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a b s t r a c t

Understanding nonlinear dynamical systems (NLDSs) is challenging in a variety of engineering and
scientific fields. Dynamic mode decomposition (DMD), which is a numerical algorithm for the spectral
analysis of Koopman operators, has been attracting attention as a way of obtaining global modal
descriptions of NLDSs without requiring explicit prior knowledge. However, since existing DMD
algorithms are in principle formulated based on the concatenation of scalar observables, it is not
directly applicable to data with dependent structures among observables, which take, for example,
the form of a sequence of graphs. In this paper, we formulate Koopman spectral analysis for NLDSs
with structures among observables and propose an estimation algorithm for this problem. This method
can extract and visualize the underlying low-dimensional global dynamics of NLDSs with structures
among observables from data, which can be useful in understanding the underlying dynamics of such
NLDSs. To this end, we first formulate the problem of estimating spectra of the Koopman operator
defined in vector-valued reproducing kernel Hilbert spaces, and then develop an estimation procedure
for this problem by reformulating tensor-based DMD. As a special case of our method, we propose the
method named as Graph DMD, which is a numerical algorithm for Koopman spectral analysis of graph
dynamical systems, using a sequence of adjacency matrices. We investigate the empirical performance
of our method by using synthetic and real-world data.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding nonlinear dynamical systems (NLDSs) or com-
plex phenomena is a fundamental problem in various scientific
and industrial fields. Complex systems are broadly defined as
systems that comprise non-linearly interacting components (Boc-
caletti, Latora, Moreno, Chavez, & Hwang, 2006), in fields such
as sociology, epidemiology, neuroscience, and physics (e.g., Bull-
more & Sporns, 2009; Centola & Macy, 2007). As a method of
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obtaining a global modal description of NLDSs, operator- theoretic
approaches have attracted attention such as in applied math-
ematics, physics and machine learning. One of the approaches
is based on the composition operator (usually referred to as
the Koopman operator (Koopman, 1931; Mezić, 2005)), which
defines the time evolution of observation functions in a function
space. A strength of this approach is that the spectral analysis
of the operator can decompose the global property of NLDSs,
because the analysis of NLDSs can be lifted to a linear but infinite
dimensional regime. This approach can directly obtain dynamical
structures such as frequency with delay/growth rate and the
spatial coherences corresponding to the temporal information.
Among several estimation methods, one of the most popular
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algorithms for spectral analysis of the Koopman operator is dy-
namic mode decomposition (DMD) (Rowley, Mezić, Bagheri,
Schlatter, & Henningson, 2009; Schmid, 2010), of which ad-
vantage is to extract such a modal description of NLDSs from
data, unlike other unsupervised dimensionality reduction meth-
ods such as principal component analysis (PCA) for static data.
DMD has been successfully applied in many real-world prob-
lems, such as image processing, neuroscience, and system control
(e.g., Brunton, Johnson, Ojemann, & Kutz, 2016; Kutz, Fu, & Brun-
ton, 2016). In a machine learning community, several algorithmic
improvements have been accomplished by such as a formu-
lation with reproducing kernels and in a Bayesian framework
(e.g., Kawahara, 2016; Takeishi, Kawahara, Tabei and Yairi, 2017;
Takeishi, Kawahara and Yairi, 2017). However, since conventional
Koopman spectral analysis and DMDs are in principle formulated
based on the concatenation of scalar observables, it is not directly
applicable to data with dependent structures among observables,
which take, for example, the form of a sequence of graphs.

The motivation of this paper is to understand NLDSs with
dynamical structures among observables by extracting the low-
dimensional global dynamics among observables. To this end, we
develop a formulation of Koopman spectral analysis of NLDSs
with structures among observables and propose an estimation
algorithm for this problem. We first suppose that a sequence of
matrices representing the dependency among observables (such
as adjacency matrices of graphs) are observed as realizations
of structures representing the relation of vector-valued obser-
vation function. Then, we formulate the problem of estimating
the spectra of Koopman operators defined in reproducing kernel
Hilbert spaces (RKHSs) endowed with kernels for vector-valued
functions, called vector-valued RKHSs (vvRKHSs). Recently, there
has been an increasing interest in kernels for vvRKHSs dealing
with such as classification or regression problem with multiple
outputs (e.g., Álvarez, Rosasco, Lawrence, et al., 2012; Micchelli
& Pontil, 2005b and for the details, see Section 6). Thus, ad-
vantage or contribution of our method is that it can extract
and visualize the dynamical structures among observables by
incorporating the structure among variables in the vector-valued
observation function into the DMD algorithm, which can be useful
in understanding the fundamental dynamics behind spatiotem-
poral data with dependent structures. Second, we develop an
estimation procedure from data by reformulating Tensor-based
DMD (TDMD), which can compute DMD from tensor time-series
data (Klus, Gelß, Peitz, & Schütte, 2018) without breaking ten-
sor data structure (e.g., a sequence of adjacency matrices). We
propose a more directly and stably computable TDMD than the
previous algorithm.

Furthermore, as a special case of our method, we propose
the method named as Graph DMD, which is a numerical algo-
rithm for Koopman spectral analysis of graph dynamical systems
(GDSs). GDSs are defined as spatially distributed units that are
dynamically coupled according to the structure of a graph (Cliff,
Prokopenko, & Fitch, 2016; Mortveit & Reidys, 2001). In math-
ematics, GDSs have been broadly studied such as in cellular
automata (Mortveit & Reidys, 2007) and coupled NLDSs (Wu,
2005). Meanwhile, for graph sequence data, researchers have ba-
sically computed the graph (spatial) properties in each temporal
snapshot (e.g., Bullmore & Sporns, 2009; Centola & Macy, 2007) or
in a sliding window (e.g., Idé & Kashima, 2004) of the sequence
data (for the details, see Section 6). However, these approaches
would be difficult to extract the dynamical information directly
from graph sequence data. We consider that our approach will
solve this problem to understand the underlying global dynamics
of GDSs.

Finally, we investigate the performance of our method with
application to several synthetic and real-world datasets, including

multi-agent simulation and sharing-bike data. These have the
structures among observables, which represent, for example, the
relation between agents (such as distance) and the traffic volume
between locations, respectively.

The remainder of this paper is organized as follows. First,
in Section 2, we briefly review the background of Koopman
spectral analysis and DMD. Next, we describe the formulation in
vvRKHS in Section 3, and reformulate DMD in a tensor form to
estimate from data in Section 4. In Section 5, we propose Graph
DMD for the analysis of GDSs. In Section 6, we describe related
work. Finally, we show some experimental results using synthetic
and real-world data in Section 7, and conclude this paper in
Section 8.

2. Koopman spectral analysis and DMD

Here, we first briefly review Koopman spectral analysis, which
is the underlying theory for DMD, and then describe the basic
DMD procedure. First, we consider a NLDS: xt+1 = f (xt ), where
xt is the state vector in the state space M ⊂ Rp with time index
t ∈ T := N0 and f :M → M is a (typically, nonlinear) state-
transition function. The Koopman operator, which we denote by
K, is a linear operator acting on a scalar observation function
g:M→ C defined by

Kg = g ◦ f , (1)

where g ◦ f denotes the composition of g with f (Koopman,
1931). That is, it maps g to the new function g ◦ f . We assume
that K has only discrete spectra. Then, it generally performs an
eigenvalue decomposition: Kϕj(x) = λjϕj(x), where λj ∈ C
is the jth eigenvalue (called the Koopman eigenvalue) and ϕj is
the corresponding eigenfunction (called the Koopman eigenfunc-
tion). We denote the concatenation of scalar functions as g :=
[g1, . . . , gm]T. If each gj lies within the space spanned by the
eigenfunction ϕj, we can expand the vector-valued g:M →

Cm in terms of these eigenfunctions as g(x) =
∑
∞

j=1 ϕj(x)ψj,
where ψj is a set of vector coefficients called the Koopman modes.
Through the iterative applications of K, the following equation is
obtained:

g(xt ) = (g ◦ f ◦ · · · ◦ f  
t

) (x0) =
∞∑
j=1

λt
jϕj (x0)ψj. (2)

Therefore, λj characterizes the time evolution of the correspond-
ing Koopman mode ψj, i.e., the phase of λj determines its fre-
quency and the magnitude determines the growth rate of its
dynamics.

Among several possible methods to compute the above modal
decomposition from data, DMD (Rowley et al., 2009; Schmid,
2010) is the most popular algorithm, which estimates an approx-
imation of the decomposition in Eq. (2). Consider a finite-length
observation sequence y0, y1, . . . , yτ (∈ Cn), where y := g(xt ).
Let X = [y0, y1, . . . , yτ−1] and Y = [y1, y2, . . . , yτ ]. Then, DMD
basically approximates it by calculating the eigendecomposition
of matrix F = YX†, where X† is the pseudo-inverse of X .
The matrix F may be intractable to analyze directly when the
dimension is large. Therefore, in the popular implementation of
DMD such as exact DMD (Tu, Rowley, Luchtenburg, Brunton, &
Kutz, 2014), a rank-reduced representation F̂ based on singular-
value decomposition (SVD) is applied. That is, X ≈ UΣV ∗ and
F̂ = U∗FU = U∗YVΣ(−1), where ∗ is the conjugate transpose.
Thereafter, we perform eigendecomposition of F̂ to obtain the set
of the eigenvalues λj and eigenvectors wj. Then, we estimate the
Koopman modes in Eq. (2): ψj = λ

(−1)
j YVΣ(−1)wj, which is called

DMD modes.
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3. Koopman spectral analysis in vvRKHSs for extracting dy-
namical structure among observables

Since the existing DMD algorithms basically estimate the spec-
tra of Koopman operators defined in spaces of scalar observables,
dependencies among observables are not taken into consider-
ation. Therefore, they are in principle not applicable to ana-
lyze NLDSs with structure among observables. In this section,
we formulate our method by considering the Koopman spectral
analysis of such NLDSs in vvRKHSs endowed with kernels for
vector-valued functions.

First, let HK be the vvRKHS endowed with a symmetric pos-
itive semi-definite kernel matrix K :M ×M → Rm×m (Álvarez
et al., 2012). That is, HK is a Hilbert space of functions f ′:M→
Rm, such that for every c ∈ Rm and x ∈ M, K (x, x′)c as a func-
tion of x′ belongs to HK and, moreover, K has the reproducing
property⟨
f ′,K (·, x)c

⟩
K = f ′(x)T c, (3)

where ⟨·, ·⟩K is the inner product in HK .
In our formulation, we model the relation with a vector-valued

observation function g for Koopman spectral analysis of NLDSs
with structure among observables. Then, we assume that the
components of g follow a Gaussian process given by a covariance
kernel matrix. That is, the vector-valued observation function
g:M→ Rm follows the Gaussian distribution

g(x) ∼ N (µ(x),K (x, x)), (4)

where µ ∈ Rm is a vector whose components are the mean
functions µi(x) for x ∈ M ⊂ Rp and i = 1, . . . ,m, and K is the
above matrix-valued function. The entries K (x, x)i,j in the matrix
K (x, x) correspond to the covariances between the observables
gi(x) and gj(x) for i, j = 1, . . . ,m. In our following formulation in
the vvRKHS determined by K , again, it is necessary for K (x, x)
to be a symmetric positive semidefinite matrix. Practically, for
example, we can use positive semidefinite (scalar-valued) kernels
between observables as the components of K .

Based on the above setting, we consider Koopman spectral
analysis for NLDSs with structures among observables by ex-
tending the formulation of a scalar observation function of DMD
with reproducing kernels (Kawahara, 2016) to that of relations
within the vector-valued observable function in vvRKHSs (Álvarez
et al., 2012). To this end, we first assume that the vector-valued
observation function g is in the vvRKHS defined by K , i.e., g ∈ HK .
Then, the Koopman operator KK :HK → HK defined by KKg =
g ◦ f , like Eq. (1), is a linear operator in HK . Additionally, we
denote by φc :M→ HK the feature map, i.e., φc (x) = K (·, x)c for
any c ∈ Rm. According to Schrödl (2009), this is the second type
of the feature map in the vvRKHS which directly maps to a Hilbert
space HK and has been used in Evgeniou and Pontil (2004),
Micchelli and Pontil (2005a) and Evgeniou, Micchelli, and Pontil
(2005). Now, for every c , we have the following proposition:

Proposition 3.1. Assume g ∈ HK . Then, (KKg)(x) = (g ◦ f )(x),
which is in the case of the vector-valued observable in Eq. (1), equals
to the following:

(KK
∗φc )(x) = (φc ◦ f )(x) ∀x ∈M, ∀c ∈ Rm. (5)

Proof. Since KKg ∈ HK , we have, for any c ∈ Rm, KKg(x)⊤c =⟨
KKg,φc (x)

⟩
K =

⟨
g,K∗Kφc (x)

⟩
K for all x ∈ M. Similarly, g ◦

f (x)⊤c =
⟨
g,φc (f (x))

⟩
K because f (x) ∈ M. As a result, since

(KKg)(x) = (g ◦ f )(x), we obtain (KK
∗φc )(x) = (φc ◦ f )(x). □

The adjoint of the Koopman operator K∗K (also known as the
Perron–Frobenius operator) in this case acts as a linear operator

in the space spanned by features φc (x) for x ∈ M. Here, we
denote the eigendecomposition of K∗K by K∗Kϕj = λjϕj.

For the practical implementation of the spectral decompo-
sition of the linear operator, we usually need to project data
onto directions that are effective in capturing the properties of
data, like the standard DMD described in Section 2. In DMD
with reproducing kernels (Kawahara, 2016), a kernel principal
orthogonal direction is used for this purpose. However, such a
projection is not straightforward for the current problem be-
cause the principal directions are not defined analogously for
tensor data. Now, for a given finite time span [0, τ ], we define
M1 := [φc (x0), . . . ,φc (xτ−1)] and M2 := [φc (x1), . . . ,φc (xτ )].
Then, we adopt the projection onto some orthogonal directions
νj =

∑τ−1
t=0 αj,tφc (xt ) = M1αj for j = 1, . . . , p, where the

coefficients αj,t ∈ R and αj ∈ Rτ are computed based on a
tensor decomposition (described in detail in Section 4). Let U =
[ν1, . . . , νp] and U =M1α with the coefficient matrix α ∈ Rτ×p.
Since M2 = K∗KM1, the projection of K∗K onto the space spanned
by U is given as follows:

F̂ = U∗K∗KU = α
∗(M∗

1M2)α. (6)

Then, if we let F̂ = T̂
−1

Λ̂T̂ be the eigendecomposition of F̂ ,
we obtain p DMD modes as ψj = Ubj for j = 1, . . . , p, where

bj is the jth row of T̂
−1

. The diagonal matrix Λ̂ comprising the
eigenvalues represents the temporal evolution. To establish the
above, we show the following theorem:

Theorem 3.2. Assume that ϕj(x)⊤c =
⟨
κj,φc (x)

⟩
K for some κj ∈

HK and ∀x ∈ M. If κj is in the subspace spanned by νj, so that
κj = Uaj for some aj ∈ Cp and U = [ν1, . . . , νp], then aj is the left
eigenvector of F̂ with eigenvalue λj, and also we have

φc (x) =
p∑

j=1

(ϕj(x)
⊤c)ψj, (7)

where ψj = Ubj and bj is the right eigenvector of F̂ .

Proof. Since K∗Kϕj=λjϕj, we have
⟨
φc (f (x)), κj

⟩
K = λj

⟨
φc (x), κj

⟩
K .

Thus, from the assumption,⟨
φc (f (x)),Uaj

⟩
K = λj

⟨
φc (x),Uaj

⟩
K . (8)

By evaluating at x0, x1, . . . , xτ−1 and then stacking, we have
(Uaj)∗M2 = λj(Uaj)∗M1. If we multiply α from the right-hand
side, this gives

a∗j α
∗M∗

1M2α = λja∗j . (9)

Since α∗M∗

1M2α = F̂ , this means aj is the left eigenvector of
F̂ with eigenvalue λj. Let bj be the right eigenvector of F̂ with
eigenvalue λj and the corresponding left eigenvector aj. Assuming
these have been normalized so that a∗i bj = δij, then any vector
h ∈ Cp can be written as h =

∑p
j=1(a

∗

j h)bj. Applying this to
U∗φc (x) gives

U∗φc (x) =
p∑

j=1

(a∗j U
∗φc (x))bj =

p∑
j=1

(ϕj(x)
⊤c)bj. (10)

Since bj = U∗ψj, this proves Eq. (7). □

The assumptions in the theorem mean that the data are suf-
ficiently rich and thus a set of the orthogonal direction U gives
a good approximation of the representation with the eigenfunc-
tions of K∗K . As in the case of Eq. (2), by the iterative applications
of K∗K , we obtain

φc (xt ) =
p∑

j=1

λt
j (ϕj(x0)

⊤c)ψj. (11)
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Thus, this theorem gives the connection between the above
eigen-values / -vectors and the Koopman eigen-values /
-functions.

In summary, the formulation first needs the sequence of the
kernel matrices K (xt , xt ) for t = 0, . . . , τ and then obtains the
Koopman spectra of NLDSs with structures among observables by
the decomposition of the feature map φc = K (·, x)c , described
in Eq. (11). From the above claims in the vvRKHS, it is seem-
ingly necessary to give some c for φc (xt ) for its implementation.
However, we do not require to give c because we do not need
to directly compute φc = K (·, x)c but just need to compute
the realization of U from the observed data. Concretely, for an
implementation of the above analysis, we first regard the given
or calculated matrices as a realization of the structure of the
kernel matrices K (xt , xt ) (see Section 4). We denote the realized
matrices as At ∈ Rm×m for t = 0, . . . , τ or the tensor as A ∈
Rm×m×(τ+1). Second, we need to compute a projected matrix in
the space spanned by the columns of U (see 4.2 and Appendix
A for the relation), and then DMD solution F̂ ∈ Rp×p and DMD
modes ψj ∈ Cm×m for j = 1, . . . , p (see 4.3 and 4.4). In the next
section, we develop the procedure by reformulating TDMD for
computing these quantities from data.

4. Reformulated tensor-based DMD

Here, we reformulate TDMD by Klus et al. (2018) as an esti-
mation algorithm for the above formulation using the sequence
of kernel matrices K (xt , xt ) for t = 0, . . . , τ , i.e., to calcu-
late the above quantities without breaking the dependent struc-
ture among observables. We first review the tensor-train (TT)
format in Section 4.1, and then compute the projected ma-
trix and the compute pseudo-inverse of a tensor in Section 4.2.
Next, we reformulate TDMD (we call it reformulated TDMD) in
Section 4.3 and finally describe DMD for our problem, i.e., NLDSs
with structures among observables in Section 4.4. Note that
although TDMD is applicable for analyzing higher-order complex
dynamical systems, our problem considers a sequence of the
matrices A ∈ Rm×m×(τ+1) as an input tensor, which is a sequence
of the realization of the K (xt , xt )’s structure.

4.1. TT-format

In general, it is known that analyzing high-dimensional data
becomes infeasible due to the so-called curse of dimensionality.
This could be moderated by exploiting low-rank tensor approx-
imation approaches. Several tensor formats such as the canon-
ical format, Tucker format, and TT-format have been developed
for this purpose (see e.g., Grasedyck, Kressner, & Tobler, 2013).
Among these formats, the TT-format is known to be relatively
stable and scalable for high-order tensors compared with the
other formats (Oseledets, 2011).

Here, we review the TT-format. Let A ∈ Cn1×···×nd be an
order-d tensor, where nl denotes the dimensionality of the lth
mode for l = 1, . . . , d (called full-format). In TT-decomposition
(see Oseledets, 2011), A is decomposed into d core tensors A(l)

∈

Crl−1×nl×rl , where r0 = rd = 1. rl is called TT-rank, which controls
the complexity of TT decomposition. For an elementary expres-
sion, any element of A is given by Ai1,...,id =

∑r0
k0=1

. . .
∑rd

kd=1

A(1)
k0,i1,k1

·. . .·A(d)
kd−1,id,kd

, where the subscripts of the tensors denote

the indices. Moreover, for two vectors v ∈ Cn1 and w ∈ Cn2 , the
tensor product v⊗w ∈ Cn1×n2 is given by (v⊗w)i,j = (v ·w⊤)i,j =
vi · wj. Using the tensor product, the whole tensor can then be
represented as A =

∑r0
k0=1

. . .
∑rd

kd=1
A(1)

k0,:,k1
⊗ · · · ⊗ A(d)

kd−1,:,kd
,

where colons are used to indicate all components of the mode,
e.g., A(l)

ki−1,:,ki
∈ Cnl .

To describe the matricizations and vectorizations (also called
tensor unfoldings) for efficient computation, let Ai1,...,il,:,il+1...,id de-
note an nl-dimensional vector called the mode-l fiber, where 1 ≤
l ≤ d−1. For the two ordered subsets N ′ = {n1, . . . , nl} and N ′′ =
{nl+1, . . . , nd} of N = {n1, . . . , nd}, the matricization of A with

respect to N ′ and N ′′ is denoted by A

⏐⏐⏐⏐N ′′N ′ ∈ C(n1·...·nl)×(nl+1·...·nd),

which is defined by concatenating the mode-l fibers of A. In the
special case with N ′ = N and N ′′ = ∅, the vectorization of A is
given by vec(A) ∈ Cn1·...·nd .

4.2. Projected matrix and modified pseudo-inverse for TT-format

In this section, before reformulating the TDMD in TT-format,
we modify the computation of the pseudo-inverse of a tensor
in Klus et al. (2018) and then obtain the projected matrix in
the space spanned by the columns of U in Section 3. Note that
although our problem considers a sequence of matrices A ∈
Rm×m×(τ+1) as an input tensor, TDMD is applicable for analyzing
higher-order complex dynamical systems. For TDMD, consider τ

snapshots of d-dimensional tensor trains X ,Y ∈ Cn1×···×nd×τ ,
where X:,...,:,i+1 ∈ Cn1×···×nd for i = 0, . . . , τ − 1 and Y:,...,:,i for
i = 1, . . . , τ . Let r0, . . . , rd+1 and s0, . . . , sd+1 be the TT-ranks of
X and Y , respectively. Now, let X,Y ∈ Cn1·...·nd×τ be the specific
matricizations of X and Y , where we contract the dimensions
n1, . . . , nd such that every column of X and Y is the vectorization
of the corresponding τ = nd+1 snapshot, respectively.

To efficiently compute TDMD only with matrix products (with-
out any tensor products), we first perform TT-decomposition of X
and matricize to X as

X = MΣN , (12)

where
M =

(∑r0
k0=1
· · ·

∑rd−1
kd−1=1

X (1)
k0,:,k1

⊗ · · · ⊗ X (d)
kd−1,:,:

) ⏐⏐⏐⏐rdn1, . . . , nd
,

N =

(
X (d+1)
:,:,kd+1

) ⏐⏐⏐⏐τrd , and Σ is a diagonal matrix with singu-

lar values in its diagonal elements computed by the SVD of

X (d)

⏐⏐⏐⏐rdrd−1, nd
. N is equivalent to the last core X (d+1), which is

a matrix because rd+1 = kd+1 = 1. Note that this is similar
to SVD in the matrix form, but SVD and this matricization after
TT-decomposition are completely different. M ∈ Cn1···nd×rd com-
puted by the first d core of X is left-orthogonal1 due to the
procedure of TT-decomposition algorithm (Oseledets, 2011), and
reflects some part of tensor structure of A when folding in full-
format. In our problem for NLDSs with dependent structures
among observables, M = XN†Σ−1 ∈ Rm2

×rd for X ∈ Rm2
×τ works

as the projected matrix in the space spanned by the columns
of U = M1α in Section 3. For the details of the relation, see
Appendix A.

Next, we claim that the pseudo-inverse X† for the compu-
tations of the following TDMD is computed as shown in the
following proposition2:

1 In general, a matrix A is left-orthonormal if A∗A = I and right-orthonormal
if AA∗ = I .
2 The computation of the pseudo-inverse X† in Klus et al. (2018) is described

with the left and right-orthonormalization of the cores of X including QR
decompositions in a mathematically general way. However, when considering
TDMD (i.e., l = d − 1 and N being a matrix), the proposed algorithm with the
pseudo-inverse of N using SVD (without QR decomposition) is more directly
and stably computable than the previous algorithm. The difference in the
computational efficiency between them depends on the problem such as the
TT-ranks and dimensions of the tensor.
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Proposition 4.1. Assume that X ∈ Cn1·...·nd×τ matricized from X ∈
Cn1×···×nd×τ is decomposed as in Eq. (12). Then, the pseudo-inverse
X† is given by

X†
= N† Σ−1 M∗. (13)

Proof. Although M is left-orthogonal as mentioned above, the
last core N = X (d+1)

∈ Crd×nd+1 is not right-orthogonal, i.e., N ·
N∗ ̸= I . Then, we can use the pseudo-inverse matrix N†

∈

Cnd+1×rd , i.e., X†
= N† Σ−1 M∗. Since M∗ ·M = I and N · N†

= I ,
it follows that the pseudo-inverse X† satisfies the necessary and
sufficient conditions for the pseudo-inverse, i.e., it satisfies the
following four equations:

XX†X = M ΣN · N† Σ−1 M∗ ·M ΣN = X, (14)

X†XX†
= N† Σ−1 M∗ ·M ΣN · N† Σ−1 M∗ = X†, (15)

(XX†)∗ = (M M∗)∗ = M M∗ = XX†, (16)

(X†X)∗ = (N† N )∗ = N† N = X†X . (17)

For the fourth equation, we use the property of pseudo-inverse
(N† N )∗ = N† N . □

4.3. Reformulated TDMD

4.3.1. TDMD solution
Using similar matricizations of X , we can also represent the

tensor unfolding Y as a matrix product, i.e.,

Y =

⎛⎝ s0∑
l0=1

· · ·

sd−1∑
ld−1=1

Y (1)
l0,:,l1
⊗ · · · ⊗ Y (d)

ld−1,:,:

⎞⎠⏐⏐⏐⏐sd+1n1, . . . , nd

· Y (d+1)
⏐⏐⏐⏐τsd+1 = P Q . (18)

We abbreviate the indices of Y (d+1)
:,:,kd+1

as Y (d+1) because rd+1 =
kd+1 = 1. Note that we do not require any special property
of the tensor cores of Y . Combining the representations of X†

and Y and generalizing the basic DMD procedure in Section 2 to
the tensor form, we can express the rank-reduced DMD solution
F̂ ∈ Crd+1×rd+1 (equivalent to F̂ of Graph DMD in Section 3) as

F̂ = M∗Y · X†M = M∗ · P Q · N† Σ−1. (19)

To compute F̂ in Eq. (19) , we bypass this computational cost by
splitting Eq. (19) into different parts. First, we consider that in the
rank-reduced M∗ · P ∈ Rrd×sd , any entry is given by

(M∗ · P)i,j =
r0∑

k0=1

· · ·

rd−1∑
kd−1=1

s0∑
l0=1

· · ·

sd−1∑
ld−1=1

(
X (1)

k0,:,k1

)T

× Y (1)
l0,:,l1
· . . . ·

(
X (d)

kd−1,:,i

)T
Y (d)
ld−1,:,j. (20)

This is based on the following computation: vec(X )T · vec(Y) =
Πd

l=1

(
X (l)

)T
· Y (l). In this way, we can compute M∗ · P without

leaving the TT-format, and we only have to reshape certain con-
tractions of the TT-cores. This computation can be implemented
efficiently using Algorithm 4 from Oseledets (2011). The result
assumes that the TT-ranks of X and Y are small compared to the
entire state space of these tensors. Indeed, the tensor ranks rd and
sd are both bounded by the number of snapshots τ . Second, for
Q · N† in Eq. (19) , we simply obtain

Q · N†
= Y (d+1)

⏐⏐⏐⏐τsd ·
(
X (d+1)

⏐⏐⏐⏐τrd
)†

. (21)

In this computation, we do not need to convert any tensor prod-
ucts of the cores of X or Y , into full tensors during our calcula-
tions.

4.3.2. TDMD mode
Next, we consider the computation of the DMD modes of

F̂ . If λ1, . . . , λp are the eigenvalues of F̂ corresponding to the
eigenvectorsw1, . . . ,wp ∈ Crd+1 , then the vectorized DMDmodes
ϕ1, . . . ,ϕp ∈ Cn1·...·nd of F (as in Section 2) are given by ϕj =

(1/λj) · P Q · N† Σ−1 · wj, for j = 1, . . . , p. Tensor representation
Z ∈ Cn1×···×nd×p including all DMD modes is given by

Z =
s0∑

l0=1

· · ·

sd∑
ld=1

Y (1)
l0,:,l1
⊗· · ·⊗Y (d)

ld−1,:,ld
⊗

(
Q · N† Σ−1 ·W · Λ−1

)
ld,:,

(22)

again with vec(Z:,...,:,j) = ϕj and Λ is a diagonal matrix arranging
λ1, . . . , λp.

The overall algorithm of the reformulated TDMD is shown in
Algorithm 1. We can express the DMD modes using given tensor
trains X and Y , modifying just the last core. In this case, we
benefit from not leaving the TT-representations of X and Y . In
other words, the bottleneck of this algorithm regarding scalability
would be sequential SVDs in TT-decompositions of X and Y .

Algorithm 1 Reformulated Tensor-based DMD

1: Input: X ,Y ∈ Cn1·...·nd×τ

2: Output: dynamic mode tensor Z and eigenvalue matrix Λ

3: M , Σ, N ← matricized after decomposition of X ;
4: N†

← pseudo-inverse of N ;
5: P , Q ← matricized after decomposition of Y;
6: F̂ ← (M∗ · P)(Q · N†)Σ−1;
7: Λ,W ← eigendecomposition of F̂ ;
8: Z ←

∑s0
l0=1
· · ·

∑sd
ld=1

Y (1)
l0,:,l1

⊗ · · · ⊗ Y (d)
ld−1,:,ld

⊗(
Q · N† Σ−1 ·W · Λ−1

)
ld,:

;
9: return: Z , Λ;

4.4. DMD for NLDSs with structures among observables

In DMD for NLDSs with structures among observables, as a
special case of the above reformulated TDMD in 4.3, we use a
sequence of the matrices A ∈ Rm×m×(τ+1) as a sequence of
the realization of the K (xt , xt )’s structure for t = 0, . . . , τ in
reformulated TDMD, i.e., d = 2 and n1 = n2 = m. Input tensors
X and Y are created from A:,:,t and A:,:,t+1 for t = 0, . . . , τ − 1,
respectively. As a result, we obtain DMD modes ψj ∈ Cm×m as
in Section 3 by matricizing ϕj (or Z:,:,j) with eigenvalues λj. The
overall algorithm is shown in Algorithm 2.

Algorithm 2 DMD for NLDSs with structures among observables

1: Input: sequence of the matrices A ∈ Rm×m×(τ+1)

2: Output: dynamic mode matrix ψj ∈ Rm×m and eigenvalue λj

3: X ,Y ∈ Rm×m×τ
← make tensors from A;

4: M , Σ, N ← matricized after decomposition of X ;
5: N†

← pseudo-inverse of N ;
6: P , Q ← matricized after decomposition of Y;
7: F̂ ← (M∗ · P)(Q · N†)Σ−1;
8: Λ,W ← eigendecomposition of F̂ ;
9: Z ←

∑s0
l0=1

∑s1
l1=1

∑s2
l2=1

Y (1)
l0,:,l1

⊗ Y (2)
l1,:,l2

⊗(
Q · N† Σ−1 ·W · Λ−1

)
l2,:;

10: return: ψj = Z:,:,j, λj = Λj,j;

5. Graph DMD

In this section, as a special case of DMD for NLDSs with struc-
tures among observables in 4.4, we propose the method named
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as Graph DMD, which is a numerical algorithm for Koopman
spectral analysis of GDSs. According to the notation of Cliff et al.
(2016), we consider an autonomous discrete-time weighted and
undirected GDS defined as

G = (V, E, xt , yt , f , g,At ), (23)

where V = {V 1, . . . , Vm
} and E = {E1, . . . , E l

} are the vertex
and edge sets of a graph, respectively, fixed at each time t ∈ T.
xt ∈ M ⊂ Rp for the GDS and f :M → M is a (typically,
nonlinear) state-transition function (i.e., xt+1 = f (xt )). yt ∈ Rm

are observed values that correspond to vertices and are given by
yt := g(xt ), where g:M → Rm is a vector-valued observation
function. At ∈ Rm×m is an adjacency matrix, whose component
ai,j,t represents the weight on the edge between V i and V j at
each time t . For example, the weight represents some traffic
volume between the locations in networks or public transporta-
tions. Another example of the weights for undirected GDSs is
the relation between moving agents (such as distances) in multi-
agent systems (Couzin, Krause, James, Ruxton, & Franks, 2002;
Fujii et al., 2016).

In Graph DMD, we consider a sequence of adjacency matrices
At ∈ Rm×m for t = 0, . . . , τ or A ∈ Rm×m×(τ+1) as input. Here,
we assume that the adjacency matrix At observed at each time
is a realization of the structure of the kernel matrix K (xt , xt ) in
Section 3. That is, the weight of At is assumed to represent the
correlation between the observables. Again, in our formulation in
the vvRKHS determined by K (xt , xt ), it is necessary for K (xt , xt )
to be a symmetric positive semidefinite matrix (i.e., we consider
an undirected graph). For an implementation of Graph DMD,
we use a sequence of adjacency matrices A ∈ Rm×m×(τ+1) in
DMD for NLDSs with structures among observables. That is, we
only replace the sequence of the matrices in Algorithm 2 with a
sequence of adjacency matrices. As a result, similarly in Algorithm
2, we obtain DMD modes ψj ∈ Cm×m with eigenvalues λj.

6. Relation to previous works

6.1. Dynamic mode decomposition

Spectral analysis (or decomposition) for analyzing dynam-
ical systems is a popular approach aimed at extracting low-
dimensional dynamics from data. DMD, originally proposed in
fluid physics (Rowley et al., 2009; Schmid, 2010), has recently
attracted attention also in other areas of science and engineering,
including analysis of power systems (Susuki & Mezić, 2014),
epidemiology (Proctor & Eckhoff, 2015), neuroscience (Brunton
et al., 2016), image processing (Kutz et al., 2016; Takeishi, Kawa-
hara, & Yairi, 2017a), controlled systems (Proctor, Brunton, &
Kutz, 2016), and human behaviors (Fujii, Inaba, & Kawahara,
2017; Fujii, Kawasaki, Inaba, & Kawahara, 2018; Fujii, Takeishi,
Kibushi, Kouzaki, & Kawahara, 2019). Moreover, there are several
algorithmic variants to overcome the problem of the original
DMD such as the use of nonlinear basis functions (Williams,
Kevrekidis, & Rowley, 2015), a formulation in a reproducing ker-
nel Hilbert space (Kawahara, 2016), in a supervised learning
framework via multitask learning (Fujii & Kawahara, 2019), in
a Bayesian framework (Takeishi, Kawahara et al., 2017), and
using a neural network (Takeishi, Kawahara, & Yairi, 2017b).
For interconnected systems, e.g., Susuki and Mezić (2011) com-
puted Koopman modes of coupled swing dynamics in power
systems, and Heersink, Warren, and Hoffmann (2017) proposed
DMD for (simulated) interconnected control systems, which ex-
tends DMD with control (Proctor et al., 2016). Note that these are
basically formulated without considering the structures among
observables unlike our formulation described in this paper.

6.2. Vector-valued RKHSs

RKHSs of vector-valued function (vvRKHS), endowed with a
matrix-valued or operator-valued kernel (Caponnetto, Micchelli,
Pontil, & Ying, 2008), have attracted an increasing interest as the
methods to deal with such as classification or regression problem
with multiple outputs (e.g., Álvarez et al., 2012; Micchelli & Pontil,
2005b). In real-world problems, this approach has applied to such
as image processing (Quang, Kang, & Le, 2010) and medical treat-
ment effects (Alaa & van der Schaar, 2017). Gaussian processes
for vector-valued functions have also been formulated using the
covariance kernel matrix (Álvarez et al., 2012). We first formu-
lated the modal decomposition methods in the vvRKHS with the
assumption that the vector-valued observable follows Gaussian
process. Other researchers performed spatiotemporal pattern ex-
traction by spectral analysis of vector-valued observables using
operator-valued kernel (Giannakis, Ourmazd, Slawinska, & Zhao,
2017), but did not formulate in vvRKHSs and directly extract
the dynamical information about the dependent structure among
observables.

6.3. Other algorithms for graph data

For signal processing of a graph, researchers have basically
examined the graph property in the graph (spatial) domain such
as using graph Laplacians (e.g., Chung, 1997), graph Fourier trans-
forms (e.g., Taubin, 1995), and graph convolutional networks
(e.g., Defferrard, Bresson, & Vandergheynst, 2016). Graph Lapla-
cians and other extensions have been also used for regulariza-
tion by utilizing data structures (e.g., Liu, Zha, Wang, Lu, & Tao,
2016). For the graph sequence data in several scientific fields (see
Section 1), various analyses have been examined such as using
topological variables (Bullmore & Sporns, 2009) and objective
variables in simulation (Centola & Macy, 2007; Kuhlman et al.,
2011) in each snapshot of the graph time series, or performed
graph abnormality detection (Idé & Kashima, 2004) with the
temporal sliding windows of the time series. A few methods have
been directly applied to the graph time series such as using graph
convolutional networks (e.g., Seo, Defferrard, Vandergheynst, &
Bresson, 2017). Meanwhile, our method has advantages to di-
rectly extract the underlying low-dimensional dynamics of GDSs.

7. Experimental results

We conducted experiments to investigate the empirical per-
formance of our method (for clarity, we called it Graph DMD
in this section) using synthetic data in Section 7.1. Then, we
examined the applications to extract and visualize specific spa-
tiotemporal dynamics in a real-world bike-sharing system data
in Section 7.2 and in fish-schooling simulation data as an ex-
ample of unknown global dynamics in Section 7.3. Note that,
as mentioned in Section 6, most of the conventional methods
for a graph have basically extracted the graph property in the
graph (spatial) domain. Meanwhile, our method directly extracts
the underlying low-dimensional dynamics among observables,
which cannot be estimated by these methods. Therefore, we did
not compare conventional methods for a graph but compare the
conventional DMD algorithms with our method.

7.1. Synthetic data

We first validated the performance of our method to extract
the dynamical information on synthetic data. We generated a
sequence of noisy adjacency matrix series At ∈ RD×D using the
following equations:

At = 0.99tAm1 + 0.9tAm2 + et , (24)
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Fig. 1. Two spatial DMD modes for two temporal modes estimated by each method. (a) and (d): ground truth. (b) and (e): results of exact DMD. (c) and (f): results
of Graph DMD.

where Am1 ,Am2 ∈ RD×D (and At for every t) are the adjacency
matrices shown in Fig. 1a and d, respectively. Black and white
indicate lower and higher values, respectively. D was set to 64
and 256 for examining the effect of data dimension (Fig. 1 is
for D = 64). Each element of et ∈ RD×D is independently and
identically sampled from a zero-mean Gaussian with variance
1e−02. In this case, the true spatial dynamic modes are Am1 and
Am2 , with the corresponding DMD eigenvalues 0.99 and 0.9 (mode
1 and mode 2), respectively. We here estimated the spatial and
temporal modes from noisy data using our method (Graph DMD)
and the exact DMD (Tu et al., 2014) as a baseline (described in
Section 2). In Graph DMD (or reformulated Tensor-based DMD),
TT-decomposition parameter ε (i.e., the tolerance in the succes-
sive SVD) is critical for estimating a few DMD mode such as in
this case. The estimation performances are computed using the
average values of 10 tasks.

The estimation results are shown in Fig. 1 and Table 1. The
effect of the estimation errors for the two leading eigenvalue was
evaluated by the relative errors defined by ∆|λ| = |λ− λ̃|/|λ|,
where λ is the estimated eigenvalue and λ̃ is the ground truth
of the eigenvalues (0.99 and 0.9 for modes 1 and 2, respectively).
Our proposed method with ε = 1e−01 was more accurate than
that with exact DMD. Note that in this experiment, the result
of our method was the same as exact DMD when ε ≤ 1e−02
and our method extracted only one mode (i.e. one eigenvalue)
when ε > 1e−01. With respect to the size effect of the adjacency
matrix, the larger the size, the higher is the estimation error
because of the larger amount of noise. For the two leading spatial
DMD modes, our method with ε = 1e−02 decreased more noise
(especially in Fig. 1f) than the exact DMD shown in Fig. 1e (the
results of our method with ε = 1e−02 are the same as those for
the exact DMD). In addition, we confirmed that there were almost
no differences in the eigenvalues between Graph DMD and the
original TDMD (Klus et al., 2018) (< 1e−12 for all eigenvalues).

7.2. Bike-sharing data

One of the direct applications of our method is to extract
the dynamical structure among observables. In some real-world
datasets, we can use prior knowledge about the dynamics such
as biological rhythms (e.g., a day, month, and year). Then, our
method can extract the spatial (e.g., graph) coherent structure
for the focusing dynamics (e.g., rhythm or frequency). Here, we

Table 1
Estimation error of the two leading DMD eigenvalue for the numerical example.
The entries show the relative errors ∆|λ| for different values of ε and D.
∆|λ| Size 64 × 64 Size 256 × 256

Mode 1 Mode 2 Mode 1 Mode 2

DMD 1.49e−03 9.04e−03 1.85e−02 4.05e−01
ε = 1e−02 1.49e−03 9.04e−03 1.85e−02 4.05e−01
ε = 1e−01 9.33e−04 6.15e−03 1.85e−02 3.74e−01

extracted and illustrated graph (spatial) DMD modes with real-
world bike-sharing system data. The bike-sharing data consisted
of the numbers of bikes returned from one station to another in
an hour in Washington D.C.3 We collected a sum of the numbers
of bikes transported between the two different stations for both
directions for use as an undirected graph series. We selected
14 days from 2nd Sunday of every month of 2014 for 348 bike
stations, and constructed the sequence of adjacency matrices X ∈
R348×348×336. We consider that the relation between locations is
stronger as the number of bikes increases. In this experiment,
to obtain the smooth adjacency matrix series to extract dynamic
properties, we summed up 14 days of data for every month and
perform 12-point (i.e., half day) moving average. Fig. 2a shows an
example of the preprocessed number of bikes between Lincoln
memorial and three stations with a maximal number of bikes
moving from/to Lincoln memorial. These seemed to be coherent
and cycled at daily and weekly cycles.

Fig. 2b shows the eigenvalues estimated by Graph DMD. We
confirm that most eigenvalues are on the unit circle, indicating
that the dynamics were almost oscillators. Among these eigen-
values, we focused on the specific temporal modes of the traffic
such as daily and weekly periodicity (Takeuchi, Kawahara, &
Iwata, 2017), i.e., we selected ω = |Im(log(λ))|/∆t/(2π ) =
{1/24, 1/168}, where λ is Graph DMD eigenvalue (∆t = 1
[hour]).

Fig. 2c and d shows the spatial (graph) pattern of the DMD
mode for approximately ω = 1/24 and ω = 1/168 on the bike
station map, respectively. Although the bike transportation near
Lincoln memorial (left circle in Fig. 2c and d) shows a stronger
spectrum for both daily and weekly periodicity, the bike trans-
portation in a downtown area near Union Station (right circle in

3 https://www.capitalbikeshare.com/.

https://www.capitalbikeshare.com/
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Fig. 2. Temporal and spatial modes of Graph DMD on the bike-sharing data of Washington D.C. (a) an example of the number of bikes between Lincoln memorial
and three stations with a maximal number of bikes moving from/to Lincoln memorial. (b) a result of DMD eigenvalue. The blue square and red triangle indicate
eigenvalues of approximately ω = 1/24 and ω = 1/168, respectively. (c) and (d): Graphical representation of the amplitude of spatial DMD modes in ω = 1/24
and ω = 1/168, respectively. The left and right circles indicate the Lincoln Memorial and Columbus Circle/Union Station, respectively. Lower time series in (c) and
(d) are examples of the extracted temporal dynamics corresponding to the above spatial modes (visualized spatial modes are averaged among multiple modes). For
improving the visibility, we used only an eigenvalue and set initial values 0 and 1 for (c) and (d), respectively.

Fig. 2c and d) for weekly periodicity shows a stronger spectrum
than that for daily periodicity.

Overall, our method can extract the different spatial (graph)
modes for specific temporal modes based on the dynamical struc-
ture. Note that in the formulation (again, in functional space),
we also assume that the covariance matrix K is a symmetric
positive semi-definite matrix-valued function. Numerically, how-
ever, as is the case of real-world data, we did not assume that
the (symmetric) adjacency matrix At is positive semi-definite.
In Appendix B, we proposed the alternative to modify them
to positive semi-definite matrices (the results were similar to
Fig. 2).

7.3. Fish-schooling model

Next, we evaluated our method using a example with un-
known global dynamics, because in some real-world (especially
biological) data, the true global spatiotemporal structure is some-
times unknown (Fujii et al., 2018; Hojo, Fujii, Inaba, Motoyasu,
& Kawahara, 2018). For evaluation, here we used well-known
collective motion models (Vicsek, Czirók, Ben-Jacob, Cohen, &
Shochet, 1995) with simple local rules to generate multiple dis-
tinct group behavioral patterns (Fig. 3a): swarm, torus, and paral-
lel behavioral shapes. The detailed configuration and simulation
of the experiments are described in Appendix C and D, respec-
tively. We used Gaussian kernels to create the sequences of

adjacency matrices using inter-agent distance (for details, see
Appendix E) because the local rules were applied based on the
distance. First, the results in the temporal DMD mode, interpo-
lating the discrete frequency spectra, exhibit a relatively wide
spectrum for the swarm (Fig. 3b), a narrow spectrum for the torus
(Fig. 3e) and parallel (Fig. 3g). Among these spectra, we focused
on characteristic low- (0–2 Hz) and high-frequency (2–4 Hz)
modes. The spectra in the swarm (Fig. 3c,d) and torus (Fig. 3f)
show relatively stronger spectra nearer individuals, compared
with that in the parallel (Fig. 3h). Thus, our method can visualize
the observed interaction behaviors.

Although a direct and important application of Graph DMD
is the extraction of the dynamical information for GDS, it can
also perform embedding and recognition of GDSs using extracted
features based on the dynamical structure. For embedding the
distance matrix with DMD modes such as using multidimensional
scaling (MDS), the components of the distance matrix depend on
the problem. In this experiment, we compute the distance matrix
between the temporal frequency modes by the alignment of the
number of dimensions from larger frequencies, because of the
results shown in Fig. 3b,e,g. As comparable methods to extract
dynamical information, we compared the result of our method
with those of reformulated TDMD using the Cartesian coordinates
and exact DMD breaking the tensor data structure (for details,
see Appendix E). In Fig. 3i, our method apparently distinguished
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Fig. 3. Results with fish-schooling simulations. (a) Three different behavioral shapes. Temporal frequency (b,e,g) and spatial DMD spectra in low (c, f, h) and in high
frequency mode (d) are shown. (i) Embedding with distance matrix of three methods. Symbols are given in (a).

the three types whereas reformulated TDMD and exact DMD
did not. We quantitatively evaluated the classification error with
k-nearest neighbor classifier (k = 3) for simplicity. We used 45
sequences in total and computed averaged 3-fold cross-validation
error. The classification error in Graph DMD (0.022) was smaller
than those in TDMD (0.311) and exact DMD (0.511).

8. Conclusions

In this paper, we formulated Koopman spectral analysis for
NLDSs with structures among observable and proposed an esti-
mation algorithm for performing it with a given sequence of data
matrix with dependent structures among observables, which can
be useful for understanding the latent global dynamics under-
lying such NLDSs from the available data. To this end, we first
formulated the problem of estimating the spectra of Koopman
operator defined in vvRKHSs to incorporate the structure among
observables, and then developed a procedure for applying this to
the analysis of such NLDSs by reformulating Tensor-based DMD.
As a special case of our method, we proposed the method named
as Graph DMD, which is a numerical algorithm for Koopman
spectral analysis of graph dynamical systems, using a sequence of
adjacency matrices. We further considered applications using our
method, which were empirically illustrated using both synthetic
and real-world datasets.
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