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Abstract

We test a central hypothesis in physics-informed machine learning: that explicitly
incorporating known physical structure enables superior learning near critical
transitions, but at a cost to mechanistic interpretability. Neural systems exhibit
rich computational behavior near critical transitions between ordered and chaotic
dynamics. Learning these transitions poses unique challenges due to slow dynamics,
sensitivity to parameters, and multi-scale temporal structure. We systematically
compare Universal Differential Equations (UDEs) and Neural ODEs for learning
a two-dimensional neural dynamical system across stability regimes. Through
Lyapunov landscape analysis, we demonstrate that activation function choice
fundamentally shapes bifurcation structure, with Swish enabling smooth order-to-
chaos transitions unlike ReLU or sigmoid. Our comprehensive evaluation confirms
the hypothesis: UDEs consistently outperform Neural ODEs, achieving 2–10×
lower RMSE across all coupling strengths and superior robustness under external
perturbations. Critically, both methods struggle near transition points (λ ∼ 0), but
UDEs maintain better performance. Surprisingly, while UDEs excel at dynamics
prediction, they fail to accurately reconstruct the underlying activation function,
revealing fundamental trade-offs between system-level learning and component
interpretability in physics-informed approaches.

1 Introduction

Physics-informed architectures that explicitly incorporate known dynamical structure will achieve
superior predictive performance near critical transitions compared to purely data-driven approaches,
but this advantage comes with an inherent trade-off in mechanistic interpretability.

Training deep neural networks often involves abrupt behavioral changes resembling physical phase
transitions when hyperparameters cross critical values [1–3]. Understanding these transitions is
crucial for stability and optimization theory, as they determine when systems shift from stable
convergence to chaotic dynamics [4, 5].

Neural systems achieve optimal information processing at the “edge of chaos”—a critical regime
between order and turbulence [6–8]. This principle spans scales from neurons [9, 10] to brain
networks [11, 12] and artificial systems [13, 14], where reservoir computing and echo state networks
perform optimally at critical points [8]. Recent work has demonstrated that hierarchical modular
neuronal networks sustain criticality more robustly than fully connected architectures, and that
phase transitions in neural networks exhibit characteristic scaling behavior [15]. Similar critical
phenomena emerge in FitzHugh-Nagumo neurons [10], Wilson-Cowan population models [16],



ecological predator-prey dynamics near Hopf bifurcations [3, 17], collective synchronization in
Kuramoto oscillators [18, 19], and climate systems approaching tipping points [20, 21].

Despite theoretical understanding, learning dynamics near critical transitions remains challenging [22].
Traditional methods struggle with multi-scale temporal structure, extreme parameter sensitivity, and
critical slowing down [23, 24]. Physics-informed approaches like Neural ODEs [25] and Universal
Differential Equations (UDEs) [26] offer promising solutions by incorporating domain knowledge,
but their comparative performance near criticality remains unexplored [27, 28].

Testing the hypothesis requires addressing: (1) lack of systematic comparison between physics-
informed approaches across dynamical regimes [29]; (2) insufficient understanding of how activation
function choice affects critical behavior [30, 31]; (3) missing analysis of interpretability trade-offs [32–
34]; (4) unknown robustness properties under perturbations near critical points [35]. The gap in
understanding extends to practical considerations. Real-world dynamical systems are often subject
to external perturbations, noise, and model uncertainties [36, 37]. How different physics-informed
learning approaches respond to such perturbations near critical transitions has not been systematically
investigated [38, 39]. Additionally, the trade-offs between learning system-level dynamics and
recovering interpretable model components remain poorly understood [33, 34, 40, 41].

Our contributions test the hypothesis systematically: We present a UDE framework for neural
dynamics with a hybrid architecture incorporating known linear coupling while learning nonlinear
activation functions. We conduct activation function criticality analysis showing that Swish en-
ables smooth transitions, ReLU creates fragmented boundaries, and sigmoid prevents chaos. Our
comprehensive empirical evaluation demonstrates that UDEs consistently outperform Neural ODEs
(∼ 2–10× lower RMSE) across all stability regimes. We discover a fundamental trade-off where
UDEs achieve excellent system-level prediction while failing to reconstruct underlying activation
functions.

2 Methodology

2.1 Neural Dynamical System

We investigate a two-dimensional neural dynamical system designed to exhibit rich critical behavior
across stability regimes, representative of broader classes including FitzHugh-Nagumo neurons [10],
Wilson-Cowan networks [16], and coupled oscillator systems [18]:

dh

dt
= −αh+ σωϕ(a) (1)

da

dt
= −βa+ ωh (2)

where h(t) represents hidden unit activity, a(t) the activation input, α, β > 0 control decay rates, σ
scales nonlinear coupling, and ω determines recurrent strength driving critical transitions analogous
to bifurcation parameters in ecological models [3] and coupling in synchronization phenomena [18].

We examine three activation functions:

ϕsigmoid(a) =
1

1 + e−a
, ϕswish(a) =

a

1 + e−a
, ϕReLU(a) = max(0, a) (3)

Sigmoid provides bounded, smooth nonlinearity with saturation limiting chaotic behavior. Swish
combines sigmoid smoothness with unbounded growth, enabling richer dynamics [30, 31] through
self-gating mechanisms. ReLU introduces sharp nonlinearity with infinite derivative discontinuity
that fragments phase space structure [42, 43].

Fixing α = β = σ = 1.0, we focus on ω as the bifurcation parameter. The system exhibits three
regimes: stable (ω < ωc), critical (ω ≈ ωc), and chaotic (ω > ωc). We examine initial conditions
IC1 [h0, a0] = [0.0, 0.1] and IC2 [h0, a0] = [0.2, 0.0] with critical thresholds ωc,IC1 ≈ 1.39 and
ωc,IC2 ≈ 1.359.
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2.2 Enhanced System with Perturbations

To test robustness under realistic noisy conditions [36, 37], we extend the base system with sinusoidal
perturbations:

dh

dt
= −αh+ σωϕ(a) +A sin(Ωt) (4)

da

dt
= −βa+ ωh (5)

where A = 0.1 and Ω = 2.0 introduce controlled external forcing.

We quantify stability using Lyapunov exponents via standard algorithm [44, 45], enabling systematic
mapping across (ω, h0) parameter space following dynamical systems traditions [46, 47].

2.3 Model Architectures

Neural ODEs represent system dynamics entirely through neural networks: du
dt = fθ(u, t) where fθ

approximates the full vector field [25, 48]. Architecture: 2D input → 32 → 32 neurons (tanh) →
2D output (∼ 2,000 parameters).

UDEs combine known physical structure with learned components following the SciML paradigm [26,
49]:

dh

dt
= −αh+ σωNN θ(a),

da

dt
= −βa+ ωh (6)

where NN θ(a) learns ϕ(a). Architecture: 1D input → 16 → 16 neurons (tanh) → 1D output (∼ 300
parameters). Training uses 70% of data over t ∈ [0, 15] with ∆t = 0.2, ADAM optimizer (100
iterations, lr=0.01) followed by BFGS (50 iterations), testing ω ∈ {0.7, 0.9, 1.2, 1.39/1.359, 1.5}.

3 Results

3.1 Activation Function Impact on Critical Behavior

The dynamical behavior of neural differential equations is fundamentally shaped by the choice of
activation function, as demonstrated through comprehensive analysis of Lyapunov landscapes and
phase space dynamics.

Lyapunov Landscape Topology (Figure 1): The Lyapunov landscape λ is computed by vary-
ing the coupling strength ω ∈ [0.5, 2.0] and initial condition h0 ∈ [−0.8, 0.8] while keep-
ing a0 = 0.05 fixed. The landscape reveals regions where λ > 0 (chaotic dynamics) versus
λ < 0 (ordered dynamics) across the (ω, h0) parameter space for different activation functions
ϕ(a) ∈ {Sigmoid, Swish, ReLU}. The two-dimensional parameter space analysis reveals distinct
bifurcation topologies for each activation function.

Sigmoid activation (Panel A) exhibits predominantly stable dynamics with deep blue regions (λ < 0)
across parameter space. Sparse critical regions (λ > 0) are confined to narrow bands, reflecting
sigmoid’s bounded output that limits dynamical complexity through saturation properties analogous
to biological neurons.

Swish activation (Panel B) demonstrates balanced landscape structure with continuous, well-defined
boundaries between stable (blue) and chaotic (yellow) regions. This smoothness enables gradual
exploration of dynamical regimes without artificial barriers, indicating Swish’s capacity for diverse
dynamical behaviors crucial for learning applications and reservoir computing optimality [7, 8].

ReLU activation (Panel C) produces highly fragmented landscapes with sharp regional contrasts. The
discontinuous transitions reflect ReLU’s non-differentiable structure at a = 0, creating phase space
barriers and numerical instabilities that impede smooth learning of critical phenomena [50].

Phase Space Flow Structure (Figure 2): The vector field analysis illustrates the phase space
dynamics across three parameter regimes. Vector arrows are color-coded by flow speed (red: fast,
orange/gold: moderate, gray: slow), with nullclines shown as dashed (ȧ = 0) and dotted (ḣ = 0) lines.
In the stable regime (ω = 0.5, Panel A), trajectories converge to the origin, showing stable fixed-point
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(A) (B) (C)

Figure 1: Lyapunov exponent landscapes in the (ω, h0) parameter space for three activation functions.
The color maps show the largest Lyapunov exponent λ computed across different coupling strengths
ω (x-axis) and initial neural activation h0 (y-axis). Blue/purple regions (λ < 0) indicate ordered
dynamics, while yellow/red regions (λ > 0) represent chaotic behavior. (A) Sigmoid activation
exhibits predominantly stable dynamics with limited chaotic regions due to output saturation. (B)
Swish activation shows smooth transitions between regimes with critical boundaries. (C) ReLU
activation creates fragmented landscapes with sharp discontinuities due to its non-differentiable
nature at zero.

behavior. The critical regime (ω = 1.39, Panel B) exhibits transitional dynamics near a bifurcation
point. The chaotic regime (ω = 2.0, Panel C) demonstrates complex, irregular trajectories indicating
sensitive dependence on initial conditions. Trajectories from initial conditions IC1 = (0.0, 0.1) and
IC2 = (0.2, 0.0) are shown for the final portion of the integration period to highlight long-term
behavior.

(A) (B) (C)

Figure 2: Vector field analysis of the neural dynamics system across different parameter regimes. (A)
Stable regime (ω = 0.5): Vector field shows convergent flow toward the fixed point at origin. Both
trajectories from initial conditions IC1 (0.0, 0.1) and IC2 (0.2, 0.0) converge to the stable equilibrium.
(B) Critical regime (ω = 1.39): System exhibits transitional behavior near bifurcation point, with
trajectories following nullcline structure more closely. (C) Chaotic regime (ω = 2.0): Complex,
non-convergent dynamics with irregular trajectory patterns indicating sensitive dependence on initial
conditions. Vector arrows are color-coded by flow magnitude (red: high velocity, orange/gold:
moderate, gray: low). Black lines show nullclines: dashed line (ȧ = 0), dotted line (ḣ = 0). Circular
markers indicate trajectory starting points, star markers show endpoints. Parameters: α = β = σ =
1.0, integration time t = 15.

These analyses establish activation function choice as fundamental for neural differential equations
modeling critical phenomena. Swish activation is optimal, providing smooth bifurcations, continuous
critical transitions, and efficient phase space exploration essential for learning complex dynamics
near criticality.

3.2 Comparative Performance Analysis

Having established Swish activation’s optimal bifurcation properties and phase space exploration, we
now test our central hypothesis: whether physics-informed structure (UDEs) outperforms data-driven
approaches (Neural ODEs) near criticality, and at what interpretability cost.
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3.2.1 Standard System Performance

Figure 3 presents the systematic RMSE performance analysis across coupling strengths, confirming
the first part of our hypothesis. In stable regimes (ω < 1.35), UDEs achieve approximately one order
of magnitude better accuracy, demonstrating superior trajectory reconstruction when dynamics are
well-behaved. The performance gap becomes most pronounced near the critical point (ω ≈ 1.39),
where UDEs maintain errors around 10−3 to 10−4 while Neural ODEs degrade to 10−2 or worse.
Even in chaotic regimes (ω > 1.45), UDEs sustain their advantage, indicating superior capability for
capturing complex, irregular dynamics.

(A) (B)

Figure 3: RMSE performance comparison between Neural ODEs (blue circles) and UDEs (red
squares) across coupling strengths ω for standard system without perturbations. Panel (A): Initial
condition IC1 [h0, a0] = [0.0, 0.1] showing UDEs consistently achieve 1-2 orders of magnitude lower
error across all regimes. Panel (B): Initial condition IC2 [h0, a0] = [0.2, 0.0] demonstrating similar
UDE superiority with most pronounced improvement near the critical point ωc = 1.39 (red vertical
dashed line). Both methods exhibit peak learning difficulty at the order-to-chaos transition, but UDEs
maintain significantly better accuracy even in this challenging regime.

(A) (B) (C)

Figure 4: Time series predictions for initial condition IC2 [h0, a0] = [0.2, 0.0] comparing Neural
ODEs (blue lines) and UDEs (red lines) against ground truth (black lines). Panel (A): Stable regime
(ω = 0.8) showing UDEs (red) closely tracking the true trajectories while Neural ODEs (blue)
exhibit visible systematic deviations throughout the time series. Panel (B): Critical regime (ω = 1.39)
where UDEs maintain good fidelity to the ground truth while Neural ODEs show persistent errors
in capturing the transient dynamics. Panel (C): Chaotic regime (ω = 1.5) revealing fundamental
limitation: both Neural ODEs and UDEs fail to capture the exponential divergence beyond t ≈ 10,
with both methods significantly underestimating the explosive growth of the chaotic trajectories.

The time series analysis in Figure 4 translates quantitative performance of both architectures into
visual assessment of prediction quality across different initial conditions. IC2 reveals a consistent
pattern: UDEs significantly outperform Neural ODEs across all regimes, with Neural ODEs showing
systematic deviations even in the stable and critical regimes. Importantly, the chaotic regime limitation
remains universal - both methods fail to capture exponential divergence beyond t ≈ 10, regardless of
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initial conditions [23, 51]. This demonstrates that while UDEs provide superior overall accuracy, the
fundamental challenge of learning exponential divergence in chaotic systems affects both architectures
equally.

3.2.2 Perturbation Robustness

(A) (B)

Figure 5: RMSE performance comparison for perturbed system with sinusoidal forcing A sin(Ωt)
where A = 0.1 and Ω = 2.0. Panel (A): IC1 and Panel (B): IC2. UDEs (red squares) maintain RMSE
∼ 10−5 while Neural ODEs (blue circles) show poor performance with RMSE ∼ 10−2 across all
coupling strengths.

Sinusoidal perturbation experiments (Figure 5) demonstrate UDEs’ exceptional robustness under
external forcing, achieving 2–3 orders of magnitude better accuracy than Neural ODEs across all
dynamical regimes. This robustness stems from UDEs’ incorporation of known physical structure,
providing stability when learning externally forced systems [39].

3.3 Learning Dynamics and Convergence

Figure 6 reveals complex, regime-dependent training dynamics varying between architectures and
initial conditions:

Neural ODE Training Shows markedly different optimization landscapes: IC1 exhibits minimal
oscillations with chaotic regime achieving lower initial loss, while IC2 demonstrates superior critical
regime performance, suggesting favorable edge-of-chaos optimization conditions [7].

UDE Training Demonstrates superior but initial condition-sensitive characteristics: IC1 shows
oscillatory behavior in both stable and chaotic regimes with consistently higher critical regime loss,
while IC2 achieves comparable stable and critical regime performance, both outperforming the
chaotic regime.

These findings demonstrate that specific combinations of initial trajectory characteristics, coupling
strength, and architecture create unique optimization landscapes affecting learning near critical
transitions.

3.4 Activation Function Recovery: Testing the Interpretability Trade-off

Having confirmed UDEs’ superior predictive performance, we now test the second part of our
hypothesis about interpretability costs.

Activation function recovery reveals striking initial condition dependencies, confirming our hypothesis
about the interpretability-accuracy trade-off. While both achieve excellent system-level prediction,
component recovery varies dramatically. IC2 demonstrates superior recovery across all regimes,
with particularly improved critical regime performance showing smooth, oscillation-free learned
activation compared to IC1’s severe distortions. Both cases reveal UDEs’ trade-off: excellent
dynamics prediction through compensatory errors maintaining trajectory accuracy while sacrificing
component interpretability [33, 34, 41]. IC2’s superior performance suggests field-driven dynamics
provide more favorable conditions for balancing this trade-off.

6



(A) (B)

(C) (D)

Figure 6: Training loss convergence across different coupling strengths ω. Panel (A): Neural ODEs
IC1. Panel (B): UDEs IC1. Panel (C): Neural ODEs IC2. Panel (D): UDEs IC2. Two-stage
optimization uses ADAM (0–100 iterations) followed by BFGS (100–150 iterations), evident from
convergence acceleration around iteration 100.

(A) (B) (C)

Figure 7: Activation function recovery for IC2. Panel (A): Stable regime. Panel (B): Critical regime.
Panel (C): Chaotic regime. True Swish activation (black solid) vs UDE-learned functions (colored
dashed). Significantly better recovery compared to IC1, particularly in critical regime without
oscillatory artifacts.
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4 Discussion and Conclusion

Our comprehensive evaluation confirms our central hypothesis and reveals fundamental insights into
physics-informed learning near critical transitions. The consistent superiority of UDEs (2–10× lower
RMSE) demonstrates the power of incorporating known physical structure [49], with exceptional
robustness under perturbations (maintaining ∼ 10−5 RMSE while Neural ODEs degrade to ∼ 10−2).

However, activation function recovery analysis unveils the predicted fundamental paradox: excellent
system-level performance coupled with systematic failure to reconstruct underlying components.
This trade-off challenges assumptions about physics-informed model interpretability [27, 28], as
learned activation functions create compensatory mechanisms that maintain accuracy while distort-
ing components, paralleling challenges in symbolic regression [34, 52] and sparse identification
methods [32, 41].

Our Lyapunov landscape analysis establishes activation function choice as a fundamental design
parameter. Swish’s smooth bifurcation topology enables gradual regime exploration observed in reser-
voir computing optimality [7, 8], while ReLU’s discontinuous nature creates fragmented landscapes
impeding learning [30, 31, 50]. Initial condition dependence (IC2 consistently outperforming IC1)
reveals that field-driven versus interaction-driven dynamics create different optimization landscapes
with practical implications for experimental design in discovering governing equations [53].

This work establishes critical phenomena as an important testbed for physics-informed learning,
providing the first systematic comparison of Neural ODEs versus UDEs near criticality. Our findings
have broader implications for understanding deep learning phase transitions [1, 54], optimizing
reservoir computing [13], predicting ecological regime shifts [3, 21], and anticipating climate tip-
ping points [20]. The demonstrated principles apply to diverse systems exhibiting critical behavior
including FitzHugh-Nagumo neurons [10], Wilson-Cowan networks [16], Hopf bifurcations in
predator-prey models [17], and Kuramoto synchronization [18]. Beyond methodological contribu-
tions, our perturbation analysis shows that UDEs maintain exceptional robustness under external
forcing, making them particularly valuable for real-world applications where noise and uncertainty
are prevalent. These insights establish a foundation for future work on physics-informed learning
in complex dynamical systems and highlight the importance of balancing predictive accuracy with
mechanistic interpretability in scientific applications.
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A Appendix: Additional Results

Critical Point Analysis

Figure 8: Lyapunov exponents λ versus coupling strength ω for three activation functions. Panel (A):
Sigmoid activation shows stable dynamics (λ < 0) across all ω values. Panel (B): Swish activation
exhibits order-to-chaos transition at ωc ≈ 1.2− 1.3. Panel (C): ReLU activation demonstrates strong
chaotic tendency with positive λ for ω > 1.0. Blue circles: IC1 [h0, a0] = [0.0, 0.1]; Red circles:
IC2 [h0, a0] = [0.2, 0.0]. Blue shaded region: ordered dynamics (λ < 0); Red shaded region: chaotic
dynamics (λ > 0).

The Lyapunov exponents λ(ω) for sigmoid, swish, and ReLU activation functions reveal distinct
dynamical regimes: λ < 0 (stable) and λ > 0 (chaotic). Two initial conditions are tested: IC1 =
[h0, a0] = [0.0, 0.1] and IC2 = [0.2, 0.0]. Sigmoid maintains λ < 0 ∀ω. Swish exhibits order-
to-chaos transition at ωc ≈ 1.2–1.3 where λ crosses zero. ReLU shows earliest chaos onset at
ωc ≈ 0.9–1.0 with monotonically increasing λ.

Time Series for IC1

(A) (B) (C)

Figure 9: Representative time series predictions comparing Neural ODEs (NODE, blue lines) and
UDEs (red lines) against ground truth (black lines) across dynamical regimes for standard system
with initial condition IC1. Panel (A): Stable regime (ω = 0.8) showing excellent agreement for both
methods with nearly perfect trajectory tracking as dynamics converge to equilibrium. Panel (B):
Critical regime (ω = 1.39) where both methods capture the transient dynamics and approach to steady
state with high fidelity. Panel (C): Chaotic regime (ω = 1.5) revealing a fundamental limitation of
both approaches: while early-time dynamics are well-captured, both Neural ODEs and UDEs fail to
track the exponential divergence occurring beyond t ≈ 10, with both methods underestimating the
explosive growth of the true chaotic trajectories. Initial condition: IC1 [h0, a0] = [0.0, 0.1] with 70%
of data used for training.

Time Series for Perturbed System IC2
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(A) (B) (C)

Figure 10: Time series predictions for perturbed system across dynamical regimes. Panel (A): Stable
regime. Panel (B): Critical regime. Panel (C): Chaotic regime. Ground truth (black), Neural ODE
predictions (blue), and UDE predictions (red). UDEs successfully track complex modulated dynamics
while Neural ODEs exhibit systematic errors for IC1.

Activation Function Recovery for IC1

(A) (B) (C)

Figure 11: Activation function recovery for IC1. Panel (A): Stable regime. Panel (B): Critical regime.
Panel (C): Chaotic regime. True Swish activation (black solid) vs UDE-learned functions (colored
dashed). Critical regime shows severe distortions with spurious oscillations.

Lyapunov Exponent Relationships

(A) (B)

Figure 12: Relationship between largest Lyapunov exponent λ and learning performance (RMSE).
Panel (A): UDEs showing exceptional performance in deep stable regimes (λ < −0.2), particularly
for IC2, with gradual degradation as systems approach and cross the critical boundary (λ = 0). Panel
(B): Neural ODEs maintaining consistent moderate performance across all stability regimes.
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Figure 12 reveals how architectural design interacts with system stability. UDEs, especially with IC2,
achieve exceptional performance (RMSE ∼ 10−6) in strongly stable systems (λ < −0.2), showing
moderate deterioration as systems approach and cross the stability boundary, with more significant
degradation in chaotic regimes for IC2. Neural ODEs maintain uniform moderate performance
(RMSE ∼ 10−3) across all dynamical regimes, largely unaffected by stability characteristics. The
results highlight UDEs’ ability to exploit deep system stability for superior learning performance,
with IC2 particularly well-suited for stable regimes while showing greater sensitivity to chaos than
IC1.
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Response to Reviewers

We sincerely thank the reviewers and area chair for their constructive feedback and the recommenda-
tion for acceptance. We are particularly grateful to Reviewer F3My for recognizing the strength of
our dynamical systems analysis and the compelling nature of our Lyapunov-based activation function
evaluation.

Addressing Reviewer F3My’s Comments

Comment 1: "Make the writing more hypothesis-driven, rather than sounding like a tech-
report."

Response: We have restructured the narrative around a central hypothesis: physics-informed architec-
tures that explicitly incorporate known system structure (UDEs) will outperform fully data-driven
approaches (Neural ODEs) near critical transitions, but this superior performance comes at the cost
of mechanistic interpretability. This hypothesis now drives the paper’s structure from abstract through
results, creating a cohesive story that builds toward revealing the fundamental trade-off between
prediction accuracy and component recovery.

Comment 2: "Analyze many more systems and perform a more thorough literature review to
connect these ideas with previous results in scientific ML."

Response: While maintaining the paper’s focused experimental design, we have significantly enriched
the discussion by:

• Connecting our two-dimensional neural system to broader classes of critical phenomena
including FitzHugh-Nagumo neurons [10], Wilson-Cowan networks [16], Hopf bifurcations
in ecological models [17], and Kuramoto synchronization [18]

• Expanding literature connections to reservoir computing criticality [7, 8], deep learning
phase transitions [1, 54], and symbolic regression approaches [33, 34, 41]

• Adding 15+ new citations throughout to situate our findings within the broader scientific
ML landscape

The revised Introduction and Discussion now explicitly position our model system as representative of
universal critical behavior observed across neuroscience, ecology, and physics, while acknowledging
that direct empirical validation on these diverse systems remains important future work.

These revisions maintain the paper’s technical rigor and focused experimental design while embedding
it within a compelling narrative arc and broader scientific context.
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