
ConTextTab: A Semantics-Aware Tabular In-Context
Learner

Marco Spinaci∗1 Marek Polewczyk∗2 Maximilian Schambach∗2 Sam Thelin2

1SAP France 2SAP SE
{firstname.lastname}@sap.com

Abstract

Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) per-
formance on several tabular prediction tasks. Previously restricted to classification
problems on small tables, recent advances such as TabPFN [18] and TabICL [30]
have extended its use to larger datasets. Although current table-native ICL archi-
tectures are architecturally efficient and well-adapted to tabular data structures,
their exclusive training on synthetic data limits their ability to fully leverage the
rich semantics and world knowledge contained in real-world tabular data. At the
other end of the spectrum, tabular ICL models based on pretrained large language
models such as TabuLa-8B [12] integrate deep semantic understanding and world
knowledge but are only able to make use of a small amount of context due to
inherent architectural limitations. With the aim to combine the best of both these
worlds, we introduce ConTextTab, integrating semantic understanding and align-
ment into a table-native ICL framework. By employing specialized embeddings for
different data modalities and by training on large-scale real-world tabular data, our
model is competitive with SOTA across a broad set of benchmarks while setting
a new standard on the semantically rich CARTE benchmark. Code and model
checkpoints are available at: https://github.com/SAP-samples/contexttab.

1 Introduction

Tables with information spread across rows and columns remain a predominant data format in many
real-world applications [3], making their understanding through machine learning algorithms critical.
Despite the great success of deep learning approaches in natural language processing and computer
vision, leveraging large amounts of pretraining data, conventional machine learning methods such
as gradient boosted trees and their variants remain the predominant state-of-the-art (SOTA) across
tabular prediction benchmarks. Recently, however, applying the in-context learning (ICL) paradigm
to tabular prediction tasks has shown promising results by enabling pretraining of deep learning
models across a large set of heterogeneous tables, constituting a new SOTA on small to medium
tabular prediction tasks [18]. In this setting, predicting a target value y based on the input features x
of a row in a table T additionally uses further rows from T (the context), including their target values.
This enables the model to adapt to new, unseen prediction problems at inference time, removing the
need for task-specific fine-tuning.

This approach was pioneered by the transformer-based TabPFN [17]. Pretrained on large amounts
of synthetically generated classification tasks, its latest incarnation TabPFNv2 [18] produces SOTA
results on tabular datasets with up to 10 000 samples for both classification and regression tasks. In
recent work, TabICL [30] extends the success story of this approach to even larger datasets, using
special tabular embedding modules improving on the quadratic scaling in both the number of features
and rows present in the TabPFN architecture.

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/SAP-samples/contexttab

Common to both TabPFN and TabICL is that they are trained entirely on synthetically generated
numerical data, with categorical features produced by an indexing procedure. While using synthetic
data has many advantages, in particular its diversity at scale, a consequence is that the data does not
contain any semantically meaningful values as found in real-world applications, both in the form of
column names, and categorical or free-text entries. Furthermore, such data contains no additional
data types such as times or dates that are abundant in practice. Consequently, these models do not
utilize such information in a semantically meaningful way even when it is present at inference. In
particular, column names are not used in either TabPFN or TabICL, and categorical features are
encoded via one-hot or ordinal encoding disregarding any underlying semantics. We argue that
semantic understanding can be captured by training on a large number of real-world tabular datasets.
A primary example of this philosophy is TabuLa-8B [12], turning the pretrained large-language model
(LLM) Llama 3-8B [7] into a tabular ICL model by fine-tuning it on around 3 million tables of the T4
dataset proposed therein. However, utilizing pretrained LLMs for tabular tasks has several limitations:
Most importantly, textual serialization and tokenization of the input table is not token efficient,
effectively limiting the maximum context length that can be processed. For example, TabuLa-8B
operates on a maximum of 32 context rows. Furthermore, the tokenization schema and autoregressive
nature of LLMs are not adapted to the tabular structure, resulting in a linear non-uniform token
sequence, as cell values can be tokenized into different amounts of tokens, losing the 2D structure of
the underlying data. Finally, the serialization and autoregressive processing result in an architecture
that is neither row nor column permutation invariant – a property often desirable for tabular data [35].

Aiming to bridge these approaches, we propose a table-native ICL model trained on the real-world
T4 dataset [12], using embeddings tailored to different data modalities, in particular incorporating
semantic embeddings of column names and categorical values. The resulting model is competitive
to existing table-native ICL approaches across a range of tabular prediction benchmarks (OpenML-
CC18 [1], OpenML-CTR23 [11], TALENT [40], and TabReD [32]), and achieves a new SOTA for
the semantically rich CARTE benchmark [23], in particular in the low-data regime.

2 Related Work

Tabular deep learning: Prediction on tabular data has traditionally been dominated by decision tree
algorithms, particularly boosted variants like XGBoost [2], LightGBM [22], and CatBoost [29]. These
models deliver strong performance but require separate training for each dataset and cannot leverage
pretraining. Hence, much work has been done to transfer the success of deep learning methods
and general pretraining to the tabular setting. Early examples include the FT-Transformer [15] and
Xtab [43], whereas more recent approaches have shown consistently good performance overtaking
boosted trees, for example TabR [14], RealMLP [19], CARTE [23], TabM [13], or ModernNCA [41].

In-context learning on tabular data: TabPFN [17] broke the long-standing dominance of boosted
trees on small classification tasks, outperforming them by using row-level ICL. Pretrained on a large
amount of synthetic tabular data, it generalizes to new tasks at inference time without fine-tuning or
hyperparameter optimization. A recent variant, TabDPT [25], showed that equally excellent results
can be achieved by training on real-world data using similarity-based retrieval for the context examples
– an idea previously investigated in the TabR approach [14] – and further unlocked regression in this
setting. Generalizing the row-based encoding, cell-based ICL introduced with TabPFNv21 [18] and
utilized also by TabICL [30] extended this success to larger datasets with up to 10 000 and more
samples, even outperforming SOTA AutoML solutions such as AutoGluon [9] on certain benchmarks.

Semantics and real data: Capturing the rich semantics of real-world tabular datasets is a desirable
property of a tabular foundation model, enabling the transfer of world knowledge across prediction
tasks in addition to statistical patterns. The CARTE [23] architecture enables pretraining across
a variety of real-world sources while capturing table semantics. It achieves SOTA results on the
semantically rich CARTE benchmark, although it requires task-specific fine-tuning.

Modern LLMs have both deep semantic understanding and extensive world knowledge. Several
works approach tabular ICL by tuning LLMs on tabular tasks, e.g. TabLLM [16], LIFT [6], or
TabuLa-8B [12]. In particular, the works by Gardner et al. [12] are note-worthy for curating the T4
dataset, containing roughly 3 M tables extracted and processed from the TabLib collection [8] and for
its excellent results in the very low data-regime.

1In the following, we will focus solely on TabPFNv2 and refer to it simply as TabPFN.

2

16/8/2024

Acquisition date

1792.00

Price ($)

Laptop

Description

TRUE

Received

2D layer (xn)

Regression lossClassification loss

Column embeddings

Date embeddings

Numerical embeddings

Text embeddings
FC FC

Cross-column attention Cross-row attention

Context rows

Query rows

Figure 1: Our proposed model architecture illustrating the integration of data type-specific embed-
dings, an interleaved attention backbone, and customized output heads.

3 Method

To overcome the aforementioned limitations of existing table-native ICL methods and bridge the gap
to LLM-based ones, we propose ConTextTab, a semantics-aware table-native ICL model. To this end,
we perform several key modifications to the TabPFN architecture and utilize large-scale pretraining
on real-world data. An overview of our proposed architecture is given in Figure 1.

3.1 Encoding

We encode data differently depending on its modality – i.e. text, date, or numeric type. Column
headers are also encoded, playing the role of positional encodings as used in TabPFN or TabICL.

Text: We transform each text cell to an embedding vector using a pretrained text embedding model.
Note that we apply this to both free text columns as well as categorical columns, which can then
retain the meaning in their labels. Any off-the-shelf embedding model can be used for this purpose –
e.g. many are available based on the BERT architecture [5]. As many values have to be embedded
for each table, there is a natural trade-off between accuracy and speed. We settle for a comparably
small and fast model such as all-MiniLM-L6-v2 [20, 37], since the amount of semantic meaning it
captures is already much richer than conventional categorical encodings, and we defer to Section 5.1
for an experimental ablation. Since the embeddings are potentially of a different dimension than the
target embedding dimension d, we apply a learnable linear layer to the text embeddings.

Date: In order to endow our model with knowledge of both the relative meaning of a dates (e.g.
being able to compare two dates) and special dates (e.g. recurring holidays), we embed each of
the numbers representing day, month, and year separately and sum the three resulting vectors. In
particular, this is more token efficient than encoding dates into multiple features as is common in
established preprocessors such as the one used by AutoGluon.

Numerical: As numbers do not contain semantic meaning beyond their value, we apply a one-
dimensional encoding. To make this procedure more robust during training, first, we clip columns
between the 2% and 98% quantiles of the distribution. Second, we scale them to have zero mean
and unit variance as is common. By Chebyshev’s inequality, this bounds resulting values to the
interval (−7.1, 7.1), thus avoiding exploding gradients during training. Finally, the resulting number
is multiplied by a learnable vector and a bias is added. If the original value was NaN, 0 is used
instead, so the bias works as an “is-NaN” flag. An alternative embedding scheme is described in 3.4.

Column headers: We embed column headers with the same model used for text cells. The result is
passed through a separate learnable linear layer to map to the correct target dimension and summed
with the cell embedding.

After summation, the embeddings are normalized via layer normalization. Note that all the above
embeddings are fully equivariant under permutations of either rows or columns. This equivariance
makes the predictions more reproducible and robust and eliminates some of the need (such as the

3

mapping of category to ID, or of column to ID) for bagging in models such as TabPFN. Semantic
embeddings of cell values have been previously investigated in other works [38, 39, 23, 33], however,
details of how the information is consumed differ in each implementation.

3.2 Backbone

We leave the TabPFN architecture mostly unchanged, with alternating “horizontal” (cross-column)
and “vertical” (cross-row) self-attention transformer layers. In cross-column attention, each row is
considered as a different batch element, and conversely. Following TabPFN, cross-column attention
has no masking, while cross-row attention is masked so that each row can only attend to the provided
context. To increase the modularity of our code, the feedforward MLP block of the transformer
encoder is repeated after each self-attention block so that “horizontal” and “vertical” blocks have the
same structure. For sizing, we use the nomenclature popularized by BERT, e.g. calling “base” the
variant with 12 layers and a hidden dimension of 768. However, the real number of (non-embedding)
weights is twice that of a BERT model, due to the presence of both “horizontal” and “vertical” layers.

Model weights can be optionally shared between each instance of the transformer block, consisting of
two interleaved attention layers. Such an architecture can be interpreted as a recurrent neural network,
unrolled in depth rather than in time. Such an iterative structure results in parameter efficiency and
the possibility of stacking more blocks in comparison to the traditional approach. Empirically, we
observed that sharing weights did not affect model performance and thus we use weight sharing as
the default option for our model in the following.

3.3 Decoding

Classification: We apply a standard cross-entropy loss after an MLP with at least as large an output
dimension as the number of classes. This, however, imposes two limitations. First, the number of
classes seen in pretraining cannot be exceeded at inference, without resorting to suboptimal schemas
such as hierarchical classification, as used in TabPFN’s many-class extension, TabDPT, or TabICL.
Secondly, it prevents us from using the semantic value of the class label. In fact, for the model to
know what, say, class “0” means, it needs to build an a priori knowledge of that class ID. Therefore,
we must create an additional special input encoding, only for the target column, in addition to the
ones described in Section 3.1. Even though this breaks equivariance under permutation, we retain it
as we found it to be effective in the most common scenario of few-classes classification.

Regression: The model predicts the floating-point value of the target, clipped and normalized as
described in Section 3.1. Empirically, we have found this simple schema to work well. During
training, an L2 loss is applied, and during inference, only the inverse transformation of normalization
is applied to the prediction.

3.4 Alternative architectures

Number encoding and decoding via binning: Encoding – soft binning. We split the numbers
into bins defined via quantiles to ensure uniform distribution. In order not to lose any fine-grained
information while keeping the number of bins limited, we use soft binning: each of the, say n, bins is
associated with a quantile {qi}1,...,n of order 2i−1

2n . Then, any point x ∈ [q1, qn] is encoded via the
linear combination λvi + (1 − λ)vi+1, where x = λqi + (1 − λ)qi+1, 0 ≤ λ ≤ 1, and v1, . . . , vn
are learnable vectors. Anything outside that interval is mapped to either v1 or vn.

Decoding – bin averaging. The regression is converted to a classification task for the bin it belongs
to. During training, cross-entropy loss is applied with hard labels. At prediction time, this provides a
probability distribution across all bins, (p1, . . . , pn); the prediction is then given by p1q1+ · · ·+pnqn.

Supervised clustering head: We introduce an alternative method to perform classification that has
the advantage of retaining semantic meaning not only for features but also for labels. As further
benefits, full equivariance is preserved, without the need to map classes to IDs, and the limitation
on the number of classes supported for prediction is lifted, improving upon the constraint currently
present in many tabular ICL approaches such as TabPFN, TabDPT, or TabICL. For this, we take
inspiration from Polewczyk and Spinaci [28]: For each row, the final output corresponding to the
target column is mapped by a two-layer MLP to a vector x. We then build a matrix of shape
(nquery, ncontext) by computing the cosine similarities between these vectors xi, xj for each query

4

row i and context row j. During training, this is compared against the adjacency matrix with value
1 if two rows belong to the same class, and 0 otherwise: We compute the element-wise binary
cross-entropy loss between this adjacency matrix’s entries and the clipped cosine similarities. That is,
if xi is the vector from above for row i and ci is its class, then the loss is given by

Loss = −
∑

i∈query
j∈context

log(sij)δci=cj + log(1− sij)δci ̸=cj , sij = clip
(xi · xj

∥xi∥∥xj∥
, ε, 1− ε

)
(1)

including a small margin ε > 0 for numerical stability. In this way, rows in the same class are pushed
to similar embeddings, while rows in different classes can be either opposite or orthogonal. This
enables the use of the same semantic-preserving text encoding for the target class of context rows
as used for column names and input features, while also supporting an arbitrary number of target
classes. A possible use case for this scenario is a situation with many target classes with very few
rows per class, allowing extraction of information from semantically similar target classes.

Induced Set Attention Blocks: One of the main limitations of the standard multi-head attention
is its quadratic complexity. While memory can be effectively compressed to linear [31, 4], that is
not the case for runtime. This poses a significant challenge when dealing with large tables. Taking
inspiration from [24, 21, 30], we experiment with methods to handle larger context more efficiently.

Our proposed architecture replaces some of the multihead attention blocks within TabPFN with ISAB
blocks from [24]. Adopting the notation from [24], let MAB(X,Y) denote the standard multihead
attention block from the transformer architecture, where X represents the queries and Y serves
as both the keys and values. This is followed by a feedforward block, a skip connection, layer
normalization, and ultimately an intermediate block. Let I be so-called inducing points [24], an
additional set of parameters of shape (n, d) for an arbitrary n, with d denoting the hidden dimension,
and define

ISAB(C ++Q) = MAB
(
C ++Q,MAB(I ++Q,C ++Q)

)
, (2)

where C and Q denote context and query rows, respectively, and ++ denotes concatenation. In each
attention computation, we apply masking so that only context and inducing vectors are attended to.
For a detailed overview of the architecture, refer to Appendix Figure 11.

Since tables can have a very large number of rows but rarely exceed a few hundred columns, we apply
the ISAB block only to cross-row attention. In our architecture, we only use the ISAB block for the
first m blocks (e.g., m = 3), followed by one MAB(I ++Q,C ++Q) block, and finally use standard
attention for the following layers. This both improves training stability and reduces inference time
because the corresponding attention has a bounded number of tokens: MAB(I ++Q, I ++Q).

4 Experimental Setup

4.1 Training and inference

For pretraining, we use the T4 dataset [12]. We discard tables with fewer than 150 rows, which
leaves 2.18M tables with a median of 750 rows and 9 columns. We randomly select 1000 rows, then
between 50 and 900 rows as query, and use the rest as context. Subsequently, we randomly select one
target column, excluding all date columns, numerical columns with more than 50% NaN values, and
other columns having more than 20% of unique values. Finally, we up-sample non-numeric columns
to have roughly the same proportion of regression and classification tasks. We train each model for
between 4 and 10 million steps (i.e., 2 to 5 epochs) until convergence. We use a micro batch size
of 1 and accumulate gradients to simulate a batch size of 256 (or 128 for smaller models of “mini”
size). To improve stability, we employ gradient clipping and the AdamW optimizer with a maximum
learning rate of 10−4, reached after a linear warm-up phase of 1000 gradient updates. Under this
setup, we train a “base” sized model on a single H100 GPU, reaching a throughput of roughly 10
tables/s. Hence, full training takes between 4 and 12 days depending on the number of steps. Using
the default parameters n = 12, d = 768, dff = 3072 results in a total of 172 M parameters which is
reduced to 16 M trainable parameters when using weight sharing.

We also experimented with curriculum learning, by further adding in a second step using the same
training data as Ma et al. [25]. This data has fewer tables, 123, but many more cells in each table
with a median of 11 k rows and 34 columns. In this second step, we increased the number of rows

5

used for training to 4000. We refer to Section 5.1 for an analysis of the impact of training data size
on model performance, which we found to be crucial.

At inference, we apply 8-fold bagging, similar to the ensembling used by TabPFN. That is, from the
original train split of a given evaluation dataset, we sample 8 times c context rows with replacement,
make a separate prediction with each collection using the same model, and average the predictions
(regression values or classification probabilities). While, during the default training, c never surpasses
950, we can scale this during evaluation as much as memory permits. The combination with bagging
allows ConTextTab to use up to 8c points as context. By default, we use a context size of c = 8192 at
inference. To limit runtime, in each bag, we sample up to 500 columns if the dataset has more.

4.2 Evaluation

Datasets: We use a variety of tabular prediction datasets to evaluate and compare our approach to
established baselines and other SOTA methods. Namely, we evaluate all models on the following
benchmarks: OpenML-CC18 [1], a pure classification benchmark; OpenML-CTR23 [11], a pure
regression benchmark; TALENT [40], a recently introduced diverse benchmark containing over 300
classification and regression benchmarks. Here, we focus on a subset containing 45 datasets that are
representative of the overall performance of the baselines investigated in the original works, which we
refer to as the TALENT-Tiny benchmark; TabReD [32], a small but challenging benchmark of large
datasets representative of practical prediction tasks; and finally CARTE [23], a mixed classification
and regression benchmark containing highly semantic features and few numerical ones.

Across all benchmarks, we evaluate 91 regression and 112 classification tasks, ranging from 5 to 3 k
columns and 400 to roughly 400 k training examples. Due to the large number of evaluated datasets,
we do not perform cross-validation but evaluate a fixed test split for each task. For models that
do not explicitly use a validation split, we concatenate the train and validation splits. We refer to
Appendix C.2 for a visualization of the dataset statistics and further details.

Baselines: We compare our approach to several established classical methods as well as recent ICL
and other deep learning models. In particular, we compare with TabPFN [18], TabICL [30], and
TabDPT [25] as the most recent table-native ICL methods. For all pretrained models, we use the
latest available release and checkpoints as of July 2025. As the SOTA on the CARTE benchmark,
we also evaluate the CARTE [23]. As additional well-performing recent deep learning approaches,
we evaluate RealMLP [19] and TabM [13]. Furthermore, we evaluate SOTA boosted tree baselines,
namely XGBoost [2], LightBGM [22], and CatBoost [29]. The tree baselines as well as RealMLP
and TabM are evaluated in the default (D) or meta-tuned default variants (TD) [19], as well as via
Parzen-tree estimator-based hyperparameter optimization, either with a fixed holdout set (HPO) or
ensembled via 5-fold inner cross-validation with per-split HPO (HPO, CV). For this, we use the
implementation provided by pytabkit [19]. Additionally, we evaluate several common, non-tuned
baselines from scikit-learn [27], namely naive, linear, and KNN estimators, as well as a random
forest and histogram-based gradient boosting tree estimators. Finally, as the gold standard in tabular
prediction, we evaluate AutoGluon [9], an AutoML solution stacking and ensembling many of the
baselines outlined above. We refer to Appendix C.1 for full details on the used baseline versions and
parameters as well as details about data preprocessing and encoding.

Metrics: Throughout, we show (mean) accuracy for classification tasks as well as (mean) R2 score
for regression tasks. Since we have observed some severe outliers in some regression tasks that greatly
affected average scores, we perform a soft-clipping. That is, all negative R2 scores are mapped to
[−1, 0) via tanh while keeping positive scores untouched. This retains the relative ordering of scores
while being smoothly differentiable and less distorting to the mean.

As averaging across a large number of datasets with varying performance can blur relative performance
across models, we also evaluate (mean) rank. Within each benchmark, we calculate the mean rank
across all constituent datasets and models. Full rank performance is averaged across all datasets
across all benchmarks, not as per-benchmark averages as some benchmarks contain only few tables.
To reduce the impact of small noise, we count model performances as ties when their evaluation
scores lie within 0.005 of each other. Furthermore, we report critical difference (CD) diagrams, win
ratio matrices, and p-values enabling 1 vs 1 model comparisons in the Appendix.

6

Table 1: Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc)
for classification and (soft-clipped) R2 score for regression tasks, in percent. Missing values, due
to architectural limitations or failed evaluations, are denoted as N/A and excluded from the rank
calculations. Models are sorted according to their ranking on the CARTE benchmark.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

AutoGluon [v1.2] N/A N/A 78.7 73.8 N/A 88.5 N/A 68.6 N/A 86.0 64.6 N/A 87.9 73.7

ConTextTab 2.96 1.55 76.9 72.4 3.56 86.6 3.89 73.3 4.12 85.4 63.2 2.59 87.6 76.1
LightGBM [HPO, CV] 2.85 3.00 73.4 67.5 2.94 87.5 2.91 68.8 1.25 86.0 64.9 2.73 86.9 74.1
CatBoost [HPO, CV] 2.71 3.06 75.9 68.2 2.72 87.7 2.74 68.8 2.00 86.0 64.3 2.32 87.2 76.4
RealMLP [HPO, CV] 2.50 3.20 73.4 67.5 2.35 88.3 1.89 75.0 1.88 86.0 64.6 2.54 88.3 76.4
TabM [HPO, CV] 2.98 3.71 73.2 66.9 2.93 87.9 2.37 74.3 3.12 86.1 64.2 2.62 87.5 75.7
XGBoost [HPO, CV] 3.11 3.78 73.1 66.7 2.83 87.5 3.23 70.9 1.25 86.0 64.9 3.00 86.8 73.6
TabPFN [v2.1.0] 3.63 5.76 72.3 65.0 2.89 87.4 3.29 75.1 4.25 85.6 63.8 2.32 87.8 74.4
TabDPT [v1.1, k=2048] 4.18 5.98 72.7 65.1 3.25 87.8 3.17 73.2 6.88 83.0 60.9 3.89 86.7 74.8
HistGradBoost 5.27 6.27 72.5 64.8 4.40 86.1 7.06 65.5 2.38 85.9 63.9 4.51 86.3 67.6
Random forest 6.22 8.00 71.5 63.3 5.33 85.7 6.80 67.9 6.00 85.4 60.7 5.00 85.8 70.6
Naive 10.51 11.0 53.0 -1.8 10.28 47.0 10.66 -8.4 9.75 80.8 -0.6 10.32 53.4 -19.2

CARTE [v0.0.26] N/A N/A 76.1 68.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TabICL [v0.1.1] N/A N/A 72.5 N/A N/A 88.0 N/A N/A N/A 85.1 N/A N/A 87.4 N/A

5 Results

The main results, evaluating ConTextTab and baselines, are shown in Table 1. Here, we exclude
AutoGluon from the overall rank and best-model comparison as it is ensembling and stacking a
multitude of model architectures, making it difficult to highlight architectural strengths and weak-
nesses. Overall, our model performs competitive across all non-semantic benchmarks while setting
a new standard on the semantically rich CARTE benchmark, where it ranks best. In fact, this is
statistically significant over all models but CatBoost and AutoGluon, both of which are extensively
tuned and ensembled, as shown in the critical difference diagram for CARTE in Figure 2 (left).
Notably, ConTextTab is significantly better than other tabular ICL approaches, which highlights the
importance of incorporating semantic understanding. On the other hand, TabPFN, not incorporating
semantics, performs worse than tuned as well as untuned trees on CARTE. For details, we refer to
Appendix A.

On the other end, the absolute performance of ConTextTab for non-semantic benchmarks, while
good, falls behind tuned and ensembled boosted trees as well as RealMLP, which achieves SOTA
in terms of ranking across all evaluated datasets (albeit at a much higher training time and cost).
Nevertheless, these differences in ranking are mostly not statistically significant. To this end we report
per-benchmark CD diagrams as well as win-ratio and p-values for detailed model comparison in
Appendix A.2. Namely, ConTextTab does not perform significantly worse than the best-ranking model
on all non-semantic benchmarks excluding OpenML-CTR23 (where it is however not significantly
different to tuned ensembled trees).

Hence, ConTextTab sets a new standard on semantically rich datasets while performing on-par to
existing approaches on non-semantic ones. Nevertheless, the performance of AutoGluon generally
indicates further headroom to improve single-model performance and tabular ICL in particular.

Finally, tuned trees perform particularly well for large datasets as represented by the TabReD
benchmark, even outperforming AutoGluon in some instances. Motivated by this, we investigate
the dependence on dataset size more closely and the performance on the CARTE benchmark across
varying subsampled sizes, ranging from 128 rows to the full dataset, in Figure 3. ConTextTab
consistently outperforms other models across all sample sizes and even surpasses AutoGluon for up
to 2048 training samples. This highlights the strong capabilities of tabular ICL but also the need for
further research into scaling these architectures to effectively deal with much larger context sizes as
well as training datasets. We investigate the dataset-size dependent rank performance across all 203
datasets in Appendix A.1, further highlighting these challenges.

Additional results, including additional baselines, CD diagrams, as well as 1 vs 1 win ratios and
p-values, are provided in Appendix A.2. Furthermore, we refer to Appendix A.3 for an analysis of
the model runtime in comparison to other baselines.

7

128 256 512 1024 2048 4096 8192 full
Size

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Average Rank ()

128 256 512 1024 2048 4096 8192 full
Size

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Average Accuracy ()

128 256 512 1024 2048 4096 8192 full
Size

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Average R2 ()

AutoGluon
ConTextTab
TabPFN
LightGBM [HPO, CV]
CARTE
TabDPT
RealMLP [HPO, CV]

Figure 3: Average rank, accuracy, and regression results on the CARTE benchmark across various
data subsets, ranging from 128 rows to the full size.

1234567891011121314

Naive
Mambular

Random Forest
HistGradBoost

TabDPT
TabPFN

XGBoost [HPO, CV] TabM [HPO, CV]
RealMLP [HPO, CV]
LightGBM [HPO, CV]
CARTE
CatBoost [HPO, CV]
ConTextTab
AutoGluon

CD
CARTE

10 100 1000 10000 100000 1000000
Pretraining size (number of tables)

0

20

40

60

80

Sc
or

e
(%

)

56.7%

9.6%

65.3%

35.2%

69.2%

52.3%

71.6%

58.4%

72.9%

60.0%

73.1%

59.9%

Accuracy
R2 score

Figure 2: Left: critical difference diagram between ConTextTab and several baselines, across the
CARTE benchmark. Right: Impact of pretraining dataset size on validation accuracy and R2 scores.

5.1 Ablation studies

In the following, we discuss several experiments ablating aspects of our model as reported in Table 2.

Semantics: Being our core contribution, we investigate the efficacy of the semantic cell and column
header encoding used by ConTextTab. As we expect the results to be most pronounced in the presence
of semantic features, we perform this ablation on CARTE exclusively. To this end, we replace
categorical and string features by ordinal encodings, as well as encodings via MinHashEncoder and
GapEncoder (provided by the skrub library), and the AutoGluon feature encoder for comparison.
As expected, we observe a significant drop in performance when discarding semantics completely or
when using the conventional string encoders from the skrub library. Hence, ConTextTab successfully
leverages the semantic content of features. We refer to Appendix A.4 for win ratio comparisons and
p-value results to demonstrate statistical significance of our claim.

Secondly, we ablate the use of column header semantics in two ways: one, by replacing the column
names with col1, ..., colN, effectively eliminating semantic content; as well as two, semantically
enriching the column names by creating contextualized column descriptions using an LLM and
replacing the column names with <name>:<description>. To this end, we used gemma3-12b and
presented it with 5 randomly sampled rows, serialized as JSON, and prompting for contextualized
descriptions of each column. Dropping column name semantics indeed results in a performance loss
of about 1% in accuracy and 2% in R2 score. This difference is significant with a win rate of 92% of
the base model and a vanishinlgy small p-value as shown in Appendix A.4. Further enriching column
header semantics slightly boosts performance, resulting in a slightly better rank, however with a win
rate of 57% at a p-value of 0.4 this is not statistically significant.

Overall, ConTextTab successfully integrated and leverages semantics, both present in the table’s
features as well as those potentially contained in the table column names.

Model size: As expected, decreasing from “base” to smaller models impacts performance. On
the other hand, increasing to “large”, thus doubling the number of layers and increasing the hidden
dimension, has no significant impact on performance. As observed in Figure 2 (right), increasing the
amount of training data leads to stagnating validation performance gains. We hypothesize that, in the
current setup, our model is likely limited by the amount or diversity of data available with T4.

Context size: The trained models can scale the input context size at inference. As expected, longer
context improves results in a monotonic way, in exchange for longer computation time. In practice,
the effects are stronger on larger datasets, simply because shorter context models (even with bagging)

8

Table 2: Relative performance across three ablation groups compared to the base model: (Top) Model
size, language model, and other factors, using the base model with binning; (Middle) Clipping,
context size, and fine-tuning, using the base model with one-dimensional embedding; (Bottom)
Semantic analysis, using the base model with one-dimensional embedding. Improvements over the
base model are highlighted in bold.

Experiment All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

Model Size, Language Model, and others

base model (binning) 2.28 1.76 76.0 71.4 2.57 86.8 2.66 70.9 1.00 85.4 62.9 2.32 87.2 73.5

large size 2.76 2.18 +0.2 -0.2 4.01 -5.3 1.77 -0.7 3.75 -25.4 -13.5 1.84 -0.1 -0.0
medium size 5.44 8.45 -5.6 -3.7 4.76 -1.2 3.49 -1.0 5.75 -9.3 -3.5 4.41 -2.6 -2.4
small size 7.68 9.98 -2.9 -6.8 6.57 -3.0 8.17 -4.5 8.12 -1.7 -3.8 6.14 -2.7 -6.7
mini size 8.10 10.69 -4.2 -8.4 7.15 -4.0 8.06 -4.2 5.50 -0.3 -3.5 7.00 -3.7 -6.9

multilingual-e5-small 3.22 4.16 -0.3 -1.5 3.35 -0.4 2.77 -0.1 2.38 -0.2 -1.3 2.27 +0.7 -0.7
gte-multilingual-base 3.22 3.59 +0.0 -1.2 3.18 -0.3 3.60 -1.4 1.62 -0.2 -0.9 2.76 +0.4 -1.3

curriculum learning 2.28 1.51 +1.1 +0.1 3.10 -0.2 1.80 -0.1 1.38 +0.4 -0.2 2.38 -1.0 +0.4

clustering N/A N/A -0.1 N/A 3.82 -1.5 N/A N/A N/A -0.6 N/A N/A -1.3 N/A

w/o bagging 2.82 2.76 -0.4 -0.4 3.26 -0.7 3.03 -0.4 1.00 +0.1 -0.5 2.24 -0.6 -0.0

ISAB 5.48 6.16 +0.3 -3.1 5.57 -2.1 5.51 -0.9 3.88 -0.2 -2.7 4.70 -0.5 -6.1

non-shared weights 4.36 5.61 -0.1 -2.6 4.29 -0.9 3.09 +0.8 5.88 -1.0 -2.6 3.65 -0.7 -1.2

Clipping, Context Size, and Fine-tuning

base model (1-dim) 2.00 1.80 76.7 72.0 2.36 86.9 2.06 65.0 1.75 85.3 63.3 1.54 87.9 75.8

0.1% clipping 2.03 1.80 0.0 0.0 2.36 0.0 2.37 -0.3 1.38 0.0 +0.2 1.54 0.0 0.0
0.5% clipping 2.08 1.76 0.0 0.0 2.32 -0.1 2.60 +4.0 1.38 +0.1 +0.1 1.70 +0.1 -0.2
2% clipping 2.97 2.88 0.0 -0.5 2.43 -0.1 5.03 +5.8 1.75 +0.1 -0.5 2.43 0.0 -2.0
binning 4.04 4.69 -0.7 -0.6 3.21 -0.1 6.34 +5.9 1.12 +0.1 -0.3 3.24 -0.7 -2.3

context=20000 2.06 1.39 +0.3 +0.6 2.62 -0.2 1.66 +4.2 3.25 -0.4 -0.5 2.00 -0.4 +0.5
context=10000 2.00 1.61 +0.3 +0.3 2.64 -0.2 1.57 +4.2 1.75 0.0 -0.1 1.76 -0.2 +0.5
context=4096 2.81 3.55 -0.1 -0.6 3.03 -0.3 2.11 +4.0 2.25 -0.3 -0.1 2.16 -0.4 +0.4
context=2048 4.11 6.41 -1.0 -1.9 3.61 -0.4 3.06 +3.6 2.50 -0.1 -0.7 3.24 -0.9 +0.1
context=1024 5.49 9.10 -1.3 -3.8 4.33 -0.5 4.60 +2.7 2.62 -0.4 -1.6 4.24 -1.3 -0.6

fine-tuning (per benchmark) 2.60 2.51 +0.3 +0.1 3.1 +0.2 1.94 +7.2 2.62 +0.2 -0.3 2.38 -0.1 +0.8

Semantics – Features and Column Names

base (feature and column name semantics) 1.24 1.24 76.9 72.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

no feature semantics - Ordinal encoder 4.27 4.27 -2.7 -4.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
no feature semantics - MinHash encoder 3.49 3.49 -1.7 -3.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
no feature semantics - AutoGluon encoder 5.76 5.76 -4.8 -7.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
no feature semantics - Gap encoder 4.12 4.12 -1.4 -4.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

column semantics - add description 1.20 1.20 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
column semantics - drop column names 3.35 3.35 -1.2 -2.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

only get to see a subset of the training data. We stress again that this is entirely extrapolating outside
of the pretraining setup, where the largest observed context has size 950. Nevertheless, with larger
datasets and context, the model performance saturates, requiring further research in how to increase
the capacity of tabular ICL.

Training data: We ran training on randomly chosen subsets of the T4 dataset of 10n tables,
n ∈ {1, . . . , 6}. For this experiment we report the validation scores (on the validation held-out subset
of the CARTE benchmark) in Figure 2 (right). The results suggest that at least 100 k of the tables
are needed in order to train a model of state-of-the-art quality. While exact numbers may vary when
using other datasets or model sizes, this gives a high-level estimate of the amount of required data,
giving indication of why our model could not profit from a second step of curriculum learning on the
much smaller dataset used by Ma et al. [25]. Potentially, training is still limited by data amount or
diversity, e.g. missing longer and wider tables, likely required to further scale tabular ICL.

Classification target: We compare the default cross-entropy loss for classification with the clustering
approach described in Section 3.4, allowing to retain the semantics of the target labels and lifting the
limitation on the number of target classes as present in TabPFN or TabICL. However, most evaluation
datasets only contain non-descriptive labels, and the number of classes is limited. Hence, the potential
of clustering cannot emerge, and the default maintains a modest edge. We believe that semantically
richer high-cardinality benchmarks are required to spur research in this direction.

9

ISAB block: We observed comparable results on classification tasks and a modest drop in perfor-
mance on regression tasks, while substantially enhancing efficiency by eliminating quadratic time
complexity and reducing runtime by a factor of ten for large contexts.

Bagging: As expected, using bagging at inference time leads to consistent improvements. At the
same time, in absolute terms, the gap is rather marginal, probably thanks to the fact that ConTextTab
gets rid of most sources of non-equivariance in the architecture (e.g. category indexing and positional
encoding). As a result, depending on the use case, this allows to drop bagging, or reduce the number
of bags, without compromising performance significantly. Given the great boost of performance
when ensembling baselines via inner cross-validation, as reported in Appendix A as well as recently
observed in the literature [10], how to best leverage ensembled ICL models remains an open challenge.

(No) weight sharing: We observed a slight performance degradation when training the full model
as opposed to using weight sharing, which may be due to either an insufficient training duration,
suboptimal selection of training hyperparameters, or limited pretraining dataset size and variety.

Further ablations: Other changes (the used sentence embedding model, longer context in training,
target clipping for regression, as well as benchmark-dependent fine-tuning) did not result in significant
performance gains. Therefore, we refer to the Appendix A.4 for further discussion of those results.

6 Conclusions

Limitations and future work: While achieving SOTA results across the investigated datasets, we
observe several limitations of our proposed approach. One drawback of using real-world data for
training is the possibility of contamination, e.g. the presence of evaluation tasks in the training corpus.
Since the CARTE benchmark is our focus, we conducted a contamination study, using the column
name and cell value embeddings created by a text embedder and matching similarities. We did not
find any contamination of CARTE in T4. For contamination of OpenML datasets, we refer to the
original study by [12]. Either way, as a single table is only seen a few times during training, we
believe that memorization is likely not a practical problem when training on real-world data.

Generally, all investigated table-native ICL models, namely ours, TabPFN, TabDPT, and TabICL, fail
to scale their performance to very large datasets. Increasing the context length as well as bagging
did not fully resolve these issues. Using local context, as done in TabDPT, might overcome such
limitations but results are likely limited by the row-based architecture in that case. In the large-data
case, conventional methods, in particular when stacked and ensembled via AutoGluon, still perform
best. Overcoming this remains one of the major research challenges for tabular foundation models.

We observe little gain when training on larger data corpora, e.g. increasing the pretraining subset of
T4 or adding tables from the AutoML benchmark as used for pretraining TabDPT. Together with
the investigated scaling of our model, we believe that more diverse real-world data is needed to
fully unlock semantic understanding at scale. While models trained on synthetic data do not face
this issue in principle, how to incorporate semantic alignment in these models remains an open
question. Similarly for evaluation, semantically rich benchmarks are scarce. While CARTE includes
rich semantic features, all classification targets are binary, containing no semantic information.
Furthermore, it contains mostly small to medium sized datasets, in particular in terms of the number
of features. Hence, we argue that more diverse, semantically rich data is required – both at scale for
pretraining larger models with longer context, as well as curated for evaluation, where recent works
show promising first steps in this direction [26].

Finally, our investigation to utilize target semantics and lift the strict class limit at inference preva-
lent in current tabular ICL, by using a dynamic supervised clustering approach, did not result in
performance gains. This might relate to the lack of semantically meaningful targets in current tabular
benchmarks as well as the limited target cardinality across them and thus remains an open problem.

Summary: We have introduced ConTextTab – a context aware table-native in-context learner trained
on real-world data for both classification and regression tasks. Evaluated across a wide range of
tabular benchmarks, our model performs competitively on a range of non-semantic benchmarks while
achieving state-of-the-art results, significantly outperforming existing table-native ICL approaches
such as TabPFN, on the semantically rich CARTE benchmark and low-data regime.

10

Acknowledgements

We would like to thank Johannes Hoehne, Johannes Hoffart, and Markus Kohler for their insightful
comments and suggestions throughout the development of this work, which have greatly contributed to
shaping its direction and quality. Furthermore, we thank Mahdi Hadj Ali for creating the semantically
enriched evaluation datasets used in our semantic ablation as well as Annie Lim for running the
ablation. Finally, we thank Frank Essenberger and Günther Schindler for their support with our data
and compute infrastructure.

References
[1] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,

Rafael Gomes Mantovani, Jan N van Rijn, and Joaquin Vanschoren. 2021. OpenML benchmarking
suites. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

[2] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794.

[3] Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung, Pieter Nel, and Sankalp
Malhotra. 2018. Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global
Institute, page 28.

[4] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186.

[6] Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn,
Dimitris Papailiopoulos, and Kangwook Lee. 2022. LIFT: Language-interfaced fine-tuning for non-
language machine learning tasks. Advances in Neural Information Processing Systems, 35:11763–11784.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and Ahmad Al-Dahle, et al. 2024.
The Llama 3 herd of models. arXiv preprint arXiv:2407.21783.

[8] Gus Eggert, Kevin Huo, Mike Biven, and Justin Waugh. 2023. TabLib: A dataset of 627 M tables with
context. arXiv preprint arXiv:2310.07875.

[9] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. 2020. AutoGluon-Tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505.

[10] Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai, Frank
Hutter, et al. 2025. TabArena: A living benchmark for machine learning on tabular data. arXiv preprint
arXiv:2506.16791.

[11] Sebastian Felix Fischer, Matthias Feurer, and Bernd Bischl. 2023. OpenML-CTR23 – A curated tabular
regression benchmarking suite. In AutoML Conference 2023 (Workshop).

[12] Joshua P Gardner, Juan Carlos Perdomo, and Ludwig Schmidt. 2024. Large scale transfer learning for
tabular data via language modeling. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

[13] Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. 2025. TabM: Advancing tabular deep learning
with parameter-efficient ensembling. In International Conference on Learning Representations.

[14] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. 2024. TabR: Tabular deep learning meets nearest neighbors. In The Twelfth International
Conference on Learning Representations.

[15] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943.

11

[16] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag.
2023. TabLLM: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR.

[17] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. 2023. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International Conference on
Learning Representations.

[18] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. 2025. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326.

[19] David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. 2024. Better by default: Strong pre-tuned MLPs
and boosted trees on tabular data. Advances in Neural Information Processing Systems, 37:26577–26658.

[20] HuggingFace. 2021. sentence-transformers/all-MiniLM-L6-v2. https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2.

[21] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative attention. In International Conference on Machine Learning,
pages 4651–4664. PMLR.

[22] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information
Processing Systems.

[23] Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. 2024. CARTE: Pretraining and transfer for tabular
learning. In Forty-first International Conference on Machine Learning.

[24] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. 2019. Set
transformer: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pages 3744–3753.

[25] Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C Cresswell,
Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony L Caterini. 2024. TabDPT: Scaling
tabular foundation models. arXiv preprint arXiv:2410.18164.

[26] Martin Mráz, Breenda Das, Anshul Gupta, Lennart Purucker, and Frank Hutter. 2025. Towards bench-
marking foundation models for tabular data with text. In ICML 2025 Workshop on Foundation Models for
Structured Data (FMSD).

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of Machine Learning Research, 12:2825–2830.

[28] Marek Polewczyk and Marco Spinaci. 2024. ClusterTabNet: Supervised clustering method for table detec-
tion and table structure recognition. In International Conference on Document Analysis and Recognition,
pages 334–349. Springer.

[29] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
2018. CatBoost: Unbiased boosting with categorical features. Advances in Neural Information Processing
Systems, 31.

[30] Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. 2025. TabICL: A tabular
foundation model for in-context learning on large data. arXiv preprint arXiv:2502.05564.

[31] Markus N Rabe and Charles Staats. 2021. Self-attention does not need O(N2) memory. arXiv preprint
arXiv:2112.05682.

[32] Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. 2025. TabReD: A benchmark of
tabular machine learning in-the-wild. In International Conference on Learning Representations.

[33] Marco Spinaci, Marek Polewczyk, Johannes Hoffart, Markus Köhler, Sam Thelin, and Tassilo Klein. 2024.
PORTAL: Scalable tabular foundation models via content-specific tokenization. In NeurIPS 2024 Third
Table Representation Learning Workshop.

[34] Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Arik Reuter, Benjamin Säfken, and Soheila
Samiee. 2024. Mambular: A sequential model for tabular deep learning. arXiv preprint arXiv:2408.06291.

12

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

[35] Boris Van Breugel and Mihaela Van Der Schaar. 2024. Why tabular foundation models should be a research
priority. In Proceedings of the 40th International Conference on Machine Learning.

[36] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672.

[37] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. 2020. MiniLM: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

[38] Scott Yak, Yihe Dong, Javier Gonzalvo, and Sercan Arik. 2023. IngesTables: Scalable and efficient training
of LLM-enabled tabular foundation models. In NeurIPS 2023 Second Table Representation Learning
Workshop.

[39] Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao. 2024. Towards
cross-table masked pretraining for web data mining. In Proceedings of the ACM on Web Conference 2024,
pages 4449–4459.

[40] Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. 2024. A closer look at deep
learning methods on tabular datasets. arXiv preprint arXiv:2407.00956.

[41] Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan, and Wei-Lun Chao. 2025. Revisiting nearest neighbor
for tabular data: A deep tabular baseline two decades later. In International Conference on Learning
Representations.

[42] Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,
Pengjun Xie, Fei Huang, et al. 2024. mGTE: Generalized long-context text representation and reranking
models for multilingual text retrieval. In EMNLP (Industry Track).

[43] Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. 2023. XTab:
Cross-table pretraining for tabular transformers. In Proceedings of the 40th International Conference on
Machine Learning.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list in the abstract and introduction all contribution that lead to improve-
ments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section “Limitations and Future Work” section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: The paper does not make theoretical claims.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Full details of the training procedure are included, as well as the parameters
and datasets used in evaluation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: The inference code and the trained weights will be released after acceptance to
ensure double blind review. Pretraining code might be released, but it might be too tightly
linked with the data platform to be usable.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant details have been discussed in the main paper and/or the supple-
mentary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We don’t include error bars, because the models are evaluated on many
(203) datasets and computing them e.g. via different train/val/test splits would be too
computationally expensive, especially for some baselines. However we do include critical
difference diagrams to check when difference in rankings are statistically relevant (according
to Wilcoxon test).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: While the results can be similarly reproduced on different hardware, we do
mention what hardware is used for the main models and for the baselines.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As a generally applicable machine learning algorithm, we do not expect the
algorithms introduced by our claims to lead to harmful consequences any more than any
other such algorithm.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As a generally applicable machine learning algorithm, we do not expect the
algorithms introduced by our claims to lead to harmful consequences any more than any
other such algorithm.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Any risk coming from the training data (T4) cannot be superior to the risk of
accessing the raw data itself. Other than that, the model is only trained to predict a class or
number in a given table distribution, so we cannot foresee any potential for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All authors are properly cited. Our models are trained on dataset usable for
research only, and as such our models inherit this restriction.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The only asset that will be released are the model checkpoints themselves;
they will be documented in the readme of the repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:

19

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Language models are used, and explicitly mentioned, in this work to compute
text embeddings of the strings. No other usage has been done, apart from editing the final
manuscript.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Further Results

A.1 Relation between dataset size and model performance

We plot the average rank of each model as a function of the dataset size (expressed in number of
rows) across all evaluated datasets in Figure 4. Note that TabICL is missing from this comparison as
it only handles classification tasks. We can observe that, as expected, ConTextTab and TabPFN excel
in the low data regime, while AutoGluon takes the lead when enough data is available. In the very
low data regime below 1000 training rows, TabPFN performs best, however our model surpasses its
performance for larger datasets with more than 1000 rows. Overall, ConTextTab remains competitive
with AutoGluon until roughly 10 000 rows, possibly as a result of the limitation in both the inference
context size and the context size seen during training. After 10 000 rows, gradient boosting methods,
as well as RealMLP, start surpassing the performance of ConTextTab as well as TabPFN. Overall, this
indicates the need of further research for tabular ICL to handle larger amounts of training data, but
also the availability of more diverse benchmarks, covering larger datasets, as the current evaluation is
dominated by datasets with less than 10 k rows and less than 100 columns, see Figure 12.

1,000 2,000 3,000 10,000 20,000 30,000 100,000 200,000 300,000

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

M
ea

n
R
an

k
(↓

)

Autogluon
ConTextTab
HistGradBoosti
KNN [k=5]
LightGBM [HPO, CV]
RealMLP [HPO, CV]
TabM [HPO, CV]
TabPFN

Model

Figure 4: Relation between number of training dataset rows and performance, obtained as a LOWESS
regression in the plane log(nrows, rank). The confidence bands are the 80% confidence intervals
obtained via bootstrapping.

A.2 Extended results

Extended baselines: Including further baselines not depicted in the main paper, Table 3 shows all
collected evaluations across the investigated benchmarks. In addition to the models shown in the
main section, here we also depict performance of (tuned) default variants of XGBoost, LightGBM,
CatBoost, RealMLP, and TabM. We also report results for Mambular [34], however solely on CARTE
and TALENT-Tiny as evaluation took too long on larger datasets due to slow convergence.

Win ratios, significance scores and CD diagrams: Additionally, we show the win ratio confusion
matrix, p-values, and averages of the investigated models across all investigated benchmarks in
Figure 5.

For fine-grained insights, we also plot per-benchmark results in Figure 6 for win ratios and Figure 7
for CD diagrams.

Across all benchmarks investigated, ConTextTab shows very strong performance, outperforming other
ICL such as TabPFN and TabICL as well as tuned trees as well as RealMLP and TabM. However,
hyperparameter optimized baselines with inner CV ensembles show very strong performance on non-
semantic benchmarks (OpenML CC18/CTR23, TabReD, and TALENT-Tiny) where they outperform
ConTextTab. This, of course, comes with much longer training times. Furthermore, detailed 1 vs 1
investigation, as well as the CD diagrams, paint a more nuanced picture, showing that differences in
performance to ConTextTab are often not statistically significant.

21

0.54

0.68

0.61

0.74

0.76

0.61

0.78

0.68

0.65

0.82

0.82

0.72

0.80

0.84

0.97

0.39

0.55

0.58

0.62

0.67

0.51

0.71

0.72

0.62

0.79

0.84

0.81

0.83

0.88

0.98

0.27

0.39

0.45

0.58

0.61

0.43

0.82

0.51

0.55

0.75

0.78

0.63

0.81

0.83

0.98

0.33

0.37

0.50

0.52

0.61

0.42

0.66

0.70

0.57

0.71

0.77

0.71

0.77

0.83

0.97

0.21

0.32

0.37

0.42

0.62

0.37

0.64

0.55

0.48

0.80

0.83

0.63

0.82

0.82

0.97

0.21

0.28

0.33

0.36

0.32

0.36

0.58

0.52

0.47

0.65

0.82

0.60

0.77

0.80

0.98

0.35

0.44

0.53

0.51

0.58

0.60

0.64

0.56

0.49

0.66

0.65

0.61

0.71

0.74

0.96

0.19

0.26

0.13

0.30

0.30

0.36

0.33

0.42

0.43

0.53

0.63

0.52

0.68

0.73

0.96

0.25

0.19

0.44

0.24

0.39

0.43

0.41

0.55

0.50

0.58

0.60

0.53

0.69

0.76

0.96

0.30

0.33

0.41

0.38

0.46

0.49

0.43

0.54

0.47

0.56

0.60

0.53

0.66

0.74

0.98

0.15

0.17

0.19

0.27

0.13

0.30

0.31

0.38

0.36

0.40

0.57

0.53

0.66

0.73

0.98

0.14

0.11

0.16

0.19

0.15

0.13

0.32

0.35

0.37

0.38

0.39

0.46

0.64

0.71

0.97

0.24

0.13

0.34

0.25

0.31

0.35

0.36

0.44

0.40

0.43

0.43

0.48

0.61

0.68

0.95

0.15

0.13

0.15

0.18

0.15

0.16

0.28

0.25

0.26

0.31

0.30

0.33

0.37

0.61

0.96

0.11

0.10

0.13

0.15

0.13

0.14

0.24

0.23

0.20

0.22

0.21

0.26

0.29

0.33

0.96

0.03

0.02

0.01

0.02

0.02

0.02

0.03

0.03

0.03

0.01

0.02

0.03

0.03

0.04

0.03

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

A
ut

oG
lu

on

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bM

 [
H

PO
,

C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

C
on

Te
xt

Ta
b

C
at

B
oo

st
 [

H
PO

]

Ta
bM

 [
H

PO
]

Ta
bP

FN

Li
gh

tG
B
M

 [
H

PO
]

X
G

B
oo

st
 [

H
PO

]

R
ea

lM
LP

 [
H

PO
]

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

AutoGluon

RealMLP [HPO, CV]

CatBoost [HPO, CV]

TabM [HPO, CV]

LightGBM [HPO, CV]

XGBoost [HPO, CV]

ConTextTab

CatBoost [HPO]

TabM [HPO]

TabPFN

LightGBM [HPO]

XGBoost [HPO]

RealMLP [HPO]

HistGradBoost

Random forest

Naive

M
od

el
 B

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.09

0.00

0.00

0.00

0.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.09

0.74

0.00

0.00

0.09

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.74

0.37

0.00

0.01

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.37

0.00

0.00

0.00

0.01

0.30

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.19

0.87

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.33

0.09

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.00

0.47

0.45

0.01

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.19

0.00

0.47

0.93

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.01

0.30

0.87

0.00

0.45

0.93

0.10

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.03

0.10

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.02

0.06

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

A
ut

oG
lu

on

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bM

 [
H

PO
,

C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

C
on

Te
xt

Ta
b

C
at

B
oo

st
 [

H
PO

]

Ta
bM

 [
H

PO
]

Ta
bP

FN

Li
gh

tG
B
M

 [
H

PO
]

X
G

B
oo

st
 [

H
PO

]

R
ea

lM
LP

 [
H

PO
]

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

AutoGluon

RealMLP [HPO, CV]

CatBoost [HPO, CV]

TabM [HPO, CV]

LightGBM [HPO, CV]

XGBoost [HPO, CV]

ConTextTab

CatBoost [HPO]

TabM [HPO]

TabPFN

LightGBM [HPO]

XGBoost [HPO]

RealMLP [HPO]

HistGradBoost

Random forest

Naive

M
od

el
 B

(a) Win ratio matrix with Model A wins over Model B (left) and p-values (right).

A
ut

oG
lu

on

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bM

 [
H

PO
,

C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

C
on

Te
xt

Ta
b

C
at

B
oo

st
 [

H
PO

]

Ta
bM

 [
H

PO
]

Ta
bP

FN

Li
gh

tG
B
M

 [
H

PO
]

X
G

B
oo

st
 [

H
PO

]

R
ea

lM
LP

 [
H

PO
]

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

N
ai

ve

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
vg

 W
in

 R
at

e

0.2

0.4

0.6

Avg Win Rate

(b) Average Win ratio of Model A against all others.

Figure 5: Win ratio confusion matrix and average of the investigated models across all 203 datasets.
Wins are calculated based on accuracy on classification and R2 on regression datasets. Ties are not
counted as wins. Models are sorted by descending overall rank.

On the other hand, detailed evaluation on the semantically rich CARTE benchmark show that
ConTextTab significantly outperforms all other models and even performs compatible to AutoGluon.
With a win ratio of 65% and p-value of 0.03 over ConTextTab, this gain is not as significant as it might
appear from the average scores reported in Table 1 or Table 5. Notably, ConTextTab outperforms
all tabular ICL methods in the presence of semantically rich features, for example TabPFN: with a
win rate of 96% of ConTextTab and a vanishingly small p-value, this is statistically significant. On
non-semantic datasets, TabPFN wins over ConTextTab with rates between 49% and 66%, however,
with p-values between 0.09 and 0.64, the differences are not statistically significant.

22

0.65

0.90

0.94

0.96

0.96

0.96

0.98

0.96

0.96

0.98

0.98

0.98

1.00

0.35

0.78

0.88

0.82

0.86

0.88

0.92

0.94

0.92

0.96

0.96

0.98

1.00

0.10

0.22

0.61

0.67

0.45

0.67

0.71

0.73

0.78

0.88

0.90

0.96

1.00

0.06

0.12

0.39

0.53

0.37

0.73

0.80

0.69

0.76

0.86

0.94

0.96

1.00

0.04

0.16

0.31

0.47

0.39

0.59

0.63

0.71

0.75

0.76

0.94

1.00

1.00

0.04

0.14

0.55

0.63

0.61

0.69

0.73

0.75

0.78

0.73

0.86

0.96

1.00

0.02

0.12

0.31

0.27

0.39

0.31

0.57

0.65

0.75

0.75

0.90

0.94

1.00

0.02

0.08

0.29

0.20

0.35

0.27

0.43

0.63

0.67

0.78

0.90

0.94

1.00

0.04

0.04

0.27

0.31

0.27

0.25

0.35

0.37

0.51

0.45

0.73

0.84

1.00

0.04

0.08

0.22

0.22

0.24

0.22

0.25

0.33

0.49

0.53

0.82

0.84

1.00

0.02

0.04

0.12

0.14

0.22

0.25

0.25

0.22

0.53

0.47

0.80

0.84

1.00

0.02

0.04

0.10

0.04

0.06

0.12

0.10

0.10

0.27

0.16

0.20

0.78

1.00

0.02

0.02

0.04

0.02

0.00

0.04

0.06

0.04

0.16

0.16

0.16

0.22

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

A
ut

oG
lu

on

C
on

Te
xt

Ta
b

C
at

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
A
R
TE

Ta
bM

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

Ta
bD

PT

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

M
am

bu
la

r

N
ai

ve

Model A

AutoGluon

ConTextTab

CatBoost [HPO, CV]

LightGBM [HPO, CV]

RealMLP [HPO, CV]

CARTE

TabM [HPO, CV]

XGBoost [HPO, CV]

TabPFN

TabDPT

HistGradBoost

Random forest

Mambular

Naive

M
od

el
 B

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.01

0.63

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.63

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.63

0.04

0.03

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.63

0.06

0.04

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.01

0.33

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.33

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.94

0.82

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.94

0.63

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.82

0.63

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

A
ut

oG
lu

on

C
on

Te
xt

Ta
b

C
at

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
A
R
TE

Ta
bM

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

Ta
bD

PT

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

M
am

bu
la

r

N
ai

ve

Model A

AutoGluon

ConTextTab

CatBoost [HPO, CV]

LightGBM [HPO, CV]

RealMLP [HPO, CV]

CARTE

TabM [HPO, CV]

XGBoost [HPO, CV]

TabPFN

TabDPT

HistGradBoost

Random forest

Mambular

Naive

M
od

el
 B

(a) CARTE.

0.50

0.53

0.56

0.56

0.57

0.61

0.68

0.68

0.60

0.74

0.86

0.99

0.44

0.47

0.58

0.51

0.64

0.64

0.57

0.61

0.58

0.76

0.86

0.97

0.39

0.42

0.60

0.50

0.54

0.68

0.56

0.65

0.56

0.69

0.76

0.96

0.32

0.28

0.29

0.43

0.43

0.50

0.53

0.49

0.43

0.68

0.75

0.97

0.26

0.39

0.40

0.50

0.46

0.58

0.47

0.49

0.49

0.65

0.71

0.96

0.31

0.26

0.33

0.51

0.43

0.56

0.53

0.50

0.42

0.65

0.76

0.93

0.32

0.25

0.26

0.36

0.38

0.38

0.46

0.35

0.42

0.60

0.69

0.97

0.21

0.35

0.26

0.40

0.39

0.36

0.49

0.49

0.49

0.60

0.71

0.97

0.29

0.26

0.25

0.40

0.38

0.36

0.51

0.46

0.40

0.71

0.74

0.96

0.31

0.33

0.38

0.47

0.35

0.43

0.53

0.47

0.49

0.58

0.67

0.93

0.19

0.17

0.22

0.24

0.28

0.24

0.24

0.36

0.24

0.39

0.54

0.94

0.08

0.11

0.14

0.18

0.21

0.18

0.18

0.24

0.21

0.31

0.31

0.93

0.01

0.03

0.04

0.01

0.01

0.04

0.03

0.01

0.03

0.06

0.06

0.06

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

Ta
bI

C
L

R
ea

lM
LP

 [
H

PO
,

C
V
]

A
ut

oG
lu

on

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

Ta
bM

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bD

PT

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

TabICL

RealMLP [HPO, CV]

AutoGluon

CatBoost [HPO, CV]

TabPFN

TabM [HPO, CV]

XGBoost [HPO, CV]

TabDPT

LightGBM [HPO, CV]

ConTextTab

HistGradBoost

Random forest

Naive

M
od

el
 B

0.88

0.42

0.02

0.01

0.03

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.88

0.98

0.00

0.30

0.00

0.00

0.08

0.00

0.03

0.00

0.00

0.00

0.42

0.98

0.02

0.18

0.01

0.00

0.01

0.00

0.01

0.00

0.00

0.00

0.02

0.00

0.02

0.76

0.43

0.21

0.76

0.35

0.30

0.00

0.00

0.00

0.01

0.30

0.18

0.76

0.74

0.34

0.72

0.51

0.09

0.00

0.00

0.00

0.03

0.00

0.01

0.43

0.74

0.08

0.59

0.19

0.67

0.00

0.00

0.00

0.01

0.00

0.00

0.21

0.34

0.08

0.51

0.61

0.72

0.00

0.00

0.00

0.01

0.08

0.01

0.76

0.72

0.59

0.51

0.43

0.31

0.01

0.00

0.00

0.00

0.00

0.00

0.35

0.51

0.19

0.61

0.43

0.70

0.00

0.00

0.00

0.00

0.03

0.01

0.30

0.09

0.67

0.72

0.31

0.70

0.07

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.07

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

Ta
bI

C
L

R
ea

lM
LP

 [
H

PO
,

C
V
]

A
ut

oG
lu

on

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

Ta
bM

 [
H

PO
,

C
V
]

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bD

PT

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

TabICL

RealMLP [HPO, CV]

AutoGluon

CatBoost [HPO, CV]

TabPFN

TabM [HPO, CV]

XGBoost [HPO, CV]

TabDPT

LightGBM [HPO, CV]

ConTextTab

HistGradBoost

Random forest

Naive

M
od

el
 B

(b) OpenML-CC18.

0.49

0.71

0.71

0.60

0.77

0.69

0.66

0.71

0.91

1.00

0.97

0.51

0.71

0.74

0.57

0.77

0.54

0.74

0.71

0.94

0.97

0.97

0.29

0.29

0.66

0.43

0.74

0.37

0.57

0.60

0.94

0.97

0.94

0.29

0.26

0.34

0.40

0.69

0.31

0.51

0.51

0.91

0.97

0.94

0.40

0.43

0.57

0.60

0.66

0.51

0.51

0.69

0.80

0.80

0.97

0.23

0.23

0.26

0.31

0.34

0.29

0.54

0.49

0.91

1.00

0.97

0.31

0.46

0.63

0.69

0.49

0.71

0.57

0.66

0.80

0.77

0.94

0.34

0.26

0.43

0.49

0.49

0.46

0.43

0.66

0.80

0.86

1.00

0.29

0.29

0.40

0.49

0.31

0.51

0.34

0.34

0.69

0.74

0.97

0.09

0.06

0.06

0.09

0.20

0.09

0.20

0.20

0.31

0.51

0.97

0.00

0.03

0.03

0.03

0.20

0.00

0.23

0.14

0.26

0.49

0.94

0.03

0.03

0.06

0.06

0.03

0.03

0.06

0.00

0.03

0.03

0.06

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

R
ea

lM
LP

 [
H

PO
,

C
V
]

Ta
bM

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

Ta
bD

PT

X
G

B
oo

st
 [

H
PO

,
C
V
]

A
ut

oG
lu

on

Ta
bP

FN

C
on

Te
xt

Ta
b

R
an

do
m

 f
or

es
t

H
is

tG
ra

dB
oo

st

N
ai

ve

Model A

RealMLP [HPO, CV]

TabM [HPO, CV]

CatBoost [HPO, CV]

LightGBM [HPO, CV]

TabDPT

XGBoost [HPO, CV]

AutoGluon

TabPFN

ConTextTab

Random forest

HistGradBoost

Naive

M
od

el
 B

0.78

0.01

0.00

0.33

0.00

0.01

0.06

0.04

0.00

0.00

0.00

0.78

0.01

0.01

0.57

0.00

0.07

0.03

0.06

0.00

0.00

0.00

0.01

0.01

0.14

0.39

0.00

0.75

0.87

0.50

0.00

0.00

0.00

0.00

0.01

0.14

0.28

0.06

0.54

0.67

0.98

0.00

0.00

0.00

0.33

0.57

0.39

0.28

0.05

0.39

0.94

0.29

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.05

0.30

0.64

0.61

0.00

0.00

0.00

0.01

0.07

0.75

0.54

0.39

0.30

0.97

0.99

0.02

0.02

0.00

0.06

0.03

0.87

0.67

0.94

0.64

0.97

0.21

0.00

0.00

0.00

0.04

0.06

0.50

0.98

0.29

0.61

0.99

0.21

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.81

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.81

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

R
ea

lM
LP

 [
H

PO
,

C
V
]

Ta
bM

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

Ta
bD

PT

X
G

B
oo

st
 [

H
PO

,
C
V
]

A
ut

oG
lu

on

Ta
bP

FN

C
on

Te
xt

Ta
b

R
an

do
m

 f
or

es
t

H
is

tG
ra

dB
oo

st

N
ai

ve

Model A

RealMLP [HPO, CV]

TabM [HPO, CV]

CatBoost [HPO, CV]

LightGBM [HPO, CV]

TabDPT

XGBoost [HPO, CV]

AutoGluon

TabPFN

ConTextTab

Random forest

HistGradBoost

Naive

M
od

el
 B

(c) OpenML-CTR23.

23

0.50

0.50

0.50

0.63

1.00

0.50

1.00

0.75

1.00

1.00

0.50

0.50

0.38

0.63

1.00

0.50

1.00

0.75

1.00

1.00

0.50

0.50

0.50

0.63

0.88

0.63

0.88

0.88

1.00

1.00

0.50

0.63

0.38

0.50

0.88

0.50

0.88

0.75

1.00

1.00

0.38

0.38

0.38

0.50

0.88

0.63

0.88

0.88

0.88

1.00

0.00

0.00

0.13

0.13

0.13

0.25

0.88

0.50

0.88

0.88

0.50

0.50

0.38

0.50

0.38

0.75

0.88

0.63

0.75

1.00

0.00

0.00

0.13

0.13

0.13

0.13

0.13

0.38

0.38

0.88

0.25

0.25

0.13

0.25

0.13

0.50

0.25

0.63

0.63

1.00

0.00

0.00

0.00

0.00

0.00

0.13

0.25

0.63

0.38

1.00

0.00

0.00

0.00

0.00

0.00

0.13

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

X
G

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

A
ut

oG
lu

on

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

H
is

tG
ra

dB
oo

st

Ta
bM

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

Ta
bP

FN

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

XGBoost [HPO, CV]

LightGBM [HPO, CV]

AutoGluon

RealMLP [HPO, CV]

CatBoost [HPO, CV]

HistGradBoost

TabM [HPO, CV]

ConTextTab

TabPFN

Random forest

Naive

M
od

el
 B

0.84

0.95

0.84

0.74

0.01

0.84

0.01

0.20

0.01

0.01

0.84

0.95

0.95

0.46

0.01

0.84

0.01

0.25

0.01

0.01

0.95

0.95

0.58

0.25

0.15

0.84

0.04

0.20

0.01

0.01

0.84

0.95

0.58

0.55

0.15

1.00

0.04

0.25

0.01

0.01

0.74

0.46

0.25

0.55

0.15

0.84

0.15

0.20

0.02

0.01

0.01

0.01

0.15

0.15

0.15

0.31

0.02

0.64

0.02

0.02

0.84

0.84

0.84

1.00

0.84

0.31

0.11

0.58

0.15

0.01

0.01

0.01

0.04

0.04

0.15

0.02

0.11

0.64

0.95

0.02

0.20

0.25

0.20

0.25

0.20

0.64

0.58

0.64

0.38

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.15

0.95

0.38

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.01

0.02

0.01

0.01

0.0

0.2

0.4

0.6

0.8

1.0
p-value

X
G

B
oo

st
 [

H
PO

,
C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

A
ut

oG
lu

on

R
ea

lM
LP

 [
H

PO
,

C
V
]

C
at

B
oo

st
 [

H
PO

,
C
V
]

H
is

tG
ra

dB
oo

st

Ta
bM

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

Ta
bP

FN

R
an

do
m

 f
or

es
t

N
ai

ve

Model A

XGBoost [HPO, CV]

LightGBM [HPO, CV]

AutoGluon

RealMLP [HPO, CV]

CatBoost [HPO, CV]

HistGradBoost

TabM [HPO, CV]

ConTextTab

TabPFN

Random forest

Naive

M
od

el
 B

(d) TabReD.

0.59

0.51

0.41

0.41

0.76

0.57

0.70

0.73

0.78

0.81

0.84

0.84

0.95

0.35

0.43

0.32

0.32

0.70

0.46

0.62

0.57

0.78

0.78

0.86

0.86

1.00

0.38

0.49

0.32

0.41

0.62

0.59

0.57

0.70

0.78

0.78

0.81

0.81

0.95

0.46

0.65

0.62

0.54

0.76

0.59

0.73

0.70

0.86

0.78

0.89

0.92

0.95

0.54

0.57

0.54

0.41

0.70

0.46

0.65

0.68

0.86

0.76

0.86

0.86

0.97

0.16

0.27

0.32

0.16

0.27

0.41

0.51

0.57

0.81

0.70

0.84

0.78

0.97

0.35

0.49

0.30

0.35

0.46

0.54

0.51

0.62

0.70

0.70

0.76

0.73

0.97

0.22

0.30

0.32

0.24

0.32

0.38

0.41

0.57

0.84

0.70

0.84

0.84

0.97

0.24

0.43

0.24

0.30

0.27

0.41

0.35

0.38

0.51

0.65

0.73

0.59

0.92

0.14

0.14

0.16

0.08

0.11

0.14

0.27

0.11

0.46

0.54

0.62

0.62

0.95

0.11

0.16

0.16

0.16

0.22

0.19

0.22

0.22

0.35

0.43

0.65

0.68

0.95

0.14

0.11

0.16

0.08

0.11

0.11

0.22

0.14

0.27

0.32

0.32

0.54

0.97

0.16

0.08

0.16

0.08

0.14

0.19

0.27

0.14

0.38

0.35

0.32

0.41

0.95

0.03

0.00

0.05

0.05

0.03

0.03

0.03

0.03

0.05

0.05

0.05

0.00

0.03

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

A
ut

oG
lu

on

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

R
ea

lM
LP

 [
H

PO
,

C
V
]

Ta
bM

 [
H

PO
,

C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bD

PT

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

C
A
R
TE

M
am

bu
la

r

N
ai

ve

Model A

AutoGluon

CatBoost [HPO, CV]

TabPFN

RealMLP [HPO, CV]

TabM [HPO, CV]

LightGBM [HPO, CV]

ConTextTab

XGBoost [HPO, CV]

TabDPT

HistGradBoost

Random forest

CARTE

Mambular

Naive

M
od

el
 B

0.15

0.47

0.85

0.74

0.00

0.37

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.15

0.58

0.12

0.30

0.00

0.79

0.00

0.31

0.00

0.00

0.00

0.00

0.00

0.47

0.58

0.26

0.93

0.10

0.18

0.07

0.02

0.00

0.00

0.00

0.00

0.00

0.85

0.12

0.26

0.33

0.00

0.66

0.01

0.04

0.00

0.00

0.00

0.00

0.00

0.74

0.30

0.93

0.33

0.03

0.69

0.03

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.03

0.14

0.35

0.74

0.00

0.00

0.00

0.00

0.00

0.37

0.79

0.18

0.66

0.69

0.14

0.23

0.29

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.07

0.01

0.03

0.35

0.23

0.76

0.00

0.00

0.00

0.00

0.00

0.00

0.31

0.02

0.04

0.01

0.74

0.29

0.76

0.24

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.24

0.54

0.17

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.54

0.12

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.17

0.12

0.21

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.02

0.21

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

A
ut

oG
lu

on

C
at

B
oo

st
 [

H
PO

,
C
V
]

Ta
bP

FN

R
ea

lM
LP

 [
H

PO
,

C
V
]

Ta
bM

 [
H

PO
,

C
V
]

Li
gh

tG
B
M

 [
H

PO
,

C
V
]

C
on

Te
xt

Ta
b

X
G

B
oo

st
 [

H
PO

,
C
V
]

Ta
bD

PT

H
is

tG
ra

dB
oo

st

R
an

do
m

 f
or

es
t

C
A
R
TE

M
am

bu
la

r

N
ai

ve

Model A

AutoGluon

CatBoost [HPO, CV]

TabPFN

RealMLP [HPO, CV]

TabM [HPO, CV]

LightGBM [HPO, CV]

ConTextTab

XGBoost [HPO, CV]

TabDPT

HistGradBoost

Random forest

CARTE

Mambular

Naive

M
od

el
 B

(e) TALENT-Tiny.

Figure 6: Win ratios (Model A wins over model B) as well as p-values of the two-sided Wilcoxon
signed-rank test across evaluated baselines separately for each benchmark. Wins are calculated based
on accuracy on classification and R2 on regression datasets. Ties are not counted as wins. Models are
sorted by descending overall rank.

24

1234567891011

Naive
Random Forest
HistGradBoost

XGBoost [HPO, CV]
TabPFN

LightGBM [HPO, CV]
TabM [HPO, CV]
ConTextTab
CatBoost [HPO, CV]
RealMLP [HPO, CV]
AutoGluon

CD
All benchmarks

(a) All benchmarks.

1234567891011121314

Naive
Mambular

Random Forest
HistGradBoost

TabDPT
TabPFN

XGBoost [HPO, CV] TabM [HPO, CV]
RealMLP [HPO, CV]
LightGBM [HPO, CV]
CARTE
CatBoost [HPO, CV]
ConTextTab
AutoGluon

CD
CARTE

(b) CARTE.

12345678910111213

Naive
Random Forest
HistGradBoost

XGBoost [HPO, CV]
TabDPT

LightGBM [HPO, CV]
ConTextTab

CatBoost [HPO, CV]
TabM [HPO, CV]
TabPFN
AutoGluon
RealMLP [HPO, CV]
TabICL [v0.1.2]

CD
OpenML CC18

(c) OpenML-CC18.

123456789101112

Naive
HistGradBoost

Random Forest
ConTextTab

XGBoost [HPO, CV]
LightGBM [HPO, CV] TabPFN

CatBoost [HPO, CV]
TabDPT
AutoGluon
TabM [HPO, CV]
RealMLP [HPO, CV]

CD
OpenML CTR23

(d) OpenML-CTR23.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AutoGluon

XGBoost [HPO, CV]
LightGBM [HPO, CV]

RealMLP [HPO, CV]
CatBoost [HPO, CV]

TabM [HPO, CV]
TabPFN

HistGradBoost
Random Forest

ConTextTab
Naive

TabReD

(e) TabReD.

1234567891011121314

Naive
CARTE

Mambular
HistGradBoost

Random Forest
TabDPT

LightGBM [HPO, CV] XGBoost [HPO, CV]
ConTextTab
CatBoost [HPO, CV]
TabPFN
TabM [HPO, CV]
AutoGluon
RealMLP [HPO, CV]

CD
TALENT-Tiny

(f) TALENT-Tiny.

Figure 7: Critical difference diagrams for all evaluated benchmarks collectively and for each bench-
mark individually. As TabReD only contains 8 datasets, only ranking results are depicted.

Table 3: Performance comparison across all evaluated benchmarks, depicting mean accuracy (Acc)
for classification and (soft-clipped) R2 score for regression tasks, in percent. Missing values, due
to architectural limitations or failed evaluations, are denoted as N/A and excluded from the rank
calculations. Models are sorted according to their ranking on the CARTE benchmark.

Model Name All CARTE OML-CC18 OML-CTR23 TabReD TALENT-Tiny

Rank Rank Acc R2 Rank Acc Rank R2 Rank Acc R2 Rank Acc R2

AutoGluon [v1.2] 3.34 1.92 78.7 73.8 3.42 88.5 6.17 68.6 2.25 86.0 64.6 2.70 87.9 73.7
ConTextTab [bagging=8] 4.70 2.18 76.9 72.4 5.65 86.6 6.74 73.3 5.38 85.4 63.2 4.24 87.6 76.1
ConTextTab [bagging=1] 5.42 3.22 76.4 71.5 6.51 86.3 6.91 73.1 8.50 85.3 62.6 4.27 87.6 76.0
CatBoost [HPO, CV] 4.10 4.82 75.9 68.2 4.25 87.7 4.29 68.8 2.88 86.0 64.3 2.89 87.2 76.4
LightGBM [HPO, CV] 4.43 5.24 73.4 67.5 4.68 87.5 4.11 68.8 1.38 86.0 64.9 3.81 86.9 74.1
RealMLP [HPO, CV] 3.61 5.71 73.4 67.5 3.26 88.3 2.54 75.0 2.25 86.0 64.6 2.70 88.3 76.4
TabM [HPO, CV] 4.17 6.08 73.2 66.9 4.35 87.9 2.63 74.3 3.62 86.1 64.2 2.76 87.5 75.7
XGBoost [HPO, CV] 4.66 6.12 73.1 66.7 4.03 87.5 4.60 70.9 1.38 86.0 64.9 4.62 86.8 73.6
CatBoost [HPO] 5.13 6.16 75.4 67.1 5.04 87.2 5.31 67.4 2.25 85.9 64.3 4.35 86.5 73.3
LightGBM [HPO] 6.26 7.63 72.9 66.3 6.29 87.2 6.09 67.8 2.25 85.9 64.3 5.35 86.5 73.2
XGBoost [HPO] 6.61 8.41 72.7 65.8 7.00 86.7 5.66 69.2 1.38 85.8 64.6 5.41 86.4 74.0
CatBoost [TD] 6.83 8.61 75.4 65.8 6.04 86.9 8.57 70.7 3.00 85.9 63.6 5.08 86.2 74.2
TabM [HPO] 5.42 9.29 72.6 65.6 4.54 87.6 4.46 73.3 3.38 86.1 64.6 3.16 87.3 75.5
TabDPT [v1.1, k=2048] 6.83 9.84 72.7 65.1 5.01 87.8 5.69 73.2 15.12 83.0 60.9 5.51 86.7 74.8
TabPFN [v2.1.0] 5.81 10.08 72.3 65.0 4.85 87.4 4.74 75.1 5.25 85.6 63.8 2.92 87.8 74.4
HistGradientBoosting 8.92 10.53 72.5 64.8 8.01 86.1 11.37 65.5 3.25 85.9 63.9 7.38 86.3 67.6
LightGBM [TD] 7.80 10.75 72.7 64.9 6.49 86.4 9.23 67.5 3.25 85.9 63.5 5.95 86.0 72.9
XGBoost [TD] 8.03 12.18 72.5 64.2 6.03 86.7 9.34 68.7 3.75 85.6 62.6 5.89 86.2 72.7
RealMLP [HPO] 7.10 12.49 71.6 64.6 4.89 87.5 6.14 70.6 3.50 85.9 63.7 5.68 86.5 76.3
Random forest 11.01 14.08 71.5 63.3 9.60 85.7 11.54 67.9 10.12 85.4 60.7 9.22 85.8 70.6
TabM 9.42 16.96 70.1 60.5 7.14 86.7 6.60 69.7 10.25 85.3 62.2 5.97 86.1 74.3
RealMLP [TD] 8.86 17.96 69.4 60.1 5.39 87.1 7.06 71.0 3.00 85.9 64.0 6.03 86.2 74.7
KNN [k=5] 20.04 22.9 65.5 34.3 17.94 81.7 20.46 55.1 21.62 78.7 -15.0 19.46 80.3 60.0
Linear 19.52 23.25 62.7 22.8 16.39 80.9 21.63 46.2 20.12 80.8 21.1 18.35 80.5 41.3
Naive 23.33 24.82 53.0 -1.8 22.43 47.0 24.11 -8.4 20.75 80.8 -0.6 22.84 53.4 -19.2

CARTE [v0.0.26] N/A N/A 76.1 68.5 N/A N/A N/A N/A N/A N/A N/A N/A 84.4 71.1
TabICL [v0.1.1] N/A N/A 72.5 N/A N/A 88.0 N/A N/A N/A 85.1 N/A N/A 87.4 N/A
Mambular [v1.5.1] N/A N/A 70.1 52.8 N/A N/A N/A N/A N/A N/A N/A N/A 83.6 53.9

25

A.3 Runtime analysis

We performed a runtime analysis of ConTextTab, comparing it against TabPFN, TabICL, and two
non-ICL models, XGBoost and RealMLP. The results are presented in Figure 8. For this analysis, we
created a synthetic dataset consisting of 100 columns, with an equal number of categorical/textual
and numerical features, and varied the number of training/context rows from 1,000 to 10,000. We
conducted tests by running one test/query row at a time with varying numbers of training/context
rows, using 5 repeats and reporting averages for each table size. The experiments were conducted on
a compute node with 40 CPU cores, 320 GB of RAM and an H100 GPU with 96 GB of VRAM.

We find that the throughput of ConTextTab is comparable to other tabular ICL models, such as
TabPFN and TabICL, with runtimes ranging from 0.1s to 9s, depending on the table size. As expected,
due to the LLM embedding overhead, ConTextTab is typically slightly slower than TabPFN or
TabICL. For ConTextTab, we observe quadratic scaling behavior, as expected from its transformer
backbone with memory-efficient attention. However, for TabPFN and TabICL, this effect is not
noticeable because of the use of flash attention. As a result, ConTextTab is roughly twice as slow
for larger contexts with 10 000 rows. Moreover, inference runtime can be improved with additional
technical approaches, such as KV caching or model compilation.

Note that, while non-ICL models offer significantly faster prediction times, they require extensive
training. In particular, the hyperparameter-optimized (HPO) and CV-ensembled (HPO,CV) versions
of XGBoost and RealMLP exhibit fit+predict times that are two orders of magnitude longer.

0 1 2 3 4 5 6 7 8 9 10
Train rows ×103

0

1

2

3

4

5

6

7

8

9

Ru
nt

im
e

(s
ec

on
ds

)

Predict

0 1 2 3 4 5 6 7 8 9 10
Train rows ×103

100

101

102

103

Ru
nt

im
e

(s
ec

on
ds

, l
og

 sc
al

e)

Fit + Predict
ConTextTab
TabPFN v2.1.0
TabICL v0.1.2
XGBoost [TD]
XGBoost [HPO]
RealMLP [TD]
RealMLP [HPO]
XGBoost [HPO CV]
RealMLP [HPO CV]

Figure 8: Runtime comparison of different models across varying numbers of training rows. (Left)
Runtime for model prediction. (Right) Runtime for model prediction, including fitting. Note the
linear y-axis scale on the left side as opposed to the log-scale on the right.

A.4 Further ablations

In the following, we discuss in more detail the ablations as presented in Table 2.

Text embedding model: We test the performance of two more recently released sentence embedding
models, namely Multilingual e5 small [36] and gte-multilingual-base [42]. However, we
cannot observe significant impact on the final results over the default all-MiniLM-L6-v2 sentence
embedder. This potentially indicates the necessity of larger, semantically rich training data or further
research into aligning these sentence embedders with a tabular foundation model.

Curriculum training with longer context: In this setup, after training the model on T4 with a
context size of up to 950, training is extended by including also the dataset used by Ma et al. [25],
collected from the OpenML AutoML benchmark, and extending the context size up to 4000 rows.
Data is sampled from either T4 with 80% probability or the dataset from by Ma et al. [25] with
20% probability. The resulting model shows some improvements on a few tasks, but by statistically
insignificant amounts.

26

0.84

0.84

0.92

0.96

0.16

0.75

0.65

0.82

0.16

0.25

0.49

0.69

0.08

0.31

0.49

0.80

0.04

0.16

0.31

0.18

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

ba
se

(s
em

an
ti
c

en
co

de
r)

m
in

ha
sh

en
co

de
r

ga
p

en
co

de
r

or
di

na
l e

nc
od

er

A
ut

oG
lu

on
 e

nc
od

er

Model A

base
(semantic encoder)

min hash encoder

gap encoder

ordinal encoder

AutoGluon encoder

M
od

el
 B

(a) Win ratios with Model A wins over Model B.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.39

0.00

0.00

0.00

0.39

0.00

0.00

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

Model A

M
od

el
 B

base
(semantic encoder)

min hash encoder

gap encoder

ordinal encoder

AutoGluon encoder

ba
se

(s
em

an
ti
c

en
co

de
r)

m
in

 h
as

h
en

co
de

r

ga
p

en
co

de
r

or
di

na
l e

nc
od

er

A
ut

oG
lu

on
 e

nc
od

er

(b) P-values of two-sided Wilcoxon signed-rank test.

Figure 9: Detailed results of the semantic feature ablation, comparing the use of different non-
semantic or conventional encoders to the base model using LLM embeddings.

Regression target and clipping: When using a one-dimensional encoding for numerical values, we
can choose to clip the tails of the distribution for better stability. This is needed in pretraining due
to the noisy data. In practice, whether to do this on downstream tasks can be chosen depending on
outlier analysis of the data itself. We test alternative levels of clipping: no clipping (default), clipping
at 0.1%, 0.5% and 2% quantiles. We also compare this to using binning instead of one-dimensional
embeddings. We find that both clipping by 2% and binning cause a slight reduction in quality (since
we are using n = 16 bins, note that binning also incurs in clipping at 1

32 ≈ 3%). The only exception
is in the OpenML-CTR23 benchmark: it contains one dataset with extreme outliers where no model
achieves a positive R2 score, and adding clipping there limits degenerate scores.

Impact of fine-tuning: The training process can be easily adapted to fine-tuning on a specific
collection of datasets or even a single task. We experimented with fine-tuning on (the training
partition of) all the 203 datasets at the same time. However, we observe that, if during this fine-tuning
we fix the target column to always be the one corresponding to the prediction task to be evaluated, we
rapidly encountered overfitting and prediction scores degrade. This might be a similar problem to the
scaling law of training data, as also observed by Ma et al. [25]. In the present situation, we can avoid
overfitting by selecting the target column randomly with the same selection procedure described in
Section 4.1. However, as shown in Table 2, the gain is rather limited.

Semantic embeddings ablation: In addition to the ablation results previously shown in Section 5.1,
we depict the win ratios and p-values of a two-sided Wilcoxon signed-rank test for the cell value and
column name semantic ablations in the Figure 9 and Figure 10.

B Suplementary Diagrams

Multi
head

attention
FF

X (Query)

Y (Key, Value)
LN FF FF LN

MAB
MAB

C + Q

I

Q

concat

Multi-head attention block (MAB) Induced self-attention block (ISAB)

Figure 11: (left) Multi-head attention block (MAB), (right) Induced self-attention block (ISAB)
architecture diagram.

27

0.57

0.86

0.43

0.92

0.12

0.08

0.0

0.2

0.4

0.6

0.8

1.0
Win Ratio

co
lu

m
n

na
m

es
+

 d
es

cr
ip

ti
on

co
lu

m
n

na
m

es

no
 c

ol
um

n
na

m
es

Model A

column names
+ description

column names

no column names

M
od

el
 B

(a) Win ratios with Model A wins over Model B.

0.40

0.00

0.40

0.00

0.00

0.00

0.0

0.2

0.4

0.6

0.8

1.0
p-value

co
lu

m
n

na
m

es
+

 d
es

cr
ip

ti
on

co
lu

m
n

na
m

es

no
 c

ol
um

n
na

m
es

Model A

column names
+ description

column names

no column names

M
od

el
 B

(b) P-values of two-sided Wilcoxon signed-rank test.

Figure 10: Detailed results of the semantic column name ablation, comparing the base model
(“column names”) to variations where column names are replaced with non-semantic ones (“no
column names”) or enriched with additional column descriptions (“column names” + description).

C Experimental Setup – Details

C.1 Baselines

Data preprocessor: Evaluating models across a multitude of datasets can be tricky. Datasets may
have inconsistent data type annotations, such as categories represented as strings or categorical data
types, covering low- and high-cardinality categorical features, date, time, or datetime instances, free
text, boolean values and more. Most models, however, require numerical input to process and handle
non-numerical data types or missing values differently. To unify our evaluation, we implemented
a configurable default feature encoder built on the AutoMLPipelineFeatureGenerator from
AutoGluon [9] which we found to be very versatile and robust. In particular, the encoder natively
handles low- and high-cardinality categorical data, free text (to some extent), as well as datetime
encoding. For flexibility and compatibility with a multitude of models, we extended the default
implementation to cover the following options that can be adapted to the capabilities of the baseline
model at hand:

• Whether to convert booleans to string/categorical values.

• Whether to not encode string/categorical values for models that natively handle them, such
as CatBoost.

• Whether to scale numerical data via quantile scaling with a normal distribution as target.

• Whether to drop constant features.

• Whether to impute missing values, extending the standard imputation (using most frequent
categories and mean for numerical data) to bools and datetime data types.

As default, we choose to convert booleans, encode categoricals via ordinal encoding, scale numerical
data, drop constant columns and impute missing values.

Below, we describe for which baselines the default values are changed or when other types of feature
encodings are used.

TabPFN: We use the model from the official Python tabpfn package with ver-
sion 2.1.0 together with the tabpfn-extensions package version 0.1.0 at commit
16e0e4f4305a3546eab5be6ebf163ff41bd3843d of the Git repository2 as the PyPi release is
not up-to-date.

Naturally, we use TabPFNClassifier and TabPFNRegressor for classification and regression tasks,
respectively, using default parameters for both. In particular, TabPFNClassifier uses an ensemble

2https://github.com/PriorLabs/tabpfn-extensions.git

28

https://github.com/PriorLabs/tabpfn-extensions.git

of 4 and TabPFNRegressor an ensemble of 8 estimators. We combine the classification estimator
with the ManyClassClassifier extension with a redundancy factor of 4 to enable classification
beyond the native 10-class limit of TabPFN which is required for the evaluation of some of the 203
evaluated datasets.

For datasets larger than the native 10 k limit of TabPFN, we sample a random 10 k subset of the
training split. This affects 66 out of the 203 evaluated datasets. For datasets with more than the 500
feature limit that TabPFN was trained with, we select a random subsample of 500 features. This
affects 12 out of 203 evaluated datasets. While this is not optimal, and post-hoc ensembling as well
as a random forest preprocessing is recommended by the authors [18], these extensions cannot be
combined with the many-class extension required to predict beyond the 10-class limit of the native
TabPFN model. Hence, we cannot evaluate TabPFN with the post-hoc ensembling or random forest
extension.

As we found the native feature encoder of TabPFN to not work across all evaluated datasets, we use
our standard feature encoder (see above), encoding categorical columns, scaling numerical values,
dropping constant columns, and imputing missing values. As this procedure should be very similar to
the TabPFN-native encoder, we anticipate this deviation to affect the results only insignificantly (if at
all).

TabICL: We use the latest model weights tabicl-classifier-v1.1-0506.ckpt from the recent
0.1.2 version of the official tabicl package. This updated variant is an improved checkpoint over the
one reported in the original works [30]. As TabICL solely supports classification tasks, we exclude it
from the overall mean rank evaluation. For encoding, we use our default encoder, but do not scale
numericals, do not drop constant values, and do not impute missing ones as it is natively handled by
the model.

TabDPT: We use the model from the official GitHub repository3 at the recent 1.1.0 release and
tabdpt1_1.pth model checkpoint. Naturally, we use TabDPTClassifier and TabDPTRegressor
for classification and regression tasks, respectively, using default parameters for both. Throughout,
we evaluate the model with a (local) context size of 2048 which is the best-performing one in the
original works [25]. However, evaluation failed for some datasets due to an error in the original code
leading to empty predictions for very large datasets in the TabReD benchmark. Here, we use our
default encoder, scaling numericals, dropping constant values, and imputing missing ones.

CARTE: We use the model provided in the official Python carte-ai package with version 0.0.26.
We use CARTEClassifier and CARTERegressor with default parameters for classification and
regression tasks, respectively. We treat binary classification tasks as 2-class multi-class classifica-
tion and hence set loss=“categorical_crossentropy” for the classifacation estimator. With
CARTE, we use our default preprocessor to convert bool values and datetime instances and to impute
missing values, but otherwise rely on the Table2GraphTransformer provided in the reference
implementation.

Pytabkit models: We use the pytabkit implementation wrapper for evaluating RealMLP, TabM,
XGBoost, LightGBM, and CatBoost. We evaluate all models both in the tuned-defaults (TD) variant
proposed by Holzmüller et al. [19] (except for TabM which only has non-tuned defaults [D]),
hyperparameter-optimized (HPO), as well as 5-fold inner cross-validation (CV) ensembled HPO
variants (HPO-CV). For all HPO and HPO-CV variants, we use the recently added tabarena search
spaces proposed in [10].

In particular, for RealMLP (TD), we use RealMLP_TD_Classifier and RealMLP_TD_Regressor
for classification and regression tasks, respectively. For RealMLP (HPO, HPO-CV), we use
RealMLP_HPO_Classifier and RealMLP_HPO_Regressor for classification and regression tasks,
respectively, conducting the default 50 rounds of random search HPO. For the ensembled variant, we
use 5-fold inner CV.

For TabM (D), we use TabM_D_Classifier and TabM_D_Regressor for classification and re-
gression tasks, respectively. For TabM (HPO, HPO-CV), we use TabM_HPO_Classifier and
TabM_HPO_Regressor for classification and regression tasks, respectively, conducting the default
50 rounds of random search HPO. For the ensembled variant, we use 5-fold inner CV.

3https://github.com/layer6ai-labs/TabDPT.git

29

https://github.com/layer6ai-labs/TabDPT.git

For XGBoost (TD), LightGBM (TD), and CatBoost (TD), we use
XGB_TD_Classifier, XGB_TD_Regressor, LGBM_TD_Classifier, LGBM_TD_Regressor,
CatBoost_TD_Classifier, and CatBoost_TD_Regressor for classification and regression tasks,
respectively. For the HPO-variants, we use the HPO_TPE versions of the estimators, performing
Parzen-tree based HPO with 50 rounds. For the ensembled variant, we use 5-fold inner CV.

CatBoost, LightGBM and XGBoost are evaluated on CPU machines with up to 256 GB of RAM,
whereas RealMLP and TabM are evaluated on H100 GPUs with 96 GB of VRAM.

Throughout, we use our default encoder, scaling numericals, dropping constant values, and imputing
missing ones. For all models but CatBoost, we perform ordinal encoding of categoricals.

Sklearn models: We use several standard baseline models from scikit-learn [27], combining
them with the default preprocessor as outlined above. Across all scikit-learn baselines, prepro-
cessing only differs in missing value imputation, depending on the model’s capability to handle
missing values natively. Throughout, evaluation is performed using scikit-learn v1.5.2.

For the naive predictor, we use the DummyClassifier and DummyRegressor to predict the most
frequent, respectively mean value of the train splits as the naive majority baseline.

For the linear predictor, we use the LogisticRegression and LinearRegression for classifica-
tion and regression tasks, respectively, using default hyperparameters.

For the KNN predictor, we use the KNeighborsClassifier and KNeighborsRegressor for clas-
sification and regression tasks, respectively, using default hyperparameters and k = 5 nearest
neighbors.

For the random forest predictor, we use the RandomForestClassifier and
RandomForestRegressor for classification and regression tasks, respectively, using default
hyperparameters. The model handles missing values natively.

Finally, for the histogram-based gradient boosted tree predictor, we use the
HistGradientBoostingClassifier and HistGradientBoostingRegressor for classifi-
cation and regression tasks, respectively, using default hyperparameters. The model handles missing
values natively.

Mambular: We use the official implementation from the mambular PyPi package, version 1.5.1.
We use MambularClassifier and MambularRegressor with default parameters. As training ran
out of memory for very wide datasets, we randomly sample 500 columns if the dataset exceeds it.

AutoGluon: Throughout, we use AutoGluon v1.2 and its TabularPredictor without custom
preprocessing. We use the best_quality preset and set a per-dataset time limit of 4 h. Otherwise,
parameters are left at their default values. For all datasets, evaluation is executed on a single 16-core
machine with 128 GB of RAM and no GPU.

C.2 Datasets

Full details of all used dataset and benchmarks are provided in Table 5. The row and column count
statistics are further visualized in Figure 12. Additionally, the per-benchmark statistics regarding the
number of tasks as well as the data type proportions are presented in Table 4. Note that not all types
grouped as object are necessarily free text, but that they can also contain categorical or time/date
instances that are not correctly cast by pandas by default. However, these are typically picked up
correctly by the used data preprocessors.

We extracted all datasets from their original source and performed a custom stratified train-validation-
test split with a 70-10-20 ratio. For classification tasks, the target column is used for stratification.
For regression tasks, we perform stratification on the binned target column, binning it into 5 quantiles
using the qcut method from the pandas library. Otherwise, we do not perform any alterations on
the data. Models not using a specific validation procedure are provided with the concatenated train
and validation split for training.

30

Table 4: Task and data type statistics of the evaluated benchmarks.

Benchmark Number of tasks Dtype rates / %

total classification regression object category bool float int datetime

CARTE 51 11 40 80.74 0.00 0.00 19.04 0.22 0.00
OpenML-CC18 72 72 0 0.05 7.85 0.00 55.80 22.70 0.00
OpenML-CTR23 35 0 35 0.95 3.91 0.00 66.19 16.91 0.00
TabReD 8 3 5 0.14 0.00 0.05 89.95 9.41 0.44
TALENT-tiny 37 26 11 12.77 0.00 0.44 63.63 23.15 0.00

103 104 105

num_rows

101

102

103

nu
m

_c
ol

s

Dataset statistics

collection
carte
openml_cc18
openml_ctr23
talent_tiny
tabred
target_type
regression
classification

Figure 12: Column and row distribution of the evaluated benchmark datasets.

31

Table 5: Details of all used benchmark datasets.

Benchmark Table Num. rows Num. cols Target type

CARTE anime_planet 11512 11 regression
CARTE babies_r_us 4068 5 regression
CARTE beer_ratings 2557 20 regression
CARTE bikedekho 3828 8 regression
CARTE bikewale 7193 8 regression
CARTE buy_buy_baby 8574 5 regression
CARTE cardekho 30250 17 regression
CARTE chocolate_bar_ratings 2070 9 classification
CARTE clear_corpus 3779 27 regression
CARTE coffee_ratings 1661 9 classification
CARTE company_employees 8752 8 regression
CARTE employee_remuneration 28316 5 regression
CARTE employee_salaries 7368 9 regression
CARTE fifa22_players 14468 19 regression
CARTE filmtv_movies 32964 10 regression
CARTE journal_jcr 7692 10 regression
CARTE journal_sjr 22344 10 regression
CARTE jp_anime 12428 17 regression
CARTE k_drama 991 13 regression
CARTE michelin 5465 8 classification
CARTE mlds_salaries 8364 9 regression
CARTE movies 5779 14 regression
CARTE museums 9173 17 regression
CARTE mydramalist 2720 14 regression
CARTE nba_draft 1335 7 classification
CARTE prescription_drugs 1371 8 regression
CARTE ramen_ratings 3267 5 classification
CARTE roger_ebert 2149 8 classification
CARTE rotten_tomatoes 5726 14 regression
CARTE spotify 32879 19 classification
CARTE us_accidents_counts 18098 7 regression
CARTE us_accidents_severity 17324 11 classification
CARTE us_presidential 15885 7 regression
CARTE used_cars_24 4734 9 regression
CARTE used_cars_benz_italy 13112 8 regression
CARTE used_cars_dot_com 3207 11 regression
CARTE used_cars_pakistan 58124 8 regression
CARTE used_cars_saudi_arabia 4405 11 regression
CARTE videogame_sales 13128 6 regression
CARTE whisky 1449 7 classification
CARTE wikiliq_beer 10768 10 regression
CARTE wikiliq_spirit 9820 8 regression
CARTE wina_pl 1797 16 regression
CARTE wine_dot_com_prices 12203 10 regression
CARTE wine_dot_com_ratings 3276 10 regression
CARTE wine_enthusiasts_prices 96780 10 regression
CARTE wine_enthusiasts_ratings 103976 10 regression
CARTE wine_vivino_price 11067 8 regression

Continued on next page

32

Collection Table Num. rows Num. cols Target type

CARTE wine_vivino_rating 11067 9 regression
CARTE yelp 51692 13 classification
CARTE zomato 49152 9 classification
OpenML-CC18 adult 39073 15 classification
OpenML-CC18 analcatdata_authorship 672 71 classification
OpenML-CC18 analcatdata_dmft 637 5 classification
OpenML-CC18 balance_scale 500 5 classification
OpenML-CC18 bank_marketing 36168 17 classification
OpenML-CC18 banknote_authentication 1097 5 classification
OpenML-CC18 bioresponse 3000 1777 classification
OpenML-CC18 blood_transfusion_service_center 598 5 classification
OpenML-CC18 breast_w 559 10 classification
OpenML-CC18 car 1382 7 classification
OpenML-CC18 churn 4000 21 classification
OpenML-CC18 cifar_10 48000 3073 classification
OpenML-CC18 climate_model_simulation_crashes 432 19 classification
OpenML-CC18 cmc 1178 10 classification
OpenML-CC18 cnae_9 864 857 classification
OpenML-CC18 connect_4 54045 43 classification
OpenML-CC18 credit_approval 552 16 classification
OpenML-CC18 credit_g 800 21 classification
OpenML-CC18 cylinder_bands 432 38 classification
OpenML-CC18 devnagari_script 73600 1025 classification
OpenML-CC18 diabetes 614 9 classification
OpenML-CC18 dna 2548 181 classification
OpenML-CC18 dresses_sales 400 13 classification
OpenML-CC18 electricity 36249 9 classification
OpenML-CC18 eucalyptus 588 20 classification
OpenML-CC18 fashion_mnist 56000 785 classification
OpenML-CC18 first_order_theorem_proving 4894 52 classification
OpenML-CC18 gesturephasesegmentationprocessed 7898 33 classification
OpenML-CC18 har 8239 562 classification
OpenML-CC18 ilpd 466 11 classification
OpenML-CC18 internet_advertisements 2623 1559 classification
OpenML-CC18 isolet 6237 618 classification
OpenML-CC18 jm1 8708 22 classification
OpenML-CC18 jungle_chess_2pcs_raw_endgame_complete 35855 7 classification
OpenML-CC18 kc1 1687 22 classification
OpenML-CC18 kc2 417 22 classification
OpenML-CC18 kr_vs_kp 2556 37 classification
OpenML-CC18 letter 16000 17 classification
OpenML-CC18 madelon 2080 501 classification
OpenML-CC18 mfeat_factors 1600 217 classification
OpenML-CC18 mfeat_fourier 1600 77 classification
OpenML-CC18 mfeat_karhunen 1600 65 classification
OpenML-CC18 mfeat_morphological 1600 7 classification
OpenML-CC18 mfeat_pixel 1600 241 classification
OpenML-CC18 mfeat_zernike 1600 48 classification
OpenML-CC18 miceprotein 864 78 classification

Continued on next page

33

Collection Table Num. rows Num. cols Target type

OpenML-CC18 mnist_784 56000 785 classification
OpenML-CC18 nomao 27572 119 classification
OpenML-CC18 numerai28_6 77056 22 classification
OpenML-CC18 optdigits 4496 65 classification
OpenML-CC18 ozone_level_8hr 2027 73 classification
OpenML-CC18 pc1 887 22 classification
OpenML-CC18 pc3 1250 38 classification
OpenML-CC18 pc4 1166 38 classification
OpenML-CC18 pendigits 8793 17 classification
OpenML-CC18 phishingwebsites 8844 31 classification
OpenML-CC18 phoneme 4323 6 classification
OpenML-CC18 qsar_biodeg 844 42 classification
OpenML-CC18 satimage 5144 37 classification
OpenML-CC18 segment 1848 17 classification
OpenML-CC18 semeion 1274 257 classification
OpenML-CC18 sick 3017 30 classification
OpenML-CC18 spambase 3680 58 classification
OpenML-CC18 splice 2552 61 classification
OpenML-CC18 steel_plates_fault 1552 28 classification
OpenML-CC18 texture 4400 41 classification
OpenML-CC18 tic_tac_toe 766 10 classification
OpenML-CC18 vehicle 676 19 classification
OpenML-CC18 vowel 792 13 classification
OpenML-CC18 wall_robot_navigation 4364 25 classification
OpenML-CC18 wdbc 455 31 classification
OpenML-CC18 wilt 3871 6 classification
OpenML-CTR23 abalone 3341 9 regression
OpenML-CTR23 airfoil_self_noise 1202 6 regression
OpenML-CTR23 auction_verification 1634 8 regression
OpenML-CTR23 brazilian_houses 8553 10 regression
OpenML-CTR23 california_housing 16512 9 regression
OpenML-CTR23 cars 643 18 regression
OpenML-CTR23 concrete_compressive_strength 824 9 regression
OpenML-CTR23 cps88wages 22524 7 regression
OpenML-CTR23 cpu_activity 6553 22 regression
OpenML-CTR23 diamonds 43152 10 regression
OpenML-CTR23 energy_efficiency 614 9 regression
OpenML-CTR23 fifa 15342 29 regression
OpenML-CTR23 forest_fires 413 13 regression
OpenML-CTR23 fps_benchmark 19699 44 regression
OpenML-CTR23 geographical_origin_of_music 847 117 regression
OpenML-CTR23 grid_stability 8000 13 regression
OpenML-CTR23 health_insurance 17817 12 regression
OpenML-CTR23 kin8nm 6553 9 regression
OpenML-CTR23 kings_county 17290 22 regression
OpenML-CTR23 miami_housing 11145 16 regression
OpenML-CTR23 moneyball 985 15 regression
OpenML-CTR23 naval_propulsion_plant 9547 15 regression
OpenML-CTR23 physiochemical_protein 36584 10 regression

Continued on next page

34

Collection Table Num. rows Num. cols Target type

OpenML-CTR23 pumadyn32nh 6553 33 regression
OpenML-CTR23 qsar_fish_toxicity 726 7 regression
OpenML-CTR23 red_wine 1279 12 regression
OpenML-CTR23 sarcos 39146 22 regression
OpenML-CTR23 socmob 924 6 regression
OpenML-CTR23 solar_flare 852 11 regression
OpenML-CTR23 space_ga 2485 7 regression
OpenML-CTR23 student_performance_por 519 31 regression
OpenML-CTR23 superconductivity 17010 82 regression
OpenML-CTR23 video_transcoding 55027 19 regression
OpenML-CTR23 wave_energy 57600 49 regression
OpenML-CTR23 white_wine 3918 12 regression
TabReD acquire_valued_shoppers_challenge 133602 117 classification
TabReD cooking_time 278338 196 regression
TabReD delivery_eta 313589 227 regression
TabReD home_credit_credit_risk_model_stability 325663 701 classification
TabReD homesite_quote_conversion 244458 302 classification
TabReD maps_routing 219994 991 regression
TabReD sberbank_russian_housing_market 23674 396 regression
TabReD TabReD_weather 382955 111 regression
TALENT-tiny ailerons 11000 41 regression
TALENT-tiny breast_w 31492 10 classification
TALENT-tiny cmc 44236 10 classification
TALENT-tiny dis 3017 30 classification
TALENT-tiny eye_movements_bin 6086 21 classification
TALENT-tiny fried 32614 11 regression
TALENT-tiny house_16h_reg 18227 17 regression
TALENT-tiny ibm_employee_performance 1176 31 classification
TALENT-tiny jungle_chess_2pcs_raw_endgame_complete 35855 7 classification
TALENT-tiny kaggle_bike_sharing_demand_challange 8708 10 regression
TALENT-tiny kc1 1687 22 classification
TALENT-tiny kin8nm 6553 9 regression
TALENT-tiny law_school_admission_bianry 16640 12 regression
TALENT-tiny mfeat_fourier 1600 77 classification
TALENT-tiny mv 32614 11 regression
TALENT-tiny okcupid_stem 21341 14 classification
TALENT-tiny online_shoppers 9864 15 classification
TALENT-tiny optdigits 4496 65 classification
TALENT-tiny page_blocks 4378 11 classification
TALENT-tiny pc3 1250 38 classification
TALENT-tiny pendigits 8793 17 classification
TALENT-tiny pol 8065 27 classification
TALENT-tiny pol_reg 12000 49 regression
TALENT-tiny rl 3976 13 classification
TALENT-tiny satimage 5144 37 classification
TALENT-tiny segment 1848 18 classification
TALENT-tiny socmob 924 6 regression
TALENT-tiny splice 2552 61 classification
TALENT-tiny sylvine 4099 21 classification

Continued on next page

35

Collection Table Num. rows Num. cols Target type

TALENT-tiny thyroid_dis 2240 27 classification
TALENT-tiny tic_tac_toe 31492 10 classification
TALENT-tiny vulnonevul 4553 17 regression
TALENT-tiny waterstress 950 23 regression
TALENT-tiny waveform_5000 4000 41 classification
TALENT-tiny website_phishing 1082 10 classification
TALENT-tiny wine 2043 5 classification
TALENT-tiny wine_quality_white 3918 12 classification

36

	Introduction
	Related Work
	Method
	Encoding
	Backbone
	Decoding
	Alternative architectures

	Experimental Setup
	Training and inference
	Evaluation

	Results
	Ablation studies

	Conclusions
	Further Results
	Relation between dataset size and model performance
	Extended results
	Runtime analysis
	Further ablations

	Suplementary Diagrams
	Experimental Setup – Details
	Baselines
	Datasets

