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Abstract

In this work, we propose a modular approach for the
Vision-Language Navigation (VLN) task by decompos-
ing the problem into four sub-modules that use state-
of-the-art Large Language Models (LLMs) and Vision-
Language Models (VLMs) in a zero-shot setting. Given
navigation instruction in natural language, we first
prompt LLM to extract the landmarks and the order in
which they are visited. Assuming the known model of
the environment, we retrieve the top-k locations of the
last landmark and generate k path hypotheses from the
starting location to the last landmark using the shortest
path algorithm on the topological map of the environ-
ment. Each path hypothesis is represented by a sequence
of panoramas. We then use dynamic programming to
compute the alignment score between the sequence of
panoramas and the sequence of landmark names, which
match scores obtained from VLM. Finally, we compute
the nDTW metric between the hypothesis that yields the
highest alignment score to evaluate the path fidelity. We
demonstrate superior performance compared to other
approaches that use joint semantic maps like VLMaps
[11] on the complex R2R-Habitat [1] instruction dataset
and quantify in detail the effect of visual grounding on
navigation performance.

1. Introduction

Vision-and-Language Navigation (VLN) task involves
controlling an agent, either in simulation or in the phys-
ical world, to navigate through an environment by fol-
lowing natural language instructions. Consider an ex-
ample in Fig. 1 where the agent is required to follow the
instructions in a specific environment. This task requires
parsing the language input (e.g., “Turn left in the hall-
way, go to the kitchen, and stop by the sink”), ground-
ing the phrases to visual concepts such as scenes, land-
marks, and actions (e.g., turn left) as well temporal cues
(e.g., turn before).

VLN Instruction: Walk through the door and around the table. 
Turn left and walk to the end of the kitchen bar. Turn right and 
walk around the chair. Turn left and walk into the small hallway 
then go into the bedroom. 

Figure 1. Bird’s Eye View visualization of a sample VLN
episode from R2R dataset [1].

One class of approaches formulates the Vision-
Language Navigation task as a supervised multi-modal
sequence-to-sequence learning task, where the learner is
given episodes of natural language instructions, along
with visual observations and navigation actions. These
approaches were supported by large-scale datasets of
navigation instructions, e.g., Room-2-Room (R2R) [1],
in Matterport3D [4] indoor environments, providing
the agent with panoramic images from different loca-
tions. The sequence-to-sequence methods varied in their
multi-modal language and vision architectures, training
techniques, and choices of representations, gradually
improving the benchmark performance. Despite these
improvements, non-negligible gaps still exist between
machines’ and human performance on existing bench-
marks, the performance suffers in novel environments
and in the presence of more complex variation of in-



structions.
Another class of methods pursued a more modular

approach, using or learning separate modules for pro-
cessing natural language inputs, using semantic segmen-
tation or detection to ground noun phrases images and in
the map and integrating these with more traditional map-
based navigation. These methods, however, use simple
natural language instructions and are typically evaluated
on small-scale datasets [11, 18].
Contributions. In the presented work, we pursue a
modular approach, where we exploit zero-shot capabil-
ities of the state-of-the-art LLMs for understanding and
parsing navigation instructions and VLMs for grounding
landmark names in the visual observations. The naviga-
tion component is carried out by finding a path in the
topological map of the environment that is best aligned
with the navigation instructions. The map is acquired us-
ing the training episodes from R2R dataset [1], and the
alignment score is computed using dynamic program-
ming, where the costs of individual steps are obtained
from the state-of-the-art Vision-Language Model. The
presented modular approach demonstrates superior per-
formance over occupancy map-based approaches and re-
veals current strengths and weaknesses of the state-of-
the-art LLMs and VLMs for vision-language instruction
following.

2. Related Work

For the purpose of our exposition, the existing works on
Vision Language Navigation can be partitioned into end-
to-end and modular approaches. The end-to-end meth-
ods take the natural language instructions, visual obser-
vations, and actions and train a multi-modal sequence-
to-sequence model, and in the inference stage, given the
instruction and initial view, the model generates the se-
quence of actions while ingesting additional views. The
modular approaches integrate LLMs, VLMs, or both
with more traditional map-based representations along
with a common robotics navigation stack comprised of
basic navigation skills that are not learned.
End-to-end approaches. These methods typically
adopt a sequence-to-sequence model, taking as an in-
put the language instruction and visual information and
outputs the sequence of low-level navigation actions
(move, turn left/right) or local waypoints. During the
forward pass, the entire instruction is processed by the
Language Encoder (e.g., LSTM/transformer). The ag-
gregation of the context vectors, plus the encoded cur-
rent view of the agent, is then fed to the Action De-
coder (e.g., LSTM/transformer) that generates the next
action. The decoder continues to predict actions un-
til it generates the STOP action. The mixture of Re-
inforcement Learning (RL) and Imitation Learning (IL)

has been commonly used for training these models [24].
The existing approaches proposed different variations
of model architectures, training strategies and choice of
representations [2, 6, 8–10, 15, 19, 24, 26] typically us-
ing the Room-to-Room (R2R) [1] and Room-Across-
Room (RxR) [16] benchmarks for training and evalua-
tion. The natural language instructions in these bench-
marks are quite complex, with an average length of
∼ 26 words. These approaches have made substantial
improvements in past years, mostly thanks to increas-
ing the number of training episodes and auxiliary tasks
that support grounding [25] and instruction generation
[8, 14]. It has been shown [29] that the performance
of the existing methods continues to be severely com-
promised by the inability to ground landmarks, under-
stand spatial relationships, as well as grounding of ac-
tion phrases. The ability to ground landmarks is more
critical for indoor environments, while in outdoor set-
tings, the grounding of actions in navigation instruc-
tions is more critical. Furthermore, RL & IL require
a large number of high-quality training episodes, in ad-
dition to the extra computational complexity of RL due
to the online interaction of the agent with the simula-
tor/environment that makes it more difficult to scale the
training [14].

LLM and VLM based modular approaches. Lan-
guage Models were used in the past as zero-shot plan-
ners, where [12] introduced the idea of utilizing the
knowledge learned by LLMs, like OpenAI GPT-3 [3]
and Codex [5], for decomposing high-level tasks (e.g.
”make breakfast”) to sequences of lower level skills
executable by the agent. For navigation tasks, CLIP-
Nav [7] utilized CLIP VLMs [20] for grounding in-
struction phrases and GPT-3 [3] for decomposition of
complex natural language instructions into phrases. In
CLIP-Nav, the language instruction is decomposed us-
ing GPT-3 [3], and then each sub-instruction, along
with a panorama comprised of four egocentric views,
is ranked by CLIP [20] to determine the closest head-
ing direction. The major limitations of CLIP-Nav are
the dependency on the existence of a navigable graph of
the environment and the poor ability of CLIP to asso-
ciate landmarks with images. Another decomposition of
the navigation task was adopted by the VLMaps [11] ap-
proach, which first builds a global joint vision-language
semantic occupancy map by exploring the environment.
The cells of the map are populated by LSeg/CLIP em-
beddings [17, 20], projected onto the grid from images.
The navigation instructions are simpler, often resorting
to point and object goal navigation, which are further
translated into robotic navigation skills in the form of
executable code.

Lang2LTL [18] represents another line of work that
has been proposed to use LLMs to translate free-form



All Unique Waypoints & Trajectories  Topological Map Construction 

Figure 2. Topological Map Construction

natural language instructions into linear temporal logic
(LTL). Lang2LTL is advantageous because it disam-
biguates the goal specification and facilitates incorporat-
ing temporal constraints. The limitations of Lang2LTL
are the need for a parallel dataset of natural language in-
structions and their corresponding fixed set of LTL for-
mulas for fine-tuning the LLMs for the translation stage
and the limited level of complexity of the instructions,
compared to R2R [1] and RxR [16] benchmarks. Au-
thors in LM-Nav [23] propose a zero-shot approach for
outdoor instruction following. They utilize a visual nav-
igation system called ViNG [22], to construct a topo-
logical map G from a set of observations, followed by
extraction of landmarks L from the free-form naviga-
tion instruction using GPT-3. CLIP is then used to infer
a joint probability distribution over the nodes in G and
landmarks in L, followed by a graph search algorithm
to find the optimal path that is executed by local naviga-
tion policy. The approach in LM-Nav can only navigate
to a sequence of unique landmarks by design, discard-
ing complexities like spatial clauses and fine-grained
grounding of landmark and action phrases.

3. Our Approach
We introduce a modular approach for solving the VLN
task using the pre-trained state-of-the-art language and
vision and language models in a zero-shot setting, focus-
ing on complex instructions in the R2R-Habitat dataset
[1]. The agent first builds a topological map of the en-
vironment using the train split episodes of the dataset.

We used all the available unique waypoints and trajecto-
ries of the environment to build the graph G, where each
node v is represented by a 360° RGB panorama and each
edge e has a weight of 1, representing the connectivity
between each pair of nodes, as shown in Figure 2. In this
way, we ensure consistency in our evaluation process as
every node of the ground-truth waypoints from the train-
ing episodes has a corresponding node in the topological
map.

Then, we extract the sequence of landmarks from the
natural language instruction using a pre-trained LLM,
LLama-3.1-8B-Instruct in our case. We identify
the last landmark phrase and search panoramas for the
top-k most likely goal nodes. Suppose that the last land-
mark is bedroom, we can locate the goals by recognizing
whether the bedroom can be found in the panoramic im-
ages associated with the graph nodes. In this way, we
will narrow down the set of possible paths that lead to
the goal locations.

We use the state-of-the-art vision language model
SigLIP [28] for goal/final landmark recognition, as
shown in Figure 3. SigLIP training is similar to the
CLIP model, replacing the contrastive loss with sig-
moid binary prediction. The recognition is carried out
by computing cosine similarity between panorama im-
ages and the textual description of the landmark. In
order to compare the effectiveness of this choice with
an open-vocabulary semantic map such as VLMaps [11]
that endows the occupancy map with CLIP embeddings,
we ran the landmark localization experiment on all 127



landmarks and reported the mean Precision@10 in Ta-
ble 1. The superiority of our approach stems from rec-
ognizing the landmarks in the panoramic views and re-
placing CLIP [20] with SigLIP [28], instead of using
open-vocabulary semantic occupancy maps.

Model # Landmarks Precision@10 (%)

VLMaps [11] w/ CLIP [20] 127 34.4

Ours w/ SigLIP [28] 127 70.0

Table 1. SigLIP vs. VLMaps Quantitative Results for Last
Landmark Indexing

Given the top-k goal locations, we compute the BFS
shortest path from the starting pose to the goal nodes,
obtaining k paths hypotheses. In the next stage, we
quantify the alignment of the instruction with each of
the paths and select the one with the highest align-
ment score. We introduce two approaches for path-
instruction alignment and ranking. In APPROACH I,
we formulate this problem as a sequence-to-sequence
alignment, where the sequence of panoramas is X =
[X0, X1, ..., Xp], and the sequence of landmark phrases
Y = [Y0, Y1, ..., Yl], as shown in Figure 5. Considering
X × Y as a matrix A, where Aij is the binary ground-
ing scores of landmark being present in the panorama
associated with the waypoint. We use the state-of-the-
art VLM, GPT-4o, in our case, as shown in Figure 4 to
obtain these scores. We first discard the path hypothe-
ses where the number of nodes is smaller than the num-
ber of landmarks. Then, given the A matrix we com-
pute for each path the normalized alignment score using
Dynamic Programming (DP) formulation similar to the
Longest Common Subsequence (LCS) problem, named
Pano2Land described in Algorithm 14.

Figure 5 shows the alignment matrix A for three path
hypotheses, comprised of 8, 7, and 6 nodes. The left
example yields a score of 5/8, corresponding to 5 of
the landmark names being successfully grounded in the
right order in 8 consecutive panoramas. The middle ex-
ample yields a score of 5 by grounding landmarks in
panoramas 2, 3, 4, 5, and 7, where the final score would
be 5/7 = 0.71. The right example demonstrates the
perfect way of aligning all the panoramas to the corre-
sponding landmarks without skipping, yielding the top
score of 6/6 = 1.

Alternatively, we introduce APPROACH II for path
ranking by prompting GPT-4o to rate each path on a
scale of 1 to 5 given the sequence of panoramas in or-
der, original natural language instruction, and the ex-
tracted sequence of landmark phrases, as shown in Fig-
ure 6. This approach bypasses the individual landmark
grounding stage and alignment score computation done
by PANO2LAND algorithm. The performance of this

approach is slightly worse than APPROACH I. Further-
more, the results are less interpretable since the internal
ranking mechanism of GPT-4o is unknown.

Finally, for each approach’s output, we compute the
normalized dynamic-time warping (nDTW) metric be-
tween the ground truth and the best-aligned path to mea-
sure the path fidelity; nDTW is more aligned with our
task objective compared to the Success Rate (SR), which
only considers an episode to be successful if the agent’s
last position is within 3 meters of the ground-truth goal
and it does not explicitly consider the intermediate align-
ments with the landmarks that were supposed to be vis-
ited in order by the agent [13].

Algorithm 1 - PANO2LAND algorithm for calculat-
ing path alignment using grounding scores, similar to
DP/LCS.
Require: Binary grounding matrix M ∈ {0, 1}R×C

Ensure: Alignment score S
1: R← number of rows (landmarks) in M
2: C ← number of columns (panoramas) in M

3: Initialize matrix dp ∈ N
(R+1)×(C+1)
0 with zeros

4: for r ← 1 to R+ 1 do
5: for c← 1 to C + 1 do
6: if Mr,c == 1 then
7: dp[r][c]← (dp[r − 1][c− 1]) + 1
8: else
9: dp[r][c]← max (dp[r − 1][c], dp[r][c− 1])

10: end if
11: end for
12: end for
13: S ← dp[R][C]
14: return S

In Table 2, HYPO PATH GEN accuracy indicates the
fraction of episodes where the ground-truth path or a
highly similar one is among the selected path hypothe-
ses. There might be multiple reasons why the correct
path couldn’t be retrieved, including but not limited to
(1) not being able to ground the last landmark, (2) en-
countering a dramatically different landmark that has
been part of the train samples, (3) a highly-frequent last
landmark which exists in multiple locations (e.g., door)
where the ground-truth landmark location may not fall
into the top-3 retrieved ones, etc.

The APPROACH I nDTW shows the average nDTW
score for all 21 episodes in each environment. If the
nDTW is above 87%, we consider the path successful,
where this threshold is based on our empirical analysis.
We applied the same evaluation metrics to APPROACH
II Both numbers are higher in the APPROACH I. While
in APPROACH II the full natural language instruction,
including the action phrases (e.g. turn left) is given
to GPT-4o, we hypothesize that the model has trouble
grounding actions and/or landmarks and APPROACH I
benefits from explicit decomposition of different stages.
Since there were cases in which multiple top grounding



VLMaps Top-10 Preds:

SigLIP Top-10 Preds:

Queried Landmark: Bedroom

(a) Bedroom

VLMaps Top-10 Preds:

SigLIP Top-10 Preds:

Queried Landmark: Air Vent

(b) Air Vent

Figure 3. SigLIP vs. VLMaps Query Result for Last Landmark Indexing

       
Prompting for Landmark Grounding Score Extraction Per Panorama

USER PROMPT:

Given the panorama image and the following landmark 
phrase sequence, please give me a list of binary scores, 
with the same length as the landmark phrase sequence.

Each score is 1 if you are confident the landmark is 
nearby and visible in the panorama image; otherwise, it 
is 0.

Only return the list of scores without any other output.

Landmark phrase sequence: ['door', 'table', 'kitchen bar', 
'chair', 'small hallway', 'bedroom']

GPT-4o RESPONSE:

[[1, 1, 1, 1, 0, 0], 
 [1, 1, 1, 1, 0, 0], 
 [1, 1, 1, 1, 0, 0], 
 [1, 1, 1, 1, 0, 0], 
 [1, 1, 1, 1, 0, 0], 
 [1, 0, 0, 0, 0, 0], 
 [1, 0, 0, 0, 0, 1], 
 [1, 0, 0, 0, 0, 0]]

Figure 4. GPT-4o Landmark Grounding Score Extraction

NUM HYPO PATH GEN APPROACH I APPROACH II
Episodes Accuracy (%) nDTW (%) Accuracy (%) nDTW (%) Accuracy (%)

8WUmhLawc2A 21 66.7 88.68±0.0 57.10±0.0 87.34±0.52 52.38±6.73
JeFG25nYj2p 21 61.9 87.51±0.13 52.38±0.0 88.92±0.64 49.20±5.93
mJXqzFtmKg4 21 66.7 91.21±0.07 66.70±0.0 90.08±0.21 57.14±0.0
r1Q1Z4BcV1o 21 57.1 87.96±0.30 49.20±2.24 88.69±0.42 39.68±2.24
sT4fr6TAbpF 21 76.2 89.25±1.05 61.90±3.88 86.68±0.34 52.38±6.73

Average 105 65.72±6.33 88.92±1.28 57.45±6.31 88.34±1.20 50.15±5.81

Table 2. Full Pipeline Quantitative Results



Figure 5. Sequence Alignment for Path Ranking (Pano2Land)

         Prompting for Entire Sequence Scoring

USER PROMPT:

You have been given a series of RGB panorama observations 
and a navigation instruction.

Instruction: "Walk through the door and around the table. Turn 
left and walk to the end of the kitchen bar. Turn right and walk 
around the chair. Turn left and walk into the small hallway then 
go into the bedroom."

Please provide a rating from 1 to 5 on how well this sequence 
aligns with the instruction, where:

1 = Very Poor Alignment
2 = Poor Alignment
3 = Fair Alignment 
4 = Good Alignment
5 = Excellent Alignment.

Note that the excellent alignment needs to visit all the following 
landmarks in order: 

['door', 'table', 'kitchen bar', 'chair', 'small hallway', 'bedroom']

Please first answer in the format of [RATING] = rating, then 
explain in detail why you give this rating.

GPT-4o RESPONSE:

[RATING] = 5

The navigation instruction outlines a clear sequence that involves moving through specific landmarks in a detailed order: the door, table, kitchen bar, chair, 
small hallway, and finally into the bedroom. 

In evaluating the sequences, the images provided depict a coherent layout where:

1. **Door**: The entrance is visible and can be assumed to be accessible from the starting point.
2. **Table**: Following through the door, there is a dining or kitchen table which aligns with the instruction to "walk around the table."
3. **Kitchen Bar**: Turning left leads directly to this area, allowing the next part of the navigation to occur seamlessly.
4. **Chair**: As instructed, there's a movement around the chair, which should be located near or around the kitchen area.
5. **Small Hallway**: Following the instructions to turn left into a small hallway is feasible once you navigate around the chair.
6. **Bedroom**: The progression leads directly from the small hallway into the bedroom.

Therefore, since all landmarks are visited in the correct order as specified in the instruction, I rated the sequence as an "Excellent Alignment" with a score of 5.

Figure 6. GPT-4o Full Prompting for Entire Sequence Scoring



scores or GPT-4o rating scores would exist, we repeated
the process of picking the path with the highest score
randomly up to 3 times and reported the mean and stan-
dard deviation.

4. Limitations
There are specific limitations to our approach that we’d
like to elaborate on. Firstly, our approach only works in
the previously explored environments, given the topo-
logical map. Secondly, it only works in cases where the
natural language instruction is landmarks-based and is
not heavily based on spatial and temporal phrases, ac-
tion phrases, and absolute metric distances. Since our
pipeline is modular and not trained end-to-end, draw-
backs of each module, especially the early stages of the
LLM landmark extraction and VLM retrieval, propagate
the errors to later stages of PANO2LAND alignment or
GPT-4o ranking. The quality of the path hypotheses
eventually determines the upper bound on the ranking
computed by GPT-4o or any other VLM being used.

5. Conclusion
In this work, we introduced a modular approach for
the vision-and-language navigation (VLN) task based
on the R2R-Matterport3D dataset [1, 4] within the Meta
Habitat Simulator [21, 27]. Our approach assumes that
the agent has built a topological map in the exploration
stage. We then use LLM to extract the sequence of land-
marks the agent needs to visit, retrieve the top-k goal lo-
cations, and rank the path hypotheses to select the one
with the highest alignment with the natural language
instructions as the final answer. For the task, the ap-
proach demonstrates the superiority of the topological
map with per-node panoramas to an open-vocabulary
semantic occupancy map for land-mark grounding and
goal retrieval. The overall performance on this bench-
mark is mainly affected by the zero-shot capabilities of
VLM’s to ground special landmark names in the panora-
mas. Future improvements can be achieved by fine-
tuning the existing VLMs on navigation tasks and de-
ploying the agent in previously unseen environments
by seamlessly integrating the exploration and navigation
part.
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