
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEAKAGE AND SECOND-ORDER DYNAMICS IMPROVE
HIPPOCAMPAL RNN REPLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

Biological neural networks (like the hippocampus) can internally generate “replay”
resembling stimulus-driven activity. Recent computational models of replay use
noisy recurrent neural networks (RNNs) trained to path-integrate. Replay in these
networks has been described as Langevin sampling, but new modifiers of noisy
RNN replay have surpassed this description. We re-examine noisy RNN replay as
sampling to understand or improve it in three ways: (1) Under simple assumptions,
we prove that the gradients replay activity should follow are time-varying and
difficult to estimate, but readily motivate the use of hidden state leakage in RNNs for
replay. (2) We confirm that hidden state adaptation (negative feedback) encourages
exploration in replay, but show that it incurs non-Markov sampling that also slows
replay. (3) We propose the first model of temporally compressed replay in noisy
path-integrating RNNs through hidden state momentum, connect it to underdamped
Langevin sampling, and show that, when combined with adaptation, it counters
slowness while maintaining exploration. We verify our findings via path-integration
of 2D paths in T-maze and triangular environments and of high-dimensional paths
of synthetic rat place cell activity.

Mean and Standard Deviation of s(t) (awake path) and r(t) (replay path)
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Figure 1: Underdamped dynamics accelerate offline replay, adaptation slows it. Here we
simulate a noisy RNN r(t) that optimally path-integrates an Ornstein-Uhlenbeck process s(t) from
its velocity s′(t). We assume r(t) minimizes the loss in Equation (8) and thus evolves according
to its score function ∇r(t) log p(r(t)) (Equations 12 and 16), performing a variant of Langevin
sampling when no input is given. Above, we compare three modifiers of RNN activity: the default
(no modification, a.k.a. overdamped), our proposed underdamped (momentum), and adaptation
(negative feedback) dynamics. Each modifier affects the replay distribution p(r(t)) in different ways:
underdamped sampling accelerates p(r(t)) towards p(s(t)), decreasing the distance between them,
while adaptation slows convergence of p(r(t)) towards p(s(t)), increasing this distance.

1 INTRODUCTION

During quiescent periods such as sleep or wakeful resting, some neural circuits internally generate
activity resembling that of active periods (Tingley & Peyrache, 2020). Such “replay” phenomena
have been observed in the prefontal (Euston et al., 2007; Peyrache et al., 2009), sensory (Kenet et al.,
2003; Xu et al., 2012), motor (Hoffman & McNaughton, 2002), and entorhinal cortices (Gardner
et al., 2022); the anterior thalamus (Peyrache et al., 2015); and the hippocampus (Buzsáki, 1986;
Skaggs & McNaughton, 1996; Nádasdy et al., 1999; Lee & Wilson, 2002; Foster, 2017). Of these
circuits, the hippocampus is particularly interesting because its robustness in tasks like navigation
(O’Keefe & Nadel, 1978; Burgess et al., 1994; McNaughton et al., 1996) and planning (Pfeiffer &
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Foster, 2013; Miller et al., 2017) during active states seems crucially tied to its spontaneous activity
during quiescent states (Buzsáki, 1989; 2015; Tononi & Cirelli, 2014; Ólafsdóttir et al., 2015; 2018).

While some works have produced replay using supervised generative models (Deperrois et al., 2022),
most existing models of hippocampal activity treat replay as an emergent byproduct of careful
network design. Relevant network parameters include connectivity structures (Shen & McNaughton,
1996; Milstein et al., 2023), local plasticity mechanisms (Hopfield, 2010; Litwin-Kumar & Doiron,
2014; Theodoni et al., 2018; Haga & Fukai, 2018; Asabuki & Fukai, 2025), firing rate adaptation
(Chu et al., 2024; Azizi et al., 2013; Itskov et al., 2011; Dong et al., 2021; Li et al., 2024), and input
modulation (Kang & DeWeese, 2019). While these models reproduce aspects of replay, they are
typically motivated by empirical findings and lack rigorous theoretical justification.

A more principled model of hippocampal function with emergent replay is sequential predictive
learning (Krishna et al., 2024; Levenstein et al., 2024), wherein neural circuits predict dynamic
environment or task variables from imperfect observations thereof, e.g., path-integrating velocity
measurements to track a position. This normative description of the hippocampus as a sequence
predictor (Levy, 1989; Stachenfeld et al., 2017) matches hippocampal encodings of upcoming stimuli
(Davachi & DuBrow, 2015) and prediction errors (Aitken & Kok, 2022; Miller et al., 2023), and
neural activity sweeps that represent possible future trajectories (Kay et al., 2020; Johnson & Redish,
2007). Unlike traditional, hand-crafted models of hippocampal circuits (i.e., continuous attractor
networks (Samsonovich & McNaughton, 1997; Battaglia & Treves, 1998)), sequential predictive
learning models are trained from data. Nonetheless, they account for the emergence of place cells
(Recanatesi et al., 2021; Levenstein et al., 2024; Chen et al., 2024), grid cells (Cueva & Wei, 2018;
Sorscher et al., 2019), and head direction cells (Cueva et al., 2020; Uria et al., 2022); can incorporate
phenomena like theta oscillations (Levenstein et al., 2024); and exhibit quiescent replay activity
(Krishna et al., 2024; Levenstein et al., 2024; Chen et al., 2024).

Krishna et al. (2024) provided the first theoretical foundation for replay in sequential predictive
learning networks, showing analytically that they generate diffusive replay (Stella et al., 2019) during
quiescent activity by Langevin sampling (Besag, 1994) from the waking activity distribution using its
score function. Subsequent empirical work (Levenstein et al., 2024) introduced new mechanisms to
induce exploration in replay through negative feedback, i.e., neural adaptation. Exploration is the
notion that replay expresses a variety of behavioral sequences (Davidson et al., 2009; Pfeiffer, 2020),
and is associated with long trajectories in neural space, visitation of multiple attractor basins, and
transitions that were not present in awake activity. Adaptation can destabilize attractors and induce
sudden transitions in replay activity (Itskov et al., 2011; Dong et al., 2021; Li et al., 2024; Levenstein
et al., 2024), thereby facilitating exploration, and is thought to play a key role in the dynamics of
replay in vivo (Levenstein et al., 2019). However, existing theory on sequential predictive learning
cannot account for these mechanisms. Furthermore, sequential predictive learning models do not
currently account for the temporal compression of replay sequences relative to awake sequences of
activity (Nádasdy et al., 1999; Buzsáki, 2015; Michelmann et al., 2019; Farooq & Dragoi, 2019).
This phenomenon, which could be caused by short-term facilitation (Leibold et al., 2008; Jaramillo &
Kempter, 2017), is not currently captured in replay from any trained RNN model to our knowledge.

Overall, while sequential predictive learning is a promising model of hippocampal function and
replay, its recent empirical advances have outpaced its theoretical foundations. Moreover, it is unclear
how to incorporate phenomena like temporal compression in these models, or what inductive biases in
these RNNs’ design affect replay. We remedy these shortcomings by characterizing how RNN design
and Langevin sampling statistics affect each other. Some results describe how RNN design affects
the speed and variance of replay activity, while others start from the Langevin sampling formulation
of replay and either explain existing architectural choices as useful inductive biases, or propose new
mechanisms to again modulate sampling. In summary, we answer three questions:

1. Optimal path-integration in the presence of noise requires RNNs to learn the score function of
the noisy activity distribution. What is this function, might it inform RNN design? The score
function is time-variant and difficult to estimate, even for simple distributions, but our expression
of it motivates the addition of leakage (linear dynamics) in RNNs.

2. Adaptation (negative feedback) empirically induces exploration in replay. How does it affect
Langevin sampling? Adaptation induces non-Markov second-order Langevin sampling that
destabilizes attractors, which can both help (diversify) and hurt (slow) replay.
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3. Traditional generative models benefit from a wide array of sampling techniques. Could new sam-
pling methods improve replay in noisy RNNs? Underdamped Langevin sampling via momentum
quickens neural replay, like temporal compression induced by short-term facilitation in vivo, and
mitigates slowing from adaptation while maintaining exploration.

2 BACKGROUND

2.1 LANGEVIN DYNAMICS

Langevin sampling from an unknown distribution p(x) entails stochastic gradient ascent of an iterate
x(t) along the log-likelihood of p(x) via its score function ∇ log p(x) or an estimate thereof:

x′(t) = x(t) +∇ log p(x) +
√
2η(t), (1)

where η(t) is Gaussian white noise. While Equation 1 describes overdamped dynamics, there also
exist underdamped Langevin dynamics1 (Equations 2 or 3, see Chapter 6 of Pavliotis (2014)) that
converge faster to the target distribution p(x) and better utilize noisy gradients (Cheng et al., 2018):

x′′(t) = ∇ log p(x)− γx′(t) +
√
2γη(t), or (2)

x′(t) = v(t), v′(t) = ∇ log p(x)− γv(t) +
√

2γη(t) (3)

2.2 OFFLINE REPLAY IN RNNS

This work focuses on RNNs that implicitly learn to act as generative models over a fixed distribution
of input sequences. Krishna et al. (2024) have shown how noisy RNNs trained to path-integrate
their inputs implicitly learn statistics that produce Langevin sampling of the input distribution when
no input is given. Path-integration is particularly relevant to neuroscience: animals can leverage
motion cues, observations, or prior experiences to accurately estimate positions (Seelig & Jayaraman,
2015; Chrastil, 2025), and neural circuits like the entorhinal cortex (Sorscher et al., 2019) have been
identified to perform such computations. Here we summarize the finding that noisy RNNs trained
to path-integrate input time-series learn the score function of the input distribution (Krishna et al.,
2024).
Definition 1. A noisy recurrent neural network (RNN) has hidden states r(t) that evolve at each
timestep t via some (nonlinear) function of its previous hidden states, an input signal u(t), and noise:

r(t+∆t) = f(r(t),u(t), σrη(t)) (4)

Definition 2. A path-integration objective L(t) penalizes the difference between a state variable s(t)
and a learnable linear projection of the RNN hidden state r(t) at every timestep t:

L(t) = Eη∥s(t)−Dr(t)∥2 (5)

Assumption 1. Krishna et al. (2024) assume the hidden state dynamics of a noisy RNN can be
decomposed as the sum of two separate functions2 and a white noise term σrη(t) ∼ N (0, σ2

r∆t).

r(t+∆t)− r(t) = ∆r(t) ≈ ∆r1(t) + ∆r2(t) + σrη(t) (6)

Assumption 2. The optimal r(t) minimizes L(t) such that p(r∗(t)) is normal around D†s(t):

p(r∗(t)|s(t)) ∼ N (D†s(t), Iσ2
r∆t) (7)

Lemma 1. With Assumptions 1 and 2, L(t+∆t) is upper bounded by tracking and denoising terms:

L(t+∆t) ≤ Lupper(t+∆t) = ∥s′(t)−D∆r2(t)∥+ ∥D∥FEη∥∆r1(t) + σrη(t−∆t)∥2
+ Eη∥Dσrη(t)∥2

(8)

Assumption 3. The optimal r(t) greedily minimizes Lupper at each time t only.

{r∗(t)}Tt=0 = argmin
{r(t)}T

t=0

∫ T

t=0

L(t+∆t)∆t ≈
{
argmin

r(t)

Lupper(t+∆t)

}T

t=0

(9)

1Discretized underdamped Langevin dynamics are a form of Hamiltonian MCMC (Cheng et al., 2018).
2Each function ∆r1(t),∆r2(t) can depend on variables beyond t, but they are omitted for concision.
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Theorem 1. Given Assumption 3, the optimal ∆r(t) follows s′(t) and the score function of p(r(t)).

∆r∗(t) = argmin
∆r2(t)

Lupper(t+∆t) + argmin
∆r1(t)

Lupper(t+∆t) + σrη(t) (10)

= D†s′(t)∆t+ σ2
r∆t∇r(t) log p(r(t)) + σrη(t) (11)

During training, noisy RNNs are (unless otherwise stated, see Section 2.3) provided u(t) = s′(t) (or
a nonlinear observation thereof) to perform path-integration and focus on denoising.

Theorem 2. In the absence of input (quiescence), a noisy RNN already trained to path-integrate s(t)
from s′(t) will perform gradient ascent along the score function of r(t). If p(r(t)) and p(s(t)) are
stationary, then this ascent is Langevin sampling (Equation 1). If the variance of σrη(t) is scaled by
a factor of 2, then p(r(t)) is guaranteed to converge to the steady-state distribution p(r) = p(D†s).

If r(t+∆t) = r(t) + σ2
r∆t∇r(t) log p(r(t)) +

√
2σrη(t), then lim

t→∞
p(r(t)) = p(D†s) (12)

2.3 EXISTING METHODS OF BIASING REPLAY IN RNNS

Neural adaptation. Biological neurons can mitigate prolonged or low-frequency activity via
negative feedback, or adaptation (Benda, 2021; Gutkin & Zeldenrust, 2014). This feedback has proven
important for describing in vivo hippocampal activity and replay (Itskov et al., 2011; Levenstein et al.,
2019), and in computational models of replay has been shown to encourage long replay trajectories
(exploration) by preventing neural activations from getting stuck in attractor basins (Dong et al.,
2021; Li et al., 2024; Levenstein et al., 2024). Like Levenstein et al. (2024), we define adaptation as
negative feedback c(t) added to RNN activity r(t) (Equation 4) after training3:

r(t+∆t) = f(r(t),u(t), σrη(t))− c(t), ∆c(t) =
1

τa
(−c(t) + bar(t)) (13)

Masked training. Denoisers and autoencoders benefit from masked training, wherein some regions
of input data are set to zero before model processing (Zhang et al., 2023). Levenstein et al. (2024)
introduce masked training for path-integration by periodically masking the input u(t) (the observation
of s′(t)): only at every k-th timestep does the RNN observe a nonzero input (Equation 14).

u(t) =

{
s′(t), t mod k = 0

0, otherwise
(14)

Levenstein et al. (2024) found that masked training makes replay sequences more coherent and makes
manifolds of neural activity more similar to the spatial layout of the environment. We found that
masked training improves replay stability, so we use it (with k ≥ 3) in training all RNNs.

3 ESTIMATING THE SCORE FUNCTION OF NOISY RNN ACTIVITY

Noisy RNNs trained to path-integrate implicitly learn the score function of their activity. Previous
works have not examined the score function; in fact, they assume the distribution of RNN activity
p(r(t)) is stationary (Theorem 2), and thus the score function∇r(t) log p(r(t)) depends only on r(t)
(Krishna et al., 2024). However, we refute this assumption, and in doing so reveal the role of leakage
in path-integration: even if the RNN path-integrates a simple Gaussian process, the score function
requires information beyond r(t), which it employs through linear leakage (decay) of r(t). This
linearity suggests that leakage is useful for path-integration, which we confirm experimentally.

3.1 CHALLENGES IN SIMPLE DISTRIBUTIONS

First, we examine how the score function of optimal path-integrating RNN activity r(t) has nonsta-
tionarities that are challenging to perfectly estimate, even for simple Gaussian processes.

Assumption 4. The observed states s(t) form some Gaussian process: p(s(t)) ∼ N
(
µs(t),Σs(t)

)
.

3Subtraction of the moving average c(t) also arises naturally from greedy minimization of L(t) + 1
2
∥c(t)∥22.
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Theorem 3. With Assumption 4, the score function of trained activity r(t) has a closed form which,
while linear in r(t), is nonlinear with respect to the parameters of p(s(t)) (see Appendix B.2):

σ2
r∆t∇r(t) log p(r(t)) = −σ2

r∆t
(
Iσ2

r∆t+D†Σs(t)(D
†)T

)−1︸ ︷︷ ︸
Λ(t)

(
r(t)−D†µs(t)

)
(15)

With Λ(t) as the leakage matrix of r(t), we can already gain some insight from Equation 15.
Remark 1. If p(s(t)) is Gaussian, then the score of p(r(t)) is simply a linear function of r(t), but
its parameters are nonlinear functions of time, and are only as stationary as p(s(t)).
Remark 2. The eigenvalues of the leakage matrix Λ(t) are always between 0 and 1 (see Appendix
B.2). Moreover, the eigenvalues of Λ(t) and D†Σs(t)(D

†)T inversely correlate: strong decay of
r(t) implies weak noise Σr(t), and weak decay of r(t) implies strong noise Σr(t).

To further illustrate how estimating the score function of r(t) (Equation 15) can be challenging, we
now examine a scalar RNN rou(t) trained to path-integrate Ornstein-Uhlenbeck processes.
Assumption 5. The observed states follow a scalar Ornstein-Uhlenbeck process parameterized by
θ, µ, σs: s′ou(t) = θ(µ − sou(t)) + σsη(t), where p(s(0)) ∼ N (0, σ2

0). In other words, p(sou(t))
parameterizes a directed random walk from sou(0) to µ.
Remark 3. The score function of the optimal rou(t) under Assumption 5 follows from Equation (27)
(see Appendix C):

σ2
r∆t∇rou(t) log p(rou(t)) =

−σ2
r∆t

(
rou(t)− µ

(
1− e−θt

))
σ2
r∆t+

σ2
s

2θ (1− e−2θt) + σ2
0e

−θt
(16)

The score function, and thus the optimal quiescent activity, is evidently complex
and nonstationary: limt→0 σ

2
r∆t∇rou(t) log p(rou(t)) = − σ2

r∆t

σ2
r∆t+σ2

0
rou(t), while

limt→∞ σ2
r∆t∇rou(t) log p(rou(t)) = − σ2

r∆t
σ2
r∆t+σ2

s/2θ
(rou(t) − µ). While one could force

stationarity by implicitly assuming the process starts at sou(0) = µ, or assuming the steady-state
dynamics (t → ∞) are the most important, we argue that any such approach would miss a
fundamentally relevant aspect of the Ornstein-Uhlenbeck process for navigation: intention. Unlike
the Wiener process (Appendix C), the Ornstein-Uhlenbeck process can describe a random walk that
intentionally navigates from su(0) to µ, rather than one that simply wanders around µ. Thus, for
navigation, the non-stationary, or “early”, dynamics of the Ornstein-Uhlenbeck process are the most
salient. Given the relevance of non-stationary dynamics for navigation, our analyses focus on the
entire course of replay dynamics (rather than steady-state distributions), examining properties like
speed and path diversity (exploration).

3.2 THE ADVANTAGE OF LEAKAGE
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Figure 2: Leakage helps path-
integration. Here we train RNNs on
two tasks, ablating the leakage term.
Leakage helps training, especially when
losses increase with the masking diffi-
culty k. Means are solid, standard devia-
tions are faint.

Theorem 1 and Remark 1 suggest that linear leakage may
be a useful inductive bias for RNNs learning to path-
integrate: the score function for a Gaussian process is
linear with respect to r(t), although the parameters of said
linearity are nonlinear functions of time. We examine the
utility of leakage by comparing two RNNs trained to path-
integrate: r(t + ∆t) = κr(t) + f1(r(t),u(t), σrη(t))
(RNN with leakage 0 < κ < 1) and r(t + ∆t) =
f2(r(t),u(t), σrη(t)) (RNN without leakage), where
f1, f2 are shallow ReLU layers trained separately (see Ap-
pendix A.5). The second is more reminiscent of traditional
RNNs in machine learning (e.g., ReLU or gated RNNs),
which do not typically employ leakage. In Figure 2, we
show that leakage is useful for path-integration, especially
with masked training (k > 1). Our results suggest that
leakage is a useful component of path-integrating RNNs,
although other architectures may be able to successfully
learn without it (e.g., the layer-norm RNN of Levenstein
et al. (2024)).
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4 SECOND-ORDER LANGEVIN SAMPLING FOR NEURAL REPLAY

In the previous section, we examined the score function of trained path-integrating RNN activity.
Now, we are assuming that trained RNNs have well-estimated the score function, and follow it during
quiescent (internally-driven) activity to generate replay via Langevin dynamics. Here we ask how
modulating the dynamics of such RNNs affects the distribution of replay—in other words, how
changing the RNN dynamics biases the distribution of replay. We see that adaptation (negative feed-
back) incurs a non-ideal form of second-order Langevin sampling, so we propose a complementary
alternative that explicitly performs underdamped second-order sampling.

4.1 ADAPTATION AS UNDERDAMPED LANGEVIN DYNAMICS

First we examine adaptation (negative feedback), as defined in Section 2.3.

Proposition 1. Adding adaptation (Equation (13)) to a trained path-integrating RNN during quies-
cence (Equation (12)) incurs Langevin sampling with negative feedback:

∆r(t) = σ2
r∆t∇r(t) log p(r(t)) +

√
2σrη(t)− c(t), ∆c(t) =

1

τa
(−c(t) + bar(t)) (17)

For the clearest illustration of the effects of adaptation, let us examine a stationary p(r(t))—a
simplification which we argued in Section 3.1 is not realistic, but is nonetheless intuitive.

Assumption 6. The observed states are normal (Assumption 4) and stationary: p(s(t)) ∼ N (µ,Σ).

Theorem 4. Adding adaptation to an RNN trained to path-integrate states drawn from a station-
ary Gaussian distribution (Assumption 6 and Equation (17)) produces the following second-order
stochastic dynamics during quiescence (see Appendix D):

r′′(t) =

(
ba
τa

I + σ2
r∆t

d2

dr(t)2
log p(r(t))

)
r′(t)− ba

τa
σ2
r∆t ∇r(t) log p(r(t)) +

1

τa
r(t)

−σ ba
τa

η(t) + ση′(t)

(18)

Comparing Equation 18 with Equation 2, the two indeed resemble each other: adaptation seems to
induce a form of underdamped Langevin dynamics. This may help explain the observed utility of
adaptation for generating replay (Itskov et al., 2011; Levenstein et al., 2019; 2024). Moreover, since
we established in Section 3 that the score function of even a basic stochastic process is difficult to
estimate, the effectiveness of underdamped Langevin sampling for working with noisy gradients
(Cheng et al., 2018) may be useful in realistic settings where∇r(t) log p(r(t)) is poorly estimated.

However, interpreting Equation (18) as underdamped Langevin sampling reveals some shortcomings
thereof as a sampling method.

Remark 4. The coefficient of r′(t) is usually constant, and should be positive to ensure convergence
(Pavliotis (2014), pg. 183), but ba

τa
I +∇r(t) log p(r(t)) is not constant and could be negative.

Remark 5. Underdamped Langevin sampling from r(t) should not have a negative sign in front of
∇r(t) log p(r(t)) if the intention is to maximize p(r(t)).

4.2 REPLAY VIA EXPLICIT UNDERDAMPED LANGEVIN DYNAMICS

While adaptation is a biologically plausible mechanism of performing a variant of underdamped
Langevin dynamics in RNNs, we propose an alternative method, following Equation 3, to more
clearly and directly perform underdamped Langevin sampling.

Definition 3. We implement explicitly underdamped dynamics via a momentum term v(t) controlled
by friction λv (when λv = 1, dynamics are identical to the overdamped case from Equation (4)):

v(t+∆t) = (1− λv)v(t) + f(r(t),u(t), σrη(t))− r(t)︸ ︷︷ ︸
∆r(t) if λv=1

, ∆r(t) = v(t+∆t) (19)
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Our proposed sampling method is conceptually similar to RNNs with momentum (Nguyen et al.,
2020): v(t) (i.e., the velocity of r(t)) accumulates previous values when friction λv ∈ [0, 1] is
below 14. Moreover, our sampling mechanism shares conceptual ties with synaptic facilitation, a
phenomenon associated with temporal compression in vivo wherein inputs that successfully trigger
output activity have a temporarily increased influence on output activity (Leibold et al., 2008; Thurley
et al., 2008); we leave a possible implementation of underdampening via synaptic facilitation to
future work. Lastly, our mechanism could relate to momentum observed in replay trajectories in vivo
(Krause & Drugowitsch, 2022).

5 NUMERICAL RESULTS

Now we examine how adaptation and underdampening (Equations 13 and 19) bias replay distributions
in trained path-integrating RNNs. We first see they counter each other: adaptation slows replay, while
underdampening quickens it. Then we confirm that adaptation induces exploration, and show that
underdampening does not prevent exploration, but rather complements it by increasing path lengths.

Experiments. We have five tasks on which we train RNNs and then examine how incorporating
sampling mechanisms post-training (adaptation strength ba and friction λv) affect replay (quiescent
activity) statistics. For a detailed discussion of implementation, see Appendix A.

1. 1D Ornstein-Uhlenbeck (OU) process (Figure 1): the optimal (with respect to Equation (8))
path-integrating RNN has a closed form (Equation (16)), which we use in lieu of a trained RNN.

2. 2D T-maze and triangle (Figure 3): we simulate each direction (two in T-maze, six in triangle) as
a 2D OU process, and train a ReLU RNN to integrate 2D paths from every direction.

3. Rat trajectories (Appendix E, Figure 8): like Krishna et al. (2024), we simulate 512 place cells that
encode 2D directed (biased) or undirected (unbiased) random walks from RatInABox (George
et al., 2024), train a ReLU RNN to path-integrate place cell activity, and decode activity in 2D.

T-maze

Triangle

• = endpoint

(a) Overdamped Adaptation (ba = 1) Overdamped Adaptation (ba = 1)

Underdamped
(λv = 0.7)

Underdamped +
Adaptation

Underdamped
(λv = 0.7)

Underdamped +
Adaptation

1

0

1

0
−1 0 1 −1 0 1

1

0

1

0

0 1 0 1

(b) (c)

Figure 3: Underdampening and adaptation counter each other. Here we show replay from RNNs
trained to path-integrate in T-maze or triangular environments. (a) Awake paths in each task form
a mixture of Ornstein-Uhlenbeck processes, one for each direction of travel. Awake paths reach
their endpoints and stay there. In (b) and (c) are mean replay paths (darkening over time) from
T-maze and triangle tasks, simulated for the same time as awake paths. Standard deviations are faint,
ideal path means are dashed. Like in Figure 1, adaptation slows convergence towards endpoints,
underdampening quickens it. Also, the two mechanisms induce deviations that negate each other.

Underdampening and adaptation seem to counter each other. We initially observe that the two
modifiers counteract each other: in Figures 1 and 3, adaptation repels trajectories away from attractors
(such as endpoints), while underdampening accelerates trajectories towards them. This makes sense
given Remark 5 and the nature of underdamped sampling. Then we measure how the two modifiers
affect the similarity between replay (internally-driven) and awake (observed) trajectories. Figure 4

4For a comparison of λv and the γ term from Equations 3 and 2, see Appendix A.6.
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0.81
0

10
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Wasserstein
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T-maze

0.0 0.5 1.0

0.81
0

2

4

Friction λv

Triangle

0.60.81

0.08
0.1

0.12

Friction λv

Biased rat

0 1 3 5

1 0.9 0.8 0.7
0.11

0.12

0.13

Friction λv

Unbiased rat

0.0 0.1 0.2 0.3
Adaptation
strength ba:

Figure 4: Underdampening improves replay fidelity in the presence of adaptation. We compute
the Wasserstein distance (dissimilarity) between awake and replay path distributions (p({s(t)}Tt=0)

and p({r(t)}Tt=0)), varying friction and adaptation strength (see Appendix A for details). While the
two mechanisms both generally increase this distance, underdampening (λv < 1) decreases it if
adaptation is nonzero. Like in Figure 3, underdampening counters adaptation-induced deviations.

shows they both generally decrease the similarity to awake trajectories, but they do counter each other
insofar as underdampening, in the presence of adaptation, increases similarity to awake trajectories.
Thus far, underdampening counters adaptation qualitatively and statistically.

0 0.5 1

1
0.9
0.8
0.7

Fr
ic

tio
n
λ
v

T-maze

−30 0 60 120

0 0.5 1

1
0.9
0.8
0.7

Adaptation strength ba

Triangle

−30 0 55 110

0 1 3 5

1
0.8
0.6
0.5

Biased rat

−60 0 150 300

Change (%) from awake reach time:

Median replay reach time (↓) Figure 5: Underdampening temporally com-
presses replay. We calculate how long it takes
awake and replay trajectories to reach their end-
points. Underdampening (λv < 1) not only short-
ens this reach time, but makes it smaller than that
of awake paths, temporally compressing awake
activity. See Appendix E Figure 9 for mean reach
times. We do not include unbiased rat trajecto-
ries because they do not have defined endpoints,
but we do confirm in Appendix E Figure 10 that
underdampening quickens them.

Adaptation slows replay, underdampening accelerates it. Next, we examine a key component
of replay: speed. In Figures 4 and 5, we generally see that adaptation slows replay or increases the
dissimilarity between replay and awake trajectories. The exception is the biased rat trajectories, since
they are the only task where all trajectories reach the same common goal. Such path distributions
resemble Ornstein-Uhlenbeck processes with steady-state mean µ = 0: in such cases, adaptation
actually accelerates convergence towards the steady-state. In Figure 5, we see that underdampening
increases replay speed, performing temporal compression relative to awake activity.

0.81
8

8.5

Friction λv

Mean path
length (↑)

T-maze

0.0 0.5 1.0

0.81

8.5
9

Friction λv

Triangle

0.60.81

3

4

Friction λv

Biased rat

0 1 3 5

0.81

3
3.5
4

Friction λv

Unbiased rat

0.0 0.1 0.2 0.3
Adaptation
strength ba:

Figure 6: On average, underdampening increases exploration via path length. In here and
Figure 7 we simulate replay paths for more time than awake paths, varying friction and adaptation
strength. Shown above, underdampening (λv < 1) increases the average length of replay paths. It
may do so via increased replay speeds (Appendix E Figure 10) or via additional path transitions
(Figure 7); the latter is how adaptation increases path length.
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Regions visited (↑)
• = 2
•, • = 3
• = 4

(a) Examples of exploration in replay:

0.81
2

2.1

Friction λv

Average
regions

visited (↑)

T-maze

0.0 0.5 1.0

0.81
2

2.5

Friction λv

Triangle

Adaptation
strength ba:

(c) On average, λv < 1 increases exploration.

(i) increase
exploration

(ii) decrease
exploration

(iii) ignore
exploration

r.v. = 2.0 r.v. = 4.0 r.v. = 3.0

r.v. = 3.2 r.v. = 3.0 r.v. = 3.0

1

0

1

0

0 1 0 1 0 1

λv = 1

λv = 0.7

(b) Underdampening (λv < 1) might:

r.v. = mean regions visited, • = start, × = end

Figure 7: On average, underdampening increases exploration via regions visited. Another
relevant aspect of exploration is transitions not present in awake activity. (a) Here we quantify these
transitions via regions visited. Each region is an area where every point is closest to the same endpoint.
In our T-maze and triangle tasks, awake paths go from starting points to endpoints and stay there,
visiting two regions total (starting and ending). Meanwhile, adaptation (ba = 1) can make replay
paths visit multiple endpoints (regions visited > 2). (b) When we use adaptation and underdampening
(λv < 1), we see that replay paths might visit (i) more, (ii) fewer, or (iii) the same regions (see
Appendix E Figure 12 for more details). (c) However, on average, across several different trained
models, underdampening increases regions visited, thus increasing adaptation.

Underdampening complements exploration from adaptation. We have established that under-
dampening counters adaptation, both qualitatively and in terms of speed. However, we do not want
to merely propose a mechanism that undoes adaptation. Adaptation can induce exploration, i.e.,
prevent replay trajectories from getting stuck in attractors. We find that underdampening does not on
average prevent adaptation-induced exploration. In fact, underdampening complements adaptation
for exploration: underdamped paths travel farther (Figures 6 and 7), have more variance (Appendix E
Figure 11), and generally exhibit the same, if not more, exploratory behavior as they did with only
adaptation (Figure 7). Underdampening maintains exploration while counteracting the slowness from
adaptation.

6 CONCLUSIONS AND FUTURE WORK

We have re-applied Langevin sampling theory to replay in sequential predictive learning networks,
producing theoretically and confirming empirically three key insights: (1) estimating the per-timestep
score function of RNN activity is challenging, but does benefit from linear leakage; (2) adaptation
(negative feedback) is a variant of underdamped Langevin sampling that encourages exploration (as
shown in prior works) but also slows replay; (3) our new underdampening mechanism (momentum)
temporally compresses replay while also increasing (on average) exploration from adaptation. These
findings improve our understanding of biological neural networks that produce replay, like the hip-
pocampus. Our proposed underdampening mechanism via momentum could be tied to short-term
facilitation (which can be probed experimentally), connected to specific subregions in the hippocam-
pus (like Chen et al. (2024)), or refined through insights from existing RNNs with momentum
(Nguyen et al., 2020). Future efforts could confirm our findings in more complex environments Wood
et al. (2018); Levenstein et al. (2024). Like preceding works, our network models are rate-based,
but extending our work to spike-based models of replay and sequential predictive learning (Saponati
& Vinck, 2023; Asabuki & Fukai, 2025; Bono et al., 2023) would be interesting (this may involve
extending Langevin sampling to inhomogeneous Poisson processes). There still remain several
avenues for connecting Langevin sampling to neural replay.
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REPRODUCIBILITY STATEMENT

For our theoretical contributions, i.e., Theorems 3 and 4, we provide proofs in Appendix B and
D (proofs for Theorems 1 and 2 may be found in Section 2 of Krishna et al. (2024)). Details on
our numerical experiments, including associated hyperparameters and implementation details are
provided in Appendix A. Our code has been submitted as Supplementary Material (see README.md
for instructions) and will be made publicly available upon publication.
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SUPPLEMENTARY MATERIAL

A METHODS

A.1 EXPERIMENTS

A.1.1 ORNSTEIN-UHLENBECK

Awake trajectories s(t) are simulated with ∆t = 0.02, σs = 0.1, σ0 = 0.2, θ = 2, µ = 5 for
T = 100 iterations. We used Equation (16) as the deterministic component of ∆r(t) since a
1D Orstein-Uhlenbeck process admits a closed-form expression for d

dr(t) log p(r(t)). In Figure 1,
underdampening corresponds to λv = 0.5, while adaptation corresponds to ba = 1, τa = 100.

A.1.2 T-MAZE AND TRIANGLE

Task description. In the 2D T-maze and triangle tasks, we simulate directed random walks
(Ornstein-Uhlenbeck processes) along several directions, and train the RNN to path-integrate these
walks from their velocities. In the T-maze task, there are two directions of travel: both start from
the origin and go up, then one goes left and the other goes right (orange and purple, respectively,
in Figure 3). Meanwhile, in the triangle task there are six directions: denoting the three corners
of the equilateral triangle as A = (0, 0), B = (1, 0), and C = (1/2,

√
3/2), respectively, these

directions are
−−→
AB,

−−→
BC,

−→
CA,
−→
AC,
−−→
CB,

−−→
BA, shown in Figure 3 as blue, red, gray, pink, green, and

orange, respectively. Awake and replay paths last 100 timesteps, unless exploration is being measured,
in which replay paths are allowed to last 400 timesteps.

Architecture and training. For both tasks, we used shallow ReLU RNNs with linear output
projections, as described in Appendix A.5. In the T-maze task, we used 20 hidden neurons, while
in the triangle task, we used 40. We use masking difficulty k = 3 in a progressive curriculum.
Triangle-task RNNs are trained with k = 1 for 20, 000 epochs, then at k = 2 and k = 3 for 5, 000
epochs each; T-maze-task RNNs are trained likewise, but with fewer epochs (12, 000 at k = 1 and
5, 000 at k = 2 and k = 3 each).

Hidden state initialization. In each task, multiple directions start from the same point in space (for
example,

−−→
AB and

−→
AC in the triangle task), so we add onto initial hidden states some random vectors,

orthogonal to the 2D output projection, specific to each direction. For example, hidden states for
−−→
AB

and
−→
AC paths are both initialized to start near A, but

−−→
AB paths also start with a fixed random vector

ηAB added to their initial hidden states, whereas
−→
AC have a different fixed random vector ηAC added

to their iniital hidden states. This notion of initializing hidden states in directions orthogonal to output
projections has been previously discussed in computational neuroscientific contexts (Churchland &
Shenoy, 2024), and recent evidence suggests that memories (which replay is similar to) have uniquely
identifiable, output-orthogonal patterns of neural activation (Chettih et al., 2024).

A.1.3 RAT PLACE CELL TRAJECTORIES

Our unbiased (undirected random walks within a 2D box) and biased (directed random walks that
head towards the center of a 2D box) rat place cell trajectory experiments are identical to those of
Krishna et al. (2024), but with two modifications:

1. We add masked training, with difficulties k = 3 in the biased task and k = 6 in the unbiased task.
We use a higher masking difficulty in the unbiased task to encourage longer replay trajectories; at
lower values of k, unbiased replay paths are much shorter than awake trajectories. In Langevin
sampling terms, we conjecture this is because the score function ∇r(t) log p(r(t)) is fairly weak
since unbiased trajectories are uniformly distributed5.

5This relative weakness the unbiased activity score function (especially compared to the biased activity score
function, where trajectories all go towards the center of a 2D box) is also why we use relatively small adaptation
strengths ba in simulating replay from unbiased-task RNNs.
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2. We use a slower, but more detailed, decoder. Krishna et al. (2024) decode position at a given
timestep as the average position of the top 3 most active place cells, which is fast but effectively
quantizes decoded positions. We use this method to initialize our positions, but then we optimize
our positions via gradient descent to minimize the mean-squared error between observed place
cell activity and the place cell activity that would correspond to these optimized positions (this
is made possible by our knowledge of the exact place cell activity function). Our procedure
takes much longer, but results in truly continuous replay trajectories, avoiding any significant
quantization.

A.2 HYPERPARAMETERS

A.2.1 ACTIVATION FUNCTION

In our work, we have mostly used RNNs with ReLU activation functions; our reasons for doing so
are threefold. The first is that ReLU or ReLU-like activations, unlike tanh activations, do not always
saturate, which can mitigate vanishing gradients in RNNs (although care must be taken to avoid
exploding gradients). The second is that, compared to RNNs with multiplicative gating interactions
(e.g., GRUs and LSTMs), ReLU RNNs are more biologically plausible insofar as they can be easily
interpreted as the nonnegative, sparse firing rates of spiking networks. The third is that most other
previous works in sequential predictive coding tend to use ReLU activations, and have shown no
significant differences in results when using more complex nonlinearities:

• Ali et al. (2022), some of the first authors to report the emergence of predictive representations
emerging in RNNs, use ReLU activations.

• Krishna et al. (2024) primarily use ReLU networks, and report similar results with GRU networks.
• Levenstein et al. (2024) use ReLU activations in conjunction with layer normalization, but report

similar results when layer normalization is removed.
• Chen et al. (2024) use tanh for must results, but when they care about the emergence of sparse,

localized, nonnegative activations (i.e., place cells), they use ReLU activations.
• Sorscher et al. (2019); Xu et al. (2025), and Zhang et al. (2022) were all interested in the emergence

of grid cells in predictive representations and primarily used ReLU or ReLU-like activations;
those that tried using other nonlinearities did not observe notable differences in results.

• Tang et al. (2024), who were also interested in grid cells, use both ReLU and tanh activations, and
also report no notable differences between the two.

• Tang et al. (2023) use linear networks, and notice no significant difference when using tanh
activations.

A.3 METRICS

A.3.1 WASSERSTEIN DISTANCE

We seek to compare distributions of trajectories. In most of our tasks, these are objects of dimension
T × 2, where T is the number of timesteps (recall that T-maze and triangle tasks are already in
2D, while rat trajectories are analyzed after being projected into 2D space). To compare such
high-dimensional distributions, we use Wasserstein distances (Panaretos & Zemel, 2019):

• In the T-maze and triangle tasks, we first calculate the Wasserstein distance between awake and
replay paths belonging to the same direction (e.g.,

−−→
AB in the triangle task). Since paths along the

same direction should resemble, if not obey, Gaussian processes, these paths should approximately
be normally distributed, and so we can use the closed-form equation for the Wasserstein distance
between two normal distributions. After computing Wasserstein distances for each direction, we
take the average as our final distance. KL divergence might have also worked in this task, but in
practice the covariance matrices of the (T × 2)-dimensional distributions were singular.

• In the rat experiments, decoded 2D trajectories are not easily decomposed into groups of Gaussian
processes, so instead we apply sliced Wasserstein distances (Bonneel et al., 2015) to compare
the (T × 2)-dimensional distributions. Sliced Wasserstein distances are essentially calculated by
taking many random projections of two distributions onto 1D, where Wasserstein distances have
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a closed form. Computing KL divergences instead would have been challenging, since rat path
distributions are high-dimensional and do not admit straightforward estimations of probability
density.

A.3.2 REACH TIMES

In the T-maze, triangle, and biased rat tasks, awake trajectories have clearly defined endpoints
that they reach. Replay trajectories also aim for these endpoints, although second-order dynamics
modifiers like adaptation and underdampening affect how quickly or how closely replay paths reach
them. We quantify these changes by measuring the timesteps required for replay paths to get within
10% of their endpoints (for example, the timesteps required for

−−→
AB paths to get within a 0.1|

−−→
AB| of

B).

A.3.3 PATH LENGTHS

One way we quantify exploration in replay paths is through path length. We calculate this simply as
the sum of velocity magnitudes.

A.4 REGIONS VISITED

Another way we quantify exploration in the T-maze and traingle tasks is through regions visited. As
explained in Figure 7, regions are portions of input space where all points are closest to the same
endpoint. In the triangle task, there are 3 endpoints (which all also act as initial points), while in the
T-maze there are 2 endpoints and 1 shared starting point, which for the purposes of region assignment
we also consider an “endpoint”. Thus, in each task there are 3 endpoints, and thus 3 regions. Awake
trajectories go from one region to another and stay there, but replay trajectories might proceed to
visit more regions. We define a “visit” as a contiguous presence within a single region for at least 10
timesteps.

A.5 DISCRETIZATION AND IMPLEMENTATION OF NOISY RNNS

While biological neural networks are continuous-time systems, RNNs are in practice implemented
discretely. In order to incorporate second-order processes like adaptation and underdamped sampling
in RNNs, we must discretize them, which we do as follows:

∆r̃(t) = f(r(t),u(t), σrη(t))− r(t) (20)

c(t+∆t) = c(t) +
1

τa
(−c(t) + bar(t)) (21)

v(t+∆t) = (1− λv)v(t) + ∆r̃(t) (22)
r(t+∆t) = r(t)− c(t) + v(t+∆t) (23)

We train and sample from ReLU RNNs: f(r(t),u(t), σrη(t)) = κr(t) + ReLU(Wrr(t) +
Winu(t) + σrη(t)) (where k ∈ [0, 1] is also learnable) unless otherwise stated (a choice justi-
fied in Appendix A.2). In the absence of directed inputs u(t), f(r(t),u(t), σrη(t)) should be
roughly equivalent to the noisy score function from Equation 12.

If the adaptation strength ba = 0, then there is no adaptation (c(t) = 0). As for our friction term
λv ∈ [0, 1], if λv = 1, then there is no underdamped sampling since v(t) = ∆r(t) + σrη(t) no
longer accumulates previous values of v(t). In other words, the friction term λv allows for smooth
interpolation between overdamped and underdamped sampling.

Note that, unlike c(t+∆t) and v(t+∆t), r(t+∆t) depends on another term calculated at t+∆t.
This is a symplectic Euler discretization of the second-order dynamics, which we employ for to
ensure the stability of interactions between r(t) and its momentum v(t). The negative feedback c(t)
is much more stable, so its discretization goes unchanged.

Across all trained RNN experiments we use τa = 0, λv = 1 for awake activity (i.e., training). When
generating replay, we always use τa = 100, and either T = 100, 400, or 500 timesteps, depending
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on whether we are measuring fidelity and speed (T = 100, like in Figures 3, 4, 5) or exploration
(T = 400 for T-maze and triangle, T = 500 for rat tasks, like in Figures 6, 7).

A.6 DEVIATIONS FROM TRADITIONAL LANGEVIN SAMPLING

We must note a few minor distinctions between our replay RNNs and traditional Langevin sampling.

Stationarity. We treat neural replay as a sequence of events, and are thus interested in the joint
distribution of replay activity at all timesteps p

(
{r(t)}Tt=1

)
. This distribution, however, is not

necessarily stationary across t. Stationarity would imply that p(r(t)) has no need or intention
of traversing along any meaningful path. While a path-integrating RNN does perform gradient
ascent along log p(r(t)), it does so in a piecewise manner along t rather than jointly along all t
simultaneously. This variation on gradient ascent, in combination with the non-stationarity of p(r(t)),
means that Langevin sampling guarantees do not hold. For this reason, we make modifications to our
RNNs that under stationary Langevin sampling theory might seem unprincipled.

Underdampening. The friction term λv applied to the velocity v(t) is subtly different from γ
in Equations 3 and 2. λv ∈ [0, 1] can be interpreted as trying to map γ ∈ [0,∞) onto [0, 1]. Like
γ →∞, λv → 1 removes any dependency of v(t+∆t) on v(t).

Noise scaling. RNN replay, unlike Langevin sampling, is sensitive to the variance of noise used.
We found that omitting the

√
2 factor in front of σrη(t) worked best. For this reason, we also omitted

λv as a scaling term on σrη(t). If λv is allowed to modulate
√
2σrη(t), we found that it is easy to

show improvements in replay fidelity when λv < 1, but we found these to come from noise scaling
rather than from underdampening or momentum as mechanisms.

Relation to diffusion models. Throughout this work we treat RNNs as generative models using a
variant of Langevin sampling. Expressive generative models, in particular diffusion models whose
activity resembles Langevin sampling, have received much attention from the machine learning
community (Alemohammad et al., 2024; Luzi et al., 2024; Yang et al., 2023; Croitoru et al., 2023; Li
et al., 2022; Gozalo-Brizuela & Garrido-Merchan, 2023; Song & Ermon, 2019). The fundamental
differences between our RNNs and diffusion models are twofold. The first is that each timestep
of a generated replay trajectory is generated sequentially and with only one effective step along
the gradient of log-likelihood, whereas a diffusion model would generate all timesteps of a path
simultaneously and with many steps along the gradient of log-likelihood. The second is that diffusion
models use time-varying noise levels (annealed dynamics) and are explicitly conditioned on time as
an input, whereas our RNNs use the same noise level across time and are never explicitly conditioned
on time.

B SCORE FUNCTIONS OF GAUSSIAN DISTRIBUTIONS

For any matrix calculus involved, we use denominator layout.

B.1 MULTIVARIATE GAUSSIAN DISTRIBUTION

Let’s suppose r ∼ N (µ,Σ). If r ∈ Rd, then:

p(r) =
1√

(2π)d|Σ|
exp

(
−1

2
(r − µ)TΣ−1(r − µ)

)
(24)

log p(r) ∝ −1

2
(r − µ)TΣ−1(r − µ) (25)

∇r log p(r) = −
1

2
((Σ−1)T +Σ−1)(r − µ) (26)

= −Σ−1(r − µ) (27)

= −σ−2(r − µ) if r ∈ R (28)
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B.2 SCORE FUNCTION OF r(t) FOR GAUSSIAN s(t)

Recall that p(r(t)|s(t)) ∼ N (D†s(t), Iσ2
r∆t) from Equation 7. If we suppose that s(t) is normally

distributed with mean and covariance µs(t),Σs(t), then we can obtain p(r(t)):

p(r(t)) ∼ N (D†µs(t), Iσ
2
r∆t+D†Σs(t)(D

†)T ), (29)

which we can plug into Equation 27 to get ∇r(t) log p(r(t)):

∇r(t) log p(r(t)) = −
(
Iσ2

r∆t+D†Σs(t)(D
†)T

)−1 (
r(t)−D†µs(t)

)
(30)

Moreover, we can use the above score function to calculate the optimal ∆r(t+∆t) in Equation 11:

∆r∗(t+∆t) = σ2
r∆t

(
Iσ2

r∆t+D†Σs(t)(D
†)T

)−1 (−r(t) +D†µs(t)

)
+D†s′(t)∆t+ σrη(t)

(31)

Some properties of the leakage matrix σ2
r∆t

(
Iσ2

r∆t+D†Σs(t)(D
†)T

)
include:

1. The covariance matrix Σs(t) is positive semidefinite (PSD): all its eigenvalues are ≥ 0.

2. D†Σs(t)(D
†)T is also PSD 6, symmetric, and therefore diagonalizable.

3. The eigenvalues of (Iσ2
r∆t+D†Σs(t)(D

†)T )−1 are thus all ≤ (σ2
r∆t)−1 7.

4. The eigenvalues of σ2
r∆t(Iσ2

r∆t+D†Σs(t)(D
†)T )−1 are thus all ≤ 1.

5. If the off-diagonal entries of the leakage matrix above are sufficiently small in magnitude, then all
the diagonal entries should be less than 1, as justified by the Gershgorin Circle Theorem. In fact,
if the leakage matrix is diagonal, then it must have all values less than 1 (which could be achieved
via sigmoid functions or perhaps spectral normalization).

6. As for interpretation, smaller leakage eigenvalues means higher eigenvalues of D†Σs(t)(D
†)T ,

or essentially, more noise. The maximum determinant of the leakage matrix is 1, when there is
essentially no noise in s(t).

C ADDITIONAL SCORE FUNCTION RESULTS

Wiener Processes. One simple stochastic process is the Wiener process, which in terms of naviga-
tion represents an undirected random walk (θ = 0). Assuming sw(0) = 0, then sw(t) ∼ N (0, σ2

st),
and therefore p(rw(t)) ∼ N (0, σ2

st+ σ2
r∆t) from Equation 7, producing the following score:

σ2
r∆t∇rw(t) log p(rw(t)) = σ2

r∆t
−rw(t)

σ2
st+ σ2

r∆t
(32)

Even from a simple Wiener process, we observe that the per-timestep optimal score is not constant
with respect to t: at t = 0, it equals −rw(t), while as t approaches∞, it approaches 0.

Ornstein-Uhlenbeck Processes. Now we incorporate non-zero leakage (θ > 0) to describe a
directed random walk navigating from an arbitrary starting point sou(0) towards a mean destination
µ. If p(sou(0)) ∼ N (0, σ2

0), then p(sou(t)) ∼ N
(
µ(1− e−θt),

σ2
s

2θ (1− e−2θt) + σ2
0e

−θt
)

, and the
score function is:

σ2
r∆t∇rou(t) log p(rou(t)) = σ2

r∆t
−(rou(t)− µ(1− e−θt))

σ2
s

2θ (1− e−2θt) + σ2
0e

−θt + σ2
r∆t

(33)

6Proof: If B is PSD, then xTABATx = (ATx)TB(ATx) = vTBv ≥ 0.
7Proof: For diagonalizable A, the i-th eigenvalue of (λI + A)−1 = (Q(λI + Λ)Q−1)−1 is equal to

(λ+Λii)
−1, which can be no larger than λ−1 if A is PSD.
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D ADAPTATION AS A SECOND-ORDER STOCHASTIC DIFFERENTIAL
EQUATION

Let us first combine the following two coupled linear stochastic differential equations into one
second-order equation:

dXt = (AXt +BYt +M)dt+ σdBt, dYt = (CXt +DYt)dt (34)

d2Xt = AdXt +BdYt + σd(dBt) (35)

= AdXt +BdYt + σd2Bt (36)

= AdXt +B(CXt +DYt)dt+ σd2Bt, Yt =
1

Bdt
(dXt − σdBt −AXtdt−Mdt) (37)

= AdXt +BCXtdt+BD
1

Bdt
(dXt − σdBt −AXtdt−Mdt)dt+ σd2Bt (38)

= AdXt +BCXtdt+D(dXt − σdBt −AXtdt−Mdt) + σd2Bt (39)

= (A+D)dXt + (BC −AD)Xtdt−DMdt− σDdBt + σd2Bt (40)

Replacing all variables involved (except dt, σ) with matrices and vectors yields the same equation as
long as B is invertible:

d2xt = (A+D)dxt + (BC −AD)xtdt−Dmdt− σDdBt + σd2Bt (41)

For consistency with the notation used throughout the paper, the equation above can be written as:

x′′(t) = (A+D)x′(t) + (BC −AD)x(t)−Dm− σDη(t) + ση′(t) (42)

If we apply the following substitutions from Equations 27 and 17:

• x(t)← r(t),
• A← −σ2

r∆tΣ−1,
• B ← −I ,
• m← σ2

r∆tΣ−1
t µ,

• C ← − 1
τa
I ,

• D ← ba
τa
I ,

then r′′(t) is:

r′′(t) =

(
ba
τa

I − σ2
r∆tΣ−1

)
r′(t)

+

(
1

τa
I +

ba
τa

σ2
r∆tΣ−1

)
r(t)

−ba
τa

σ2
r∆tΣ−1µ− σ

ba
τa

η(t) + ση′(t)

(43)

Recall that, if r(t) follows a stationary Gaussian distribution, then∇r(t) log p(r(t)) = Σ−1(−r(t)+
µ) (Equation 27), and therefore d2

dr(t)2 log p(r(t)) = −Σ
−1. Then,

r′′(t) =

(
ba
τa

I + σ2
r∆t

d2

dr(t)2
log p(r(t))

)
r′(t)

−ba
τa

σ2
r∆t∇r(t) log p(r(t)) +

1

τa
r(t)

−σ ba
τa

η(t) + ση′(t)

(44)

E ADDITIONAL RESULTS

Here we present additional results or figures that supplement those of the main text.
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Overdamped
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Figure 8: Example decoded 2D replay trajectories in unbiased (left) and biased (right) rat tasks. Like
in Figure 3, trajectories get darker over time.
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Figure 9: This is another version of Figure 5, but now with mean reach times also shown.
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Figure 10: Underdampening (λv < 1) increases mean displacement of replay trajectories,
especially at early timesteps. Similarly to McNamee et al. (2021), here we analyze the mean
displacement, or distance, of replay trajectories from their starting points as a function of time.
For reference, mean displacement over time is also plotted for awake trajectories. In exploration
experiments, we simulate replay for 4× the duration of awake trajectories. Higher mean displacements
over time generally correlate with increased path length and exploration. Note that awake activity is
always calculated with ba = 0, λv = 1, hence why awake statistics are the same across plots within
the same task.
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Figure 11: Underdampening (λv < 1) increases replay trajectory variances. Like in Figure 10,
here we analyze the variance of trajectories at each timestep. Trajectories are 2D, so the variances
plotted above are simply the averages of the variances along each coordinate. Underdampening
increasing variance is another confirmation that underdampening complements adaptation-induced
exploration.
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Figure 12: This is another version of Figure 7, but this time with the specific distributions of regions
visited shown as bar plots above pairs of replay trajectory sets. Recall that replay paths start at yellow
circles and end at × symbols. In (a), underdampening clearly increases regions visited for several
trajectories: instead of just going from (1, 0) to (0, 0), replay paths also continue onwards to traverse
between (0, 0) and (1/2,

√
3/2). Meanwhile in (b), underdampening decreases regions visited for

many replay trajectories: instead of traversing the whole triangle (4 regions visited), many replay
paths stop in the region defined by (1, 0). As for (c), underdampening did not affect regions visited
since all paths started at (1/2,

√
3/2), visited (1, 0), and then returned to (1/2,

√
3/2).
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