., 2016). The increase is modest however, likely because enforcing
domain-invariance on the gradient level negatively impacts the model’s ability to discriminate be-
tween classes (Wang et al., 2020). Another related baseline is MLFN (Chang et al., 2018) which
builds on ResNeXt (Xie et al., 2017) to define a latent-factor architecture that accounts for multi-

1Code is available at github.com/VICO-UoE/LatentDomainLearning.
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Table 3: Results on PACS. Best performance underlined, best latent domain performance bold.

Type Params • A • C • P • S OAcc UAcc

Proportion πd — — 0.205 0.235 0.167 0.393 — —
RA (Rebuffi et al., 2018) MD 8.8 mil 85.14 92.05 94.50 94.30 91.93 91.50
Domain-Adv. (Ganin et al., 2016) MD 7.8 mil 86.47 93.25 94.17 91.30 91.25 91.30
4×ResNet26 MD 24.8 mil 88.41 95.53 94.34 95.71 93.94 93.50

k-means+RA LD 8.8 mil 83.84 92.10 94.75 93.01 91.21 90.93
ResNet26 LD 6.2 mil 85.27 94.55 93.85 94.98 92.70 92.16
ResNet56 LD 14.0 mil 86.96 94.34 95.15 95.34 93.36 92.95
RA (Rebuffi et al., 2018) LD 6.9 mil 89.86 93.90 95.56 93.91 93.35 93.31
MLFN (Chang et al., 2018) LD 7.6 mil 78.38 91.29 88.19 92.95 88.78 87.70
MMLD (Matsuura & Harada, 2020) LD 7.8 mil 89.93 92.26 96.25 94.34 93.20 93.27
SLA LD 7.6 mil 89.27 95.85 95.26 95.49 94.26 93.97

Table 4: Results on DomainNet, best performances in bold.

clipart infograph painting quickdraw real sketch OAcc UAcc

πd 0.082 0.088 0.123 0.294 0.295 0.118 — —
ResNet26 66.46 27.99 51.70 67.46 66.58 56.95 60.47 56.19
ResNet56 69.08 29.55 53.85 68.61 68.60 58.42 62.19 58.01
RA (Rebuffi et al., 2018) 68.23 29.34 56.29 66.51 71.81 57.75 62.65 58.32
MLFN (Chang et al., 2018) 68.20 24.64 50.39 69.85 65.78 56.27 60.54 55.85
SLA 69.46 30.14 57.36 67.97 72.89 58.83 63.83 59.44

modality in data. Crucially where our method is fine-grained and shares convolutions at every layer,
MLFN instead enables and disables entire network blocks, allowing us to outperform it.

SLA outperforms the currently available latent domain models by a consistent margin, and increases
UAcc by 12.79% relative to ResNet26. Best performance is obtained when K = D, with perfor-
mance being reducing slightly from overfitting of larger domains for K > D (see Appendix C).

PACS The second experiment examines performance on the PACS dataset (Li et al., 2017). Cru-
cially PACS domains (art, cartoon, photo, sketch) differ more markedly from one another (c.f.
examples in Fig. 6), hence constituting an interesting latent domain problem.

Even for more distinct domains as in PACS, results in Table 3 show that SLA improves over existing
baselines. The largest gains occur on smaller domains (e.g. art), where standard models suppress
underrepresented parts of the distribution (see additional discussion on imbalanced distributions in
Appendix G). Our method again surpasses the accuracy of 4×ResNet26, while requiring a frac-
tion of the total parameters (∼ 9.7 mil for K = 5 vs. ∼ 24.8 mil). The performance of SLA again
continues to increase with larger K (see Appendix C).

The performance increase from using a latent domain-adversarial approach (Matsuura & Harada,
2020) versus using domain-annotations (Ganin et al., 2016) confirms that learning domains along-
side the rest of the network can be a better strategy than trusting in annotations. Our approach again
improves over this, without requiring a clustering stage as in MMLD.

Results for k-means (usingD= 4 centers and clustered on the feature level) and subsequent finetun-
ing show that a two-stage strategy is suboptimal. This is not surprising since, similar to d-supervision
via gd in Φ of eq. (3), clustering learns fixed switches that get used across all layers. In contrast to
this in SLA we flexibly share or separate features individually at every layer (c.f. qualitative results
in Fig. 3), synergizing only where appropriate.

DomainNet We also evaluate models on a large-scale benchmark called DomainNet (Peng et al.,
2019a). This dataset contains 518 447 images from six domains (clipart, painting, photos, sketch,
infographics, and quickdraw), with a total of |Y| = 345 object classes. The optimization settings
remain unchanged from those in previous sections.

Results are shown in Table 4. MLFN performs best on quickdraw, a domain that differs visibly from
others (c.f. Fig. 6 for examples from each domain), and having entire network blocks dedicated
to it seems to benefit performance. On all remaining domains, SLA outperforms existing models,
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Figure 4: SLA sparsity (Office-Home); dotted lines show residual pooling transitions.

regardless of whether they were designed specifically for multi-domain problems, such as RA, or
whether they are much deeper/parameter-intensive (ResNet56).

Qualitative analysis We (i) compare global statistics of Office-Home and PACS domains as well
as (ii) their per-layer treatment within SLA; (iii) analyze sparse gating, (iv) representations learned
by SLA, and show that (v) our module shares between geometric properties (shape, pose, etc.).

i) Fig. 2: average cosine similarities of per-domain gating vectors g∈GL across l= 1, . . . , L layers
of ResNet26 show that Office-Home domains differ less than those in PACS.

ii) Fig. 3: layerwise measurements of Corr[gl(x), gl(x
′)] for x, x′ drawn from differing d 6= d′ for

Office-Home. If inter-domain correlation is high, then similar corrections Vk are responsible for
processing samples from two domains. Across top layers of the network there is little correlation,
presumably as low-level information associated with each domain is processed independently. In
the mid to bottom stages correlation increases: these layers are typically associated with higher-
order features (Yosinski et al., 2014; Mahendran & Vedaldi, 2016; Asano et al., 2020), and since
label spaces are shared between latent domains, similar object-level features are required to classify
objects into their respective categories.
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Art Painting Cartoon Photo Sketch

Figure 5: Left: PCA of samples represented by their SLA activation paths, colored by their ground-
truth domain label as assigned in PACS. SLA shares parameters between visually similar domains
art and photo (•,•), while isolating sketch (•). The arrow highlights one sample that has been labeled
a photo in PACS. SLA categorizes it as a cartoon instead, a more adequate assignment for this par-
ticular image. Right: sample pairs from different domains (di 6=dj) with matching SLA activations.
Note their similar geometric properties.

iii) Fig. 4: sparse gates have the flexibility to either output singular activations (i.e. become fully
discrete) or all non-zero values (a continuous gate). We measure the per-layer sparsity Ex∼Pd

[K−
‖gl(x)‖0]/(K − 1) where ‖ · ‖0 counts values different from zero, finding sparsity of SLA to vary
across model depth. Interestingly after each downsampling operation SLA tends to be relatively
sparse, followed by a dense gate, then again a sparse one, and so forth. The model thus utilizes the
extra flexibility resulting from sparse gates.

Due to PACS domains being relatively distinctive, the dataset is an interesting candidate for addi-
tional analysis in (iv) and (v) of how sparse adaptation handles the different ground-truth domains.

iv) Fig. 5 (left): gate vectors g ∈ GL for samples from all four domains in PACS visualized by their
principal components. SLA exhibits an intuitive clustering of human-annotated PACS domains: vi-
sually similar art and photo (•,•) cluster together. The manifold describing sketches (•) is arguably
more primitive than those of the other domains, and indeed only maps to a small region. Cartoon (•)
lies somewhere between sketches and real world images. This matches intuition: a cartoon is, more
or less, just a colored sketch.

Fig. 5 also highlights one sample that shows an elephant that SLA places among the cartoon (•)
domain, but which has been assigned a ground-truth domain label of photo (•) in the PACS dataset.
The ground-truth label seems to have been annotated in error, but different from approaches that use
d-supervision, our SLA processes latent domains on-the-fly and is therefore not irritated by this.

v) Fig. 5 (right): pairs of samples with similar gates. This shows that latent domains are indicative of
more than ground-truth domain labels and extend to geometric similarities: pose, color, etc. of the
samples are visibly related. Compare in particular the poses of elephants/dogs (second/third row).

5 CONCLUSION

In this paper we explored two questions: (i) whether domain associations are required for learn-
ing effective models over multiple visual domains and (ii) how multi-domain models may best be
learned without depending on manually curated domain labels.

As has been shown, the performance of existing models does degrade without domain labels, raising
doubts about their suitability for realistic problems that involve diverse data sources. As a remedy,
we proposed a novel adaptation strategy which reclaims (and often exceeds) lost accuracy on latent
domains, benefiting several problems where some notion of a domain (but no annotation) exists.
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APPENDIX

A DATASETS

Fig. 6 shows examples from the latent domain benchmarks evaluated in Section 4. The selected
images have equivalent classes yd = yd′ ∈ Y (for example chair for Office-Home), but different
domains (e.g. d = {art, clipart, product, real world}).
These examples show that data from different domains often contain very different visual charac-
teristics (compare e.g. photo vs. sketch for PACS), even when the object is the same. At the same
time, other domains are more alike (e.g. art and photo), indicating that different amounts of sharing
between per-domain parameters are required, which in SLA is facilitated by its gating mechanism.
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Figure 6: Datasets used for latent domain benchmarks: Office-Home, PACS, and DomainNet.

B RELATED WORK

Multi-domain learning relates most closely to our work. The state-of-the-art methods introduce
small convolutional corrections in residual networks to account for individual domains (Rebuffi
et al., 2017; 2018), which was recently extended to obtain efficient multi-task models for related
language tasks Stickland & Murray (2019). Other work makes use of task-specific attention mech-
anisms (Liu et al., 2019a), attempts to scale task-specific losses (Kendall et al., 2018), or addresses
tasks at the level of gradients (Chen et al., 2017). Crucially, these approaches all rely firmly on
domain labels.

Our work is loosely related to learning universal representations (Bilen & Vedaldi, 2017), which
was used as a guiding principle in designing more transferable models (Tamaazousti et al., 2019).
However, these works also assume the presence of domain labels. Multimodal learning does not
make this assumption, and was shown to benefit from accounting for latent semantic factors to match
images (Chang et al., 2018), or from normalizing data in separate groups (Deecke et al., 2019). As
we show in our experiments (see Section 4), latent domain learning however benefits from more
customized solutions than these.

The proposed module gives rise to a differentiable dynamic network architecture, studied e.g. for
reinforcement learning (Zoph & Le, 2017; Pham et al., 2018), Bayesian optimization (Kandasamy
et al., 2018), or when adapting to new tasks (Mallya et al., 2018; Rosenfeld & Tsotsos, 2018). For
such architectures, two components are commonly used: discrete Gumbel-based sampling (Jang
et al., 2016), e.g. leveraged in dynamic computer vision architectures (Veit & Belongie, 2018; Sun
et al., 2019a), or continuous self-attentive approaches (Lin et al., 2017b), which have been used
successfully to scale expert models (Jacobs et al., 1991; Jordan & Jacobs, 1994) to large problem
spaces (Shazeer et al., 2017; Wang et al., 2019).

From the perspective of algorithmic fairness, a desirable model property is to ensure consistent
predictive equality across different identifiable subgroups in data (Zemel et al., 2013; Hardt et al.,
2016; Fish et al., 2016). This relates to one of the goals in latent domain learning: to limit implicit
model bias towards large domains, and improve robustness on small domains. Recent work explores
connections between models and empirical fairness for visual recognition (Bagdasaryan et al., 2019;
Hooker et al., 2020; Wang et al., 2020), different from our experiments however (see Appendix F)
they focus their analysis on a setting in which annotations for protected attributes are available.

C VARIATION OF RESULTS

Fig. 7 displays variances of accuracies recorded over ten random initializations on Office-Home
(left) and PACS (right). We generally found SLA to be robust to different optimization settings, and
as a result observed variances are relatively low across experiments.
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Figure 7: Variation of accuracies on Office-Home (left) and PACS (right).

LargerK brings an improvement of around 0.5-1% in performance at the expense of a linear increase
in learnable parameters (c.f. next section). While accuracy is improved by setting K > 2, gains
appear to saturate in line with previous observations around network width (Xie et al., 2017).

D MEMORY REQUIREMENTS

In SLA every layer contains O(K|C|+K|C|2) parameters to parametrize gates and corrections Vk,
respectively. This is however an extremely modest requirement, in particular because f0 stays fixed:
while a ResNet26 contains ∼ 6.2 mil learnable parameters, even when setting K= 5 within SLA it
has just 3.5 mil free parameters, and is a fraction of the number of parameters needed to parametrize
four ResNet26 (around 24.8 mil parameters).

Note also that the complexity of solving sparse gates in SLA scales as O(K logK), a negligible
increase given the small K required in our method.

E ABLATION

Table 5: An ablation study for SLA. UAcc is shown (on Office-Home) with activations other than
SparseMax (Martins & Astudillo, 2016) used in this paper. For all variants we fix K= 2.

Gating Mechanism UAcc

SLA 74.89
Smooth (Lin et al., 2017b) 74.62
Discrete (Jang et al., 2016) 74.31

Replacing sparse gating within SLA registers a drop in performance, regardless of whether smooth
or discrete mechanisms are used. Accuracies for soft and straight-through Gumbel-softmax sam-
pling (Jang et al., 2016) were on par; we report straight-through sampling here.

We also ran experiments where we did not fix the residual backbone f0 but updated its parameters
alongside the learning of SLA. In line with what Rebuffi et al. (2017) report, this lead to overfitting
and performance dropped to UAcc = 73.53.

F FAIRNESS

Recent work elevated the role of small subgroups in data and examined model fairness on CelebA
(Bagdasaryan et al., 2019; Wang et al., 2020; Hooker et al., 2020). Because such subgroups may
be interpreted as constituting an individual latent domain component Pd, they are an interesting
candidate to evaluate our purpose-built SLA on.

The benchmark contains different labeled attributes (e.g. “brown hair”, “glasses”), and is modi-
fied from the original dataset by hiding gender labels. Models are evaluated on all 39 remaining
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Table 6: Average precision and bias amplification of SLA on the CelebA fair attribute recognition
benchmark (Wang et al., 2020).

ResNet18 + SLA ResNet34 + SLA ResNet50 + SLA

mAP (↑) 71.76 73.22 (+1.46) 71.33 73.98 (+2.65) 74.52 75.03 (+0.51)
BA (↓) 0.025 0.014 0.022 0.009 0.012 0.008
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Figure 8: Change in AP between ResNet18 and ResNet18-SLA for different gender skews in CelebA
attributes.

attributes, which subsequently experience varying amounts of gender skew. Framed as a latent do-
main problem we have d={female,male}, but models have no access to this information.

The images used are the entire Aligned&Cropped subset (Liu et al., 2015) over which we finetune
residual models, replacing only the fully-connected layer of the network. We use the optimization
settings introduced in Section 4 for 70 epochs with reductions at epochs 30, 40, and 50, selecting the
best model on the validation split. This experimental setup is identical to previous work on empirical
fairness (Wang et al., 2020; Ramaswamy et al., 2020), which however – different from our work –
focused on learning models that have access to the gender-attribute d.

We evaluate per-attribute accuracy using mean average precision (mAP) and report bias amplifica-
tion (BA) (Zhao et al., 2017). This compares the propensity of a model to make positive predictions
(i.e. f exceeds some threshold t+ ∈ [0, 1]) in the gender g∗y that appears most frequent within
attribute y, compared to the true counted ratio of positive examples y+:

BA[f ] = Ex∼Px

[1f(x)>t+|g∗y
1f(x)>t+

]
− Ey∼Py

[1y=y+|g∗y
1y=y+

]
, (6)

where t+ is optimized for on the validation split. For example if 60% of male examples are wearing
glasses but under the model this is raised to a total of 65%, then bias is amplified by BA = 0.05.

We report performance for ResNet18, ResNet34, and ResNet50 in Table 6 and compare this to the
same model with SLA inserted. SLA consistently raises both mAP and reduces bias, indicating that
it relies less on spurious correlations in data to formulate its predictions.

In Fig. 8 we compare per-attribute skew toward either female or male (whichever is more frequent) to
the gain in performance from ResNet18 to the same model but with SLA inserted. We observe a clear
trend here, whereby SLA is able to raise performance the most in those attributes that experience
the largest amounts of skew.

G LONG-TAILED RECOGNITION

Standard models often experience difficulty when some classes are heavily underrepresented. This
problem has recently been studied in long-tailed recognition (Liu et al., 2019b; Cao et al., 2019) with
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Table 7: Top-1 validation accuracy on imbalanced CIFAR benchmarks (Buda et al., 2018). SLA
consistently improves performance for standard ERM as well as existing long-tail approaches.

Imbalanced CIFAR-10
ρ ERM ERM-SLA Focal Focal-SLA LDAM LDAM-SLA

10 86.09 93.05 (+6.96) 86.61 92.14 (+5.53) 91.08 92.49 (+1.41)
100 68.02 81.60 (+13.58) 67.44 78.82 (+11.38) 75.67 80.96 (+5.29)

Imbalanced CIFAR-100
ρ ERM ERM-SLA Focal Focal-SLA LDAM LDAM-SLA

10 65.16 70.76 (+5.60) 64.56 70.60 (+6.04) 66.08 69.61 (+3.53)
100 45.44 48.46 (+3.02) 45.19 48.39 (+3.20) 51.25 55.06 (+3.81)

benchmarks that modify CIFAR-10 and CIFAR-100 to an imbalanced version by dropping some
classes (e.g. 6-10 for CIFAR-10) (Buda et al., 2018). The severity of the imbalance is described via
the ratio ρ = nmax/nmin between the largest and smallest classes.

Long-tailed distributions may be viewed as containing an underrepresented latent component with
π = 1/(1 + ρ), and previous results (c.f. Section 4) that fortified small latent domains within P
motivate us to evaluate the imbalance setting more closely here.

Since our strategy is architecture-based, it can be combined with the most recent state-of-the-art
(loss-based) techniques for long-tailed recognition: a label-distribution-aware margin loss with de-
ferred reweighting (Cao et al., 2019), or reducing contributions from well-classified examples as in
focal losses (Lin et al., 2017a). As Table 7 shows, adaptation via sparse gates acts as a regularizer
on the underlying ResNet26, and consistently improves performance on long-tail benchmarks.
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