
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOT ALL LANGUAGE MODEL FEATURES ARE
ONE-DIMENSIONALLY LINEAR

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has proposed that language models perform computation by manipu-
lating one-dimensional representations of concepts (“features”) in activation space.
In contrast, we explore whether some language model representations may be
inherently multi-dimensional. We begin by developing a rigorous definition of
irreducible multi-dimensional features based on whether they can be decomposed
into either independent or non-co-occurring lower-dimensional features. Motivated
by these definitions, we design a scalable method that uses sparse autoencoders to
automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-
discovered features include strikingly interpretable examples, e.g. circular features
representing days of the week and months of the year. We identify tasks where
these exact circles are used to solve computational problems involving modular
arithmetic in days of the week and months of the year. Next, we provide evidence
that these circular features are indeed the fundamental unit of computation in these
tasks with intervention experiments on Mistral 7B and Llama 3 8B. Finally, we
find further circular representations by breaking down the hidden states for these
tasks into interpretable components, and we examine the continuity of the days of
the week feature in Mistral 7B.

1 INTRODUCTION

Language models trained for next-token prediction on large text corpora have demonstrated remark-
able capabilities, including coding, reasoning, and in-context learning (Bubeck et al., 2023; Achiam
et al., 2023; Anthropic, 2024; Team et al., 2023). However, the specific algorithms models learn
to achieve these capabilities remain largely a mystery to researchers; we do not understand how
language models write poetry. Mechanistic interpretability is a field that seeks to address this gap by
reverse-engineering trained models from the ground up into variables (features) and the programs
(circuits) that process these variables (Olah et al., 2020).

One mechanistic interpretability research direction has focused on understanding toy models in detail.
This work has found multi-dimensional representations of inputs such as lattices (Michaud et al.,
2024) and circles (Liu et al., 2022; Nanda et al., 2023a), and has successfully reverse-engineered the
algorithms that models use to manipulate these representations. A separate direction has identified one-
dimensional representations of high level concepts and quantities in large language models (Gurnee
& Tegmark, 2023; Marks & Tegmark, 2023; Heinzerling & Inui, 2024; Bricken et al., 2023). These
findings have led to the linear representation hypothesis (LRH): a hypothesis which has historically
claimed both that 1. all representations in pretrained large language models lie along one-dimensional
lines, and 2. model states are a simple sparse sum of these representations (Park et al., 2023; Bricken
et al., 2023). In this work, we specifically call into question the first part of the LRH.1

For the most part, these two directions have been disconnected: Yedidia (2023a) and Gould et al.
(2023) find intriguing hints of circular language model representations, and Bricken et al. (2023)

1An earlier version of this manuscript sparked discussion in the mechanistic interpretability community on
the distinction between non-linear features and multi-dimensional features, and in fact this discussion directly
led to a consensus around the two part LRH we describe above (see (Olah, 2024; Csordás et al., 2024; Mendel,
2024)). To clarify, we agree with these discussions, and believe the multi-dimensional features we find are
"linear" in the sense that they are contained in a low-dimensional linear subspace, but "non-linear" in the sense
that this low-dimensional subspace is not one-dimensional (and this is the sense we mean in the title).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PCA axis 2

PC
A 

ax
is 

3

Days of the Week
Monday
Tuesday
Wednesday
Thursday

Friday
Saturday
Sunday
Other

PCA axis 2

PC
A 

ax
is 

3

Months of the Year
January
February
March
April
May
June
July
August
September

October
November
December
Other

PCA axis 3

PC
A 

ax
is 

4

Years of the 20th Century

1900 1950 1999

Figure 1: Circular representations of days of the week, months of the year, and years of the 20th
century in layer 7 of GPT-2-small colored by the token they fire on. These representations were
discovered via clustering SAE dictionary elements, described in Section 4. Points are colored
according to the token which created the representation. See Fig. 14 for other axes and Fig. 15 for
similar plots for Mistral 7B.

speculate about the existence of feature manifolds, but these brief results only serve to further
emphasize the lack of a unifying and satisfying perspective on the nature of language model features.
In this work, we seek to bridge this gap by formalizing, investigating, and systematically searching
for multi-dimensional language model features.

1.1 CONTRIBUTIONS

1. In Section 3, we generalize the one-dimensional definition of a language model feature to multi-
dimensional features and provide an updated multi-dimensional superposition hypothesis to
account for these new features.

2. In Section 4, we build on the definitions proposed in Section 3 to develop a theoretically grounded
and empirically practical test that uses sparse autoencoders to find irreducible features. Using
this test, we identify multi-dimensional representations automatically in GPT-2 and Mistral 7B,
including circular representations for the day of the week and month of the year.

3. In Section 5, we show that Mistral 7B and Llama 3 8B use these circular representations when
performing modular addition in days of the week and in months of the year. To the best of our
knowledge, we are the first to find causal circular representations of concepts in a language model.
We further investigate circular representations in these tasks by using regression to reveal circles
in the computed day of the week and month of the year, and we additionally find that the model’s
circular representations respect a continuous notion of time.

2 RELATED WORK

Linear Representations: Early word embedding methods such as GloVe and Word2vec, although
only trained using co-occurrence data, contained directions in their vector spaces corresponding to
semantic concepts (Mikolov et al., 2013b; Pennington et al., 2014; Mikolov et al., 2013a). Recent
research has found similar evidence of one-dimensional linear representations in sequence models
trained only on next token prediction, including Othello board positions (Nanda et al., 2023b; Li
et al., 2022), the truth value of assertions (Marks & Tegmark, 2023), and numeric quantities such as
longitude, latitude, birth year, and death year (Gurnee & Tegmark, 2023; Heinzerling & Inui, 2024).
These results have inspired the linear representation hypothesis (Park et al., 2023; Elhage et al., 2022)
defined above. Jiang et al. (2024) provide theoretical evidence for this hypothesis, assuming a latent
(binary) variable-based model of language. Empirically, Bricken et al. (2023) and Cunningham
et al. (2023) successfully use sparse autoencoders to break down a model’s feature space into an
over-complete basis of linear features. These works assume that the number of linear features stored
in superposition exceeds the model dimensionality (Elhage et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Multi-Dimensional Representations: There has been comparatively little research on multi-
dimensional features in language models. Shai et al. (2024) predict and verify that a transformer
trained on a hidden Markov model uses a fractal structure to represent the probability of each next
token, a clear example of a necessary multi-dimensional feature, but the analysis is restricted to a toy
setting. Yedidia (2023a;b) finds that GPT-2 learned position vectors form a helix, which implies a
circle when “viewed” from below. Thus, we are not the first to find a circular feature in a language
model. However, our work finds circular features that represent latent concepts from text, while
the GPT-2 learned position vectors are specific to tokenization, separate from the rest of the model
parameters, and causally implicated only due to positional attention masking. Another suggestive
result, due to Hanna et al. (2024), is the presence of a U-shape in the representation of numbers
between 0 and 100; however, Hanna et al. (2024) find that this representation is not causal, and they
only show it exists within a specific prompt distribution. Recent work on dictionary learning (Bricken
et al., 2023) has speculated about multi-dimensional feature manifolds; our work is similar to this
direction and develops the idea of feature manifolds theoretically and empirically. Finally, in a
separate direction, Black et al. (2022) argue for interpreting neural networks through the polytopes
they split the input space into, and identifies regions of low polytope density as “valid” regions for a
potential linear representation.

Circuits: Circuits research seeks to identify and understand circuits, subsets of a model (usually
represented as a directed acyclic graph) that explain specific behaviors (Olah et al., 2020). The
base units that form a circuit can be layers, neurons (Olah et al., 2020), or sparse autoencoder
features (Marks et al., 2024). In the first circuits-style work, Olah et al. (2020) found line features
that were combined into curve detection features in the InceptionV1 image model. More recent work
has examined language models, for example the indirect object identification circuit in GPT-2 (Wang
et al., 2022). Given the difficulty of designing bespoke experiments, there has been increased research
in automated circuit discovery methods (Marks et al., 2024; Conmy et al., 2023; Syed et al., 2023).

Interpretability for Arithmetic Problems: Liu et al. (2022) study models trained on modular
arithmetic problems a + b = c (mod m) and find that models that generalize well have circular
representations for a and b. Further work by Nanda et al. (2023a) and Zhong et al. (2024) shows that
models use these circular representations to compute c via a “clock” algorithm and a separate “pizza”
algorithm. These papers are limited to the case of a small model trained only on modular arithmetic.
Another direction has studied how large language models perform basic arithmetic, including a
circuits level description of the greater-than operation in GPT-2 (Hanna et al., 2024) and addition in
GPT-J (Stolfo et al., 2023). These works find that to perform a computation, models copy pertinent
information to the token before the computed result and perform the computation in the subsequent
MLP layers. Finally, recent work by Gould et al. (2023) investigates language models’ ability to
increment numbers and finds linear features that fire on tokens equivalent modulo 10.

3 DEFINITIONS

This section focuses on hypotheses for how hidden states of language models can be decomposed
into sums of functions of the input (features). We focus on L layer transformer models M that take
in token input t = (t1, . . . , tn) from input token distribution T , have hidden states x1,l, . . . ,xn,l

for layers l, and output logit vectors y1, . . . ,yn. Given a set of inputs T , we let Xi,l be the set of
all corresponding xi,l. We write matrices in capital bold, vectors and vector valued functions in
lowercase bold, and sets in capital non-bold.

3.1 MULTI-DIMENSIONAL FEATURES

Definition 1 (Feature). We define a df -dimensional feature as a function f that maps a subset of the
input space into Rdf . We say that a feature is active on the aforementioned subset.

The input token distribution T induces a df -dimensional probability distribution over feature vectors
f(t). As an example, let n = 1 (so inputs are single tokens) and consider a feature f that maps integer
tokens to their integer values in R1. Then f is a 1-dimensional feature that is active on integer tokens,
and f(t) is the marginal integer occurrence distribution from the token distribution.

How can we differentiate "true" multi-dimensional features from sums of lower dimensional features?
We make this distinction by examining the reducibility of a potential multi-dimensional feature.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

That is, f is a "true" multi-dimensional feature if it cannot be written as the sum of two statistically
independent features and it cannot be written as the sum of two non-co-occurring features. Formally,
we have the following definition:

Definition 2. A feature f is reducible into features a and b if there exists an affine transformation

f 7→ Rf + c ≡
(a
b

)
(1)

for some orthonormal df × df matrix R and additive constant c, such that the transformed feature
probability distribution p(a,b) satisfies at least one of these conditions:

1. p is separable, i.e., factorizable as a product of its marginal distributions:
p(a,b) = p(a)p(b).

2. p is a mixture, i.e., a sum of disjoint distributions, one of which is lower dimensional:
p(a,b) = wp(a)δ(b) + (1− w)p(a,b)

Here δ is the Dirac delta function and 0 < w < 1. By two probability distributions being disjoint, we
mean that they have disjoint support (there is no set where both have positive probability measure, or
equivalently the two features a and b cannot be active at the same time). In Eq. (1), a is the first k
components of the vector Rf + c and b is the remaining df − k components. When p is separable
or a mixture, we also say that f is separable or a mixture. We term a feature irreducible if it is not
reducible, i.e., if no rotation and translation makes it separable or a mixture.

An example of a feature that is a mixture is a one hot encoding along a simplex; an example of a
feature that is separable is a normal distribution2. In natural language, a mixture might be a one hot
encoding of “breed of dog”, while a separable distribution might be the “latitude” and “longitude” of
location tokens.

In practice, the mixture and separability definitions may not be precisely satisfied. Thus, we soften
our definitions to permit degrees of reducibility:

Definition 3 (Separability Index and ϵ-Mixture Index). Consider a feature f . The separability index
S(f) measures the minimal mutual information between all possible a and b defined in Eq. (1):

S(f) ≡min I(a;b) (2)

where I denotes the mutual information. Smaller values of S(f) mean that f is more separable.

The ϵ-mixture index Mϵ(f) tests how often f can be projected near zero while it is active:

Mϵ(f) = max
v∈Rdf , c∈R

Pt∈T

(
|v · f(t) + c| < ϵ

√
E[(v · f(t) + c)2]

)
(3)

Larger values of Mϵ(f) mean that f is more of a mixture.

In Appendix B, we expand on the intuition behind why the separability and ϵ-mixture indices as
defined here correspond to weakened versions of Definition 2.

We develop optimization procedures to empirically solve for the separability and ϵ-mixture indices
of two dimensional feature distributions. At a high level, the separability procedure iterates over
a sweep of rotations and estimates the mutual information between the axes for each angle, while
the ϵ-mixture index procedure performs gradient descent to find the ϵ band that contains the largest
possible fraction of the feature distribution. For more details on the implementation of the tests,
see Appendix B.2. In Section 4, we apply these empirical tests to real language model feature
distributions to find irreducible multi-dimensional features; we show the detailed test results on the
“days of the week” cluster in Fig. 2

3.2 SUPERPOSITION

In this section, we propose an updated superposition hypothesis (Elhage et al., 2022) that takes into
account multi-dimensional features. First, we restate the original superposition hypothesis:

2since any multidimensional Gaussian can be rotated to have a diagonal covariance matrix

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

PCA 2

PC
A 

3

2 0 2
Norm. v f + c

0

200

400

600

Co
un

t

M (f) = 0.4750

0 2
3
2

2
Angle 

0.0

0.5

1.0

M
ut

ua
l I

nf
o 

(b
its

)

S(f) = 0.9506

Figure 2: Empirical ϵ-mixture index and separability index for the “days of the week” cluster along
PCA components 2 and 3. Left: The ϵ band parameterized by v and c that the optimization procedure
found contained the highest fraction of points. Mid: Dot products of points in the feature distribution
with the ϵ band; Mϵ(f) is the percent of dot products within ϵ = 0.1 of 0. Right: Estimated mutual
information for different rotations of the space; S(f) is the minimum over all rotations. This point
cloud has a lower ϵ-mixture index and higher separability index than PCA projections within typical
clusters (see Fig. 3), indicating that it is more likely to be an irreducible multi-dimensional feature.

Definition 4 (δ-orthogonal matrices). Two matrices A1 ∈ Rd×d1 and A2 ∈ Rd×d2 are δ-orthogonal
if |x1 · x2| ≤ δ for all unit vectors x1 ∈ colspace(A1) and x2 ∈ colspace(A2).

Hypothesis 1 (One-Dimensional Superposition Hypothesis, paraphrased from (Elhage et al., 2022)).
Hidden states xi,l are the sum of many (≫ d) sparse one-dimensional features fi and pairwise
δ-orthogonal vectors vi such that xi,l(t) =

∑
i vifi(t). We set fi(t) to zero when t is outside the

domain of fi.

In contrast, our new superposition hypothesis posits independence between irreducible multi-
dimensional features instead of unknown levels of independence between one-dimensional features:

Hypothesis 2 (Multi-Dimensional Superposition Hypothesis, changes underlined). Hidden states xi,l

are the sum of many (≫ d) sparse low-dimensional irreducible features fi and pairwise δ-orthogonal
matrices Vi ∈ Rd×dfi such that xi,l(t) =

∑
i Vifi(t). We set fi(t) to zero when t is outside the

domain of fi. Any subset of features must be mutually independent on their shared domain.

Note that since multi-dimensional features can be written as the sums of projections of lower-
dimensional features, our new superposition hypothesis is a stricter version of Hypothesis 1. In the
next section, we will explore empirical evidence for our hypothesis, while in Appendix A, we prove
upper and lower bounds on the number of δ-almost orthogonal matrices Vi that can be packed into d
dimensional space.

4 SPARSE AUTOENCODERS FIND MULTI-DIMENSIONAL FEATURES

In this section, we describe a method to identify multi-dimensional features in language model hidden
states using sparse autoencoders (SAEs). Sparse autoencoders (SAEs) deconstruct model hidden
states into sparse vector sums from an over-complete basis (Bricken et al., 2023; Cunningham et al.,
2023). For hidden states Xi,l, a one-layer SAE of size m with sparsity penalty λ minimizes the
following dictionary learning loss (Bricken et al., 2023; Cunningham et al., 2023):

DL(Xi,l) = argmin
E∈Rm×d,D∈Rd×m

∑
xi,l∈Xi,l

[
∥xi,l −D · ReLU(E · xi,l)∥22 + λ∥ReLU(E · xi,l)∥0

]
(4)

In practice, the L0 loss on the last term is relaxed to Lp for 0 < p ≤ 1 to make the loss differentiable.
We call the m columns of D (vectors in Rd) dictionary elements.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We now argue that SAEs can discover irreducible multi-dimensional features by clustering D. We
will consider a simple form of clustering: build a complete graph on D with edge weights equal to
the cosine similarity between dictionary elements, prune all edges below a threshold T , and then set
the clusters equal to the connected components of the graph. If we now consider the spaces spanned
by each cluster, they will be approximately T -orthogonal by construction, since their basis vectors
are all T -orthogonal. Now, consider some irreducible two-dimensional feature f ; we claim that if the
SAE is large enough and f is active enough such that the SAE can reconstruct f when f is active, one
of the clusters is likely to be exactly equal to f . If D includes just two dictionary elements spanning
f , then these elements both must have nonzero activations post-ReLU to reconstruct f (otherwise
f is a mixture). Because of the sparsity penalty in Eq. (4), this two-vector solution to reconstruct
f is disincentivized, so instead the dictionary is likely to learn many elements that span f . These
dictionary elements will then have a high cosine similarity, and so the edges between them will not
be pruned away during the clustering process; hence, they will be in a cluster.

Thus, we have a way to operationalize Hypothesis 2: clustering D finds T -orthogonal subspaces,
and if irreducible multi-dimensional features exist, they are likely to be equal to some of these
subspaces. This suggests a natural approach to using sparse autoencoders to search for irreducible
multi-dimensional features:

1. Cluster dictionary elements by their pairwise cosine similarity. We use both the simple similarity-
based pruning technique described above, as well as spectral clustering; see Appendix F for details,
including comments on scalability.

2. For each cluster, run the SAEs on all xi,l ∈ Xi,l and ablate all dictionary elements not in the
cluster. This will give the reconstruction of each xi,l restricted to the cluster found in step 1 (if no
cluster dictionary elements are non-zero for a given point, we ignore the point).

3. Examine the resulting reconstructed activation vectors for irreducible multi-dimensional features.
This step can be done manually by visually inspecting the PCA projections for known irreducible
multi-dimensional structures (e.g. circles, see Fig. 10) or automatically by passing the PCA projec-
tions to the tests for Definition 3.

0.00.20.40.60.81.0
M (f): more irreducible 

0.0

0.2

0.4

0.6

0.8

1.0

S(
f):

 m
or

e 
irr

ed
uc

ib
le

 

Other cluster
Cluster shown in Figure 1

Figure 3: Mixture index and separability
index of GPT-2 features. Features from
Fig. 1, which we had manually identi-
fied, score highly as candidate multidi-
mensional features with these metrics.

Pseudocode for this method is in the appendix in Alg. 1.
This method succeeds on toy datasets of synthetic irre-
ducible multi-dimensional features; see Appendix D.3 We
apply this method to language models using GPT-2 (Rad-
ford et al., 2019) SAEs trained by Bloom (2024) for every
layer and Mistral 7B (Jiang et al., 2023) SAEs that we train
on layers 8, 16, and 24 (training details in Appendix E).

Strikingly, we reconstruct irreducible multi-dimensional
features that are interpretable circles: in GPT-2, days,
months, and years are arranged circularly in order (see
Fig. 1); in Mistral 7B, days and months are arranged circu-
larly in order (see Fig. 15). These plots contain the PCA
dimensions that most clearly show circular structure; these
best dimensions are usually the second and third because
the first PCA dim is an “intensity” direction that manifests
as the radius of the circle in Fig. 1 (thus the overall struc-
ture for these multi-d features is perhaps best thought of as
a cone). See Fig. 14 for all PCA dimensions visualized).

For each cluster of GPT-2 SAE features, we take the re-
constructed activations and project them onto PCA components 1-2, 2-3, 3-4, and 4-5 (or fewer
if there are fewer features in the cluster) and measure the separability index and ϵ-mixture index
of each 2D point cloud as described in Appendix B.2. The mean scores across these planes are a
computationally tractable approximation of Definition 3. We plot these mean scores in Fig. 3, and find
that the features which we had manually identified in Fig. 1 are among the top scoring features along
both measures of irreducibility. Thus, our theoretical tests can indeed be used to find interpretable
irreducible features. We show the top 20 feature clusters, measured by the product of (1− ϵ-mixture

3Experiment code: ttps://anonymous.4open.science/r/MultiDimensionalFeatures-D6D4

6

ttps://anonymous.4open.science/r/MultiDimensionalFeatures-D6D4


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Aggregate model accuracy on days
of the week and months of the year modular
arithmetic tasks. Performance broken down
by problem instance in Appendix I.

Model Weekdays Months

Llama 3 8B 29 / 49 143 / 144

Mistral 7B 31 / 49 125 / 144

GPT-2 8 / 49 10 / 144

Mon Tue
Wed

Thu
FriSat

Sun

Jan Feb Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

Figure 4: Top two PCA components on the α to-
ken. Colors show α. Left: Layer 30 of Mistral on
Weekdays. Right: Layer 5 of Llama on Months.

index ) and seperability index, in Appendix G. The Fig. 1 clusters rank 9, 15, and 28 by this metric
out of all 1000 clusters.

5 CIRCULAR REPRESENTATIONS IN LARGE LANGUAGE MODELS

In this section, we examine tasks in which models use the multi-dimensional features we discovered
in Section 4, thereby providing evidence that these representations are indeed the fundamental unit of
computation for some problems. Inspired by prior work studying circular representations in modular
arithmetic (Liu et al., 2022), we define two prompts that represent “natural” modular arithmetic tasks:

Weekdays task: “Let’s do some day of the week math. Two days from Monday is”
Months task: “Let’s do some calendar math. Four months from January is”

For Weekdays, we range over the 7 days of the week and durations between 1 and 7 days to get
49 prompts. For Months, we range over the 12 months of the year and durations between 1 and
12 months to get 144 prompts. Mistral 7B and Llama 3 8B (AI@Meta, 2024) achieve reasonable
performance on the Weekdays task and excellent performance on the Months task (measured
by comparing the highest logit valid token against the ground truth answer), as summarized in
Table 1. Interestingly, although these problems are equivalent to modular arithmetic problems
α + β ≡ ? (mod m) for m = 7, 12, both models get trivial accuracy on plain modular addition
prompts, e.g. “5 + 3 (mod 7) ≡”. Finally, although GPT-2 has circular representations, it gets trivial
accuracy on Weekdays and Months.

To simplify discussion, let α be the day of the week or month of the year token (e.g. “Monday” or
“April”), β be the duration token (e.g. “four” or “eleven”), and γ be the target ground truth token the
model should predict, such that (abusing notation) we have α+ β = γ. Let the prompts of the task
be parameterized by j, such that the jth prompt asks about αj , βj , and γj .

We confirm that Llama 3 8B and Mistral 7B have circular representations of α on this task by
examining the PCA projections of hidden states across prompts at various layers on the α token. We
plot two of these in Fig. 4 and show all layers in Fig. 18. These plots show circular representations as
the highest varying two components in the model’s representation of α at many layers.

5.1 INTERVENING ON CIRCULAR DAY AND MONTH REPRESENTATIONS

We now experiment with intervening on these circular representations. We base our experiments
on the common interpretability technique of activation patching, which replaces activations from
a “dirty” run of the model with the corresponding activations from a “clean” run (Zhang & Nanda,
2023). Activation patching empirically tests whether a specific model component, position, and/or
representation has a causal influence on the model’s output. We employ a custom subspace patching
method to allow testing for whether a specific circular subspace of a hidden state is sufficient to
causally explain model output. Specifically, our patching technique relies on the following steps
(visualized in Fig. 5):

1. Find a subspace with a circle to intervene on: Using a PCA reduced activation subspace
to avoid overfitting, we train a “circular probe” to identify representations which exhibit strong

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Step 2: Intervene with 

Step 1: Learn Circular Probe 

Find +
Apply 
PCA

Matrix

Apply 
Circular 
Probe 

Apply 
pinv(P) 

Apply intervention

Training
Points 

Learn
Circular 
Probe  

Apply 
PCA 
Matrix

 

Apply 
transpose 

of PCA 
Matrix

 

1
2

3

4

56

0

1
2

3

4
56

0

1
2

3

4

56

0

1
2

3

4
56

0

1
2

3

4
56

0

0 1
2

3
4

5

6
0 1

2
3

4
5
6

0 1
2

3
4

5

6
0 1

2
3

4
5
6

Initial
point

New
point 

Figure 5: Visual representation of the
circular intervention process. Top: We
learn a circular probe on the PCA projec-
tion of a training set. Bot: To intervene,
we change the circular representation to
α′
j and average ablate other dimensions.

2.5

0.0

2.5

Mistral Weekdays

5

0

5

Mistral Months

0 10 20
2

0

2
Llama Weekdays

0 10 20

5

0

5
Llama Months

Layer

Av
er

ag
e 

lo
gi

t d
iff

No-op
Patch layer

Patch circle
Patch PCA

Average ablate

Figure 6: Mean and 96% error bars for intervening on the
α token across layers using different intervention methods.
The circular intervention technique outperforms patching
only the top 5 PCA components and leaving the rest un-
changed, and almost reaches the upper bound performance
of patching the entire layer.

circular patterns. More formally, let xj
i,l be the hidden state at layer l token position i for prompt

j. Let Wi,l ∈ Rk×d be the matrix consisting of the top k principal component directions of
xj
i,l. In our experiments, we set k = 5. We learn a linear probe P ∈ R2,k from Wi,l · Xi,l to a

unit circle in α. In other words, if circle(α) = [cos(2πα/7), sin(2πα/7)] for Weekdays and
circle(α) = [cos(2πα/12), sin(2πα/12)] for Months, P is defined as follows:

P = argmin
P′∈R2,k

∑
xj
i,l

∥∥∥P′ ·Wi,l · xj
i,l − circle(α)

∥∥∥2
2

(5)

2. Intervene on the subspace: Say our initial prompt had α = αj and we are intervening with
α = αj′ . In this step, we replace the model’s projection on the subspace P ·Wi,l, which will be
close to circle(αj), with the “clean” point circle(αj′). Note that we do not use the hidden
state xj′

i,l from the “clean” run, only the “clean” label αj′ . In practice, other subspaces of xj
i,l are

used by the model in alternate pathways to compute the answer, so if we just intervene on the circular
subspace the logit difference effect is not as pronounced. To solve this problem, we average out the
portion of the activation not in the intervened subspace. Letting xi,l be the average of xj

i,l across all
prompts indexed by j and P+ be the pseudoinverse of P, we intervene via the formula

xj∗

i,l = xi,l +Wi,l
TP+(circle(αj′)− xi,l) (6)

We run our patching on all 49 Weekday problems and 144 Month problems and use as “clean”
runs the 6 or 11 other possible values for β, resulting in a total of 49 ∗ 6 patching experiments for
Weekdays and 144 ∗ 11 patching experiments for Months. We also run baselines where we (1)
replace the entire subspace corresponding to the first 5 PCA dimensions with the corresponding
subspace from the clean run, (2) replace the entire layer with the corresponding layer from the clean
run, and (3) replace the entire layer with the average across the task. The metric we use is average
logit difference across all patching experiments between the original correct token (αj) and the
target token (αj′). See Fig. 6 for these interventions on all layers of Mistral 7B and Llama 3 8B on
Weekdays and Months.

The main takeaway from Fig. 6 is that circular subspaces are causally implicated in computing γ,
especially for Weekdays. Across all models and tasks, early layer interventions on the circular
subspace have almost the same intervention effect as patching the entire layer, and are usually better
than patching the top PCA dimensions from the clean problem. Patching experiments in Appendix J
show α is copied to the final token on layers 15 to 17, which is why interventions drop off there.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 0 2
2

1

0

1

2
Task Duration = 2 Days

2 0 2
2

1

0

1

2
Task Duration = 3 Days

2 0 2
2

1

0

1

2
Task Duration = 4 Days

2 0 2
2

1

0

1

2
Task Duration = 5 Days

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday

Figure 7: Off distribution interventions
on Mistral layer 5 on the Weekdays
task. The color corresponds to the high-
est logit γ after performing the circular
subspace intervention on that point.

To investigate exactly how models use the circular sub-
space, we perform off distribution interventions. We mod-
ify Eq. (6) so that instead of intervening on the circumfer-
ence circle(α), we sweep over a grid of positions (r, θ)
within the circle:

xj∗

i,l = xi,l +Wi,l
TP+[r cos(θ), r sin(θ)]T − xi,l) (7)

We intervene with r ∈ [0, 0.1, . . . , 2], θ ∈
[0, 2π/100, . . . , 198π/100] and record the highest
logit γ after the forward pass. Fig. 7 displays these
results on Mistral layer 5 for β ∈ [2, 3, 45]. They imply
that Mistral treats the circle as a multi-dimensional
representation with α encoded in the angle.

5.2 UNCOVERING
OUTPUT REPRESENTATIONS USING REGRESSION

So far, we have focused on examining and intervening on
the representation for α, which we present as a circle in the
top PCA components on top of the α token. In this section,
we examine how the generated output, γ, is represented.

First, to isolate the rough circuit for Weekdays and Months, we perform layer-wise activation
patching on 40 random pairs of prompts. The results, displayed in Appendix K, show that the circuit
to compute γ consists of MLPs on top of the α and β tokens, a copy to the token before γ, and
further MLPs there (roughly similar to what Stolfo et al. (2023) find in prior work studying arithmetic
circuits). Thus, we know where to look for a representation of γ: in the second half of the layers on
the token before γ. However, patching alone cannot tell use how γ is represented.

4 2 0 2 4

3

2

1

0

1

2

3

Mon

Tue Wed

Thu

Fri

SatSun

Figure 8: Top two PCA com-
ponents of residual errors after
EVR with one-hot in α and β.
Mistral 7B Weekdays, layer
25, final token. Colored by γ.

Unlike α, γ has no obvious circular (or linear) pattern in the top
PCA components on these layers. To determine the representation
for γ, we introduce a more powerful technique we call Explanation
via Regression (EVR): given a set of token sequences with a corre-
sponding set of hidden states Xi,l, we choose a set of interpretable
explanation functions of the input tokens {gj(t)}. The r2 value of
a linear regression from {gj(t)} to Xi,l tells us how much of the
variance in the activations the {gj(t)} explain, and conversely the
residuals show the exact components of the representation we have
yet to explain.

More details and experiments using EVR to completely break down
language model states are in Appendix K. Here, we use EVR to
determine the representation for γ by plotting the top two PCA
components of the layer 25 Mistral 7B activations after subtracting
the components that can be explained using a regression with one
hot functions in α and β (i.e. g1 = [α = 0],g2 = [β = 1],g3 = [α = 1], . . .). The result, shown in
Fig. 8, is an incredibly clear circle in γ, which suggests that the model’s generated representation
of γ lies along a circle. A simple PCA projection was not enough to find this result because the
representation for γ has interference from α and β, which the EVR removes. This suggests that the
models may be generating γ by using a trigonometry based algorithm like the “clock” Nanda et al.
(2023a) or “pizza” Zhong et al. (2024) algorithm in late MLP layers.

5.3 CONTINUITY OF CIRCULAR REPRESENTATIONS

In past sections, the representations of the interpretable numeric quantities we have discovered
have been mostly discontinuous; that is, the days of the week and months of the year in Fig. 1 and
Fig. 15 are clustered at the vertices of a heptagon and dodecagon, and there is nothing "between"
adjacent weekdays or months along the circle. In this section, we will examine the "continuity"
of the circular features we have discovered. Although continuity of the representation is not a
requirement of Definition 3, it would further decrease the ϵ-mixture index, and would also increase

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

our subjective perception of the circular feature as an intrinsic model feature representing a continuous
quantity (time). Thus, we create a synthetic dataset containing the text "[very early/very late] on
[Monday/Tuesday/.../Sunday]" and simply plot the projections of the layer 30 activations into the
top two PCA components of the activations of [Monday/Tuesday/.../Sunday]. The results, shown
in Fig. 9, show that Mistral 7B indeed can map intermediate quantities to their expected place in
the circle: the very early and very late version of each weekday are more towards the last and the
next weekday along the circle, respectively. We show similar results for "[morning/evening] on
[Monday/Tuesday/.../Sunday]" in Appendix Fig. 21.

6 DISCUSSION

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Morning MonEvening MonMorning Tue
Evening Tue

Morning Wed

Evening Wed

Morning Thu
Evening Thu

Morning Fri
Evening Fri

Morning Sat
Evening Sat

Morning Sun
Evening Sun

Figure 9: Layer 30 Mistral 7B activa-
tions for [morning/evening] on [Mon-
day/Tuesday/.../Sunday], plotted pro-
jected into the PCA plane for [Mon-
day/Tuesday/.../Sunday].

Our work proposes a significant refinement to the simple
one-dimensional linear representation hypothesis. While
previous work has convincingly shown the existence of
one-dimensional features, we find evidence for irreducible
multi-dimensional representations, requiring us to gener-
alize the notion of a feature to higher dimensions. For-
tunately, we find that existing unsupervised feature ex-
traction methodologies like sparse autoencoders can read-
ily be applied to discover multi-dimensional representa-
tions. However, we think our work raises interesting ques-
tions about whether individual SAE features are appropri-
ate “mediators” (Mueller et al., 2024) for understanding
model computation, if some features are in fact multi-
dimensional. Although taking a multi-dimensional repre-
sentation perspective may be more complicated, we be-
lieve that uncovering the true (perhaps multi-dimensional)
nature of model representations is necessary for discover-
ing the underlying algorithms that use these representations. Ultimately, our field aims to turn complex
circuits in future more-capable models into formally verifiable programs (Tegmark & Omohundro,
2023; Dalrymple et al., 2024), which requires the ground truth “variables” of language models; we
believe this work takes an important step towards discovering these variables.

Limitations: It is unclear why we did not find more interpretable multi-dimensional features. We
are unsure if we are failing to interpret some of the high-scoring multi-dimensional features, if
most multi-dimensional features lie in dimensions higher than two, if our clustering technique is
not powerful enough to find some features, or if there are truly not that many. Additionally, our
definitions for irreducible features (Definition 2) are purely statistical and not intervention based,
and also had to be relaxed to hold in practice, resulting in measures that return a possibly subjective
“degree” of reducibility (Definition 3). Thus, although this work provides preliminary evidence for the
multi-dimensional superposition hypothesis (Hypothesis 2), it is still unclear if this theory provides
the best description for the representations models use.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Noga Alon. Problems and results in extremal combinatorics—i. Discrete Mathematics, 273(1-3):
31–53, 2003.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Technical report, Anthropic, 2024.

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramón Guevara, Beren Millidge, Gabriel Alfour, et al. Interpreting neural networks through
the polytope lens. arXiv preprint arXiv:2211.12312, 2022.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
gpt2 small. https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent neural
networks learn to store and generate sequences using non-linear representations. arXiv preprint
arXiv:2408.10920, 2024.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve
Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards guaranteed safe ai:
A framework for ensuring robust and reliable ai systems. arXiv preprint arXiv:2405.06624, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/
2022/toy_model/index.html.

Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. 2013.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Semyon Aranovich Gershgorin. über die abgrenzung der eigenwerte einer matrix. Izvestiya Rossiı̆skoi
akademii nauk. Seriya matematicheskaya, (6):749–754, 1931.

Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, interpretable
attention heads in the wild. arXiv preprint arXiv:2312.09230, 2023.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Benjamin Heinzerling and Kentaro Inui. Monotonic representation of numeric properties in language
models. arXiv preprint arXiv:2403.10381, 2024.

Nicholas J. Higham. Singular value inequalities. https://nhigham.com/2021/05/04/
singular-value-inequalities/, May 2021.

11

https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://nhigham.com/2021/05/04/singular-value-inequalities/
https://nhigham.com/2021/05/04/singular-value-inequalities/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bill Johnson (https://mathoverflow.net/users/2554/bill johnson). Almost orthogo-
nal vectors. MathOverflow. URL https://mathoverflow.net/q/24873.
URL:https://mathoverflow.net/q/24873 (version: 2010-05-16).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch. On the
origins of linear representations in large language models. arXiv preprint arXiv:2403.03867, 2024.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of
Contemporary Mathematics, pp. 189–206. American Mathematical Society, Providence, RI, 1984.
ISBN 0-8218-5030-X. doi: 10.1090/conm/026/737400.

Silvio Lattanzi, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. A framework for parallelizing
hierarchical clustering methods. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Pro-
ceedings, Part I, pp. 73–89. Springer, 2020.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

Jake Mendel. Sae feature geometry is outside the superposition hypothesis. AI Alignment Forum,
2024. URL https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/
sae-feature-geometry-is-outside-the-superposition-hypothesis.

Eric J Michaud, Isaac Liao, Vedang Lad, Ziming Liu, Anish Mudide, Chloe Loughridge, Zifan Carl
Guo, Tara Rezaei Kheirkhah, Mateja Vukelić, and Max Tegmark. Opening the ai black box:
program synthesis via mechanistic interpretability. arXiv preprint arXiv:2402.05110, 2024.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013a.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies, pp. 746–751, 2013b.

Depen Morwani, Benjamin L Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. arXiv preprint
arXiv:2311.07568, 2023.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, et al. The quest for the right
mediator: A history, survey, and theoretical grounding of causal interpretability. arXiv preprint
arXiv:2408.01416, 2024.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

12

https://mathoverflow.net/q/24873
https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/sae-feature-geometry-is-outside-the-superposition-hypothesis
https://www.alignmentforum.org/posts/MFBTjb2qf3ziWmzz6/sae-feature-geometry-is-outside-the-superposition-hypothesis
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023a.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023b.

Chris Olah. What is a linear representation? what is a multidimensional feature? Transformer Circuits
Thread, 2024. URL https://transformer-circuits.pub/2024/july-update/
index.html#linear-representations.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Adam Shai, Paul Riechers, Lucas Teixeira, Alexander Oldenziel, and Sarah
Marzen. Transformers represent belief state geometry in their residual stream.
https://www.alignmentforum.org/posts/gTZ2SxesbHckJ3CkF/
transformers-represent-belief-state-geometry-in-their, 2024.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7035–7052, 2023.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. arXiv preprint arXiv:2310.10348, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Max Tegmark and Steve Omohundro. Provably safe systems: the only path to controllable agi. arXiv
preprint arXiv:2309.01933, 2023.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Adam Yedidia. Gpt-2’s positional embedding matrix is a helix, 2023a.
URL https://www.lesswrong.com/posts/qvWP3aBDBaqXvPNhS/
gpt-2-s-positional-embedding-matrix-is-a-helix. Accessed: 2024-09-
16.

Adam Yedidia. The positional embedding matrix and previous-token heads: how do they actually
work?, 2023b. URL https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6/
the-positional-embedding-matrix-and-previous-token-heads-how. Ac-
cessed: 2024-09-17.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. arXiv preprint arXiv:2309.16042, 2023.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks. Advances in Neural Information Processing Systems,
36, 2024.

13

https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://transformer-circuits.pub/2024/july-update/index.html#linear-representations
https://www.alignmentforum.org/posts/gTZ2SxesbHckJ3CkF/transformers-represent-belief-state-geometry-in-their
https://www.alignmentforum.org/posts/gTZ2SxesbHckJ3CkF/transformers-represent-belief-state-geometry-in-their
https://www.lesswrong.com/posts/qvWP3aBDBaqXvPNhS/gpt-2-s-positional-embedding-matrix-is-a-helix
https://www.lesswrong.com/posts/qvWP3aBDBaqXvPNhS/gpt-2-s-positional-embedding-matrix-is-a-helix
https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6/the-positional-embedding-matrix-and-previous-token-heads-how
https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6/the-positional-embedding-matrix-and-previous-token-heads-how


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MULTI-DIMENSIONAL FEATURE CAPACITY

The Johnson-Lindenstrauss (JL) Lemma (Johnson & Lindenstrauss, 1984) implies that we can choose
eCdδ2 pairwise one-dimensional δ-orthogonal vectors to satisfy Hypothesis 1 for some constant C,
thus allowing us to build the model’s feature space with a number of one-dimensional δ-orthogonal
features exponential in d. We now prove a similar result for low-dimensional projections (the main
idea of the proof is to combine δ-orthogonal vectors as guaranteed from the JL lemma):

Theorem 1. For any d′ and δ, it is possible to choose 1
dmax

eC1(d/d
′2)δ2 pairwise δ-orthogonal

matrices Ai ∈ Rni×d′
for some constant C1. Furthermore, it is not possible to choose more than

eC2(d−dmaxδ log( 1
δ )) for some constant C2.

We will first prove a lemma that will help us prove Theorem 1.
Lemma 1. Pick n pairwise δ-orthogonal unit vectors in v1, . . . ,vn ∈ Rd. Let y ∈ Rd be a unit norm
vector that is a linear combination of unit norm vectors v1, . . . ,vn with coefficients z1 . . . , zn ∈ R.
We can write A = [v1, . . . ,vn] and z = [z1, . . . , zn]

T , so that we have y =
∑n

k=1 zkvk = AzT

with ∥y∥2 = 1. Then, ∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ = ∥z∥1 ≤
√

n

1− δn

Proof. We will first bound the L2 norm of z. If σn is the minimum singular value of A, then we
have via standard singular value inequalities (Higham, 2021)

σn ≤
∥y∥2
∥z∥2

=⇒ ∥z∥2 ≤
∥y∥2
σn

=
1

σn

Thus we now lower bound σn. The singular values are the square roots of the eigenvalues of the
matrix ATA, so we now examine ATA. Since all elements of A are unit vectors, the diagonal
of ATA is all ones. The off diagonal elements are dot products of pairs of δ-orthogonal vectors,
and so are within the range [−δ, δ]. Then by the Gershgorin circle theorem (Gershgorin, 1931), all
eigenvalues λi of ATA are in the range

(1− δ(n− 1), 1 + δ(n− 1))

In particular, σ2
n = λn ≥ 1 − δ(n − 1), and thus σn ≥

√
1− δ(n− 1). Plugging into our upper

bound for ∥z∥2, we have that ∥z∥2 ≤ 1/
√
1− δ(n− 1). Finally, the largest L1 for a point on an

n-hypersphere of radius r is when all dimensions are equal and such a point has magnitude
√
nr, so

∥z∥1 ≤
√

n

1− δ(n− 1)
≤
√

n

1− δn

Theorem 1. For any d′ and δ, it is possible to choose 1
dmax

eC1(d/d
′2)δ2 pairwise δ-orthogonal

matrices Ai ∈ Rni×d′
for some constant C1. Furthermore, it is not possible to choose more than

eC2(d−dmaxδ log( 1
δ )) for some constant C2.

Proof. By the JL lemma (Johnson & Lindenstrauss, 1984; , https://mathoverflow.net/users/2554/bill
johnson), for any d and δ, we can choose eCdδ2 δ-orthogonal unit vectors in Rd indexed as vi, for
some constant C. Let Ai = [vdmax∗i, . . . ,vdmax∗i+ni−1] where each element in the brackets is a
column. Then by construction all Ai are matrices composed of unique δ-orthogonal vectors and
there are 1

dmax
eCdδ2 matrices Ai.

Now, consider two of these matrices Ai = [v1, . . . ,vni ] and Aj = [u1, . . . ,unj ], i ̸= j; we will
prove that they are f(δ)-orthogonal for some function f . Let yi =

∑ni

k=1 zi,kvk be a vector in the
colspace of Ai and yj =

∑nj

k=1 zj,kuk be a vector in the colspace of Aj , such that yi and yj are
unit vectors. To prove f(δ)-orthogonality, we must bound the absolute dot product between yi and
yj :

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

|yi · yj | =
∣∣∣∣∣
(

ni∑
k=1

zi,kvk

)
·
(

nj∑
k=1

zj,kuk

)∣∣∣∣∣
=

∣∣∣∣∣
ni∑

k1=1

nj∑
k2=1

(zi,k1
vk1

) · (zj,k2
uk2

)

∣∣∣∣∣
≤

ni∑
k1=1

nj∑
k2=1

|zi,k1
zj,k2
| |vk1

· uk2
| Triangle Inequality

≤
ni∑

k1=1

nj∑
k2=1

|zi,k1
zj,k2
| δ All vi,uj are δ orthogonal

= δ

ni∑
k1=1

nj∑
k2=1

|zi,k1
zj,k2
|

= δ

∣∣∣∣∣
ni∑
k=1

zi,k

∣∣∣∣∣
∣∣∣∣∣
nj∑
k=1

zj,k

∣∣∣∣∣ Factoring the product

≤ δ

√
ni

1− δni

√
nj

1− δnj
By Lemma 1

≤ δdmax

1− δdmax
ni, nj ≤ dmax by assumption

Thus Ai and Aj are f(δ)-orthogonal for f(δ) = δdmax/(1 − δdmax), and so it is possible to
choose 1

dmax
eCdδ2 pairwise f(δ)-orthogonal projection matrices. Remapping the variable δ with

δ 7→ f−1(δ) = δ/(dmax(1 + δ)), we find that it is possible to choose 1
dmax

eCdδ2/((1+δ)2d2
max)

pairwise δ-orthogonal projection matrices. Because 1 + δ is at most 2 with δ ∈ (0, 1), we can further
simplify the exponent and find that it is possible to choose 1

dmax
eC(d/d2

max)δ
2/4 pairwise δ-orthogonal

projection matrices. Absorbing the 4 into the constant C finishes the proof of the lower bound.

For the upper bound, we can proceed much more simply. Consider k pairwise δ-orthogonal matrices
Ai ∈ Rd′

. Since these matrices are full rank, their column spaces each parameterize a subspace
of dimension d′, and so by a result from (Alon, 2003) it is possible to choose eCd′δ2 log( 1

δ ) almost
orthogonal vectors in this subspace. Furthermore, by our definition of δ-orthogonal matrices, all pairs
of these vectors between subspaces will be δ-orthogonal. Finally, again by (Alon, 2003) we cannot
have more than eCdδ2 log( 1

δ ) δ-orthogonal vectors overall, so we have that

keCdmaxδ
2 log( 1

δ ) < eCdδ2 log( 1
δ )

and simplfying,

k < eC(d−dmax)δ
2 log( 1

δ )

These results imply that models can still represent an exponential number of higher dimensional
features. However, there is a large exponential gap between the lower and upper bound we have shown.
If the lower bound is reasonably tight, then this would mean that models would be highly incentivized
to fit features within the smallest dimensional space possible, suggesting a reason for recent work
showing interesting compressed encodings of multi-dimensional features in toy problems (Morwani
et al., 2023).

Note that the proof assumes the “worst case” scenario that all of the features are dimension dmax,
while in practice many of the features may be 1 or low dimensional, so the effect on the capacity of a
real model that represents multi-dimensional features is unlikely to be this extreme.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Finally, we note that the dictionary learning literature may have discovered similar results in the past
(which we were unaware of), see Foucart & Rauhut (2013).

B MORE ON REDUCIBILITY

B.1 ADDITIONAL INTUITION FOR DEFINITIONS

Here, we present some extra intuition and high level ideas for understanding our definitions and
the motivation behind them. Roughly, we intend for our definitions in the main text to identify
representations in the model that describe an object or concept in a way that fundamentally takes
multiple dimensions. We operationalize this as finding a subspace of representations that 1. has
basis vectors that “always co-occur” no matter the orientation 2. is not made up of combinations of
independent lower-dimensional features.

1. The first condition is met by the mixture part of our definition. The feature in question should
be part of an irreducible manifold, and so should “fill” a plane or hyperplane. There shouldn’t be
any part of the plane where the probability distribution of the feature is concentrated, because this
region is then likely part of a lower dimensional feature. The idea of this part of the definition is
to capture multi-dimensional objects; if the entire multi-dimensional space is truly being used to
represent a high-dimensional object, then the representations for the object should be “spread out”
entirely through the space.

2. The second condition is met by the separability part of our definition. This part of the definition is
intended to rule out features that co-occur frequently but are fundamentally not describing the same
object or concept. For example, latitude and longitude are not a mixture in that they frequently co-
occur, but we do not think it is necessarily correct to say they are part of the same multi-dimensional
feature because they are independent.

B.2 EMPIRICAL IRREDUCIBLE FEATURE TEST DETAILS

Our tests for reducibility require the computation of two quantities S(f) for the separability index
and Mϵ(f) for the ϵ-mixture index. We describe how we compute each index in the following two
subsections.

B.2.1 SEPARABILITY INDEX

We define the separability index in Equation 2 as

S(f) =min I(a;b)

where the min is over rotations R used to split f ′ = Rf + c into a and b. In two dimensions, the
rotation is defined by a single angle, so we can iterate over a grid of 1000 angles and estimate the
mutual information between a and b for each angle. We first normalize f by subtracting off the mean
and then dividing by the root mean squared norm of f (and multiplying by

√
2 since the toy datasets

are in two dimensions). To estimate the mutual information, we first clip the data f to a 6 by 6 square
centered on the origin. We then bin the points into a 40 by 40 grid, to produce a discrete distribution
p(a, b). After computing the marginals p(a) and p(b) by summing the distribution over each axis, we
obtain the mutual information via the formula

I(a;b) =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
(8)

B.2.2 ϵ-MIXTURE INDEX

We define the ϵ-mixture index in Equation 3 as

Mϵ(f) = max
v∈Rdf , c∈R

P
(
|v · f + c| < ϵ

√
E[(v · f + c)2]

)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

representation dim 1

re
pr

es
en

ta
ti

on
di

m
2

−5 0 5
normalized v · f + c

0

1000

2000

co
un

t

Mε(f) = 0.6396

0 π
2 π 3π

2
2π

angle θ

0

1

2

M
ut

ua
l

in
fo

(b
it

s)

S(f) = 0.3691

(a) Testing S(a) and Mϵ(a) on a reducible feature a.

representation dim 1

re
pr

es
en

ta
ti

on
di

m
2

−1.5 −1.0 −0.5 0.0
normalized v · f + c

0

100

200
co

un
t Mε(f) = 0.1784

0 π
2 π 3π

2
2π

angle θ

0

1

2

M
ut

ua
l

in
fo

(b
it

s) S(f) = 2.683

(b) Testing S(b) and Mϵ(b) on an irreducible feature b

Figure 10: Testing irreducibility of synthetic features. Left in each subfigure: Distributions of x.
For feature a, 63.96% lies within the narrow dotted lines, indicating the feature is likely a mixture.
For feature b, 17.84% lies within the wide lines, indicating the feature is unlikely to be a mixture.
The green cross indicates the angle θ that minimizes mutual information. Middle in each subfigure:
Histograms of the distribution of v · x with red lines indicating a 2ϵ-wide region. Right in each
subfigure: Mutual information between a and b as a function of the rotation angle θ of matrix R.
Feature b has a large minimum mutual information so is unlikely to be separable; feature a has a
medium value of minimum mutual information of about 0.37 bits.

The challenge with computing Mϵ(f) is to compute the maximum. We opted to maximize via gradient
descent; and we guaranteed differentiability by softening the inequality < with a sigmoid,

Mϵ,T (f ,v, c) =E

(
σ

(
1

T

(
ϵ− |v · f + c|√

E[(v · f + c)2]

)))
(9)

where T is a temperature, which we linearly decay from 1 to 0 throughout training. We optimize
for v and c using this loss Mϵ,T (f ,v, c) using full batch gradient descent over 10000 steps with
learning rate 0.1. With the solution (v∗, c∗), the final value of Mϵ,T=0(f ,v

∗, c∗) is then our estimate
of Mϵ(f).

We also run the irreducibility tests on additional synthetic feature distributions in Fig. 11a and
Fig. 11b.

C ALTERNATIVE DEFINITIONS

In this section, we present an alternative definition of a reducible feature that we considered during our
work. This chiefly deals with multi-dimensional features from the angle of computational reducibility
as opposed to statistical reducibility. In other words, this definition considers whether representations
of features on a specific set of tasks can be split up without changing the accuracy of the task. This
captures an interesting (and important) aspect of feature reducibility, but because it requires a specific
set of prompts (as opposed to allowing unsupervised discovery) we chose not to use it as our main
definition.

Our alternative definitions consider representation spaces that are possibly multi-dimensional, and
defines these spaces through whether they can completely explain a function h on the output logits.
We consider a group theoretic approach to irreducible representations, via whether computation
involving multiple group elements can be decomposed.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

representation dim 1

re
pr

es
en

ta
ti

on
di

m
2

−2 0 2
normalized v · f + c

0

50

100

co
un

t

Mε(f) = 0.0794

0 π
2 π 3π

2
2π

angle θ

0.00

0.25

0.50

M
ut

ua
l

in
fo

(b
it

s)

S(f) = 0.1156

(a) Testing S(c) and Mϵ(c) on a reducible feature c.

representation dim 1

re
pr

es
en

ta
ti

on
di

m
2

−2.5 0.0 2.5
normalized v · f + c

0

500

1000

co
un

t Mε(f) = 0.259

0 π
2 π 3π

2
2π

angle θ

0.0

0.5

1.0

M
ut

ua
l

in
fo

(b
it

s)

S(f) = 0.2541

(b) Testing S(d) and Mϵ(d) on an irreducible feature d

Figure 11: Testing irreducibility of synthetic features. Left in each subfigure: Distributions of x.
For feature c, 7.94% lies within the narrow dotted lines, indicating the feature is unlikely to be a
mixture. For feature d, 25.90% lies within the wide lines, indicating the feature is likely a mixture.
The green cross indicates the angle θ that minimizes mutual information. Middle in each subfigure:
Histograms of the distribution of v · x with red lines indicating a 2ϵ-wide region. Right in each
subfigure: Mutual information between a and b as a function of the rotation angle θ of matrix R.
Both features have a small (< 0.5 bits) minimum mutual information and so are likely separable.

C.1 ALTERNATIVE DEFINITION: INTERVENTIONS AND REPRESENTATION SPACES

Assume that we restrict the input set of prompts T = {tj} to some subset of prompts and that we
have some evaluation function h that maps from the output logit distribution of M to a real number.
For example, for the Weekdays problems, T is the set of 49 prompts and h could be the argmax
over the days of week logits. Abusing notation, we let M also be the function from the layer we are
intervening on; this is always clear from context. Then we can define a representation space of xj

i,l as
a subspace in which interventions always work:
Definition 5 (Representation Space). Given a prompt set T = {tj}, a rank-r dimensional repre-
sentation space of intermediate value xj

i,l is a rank r projection matrix P such that for all j, j′,

h(M((I − P )xj
i,l + Pxj′

i,l)) = h(M(xj′

i,l)).

Note that it immediately follows that the rank d dimensional matrix Id is trivially a rank d representa-
tion space for all prompt sets T .
Definition 6 (Minimality). A representation space P of rank r is minimal if there does not exist a
lower rank representation space.

A minimal representation with rank > 1 is a multi-dimensional representation.
Definition 7 (Alternative Reducibility). A representation space P of rank r is reducible if there are
orthonormal representation spaces P1 and P2 (such that P1 + P2 = P , P1P2 = 0) where

h(M(P1x
j
i,l) +M(P2x

j
i,l)) = h(M(P1x

j
i,l + P2x

j
i,l))

for all j, j′.

Suppose T , h and M define the multiplication of two elements in a finite group G of order n. Then if
we interpret the embedding vectors as the group representations, our definition of reducibility implies
to the standard group-theoretical definition of irreducibility –– specifically, reducibility into a tensor
product representation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D TOY CASE OF TRAINING SAES ON CIRCLES

To explore how SAEs behave when reconstructing irreducible features of dimension df > 1, we
perform experiments with the following toy setup. Inspired by the circular representations of integers
that networks learn when trained on modular addition (Nanda et al., 2023a; Liu et al., 2022), we
create synthetic datasets of activations containing multiple features which are each 2d irreducible
circles.

First however, consider activations for a single circle – points uniformly distributed on the unit circle
in R2. We train SAEs on this data with encoder Enc(x) = ReLU(We(x− bd) + be) and decoder
Dec(f) = Wdf + bd. We train SAEs with m = 2 and m = 10 with the Adam optimizer and
a learning rate of 10−3, sparsity penalty λ = 0.1, for 20,000 steps, and a warmup of 1000 steps.
In Fig. 12 we show the dictionary elements of these SAEs. When m = 2, the network must use both
SAE features on each input point, and uses db to shift the reconstructed circle so it is centered at the
origin. When m = 10, db ≈ 0 and the features spread out across the circle having close neighbors,
with only a subset being active on any one input.

2 1 0 1 2
2

1

0

1

2
sparsity loss: 1.93
SAE hidden activations
db

Reconstruction
Dictionary element

1 0 1

1

0

1

sparsity loss: 1.27, seed=2

db

Reconstruction
Dictionary element

1 0 1

1

0

1

sparsity loss: 1.28, seed=4

db

Reconstruction
Dictionary element

Figure 12: SAEs trained to reconstruct a single 2d circle with m = 2 (left) and m = 10 (middle and
right) dictionary elements. When there are several SAE features, there is not a natural choice feature
directions, and the dictionary elements spread out across the circle.

We now consider synthetic activations with multiple circular features. Our data consists of points in
R10, where we choose two orthogonal planes spanned by (e1, e2) and (e3, e4), respectively. With
probability one half a points is sampled uniformly on the unit circle in the e1-e2 plane, otherwise the
point will be sampled uniformly on the unit circle in the e3-e4 plane. We train SAEs with m = 64
on this data with the same hyperparameters as the single-circle case.

We now apply the procedure described in Section 4 to see if we can automatically rediscover these
circles. Encouragingly, we first find that the alive SAE features align almost exactly with either
the e1-e2 or the e3-e4 plane. When we apply spectral clustering with n_clusters = 2 to the
features with the pairwise angular similarities between dictionary elements as the similarity matrix
(Fig. 13, left), the two clusters correspond exactly to the features which span each plane. As described
in Section 4, given a cluster of dictionary elements S ⊂ {1, . . . ,m}, we run a large set of activations
through the SAE, then filter out samples which don’t activate any element in S. For samples which
do activate an element of S, reconstruct the activation while setting all SAE features not in S to have
a hidden activation of zero. If some collection of SAE features together represent some irreducible
feature, we want to remove all other features from the activation vector, and so we only allow SAE
features in the collection to participate in reconstructing the input activation. We find that this
procedure almost exactly recovers the original two circles, which encouraged us to apply this method
for discovering the features shown in Fig. 1 and Fig. 15.

E TRAINING MISTRAL SAES

Our Mistral 7B (Jiang et al., 2023) sparse autoencoders (SAEs) are trained on over one billion tokens
from a subset of the Pile (Gao et al., 2020) and Alpaca (Peng et al., 2023) datasets. We train our SAEs

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 15 30
alive SAE feature

0

15

30al
iv

e 
SA

E 
fe

at
ur

e

Cosine sim between alive features

1

0

1

1 0 1
PCA axis 1

1

0

1

PC
A 

ax
is 

2

Cluster 1 reconstruction

1 0 1
PCA axis 1

1

0

1

PC
A 

ax
is 

2

Cluster 2 reconstruction

Figure 13: Automatic discovery of synthetic circular features by clustering SAE dictionary elements.

on layers 8, 16, and 24 out of 32 total layers to maximize coverage of the model’s representations.
We use a 16× expansion factor, yielding a total of 65536 dictionary elements for each SAE.

To train our SAEs, we use an Lp sparsity penalty for p = 1/2 with sparsity coefficient λ = 0.012.
Before an SAE forward pass, we normalize our activation vectors to have norm

√
dmodel = 64 in

the case of Mistral. We do not apply a pre-encoder bias. We use an AdamW optimizer with weight
decay 10−3 and learning rate 0.0002 with a linear warm up. We apply dead feature resampling
(Bricken et al., 2023) five times over the course of training to converge on SAEs with around 1000
dead features.

F GPT-2 AND MISTRAL 7B DICTIONARY ELEMENT CLUSTERING

In this section, we first present pseudocode in Alg. 1 for the overall high level technique that finds
multi-dimensional features and that uses clustering as a subroutine. We then provide the specific
clustering algorithm implementations we use for GPT-2 and Mistral.

Algorithm 1: High Level Clustering Approach For Finding Multi-D Features
Input: Dictionary elements D, activation vectors Xi,l, SAE
Output: Irreducible multi-dimensional features
Si,j ← CosineSim(Di, Dj);
clusters← Cluster(S);
reconstructions← {};
for cluster in clusters do

Rcluster ← ids of dictionary elements in cluster;
for xi,l in Xi,l do

encoding ← ReLU(E · xi,l);
if max(encoding[Rcluster]) > 0 then

r ← D[:, Rcluster] · encoding;
reconstructions← reconstructions ∪ {r};

end
end

end
features← {};
for R in reconstructions do

proj ← PCA(R);
if TestIrreducible(proj) then

Add proj to features;
end

end
return features

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.1 GPT-2-SMALL METHODS AND RESULTS

For GPT-2-small, we perform spectral clustering on the roughly 25k layer 7 SAE features
from (Bloom, 2024), using pairwise angular similarities between dictionary elements as the similarity
matrix. We use n_clusters = 1000 and manually looked at roughly 500 of these clusters. For
each cluster, we looked at projections onto principal components 1-4 of the reconstructed activations
for these clusters. In Fig. 14, we show projections for the most interesting clusters we identified,
which appear to be circular representations of days of the week, months of the year, and years of the
20th century.

Figure 14: Projections of days of week, months of year, and years of the 20th century representations
onto top four principal components, showing additional dimensions of the representations than Fig. 1.

F.2 MISTRAL 7B METHODS AND RESULTS

For Mistral 7B, our SAEs have 65536 dictionary elements and we found it difficult to run spectral
clustering on all of these at once. We therefore develop a simple graph based clustering algorithm
that we run on Mistral 7B SAEs:

1. Create a graph G out of the dictionary elements by adding directed edges from each
dictionary element to its k closest dictionary elements by cosine similarity. We use k = 2.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. Make the graph undirected by turning every directed edge into an undirected edge.

3. Prune edges with cosine similarity less than a threshold value τ . We use τ = 0.5.

4. Return the connected components as clusters.

We run this algorithm on the Mistral 7B layer 8 SAE (216 dictionary elements) and find roughly
2700 clusters containing between 2 and 1000 elements. We manually inspected roughly 2000 of
these. From these, we re-discover circular representations of days of the week and months of the
year, shown in Fig. 15. However, we did not find other obviously interesting and clearly irreducible
features.

We also investigate the sensitivity of this method to τ and k by varying τ and k and showing the max
Jaccard similarity between any of the resulting clusters and the days of the week cluster we show
in Fig. 15. We show the results in Fig. 16, where we find that varying k has minimal effect, while
varying τ shows 3 regimes: small τ causes all features to group in one cluster, so the days of the
week cluster is not found; medium τ causes the days of the week cluster to become identifiable; large
τ causes all features to be divided into their own clusters.

Figure 15: Circular representations of days of the week and months of the year which we discover
with our unsupervised SAE clustering method in Mistral 7B. Unlike similar features in GPT-2, we
also find an additional “weekend” representation in between Saturday and Sunday representations
(left) and additional representations of seasons among the months (right). For instance, “winter”
tokens activate a region of the circle in between the representation of January and December.

k=2 k=3 k=4
Top-k for Graph (k=2,3,4)

0.10
0.11
0.13
0.14
0.16
0.18
0.21
0.23
0.26
0.30
0.34
0.38
0.43
0.48
0.50
0.55
0.62
0.70
0.78
0.89
1.00

Si
m

ila
rit

y 
Cu

to
ff

Cluster part of large super cluster

Cluster formed

Cluster broken apart

Cluster Stability Across Parameters

k=2 k=3 k=4
Top-k for Graph (k=2,3,4)

Mean Cluster Size Across Parameters

0.2

0.4

0.6

0.8

1.0

M
ax

 Ja
cc

ar
d 

Si
m

ila
rit

y 
W

ith
 G

T 
Cl

us
te

r

100

101

102

103

M
ea

n 
Cl

us
te

r S
ize

 (l
og

 sc
al

e)

Figure 16: Hyperparameter regimes where the days of the week cluster exists. The cluster exists in
the regime between all features clumping together and all features being in their own cluster; this
regime seems reasonably stable.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

As future work, we think it would be exciting to develop better clustering techniques for SAE
features. Our graph based clustering technique could likely be improved by more recent efficient
and high-quality graph based clustering techniques, e.g. hierarchical agglomerate clustering with
single-linkage (Lattanzi et al., 2020). Additionally, we believe we would see a large improvement by
setting edge weights to be a combination of both the cosine and Jaccard similarity of the dictionary
elements, e.g. max(cosine, Jaccard).

G OTHER DISCOVERED CLUSTERS

In Fig. 17, we plot the top 11 ranked clusters by the product of a) the measured separability index
and b) one minus the measured ϵ-mixture index with ϵ = 0.1 (this is just one of many possible ways
to get an ordered ranking from a two-parameter score). We color by both the current token (which
results in clear patterns for all tokens) and the next token (to see if we find belief states as found by
Shai et al. (2024) in toy transformers). We note that weekdays are ranked 9 and so are shown in
the plot. Additionally, the next token patterns of the ‘such’ cluster and the ‘B’ cluster do seem to
display some clustering independently of the the current token pattern, which might lend the belief
state hypothesis some support.

H FURTHER EXPERIMENT DETAILS

H.1 ASSETS INFORMATION

We use the following open source models for our experiments: Llama 3 8B (AI@Meta, 2024) (custom
Llama 3 license https://llama.meta.com/llama3/license/), Mistral 7B (Jiang et al.,
2023) (released under the Apache 2 License), and GPT-2 (Radford et al., 2019) (modified MIT
license, see https://github.com/openai/gpt-2/blob/master/LICENSE).

H.2 MACHINE INFORMATION

Intervention experiments were run on two V100 GPUs using less than 64 GB of CPU RAM; all exper-
iments can be reproduced from our open source repository in less than a day with this configuration.
We use the TransformerLens library (Nanda & Bloom, 2022) for intervention experiments. ϵ-mixture
index measurements on toy datasets took about one minute each, on 8GB of CPU RAM. EVR
experiments take seconds on 8GB of CPU RAM and are dominated by time taken to human-interpret
the RGB plots.

GPT-2 SAE clustering and plotting was run on a cluster of heterogeneous hardware. Spectral
clustering and computing reconstructions + plotting was done on CPUs only. We made reconstruction
plots for 500 clusters, with each taking less than 10 minutes. Mistral 7B SAE reconstruction plots
were made on the same cluster. We made roughly 2000 reconstruction plots for Mistral 7B (and
manually inspected each), with each taking less than 20 minutes to generate. Jobs were allocated
64GB of memory each.

Mistral SAE training was run on a single V100 GPU. Initially caching activations from Mistral 7B on
one billion tokens took approximately 60 hours. Training the SAEs on the saved activations took
another 36 hours.

H.3 ERROR BAR CALCULATION

In Fig. 6 we report 96% error bars for all intervention methods. To compute these error bars, we
loop over all intervention methods and all layers and compute a confidence interval for each (method,
layer) pair across all prompts. Assuming normally distributed errors, we compute error bars with the
following standard formula:

EB = µ± z ∗ SE
where µ is the sample mean, z is the z score (slightly larger than 2 for 96% error bars), and SE is the
standard error (the standard deviation divided by the square root of the number of samples). We use
standard Python functions to compute this value.

23

https://llama.meta.com/llama3/license/
https://github.com/openai/gpt-2/blob/master/LICENSE


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 17: Top 10 GPT-2 clusters by Mixture and Separability Index.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

(a) Mistral 7B, Weekdays

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

(b) Llama 3 8B, Weekdays

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

January
February

March
April

May
June

July
August

September
October

November
December

(c) Mistral 7B, Months

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

January
February

March
April

May
June

July
August

September
October

November
December

(d) Llama 3 8B, Months

Figure 18: Projections onto the top two PCA dimensions of model hidden states on the α token show
that circular representations of α are present in various layers.

The reason that the Months error bars are smaller than the Weekdays error bars is because there
are more Months prompts: there are 12 ∗ 12 ∗ 11 = 1584 intervention effect values, rather than
7 ∗ 7 ∗ 6 = 294 intervention effect values.

I MORE WEEKDAYS AND MONTHS PLOTS AND DETAILS

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Early MonLate MonEarly Tue
Late Tue

Early Wed
Late Wed

Early ThuLate Thu

Early FriLate Fri

Early SatLate Sat

Early SunLate Sun

Figure 21: Layer 30 Mistral 7B ac-
tivations for [very early/very late] on
[Monday/Tuesday/.../Sunday], plotted
projected into the PCA plane for [Mon-
day/Tuesday/.../Sunday].

We show the results of Mistral 7B and Llama 3 8B on all
individual instances of Weekdays that at least one of the
models get wrong in Table 2 and present a similar table
for Months in Table 3.

We show projections onto the top two PCA directions
for both Mistral 7B and Llama 3 8B in Fig. 18 on the
hidden layers on top of the α token, colored by α. These
are similar plots to Fig. 4, except they are on all layers.
The circular structure in α is visible on many—but not
all—layers. Much of the linear structure visible is due to
β.

In Fig. 19 and Fig. 20, we report MLP and attention head
patching results for Weekdays and Months. We experi-
ment on 20 pairs of problems with the same α and different
β and 20 pairs of problems with the same β and different
α, for a total of 40 pairs of problems. For each pair of
problems, we patch the MLP/attention outputs from the
"clean" to the "dirty" problem for each layer and token,
and then complete the forward pass. Defining the logit difference as the logit of the clean γ minus the
logit of the dirty γ, we record what percent of the difference between the original logit difference

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 10 20 30
Layer

from

days

two

is

*Monday

0.0

0.1

0.2

0.3

(a) Mistral 7B MLP Patching

0 10 20 30
Layer

from

days

two

is

*Monday

0.0

0.1

0.2

0.3

0.4

(b) Mistral 7B attention patching

0 10 20 30
Layer

from

days

two

is

*Monday

0.0

0.2

0.4

(c) Llama 3 8B MLP patching

0 10 20 30
Layer

from

days

two

is

*Monday

0.0

0.1

0.2

(d) Llama 3 8B attention patching

Figure 19: Attention and MLP patching results on Weekdays. Results are averaged over 20 different
runs with fixed α and varying β and 20 different runs with fixed β and varying α.

0 10 20 30
Layer

is

*January

from

months

*Two

0.0

0.1

0.2

0.3

(a) Mistral 7B MLP Patching

0 10 20 30
Layer

is

*January

from

months

*Two

0.0

0.1

0.2

0.3

0.4

(b) Mistral 7B attention patching

0 10 20 30
Layer

is

*January

from

months

*Two

0.0

0.1

0.2

0.3

0.4

(c) Llama 3 8B MLP patching

0 10 20 30
Layer

is

*January

from

months

*Two

0.0

0.1

0.2

0.3

(d) Llama 3 8B attention patching

Figure 20: Attention and MLP patching results on Months. Results are averaged over 20 different
runs with fixed α and varying β and 20 different runs with fixed β and varying α.

of the dirty problem and the logit difference of the clean problem is recovered upon intervening,
and average across these 40 percentages for each layer and token. This gives us a score we call the
Average Intervention Effect.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 2: Weekdays finegrained results. Row ommited if both models get it correct.

α β Ground truth γ Mistral top γ Mistral correct? Llama top γ Llama correct?

1 1 Wednesday Wednesday Yes Thursday No
3 1 Friday Friday Yes Tuesday No
4 1 Saturday Saturday Yes Thursday No
3 2 Saturday Saturday Yes Tuesday No
4 2 Sunday Sunday Yes Wednesday No
5 2 Monday Monday Yes Tuesday No
2 3 Saturday Friday No Saturday Yes
3 3 Sunday Sunday Yes Tuesday No
4 3 Monday Monday Yes Tuesday No
0 4 Friday Thursday No Friday Yes
3 4 Monday Monday Yes Tuesday No
0 5 Saturday Friday No Saturday Yes
1 5 Sunday Saturday No Wednesday No
2 5 Monday Sunday No Monday Yes
4 5 Wednesday Tuesday No Tuesday No
6 5 Friday Thursday No Thursday No
1 6 Monday Sunday No Thursday No
2 6 Tuesday Monday No Tuesday Yes
3 6 Wednesday Tuesday No Tuesday No
4 6 Thursday Thursday Yes Tuesday No
5 6 Friday Friday Yes Thursday No
6 6 Saturday Thursday No Thursday No
0 7 Monday Sunday No Tuesday No
1 7 Tuesday Sunday No Tuesday Yes
2 7 Wednesday Sunday No Wednesday Yes
3 7 Thursday Sunday No Thursday Yes
4 7 Friday Thursday No Tuesday No
5 7 Saturday Friday No Saturday Yes
6 7 Sunday Friday No Thursday No

For simplicity of presentation, we clip all of the (few) negative intervention averages to 0 (prior
work (Zhang & Nanda, 2023) has also found negative-effect attention heads during patching experi-
ments).

Finally, in Fig. 21, we show another example of the continuity of the circular days of the week
representation in Mistral 7B.

J PATCHING

In this section, we present results to support a claim that MLPs (and not attention blocks) are
responsible for computing γ. In Fig. 23, we deconstruct states on top of the final token (before
predicting γ) on Llama 3 8B Months (we show a similar plot for the states on the final token
of Mistral 7B on Weekdays in the main text in Fig. 22. These plots show that the value of γ is
computed on the final token around layers 20 to 25. To show that this computation of occurs in the
MLPs, we must show that no attention head is copying γ from a prior token or directly computing γ.

We first perform a patching experiment with the same setup Fig. 20 and Fig. 19 on individual
attention heads on the final token. From the patching results we identify the top 10 attention heads
by average intervention effect. For each attention head, we compute one EVR run with explanatory
functions equal to one-hot functions of α and β (resulting in 14 functions gi for Weekdays and
24 for Months) and one with explanatory functions equal to one-hot functions of α, β, and γ. We
find that for all layers before 25, adding γ to the explanatory functions adds almost no explanatory
power. Since we established above that the model has already computed γ at this point, we know that
attention heads do not participate in computing γ.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 3: Months finegrained results. Row ommited if both models get it correct.

α β Ground truth γ Mistral top γ Mistral correct? Llama top γ Llama correct?

0 4 May April No May Yes
6 4 November October No November Yes
0 6 July June No July Yes
0 7 August July No August Yes
1 7 September October No September Yes
3 7 November October No November Yes
5 7 January December No January Yes
6 7 February January No February Yes
7 7 March February No March Yes
9 7 May April No May Yes
4 9 February February Yes January No
2 10 January December No January Yes
8 10 July June No July Yes
1 11 January December No January Yes
2 11 February December No February Yes
3 11 March February No March Yes
7 11 July June No July Yes
8 11 August July No August Yes
9 11 September August No September Yes
0 12 January December No January Yes

To isolate the rough circuit for Weekdays and Months, we perform layer-wise activation patching
on 40 random pairs of prompts. The results, displayed in Fig. 20 show that the circuit to compute
γ consists of MLPs on top of the α and β tokens, a copy to the token before γ, and further MLPs
there (roughly similar to prior work studying arithmetic circuits (Stolfo et al., 2023)). Moreover,
fine-grained patching in Appendix K shows that there are just a few responsible attention heads
for the writes to the token before γ. However, patching alone cannot tell use how or where γ is
represented. For that, we need a new technique, which we expand on in the next section.

K EXPLANATION VIA REGRESSION (EVR)

In this section, we introduce a new technique for empirically explaining hidden representations
in algorithmic problems: explanation via regression (EVR). Given a set of tokens T with a
corresponding set of hidden states Xi,l, we explain the variance in Xi,l by adding together hand-
chosen functions of t. This gives us an explanation of what the transformation T → Xi,l computes.
For a given choice of explanation functions {gi(t)}, the r2 value of a linear regression from {gi(t)}
to Xi,l gives a measure of the explained variance in Xi,l. But what functions gi should we choose?

We build a list of gi iteratively and greedily. At each iteration, we perform a linear regression with the
current list g1 . . .gk, visualize and interpret the residual prediction errors, and build a new function
gk+1 representing these errors to add to the list. Once most variance is explained, we can conclude
that g1, . . . ,gk constitutes the entirety of what is represented in the hidden states. This information
tells us what can and cannot be extracted via a linear probe, without having to train any probes.
Furthermore, if we treat each gi as a feature (see Definition 1), then the linear regression coefficients
tell us which directions in Xi,l these features are represented in, connecting back to Hypothesis 2.

We apply EVR to Months and Weekdays. Since Xi,l consists of modular addition problems with
two inputs α and β, we can visualize the errors as we iteratively construct g1, . . . ,gk by making a
heatmap with α and β on the two axes, where the color shows what kind of error is made. More
specifically, we take the top 3 PCA components of the error distribution and assign them to the
colors red, green, and blue. We call the resulting heatmap a residual RGB plot. Errors that depend
primarily on α, β, or γ show up as horizontal, vertical, or diagonal stripes on the residual RGB plot.

In Fig. 22, we perform EVR on the layer 17-29 hidden states of Mistral 7B on the Weekdays
task; additional deconstructions are in Appendix K. We find that a circle in γ develops and grows in

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

original
r2: 0.0%

one hot α, β
r2: 94.0%

layer 17

original
r2: 0.0%

one hot α, β
r2: 95.6%

α for tmr
r2: 98.1%

circle α − β
r2: 98.6%

layer 18

original
r2: 0.0%

one hot α, β
r2: 96.3%

α for tmr
r2: 98.2%

circle γ
r2: 98.7%

circle α − β
r2: 99.2%

layer 19

original
r2: 0.0%

one hot α, β
r2: 94.5%

α for tmr
r2: 96.8%

circle γ
r2: 98.1%

circle α − β
r2: 99.0%

layer 20

original
r2: 0.0%

one hot α, β
r2: 91.4%

circle γ
r2: 94.4%

circle α − β
r2: 96.3%

layer 21

original
r2: 0.0%

one hot α, β
r2: 89.0%

circle γ
r2: 93.6%

circle α − β
r2: 95.6%

α for tmr
r2: 98.0%

layer 22

original
r2: 0.0%

one hot α, β
r2: 87.3%

circle γ
r2: 93.4%

circle α − β
r2: 95.5%

α for tmr
r2: 98.1%

layer 23

original
r2: 0.0%

one hot α, β
r2: 85.4%

circle γ
r2: 92.2%

circle α − β
r2: 94.4%

α for tmr
r2: 97.6%

layer 24

original
r2: 0.0%

one hot α, β
r2: 81.9%

circle γ
r2: 91.2%

circle α − β
r2: 93.7%

layer 25

original
r2: 0.0%

one hot α, β
r2: 78.4%

circle γ
r2: 88.7%

circle α − β
r2: 91.0%

layer 26

original
r2: 0.0%

one hot α, β
r2: 74.8%

circle γ
r2: 87.7%

circle α − β
r2: 89.9%

layer 27

original
r2: 0.0%

one hot α, β
r2: 72.3%

circle γ
r2: 86.4%

layer 28

original
r2: 0.0%

one hot α, β
r2: 70.4%

circle γ
r2: 84.6%

layer 29

Figure 22: EVR residual RGB plots on Mistral hidden states on the Weekdays final token, layers 17
to 29. From top to bottom, we show each residual RGB plot after adding the function(s) gi labelled
just underneath, as well as the resulting r2 value. We write “tmr” meaning “tomorrow” for β = 1.
We also write “circle for x” meaning the inclusion of two functions gi(x) = {cos, sin}(2πx/7).

original
r2: 0.0%

one hot β
r2: 69.7%

one hot α
r2: 95.7%

α + 1 = β

r2: 96.4%

layer 13

original
r2: 0.0%

one hot β
r2: 72.8%

one hot α
r2: 96.0%

α + 1 = β

r2: 96.5%

layer 14

original
r2: 0.0%

one hot β
r2: 69.9%

one hot α
r2: 96.8%

α + 1 = β

r2: 97.2%

layer 15

original
r2: 0.0%

one hot β
r2: 89.0%

one hot α
r2: 98.7%

α + 1 = β

r2: 98.9%

layer 16

original
r2: 0.0%

one hot β
r2: 76.6%

one hot α
r2: 99.0%

circle 2γ
r2: 99.2%

layer 17

original
r2: 0.0%

one hot β
r2: 81.8%

one hot α
r2: 96.8%

γ parity
r2: 98.0%

circle γ
r2: 98.8%

layer 18

original
r2: 0.0%

one hot β
r2: 54.1%

γ parity
r2: 60.2%

circle 2γ
r2: 64.7%

circle γ
r2: 73.4%

one hot α
r2: 92.0%

one hot α+β

r2: 95.2%

layer 19

original
r2: 0.0%

one hot β
r2: 47.8%

circle γ
r2: 60.9%

γ parity
r2: 68.0%

circle 2γ
r2: 73.7%

one hot α
r2: 89.9%

one hot α+β

r2: 94.3%

layer 20

original
r2: 0.0%

one hot β
r2: 36.8%

circle 2γ
r2: 47.8%

circle γ
r2: 62.5%

γ parity
r2: 68.7%

one hot α
r2: 83.8%

one hot α+β

r2: 91.4%

layer 21

original
r2: 0.0%

circle γ
r2: 23.6%

one hot β
r2: 51.6%

γ parity
r2: 59.5%

circle 2γ
r2: 68.6%

one hot α
r2: 81.4%

one hot α+β

r2: 90.6%

layer 22

original
r2: 0.0%

circle γ
r2: 24.3%

one hot β
r2: 48.3%

γ parity
r2: 57.9%

circle 2γ
r2: 66.2%

one hot α
r2: 80.1%

one hot α+β

r2: 90.9%

layer 23

original
r2: 0.0%

circle γ
r2: 24.7%

one hot β
r2: 48.2%

γ parity
r2: 56.9%

circle 2γ
r2: 64.4%

one hot α
r2: 77.5%

one hot α+β

r2: 90.8%

layer 24

original
r2: 0.0%

circle γ
r2: 25.5%

one hot β
r2: 48.2%

γ parity
r2: 55.6%

circle 2γ
r2: 63.6%

one hot α
r2: 76.2%

one hot α+β

r2: 90.7%

layer 25

original
r2: 0.0%

circle γ
r2: 25.5%

one hot β
r2: 48.1%

γ parity
r2: 55.1%

circle 2γ
r2: 64.0%

one hot α
r2: 75.6%

one hot α+β

r2: 90.6%

layer 26

original
r2: 0.0%

γ parity
r2: 12.0%

circle γ
r2: 35.4%

one hot β
r2: 56.8%

circle 2γ
r2: 65.7%

one hot α
r2: 76.9%

one hot α+β

r2: 90.9%

layer 27

original
r2: 0.0%

γ parity
r2: 12.2%

circle γ
r2: 34.2%

one hot β
r2: 56.5%

circle 2γ
r2: 65.6%

one hot α
r2: 76.6%

one hot α+β

r2: 91.1%

layer 28

original
r2: 0.0%

circle γ
r2: 23.7%

one hot β
r2: 43.6%

γ parity
r2: 54.4%

circle 2γ
r2: 65.1%

one hot α
r2: 74.7%

one hot α+β

r2: 92.4%

layer 29

Figure 23: Iterative deconstruction of hidden state representations on the final token on Llama 3 8B,
Months.

explanatory power; we plot the layer 25 residuals after explaining with one hot functions in α and β
(i.e. g1 = [α = 0],g2 = [β = 1],g3 = [α = 1], . . .) in Fig. 8 to show this incredibly clear circle in
γ. This suggests that the models may be generating γ by using a trigonometry based algorithm like
the “clock” (Nanda et al., 2023a) or “pizza” (Zhong et al., 2024) algorithm in late MLP layers.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 4: Highest intervention effect attention heads from fine-grained attention head patching, as well
as EVR results with one hot α, β and one hot α, β, γ.

(a) Mistral 7B, Weekdays.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

28 18 0.22 0.39 0.73
18 30 0.17 0.95 0.96
15 13 0.17 0.94 0.95
22 15 0.11 0.77 0.82
16 21 0.09 0.92 0.93
28 16 0.08 0.42 0.69
15 14 0.06 0.98 0.99
30 24 0.05 0.43 0.79
21 26 0.04 0.53 0.63
14 2 0.04 0.93 0.95

(b) Llama 3 8B, Weekdays.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

17 0 0.18 0.98 0.99
17 1 0.08 0.98 0.98
19 10 0.08 0.95 0.96
30 17 0.07 0.85 0.90
17 3 0.07 0.93 0.95
17 27 0.06 1.00 1.00
31 22 0.05 0.37 0.78
21 9 0.04 0.73 0.78
20 28 0.04 1.00 1.00
30 16 0.04 0.73 0.85

(c) Mistral 7B, Months.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

20 28 0.15 0.76 0.76
17 0 0.10 0.77 0.77
25 14 0.08 0.19 0.61
17 1 0.07 0.80 0.82
17 3 0.06 0.71 0.71
31 22 0.06 0.12 0.67
17 27 0.05 0.58 0.58
19 4 0.05 0.40 0.66
19 10 0.04 0.62 0.62
30 26 0.04 0.51 0.62

(d) Llama 3 8B, Months.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

15 13 0.26 0.62 0.62
16 21 0.17 0.76 0.76
18 30 0.13 0.77 0.77
28 18 0.11 0.13 0.52
28 16 0.07 0.13 0.52
21 25 0.05 0.65 0.70
15 14 0.03 0.72 0.72
17 26 0.02 0.77 0.77
31 1 0.02 0.11 0.57
21 24 0.02 0.30 0.45

30


	Introduction
	Contributions

	Related Work
	Definitions
	Multi-Dimensional Features
	Superposition

	Sparse Autoencoders Find Multi-Dimensional Features
	Circular Representations in Large Language Models
	Intervening on Circular Day and Month Representations
	Uncovering Output Representations Using Regression
	Continuity of Circular Representations

	Discussion
	Multi-Dimensional Feature Capacity
	More on Reducibility
	Additional Intuition for Definitions
	Empirical Irreducible Feature Test Details
	Separability Index
	-Mixture Index


	Alternative Definitions
	Alternative Definition: Interventions and Representation Spaces

	Toy Case of Training SAEs on Circles
	Training Mistral SAEs
	GPT-2 and Mistral 7B Dictionary Element Clustering
	GPT-2-small methods and results
	Mistral 7B methods and results

	Other discovered clusters
	Further Experiment Details
	Assets Information
	Machine Information
	Error Bar Calculation

	More Weekdays and Months Plots and Details
	Patching
	Explanation via Regression (EVR)

