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ABSTRACT

Recent work has proposed that language models perform computation by manipu-
lating one-dimensional representations of concepts (“features”) in activation space.
In contrast, we explore whether some language model representations may be
inherently multi-dimensional. We begin by developing a rigorous definition of
irreducible multi-dimensional features based on whether they can be decomposed
into either independent or non-co-occurring lower-dimensional features. Motivated
by these definitions, we design a scalable method that uses sparse autoencoders to
automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-
discovered features include strikingly interpretable examples, e.g. circular features
representing days of the week and months of the year. We identify tasks where
these exact circles are used to solve computational problems involving modular
arithmetic in days of the week and months of the year. Next, we provide evidence
that these circular features are indeed the fundamental unit of computation in these
tasks with intervention experiments on Mistral 7B and Llama 3 8B. Finally, we
find further circular representations by breaking down the hidden states for these
tasks into interpretable components, and we examine the continuity of the days of
the week feature in Mistral 7B.

1 INTRODUCTION

Language models trained for next-token prediction on large text corpora have demonstrated remark-
able capabilities, including coding, reasoning, and in-context learning (Bubeck et al., 2023; Achiam
et al., 2023; Anthropic, 2024; Team et al., 2023). However, the specific algorithms models learn
to achieve these capabilities remain largely a mystery to researchers; we do not understand how
language models write poetry. Mechanistic interpretability is a field that seeks to address this gap by
reverse-engineering trained models from the ground up into variables (features) and the programs
(circuits) that process these variables (Olah et al., 2020).

One mechanistic interpretability research direction has focused on understanding toy models in detail.
This work has found multi-dimensional representations of inputs such as lattices (Michaud et al.,
2024) and circles (Liu et al., 2022; Nanda et al., 2023a), and has successfully reverse-engineered the
algorithms that models use to manipulate these representations. A separate direction has identified one-
dimensional representations of high level concepts and quantities in large language models (Gurnee
& Tegmark, 2023; Marks & Tegmark, 2023; Heinzerling & Inui, 2024; Bricken et al., 2023). These
findings have led to the linear representation hypothesis (LRH): a hypothesis which has historically
claimed both that 1. all representations in pretrained large language models lie along one-dimensional
lines, and 2. model states are a simple sparse sum of these representations (Park et al., 2023; Bricken
et al., 2023). In this work, we specifically call into question the first part of the LRH.1

For the most part, these two directions have been disconnected: Yedidia (2023a) and Gould et al.
(2023) find intriguing hints of circular language model representations, and Bricken et al. (2023)

1An earlier version of this manuscript sparked discussion in the mechanistic interpretability community on
the distinction between non-linear features and multi-dimensional features, and in fact this discussion directly
led to a consensus around the two part LRH we describe above (see (Olah, 2024; Csordás et al., 2024; Mendel,
2024)). To clarify, we agree with these discussions, and believe the multi-dimensional features we find are
"linear" in the sense that they are contained in a low-dimensional linear subspace, but "non-linear" in the sense
that this low-dimensional subspace is not one-dimensional (and this is the sense we mean in the title).
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Figure 1: Circular representations of days of the week, months of the year, and years of the 20th
century in layer 7 of GPT-2-small colored by the token they fire on. These representations were
discovered via clustering SAE dictionary elements, described in Section 4. Points are colored
according to the token which created the representation. See Fig. 14 for other axes and Fig. 15 for
similar plots for Mistral 7B.

speculate about the existence of feature manifolds, but these brief results only serve to further
emphasize the lack of a unifying and satisfying perspective on the nature of language model features.
In this work, we seek to bridge this gap by formalizing, investigating, and systematically searching
for multi-dimensional language model features.

1.1 CONTRIBUTIONS

1. In Section 3, we generalize the one-dimensional definition of a language model feature to multi-
dimensional features and provide an updated multi-dimensional superposition hypothesis to
account for these new features.

2. In Section 4, we build on the definitions proposed in Section 3 to develop a theoretically grounded
and empirically practical test that uses sparse autoencoders to find irreducible features. Using
this test, we identify multi-dimensional representations automatically in GPT-2 and Mistral 7B,
including circular representations for the day of the week and month of the year.

3. In Section 5, we show that Mistral 7B and Llama 3 8B use these circular representations when
performing modular addition in days of the week and in months of the year. To the best of our
knowledge, we are the first to find causal circular representations of concepts in a language model.
We further investigate circular representations in these tasks by using regression to reveal circles
in the computed day of the week and month of the year, and we additionally find that the model’s
circular representations respect a continuous notion of time.

2 RELATED WORK

Linear Representations: Early word embedding methods such as GloVe and Word2vec, although
only trained using co-occurrence data, contained directions in their vector spaces corresponding to
semantic concepts (Mikolov et al., 2013b; Pennington et al., 2014; Mikolov et al., 2013a). Recent
research has found similar evidence of one-dimensional linear representations in sequence models
trained only on next token prediction, including Othello board positions (Nanda et al., 2023b; Li
et al., 2022), the truth value of assertions (Marks & Tegmark, 2023), and numeric quantities such as
longitude, latitude, birth year, and death year (Gurnee & Tegmark, 2023; Heinzerling & Inui, 2024).
These results have inspired the linear representation hypothesis (Park et al., 2023; Elhage et al., 2022)
defined above. Jiang et al. (2024) provide theoretical evidence for this hypothesis, assuming a latent
(binary) variable-based model of language. Empirically, Bricken et al. (2023) and Cunningham
et al. (2023) successfully use sparse autoencoders to break down a model’s feature space into an
over-complete basis of linear features. These works assume that the number of linear features stored
in superposition exceeds the model dimensionality (Elhage et al., 2022).
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Multi-Dimensional Representations: There has been comparatively little research on multi-
dimensional features in language models. Shai et al. (2024) predict and verify that a transformer
trained on a hidden Markov model uses a fractal structure to represent the probability of each next
token, a clear example of a necessary multi-dimensional feature, but the analysis is restricted to a toy
setting. Yedidia (2023a;b) finds that GPT-2 learned position vectors form a helix, which implies a
circle when “viewed” from below. Thus, we are not the first to find a circular feature in a language
model. However, our work finds circular features that represent latent concepts from text, while
the GPT-2 learned position vectors are specific to tokenization, separate from the rest of the model
parameters, and causally implicated only due to positional attention masking. Another suggestive
result, due to Hanna et al. (2024), is the presence of a U-shape in the representation of numbers
between 0 and 100; however, Hanna et al. (2024) find that this representation is not causal, and they
only show it exists within a specific prompt distribution. Recent work on dictionary learning (Bricken
et al., 2023) has speculated about multi-dimensional feature manifolds; our work is similar to this
direction and develops the idea of feature manifolds theoretically and empirically. Finally, in a
separate direction, Black et al. (2022) argue for interpreting neural networks through the polytopes
they split the input space into, and identifies regions of low polytope density as “valid” regions for a
potential linear representation.

Circuits: Circuits research seeks to identify and understand circuits, subsets of a model (usually
represented as a directed acyclic graph) that explain specific behaviors (Olah et al., 2020). The
base units that form a circuit can be layers, neurons (Olah et al., 2020), or sparse autoencoder
features (Marks et al., 2024). In the first circuits-style work, Olah et al. (2020) found line features
that were combined into curve detection features in the InceptionV1 image model. More recent work
has examined language models, for example the indirect object identification circuit in GPT-2 (Wang
et al., 2022). Given the difficulty of designing bespoke experiments, there has been increased research
in automated circuit discovery methods (Marks et al., 2024; Conmy et al., 2023; Syed et al., 2023).

Interpretability for Arithmetic Problems: Liu et al. (2022) study models trained on modular
arithmetic problems a + b = c (mod m) and find that models that generalize well have circular
representations for a and b. Further work by Nanda et al. (2023a) and Zhong et al. (2024) shows that
models use these circular representations to compute c via a “clock” algorithm and a separate “pizza”
algorithm. These papers are limited to the case of a small model trained only on modular arithmetic.
Another direction has studied how large language models perform basic arithmetic, including a
circuits level description of the greater-than operation in GPT-2 (Hanna et al., 2024) and addition in
GPT-J (Stolfo et al., 2023). These works find that to perform a computation, models copy pertinent
information to the token before the computed result and perform the computation in the subsequent
MLP layers. Finally, recent work by Gould et al. (2023) investigates language models’ ability to
increment numbers and finds linear features that fire on tokens equivalent modulo 10.

3 DEFINITIONS

This section focuses on hypotheses for how hidden states of language models can be decomposed
into sums of functions of the input (features). We focus on L layer transformer models M that take
in token input t = (t1, . . . , tn) from input token distribution T , have hidden states x1,l, . . . ,xn,l

for layers l, and output logit vectors y1, . . . ,yn. Given a set of inputs T , we let Xi,l be the set of
all corresponding xi,l. We write matrices in capital bold, vectors and vector valued functions in
lowercase bold, and sets in capital non-bold.

3.1 MULTI-DIMENSIONAL FEATURES

Definition 1 (Feature). We define a df -dimensional feature as a function f that maps a subset of the
input space into Rdf . We say that a feature is active on the aforementioned subset.

The input token distribution T induces a df -dimensional probability distribution over feature vectors
f(t). As an example, let n = 1 (so inputs are single tokens) and consider a feature f that maps integer
tokens to their integer values in R1. Then f is a 1-dimensional feature that is active on integer tokens,
and f(t) is the marginal integer occurrence distribution from the token distribution.

How can we differentiate "true" multi-dimensional features from sums of lower dimensional features?
We make this distinction by examining the reducibility of a potential multi-dimensional feature.

3
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That is, f is a "true" multi-dimensional feature if it cannot be written as the sum of two statistically
independent features and it cannot be written as the sum of two non-co-occurring features. Formally,
we have the following definition:

Definition 2. A feature f is reducible into features a and b if there exists an affine transformation

f 7→ Rf + c ≡
(a
b

)
(1)

for some orthonormal df × df matrix R and additive constant c, such that the transformed feature
probability distribution p(a,b) satisfies at least one of these conditions:

1. p is separable, i.e., factorizable as a product of its marginal distributions:
p(a,b) = p(a)p(b).

2. p is a mixture, i.e., a sum of disjoint distributions, one of which is lower dimensional:
p(a,b) = wp(a)δ(b) + (1− w)p(a,b)

Here δ is the Dirac delta function and 0 < w < 1. By two probability distributions being disjoint, we
mean that they have disjoint support (there is no set where both have positive probability measure, or
equivalently the two features a and b cannot be active at the same time). In Eq. (1), a is the first k
components of the vector Rf + c and b is the remaining df − k components. When p is separable
or a mixture, we also say that f is separable or a mixture. We term a feature irreducible if it is not
reducible, i.e., if no rotation and translation makes it separable or a mixture.

An example of a feature that is a mixture is a one hot encoding along a simplex; an example of a
feature that is separable is a normal distribution2. In natural language, a mixture might be a one hot
encoding of “breed of dog”, while a separable distribution might be the “latitude” and “longitude” of
location tokens.

In practice, the mixture and separability definitions may not be precisely satisfied. Thus, we soften
our definitions to permit degrees of reducibility:

Definition 3 (Separability Index and ϵ-Mixture Index). Consider a feature f . The separability index
S(f) measures the minimal mutual information between all possible a and b defined in Eq. (1):

S(f) ≡min I(a;b) (2)

where I denotes the mutual information. Smaller values of S(f) mean that f is more separable.

The ϵ-mixture index Mϵ(f) tests how often f can be projected near zero while it is active:

Mϵ(f) = max
v∈Rdf , c∈R

Pt∈T

(
|v · f(t) + c| < ϵ

√
E[(v · f(t) + c)2]

)
(3)

Larger values of Mϵ(f) mean that f is more of a mixture.

In Appendix B, we expand on the intuition behind why the separability and ϵ-mixture indices as
defined here correspond to weakened versions of Definition 2.

We develop optimization procedures to empirically solve for the separability and ϵ-mixture indices
of two dimensional feature distributions. At a high level, the separability procedure iterates over
a sweep of rotations and estimates the mutual information between the axes for each angle, while
the ϵ-mixture index procedure performs gradient descent to find the ϵ band that contains the largest
possible fraction of the feature distribution. For more details on the implementation of the tests,
see Appendix B.2. In Section 4, we apply these empirical tests to real language model feature
distributions to find irreducible multi-dimensional features; we show the detailed test results on the
“days of the week” cluster in Fig. 2

3.2 SUPERPOSITION

In this section, we propose an updated superposition hypothesis (Elhage et al., 2022) that takes into
account multi-dimensional features. First, we restate the original superposition hypothesis:

2since any multidimensional Gaussian can be rotated to have a diagonal covariance matrix

4
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Figure 2: Empirical ϵ-mixture index and separability index for the “days of the week” cluster along
PCA components 2 and 3. Left: The ϵ band parameterized by v and c that the optimization procedure
found contained the highest fraction of points. Mid: Dot products of points in the feature distribution
with the ϵ band; Mϵ(f) is the percent of dot products within ϵ = 0.1 of 0. Right: Estimated mutual
information for different rotations of the space; S(f) is the minimum over all rotations. This point
cloud has a lower ϵ-mixture index and higher separability index than PCA projections within typical
clusters (see Fig. 3), indicating that it is more likely to be an irreducible multi-dimensional feature.

Definition 4 (δ-orthogonal matrices). Two matrices A1 ∈ Rd×d1 and A2 ∈ Rd×d2 are δ-orthogonal
if |x1 · x2| ≤ δ for all unit vectors x1 ∈ colspace(A1) and x2 ∈ colspace(A2).

Hypothesis 1 (One-Dimensional Superposition Hypothesis, paraphrased from (Elhage et al., 2022)).
Hidden states xi,l are the sum of many (≫ d) sparse one-dimensional features fi and pairwise
δ-orthogonal vectors vi such that xi,l(t) =

∑
i vifi(t). We set fi(t) to zero when t is outside the

domain of fi.

In contrast, our new superposition hypothesis posits independence between irreducible multi-
dimensional features instead of unknown levels of independence between one-dimensional features:

Hypothesis 2 (Multi-Dimensional Superposition Hypothesis, changes underlined). Hidden states xi,l

are the sum of many (≫ d) sparse low-dimensional irreducible features fi and pairwise δ-orthogonal
matrices Vi ∈ Rd×dfi such that xi,l(t) =

∑
i Vifi(t). We set fi(t) to zero when t is outside the

domain of fi. Any subset of features must be mutually independent on their shared domain.

Note that since multi-dimensional features can be written as the sums of projections of lower-
dimensional features, our new superposition hypothesis is a stricter version of Hypothesis 1. In the
next section, we will explore empirical evidence for our hypothesis, while in Appendix A, we prove
upper and lower bounds on the number of δ-almost orthogonal matrices Vi that can be packed into d
dimensional space.

4 SPARSE AUTOENCODERS FIND MULTI-DIMENSIONAL FEATURES

In this section, we describe a method to identify multi-dimensional features in language model hidden
states using sparse autoencoders (SAEs). Sparse autoencoders (SAEs) deconstruct model hidden
states into sparse vector sums from an over-complete basis (Bricken et al., 2023; Cunningham et al.,
2023). For hidden states Xi,l, a one-layer SAE of size m with sparsity penalty λ minimizes the
following dictionary learning loss (Bricken et al., 2023; Cunningham et al., 2023):

DL(Xi,l) = argmin
E∈Rm×d,D∈Rd×m

∑
xi,l∈Xi,l

[
∥xi,l −D · ReLU(E · xi,l)∥22 + λ∥ReLU(E · xi,l)∥0

]
(4)

In practice, the L0 loss on the last term is relaxed to Lp for 0 < p ≤ 1 to make the loss differentiable.
We call the m columns of D (vectors in Rd) dictionary elements.

5
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We now argue that SAEs can discover irreducible multi-dimensional features by clustering D. We
will consider a simple form of clustering: build a complete graph on D with edge weights equal to
the cosine similarity between dictionary elements, prune all edges below a threshold T , and then set
the clusters equal to the connected components of the graph. If we now consider the spaces spanned
by each cluster, they will be approximately T -orthogonal by construction, since their basis vectors
are all T -orthogonal. Now, consider some irreducible two-dimensional feature f ; we claim that if the
SAE is large enough and f is active enough such that the SAE can reconstruct f when f is active, one
of the clusters is likely to be exactly equal to f . If D includes just two dictionary elements spanning
f , then these elements both must have nonzero activations post-ReLU to reconstruct f (otherwise
f is a mixture). Because of the sparsity penalty in Eq. (4), this two-vector solution to reconstruct
f is disincentivized, so instead the dictionary is likely to learn many elements that span f . These
dictionary elements will then have a high cosine similarity, and so the edges between them will not
be pruned away during the clustering process; hence, they will be in a cluster.

Thus, we have a way to operationalize Hypothesis 2: clustering D finds T -orthogonal subspaces,
and if irreducible multi-dimensional features exist, they are likely to be equal to some of these
subspaces. This suggests a natural approach to using sparse autoencoders to search for irreducible
multi-dimensional features:

1. Cluster dictionary elements by their pairwise cosine similarity. We use both the simple similarity-
based pruning technique described above, as well as spectral clustering; see Appendix F for details,
including comments on scalability.

2. For each cluster, run the SAEs on all xi,l ∈ Xi,l and ablate all dictionary elements not in the
cluster. This will give the reconstruction of each xi,l restricted to the cluster found in step 1 (if no
cluster dictionary elements are non-zero for a given point, we ignore the point).

3. Examine the resulting reconstructed activation vectors for irreducible multi-dimensional features.
This step can be done manually by visually inspecting the PCA projections for known irreducible
multi-dimensional structures (e.g. circles, see Fig. 10) or automatically by passing the PCA projec-
tions to the tests for Definition 3.
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Figure 3: Mixture index and separability
index of GPT-2 features. Features from
Fig. 1, which we had manually identi-
fied, score highly as candidate multidi-
mensional features with these metrics.

Pseudocode for this method is in the appendix in Alg. 1.
This method succeeds on toy datasets of synthetic irre-
ducible multi-dimensional features; see Appendix D.3 We
apply this method to language models using GPT-2 (Rad-
ford et al., 2019) SAEs trained by Bloom (2024) for every
layer and Mistral 7B (Jiang et al., 2023) SAEs that we train
on layers 8, 16, and 24 (training details in Appendix E).

Strikingly, we reconstruct irreducible multi-dimensional
features that are interpretable circles: in GPT-2, days,
months, and years are arranged circularly in order (see
Fig. 1); in Mistral 7B, days and months are arranged circu-
larly in order (see Fig. 15). These plots contain the PCA
dimensions that most clearly show circular structure; these
best dimensions are usually the second and third because
the first PCA dim is an “intensity” direction that manifests
as the radius of the circle in Fig. 1 (thus the overall struc-
ture for these multi-d features is perhaps best thought of as
a cone). See Fig. 14 for all PCA dimensions visualized).

For each cluster of GPT-2 SAE features, we take the re-
constructed activations and project them onto PCA components 1-2, 2-3, 3-4, and 4-5 (or fewer
if there are fewer features in the cluster) and measure the separability index and ϵ-mixture index
of each 2D point cloud as described in Appendix B.2. The mean scores across these planes are a
computationally tractable approximation of Definition 3. We plot these mean scores in Fig. 3, and find
that the features which we had manually identified in Fig. 1 are among the top scoring features along
both measures of irreducibility. Thus, our theoretical tests can indeed be used to find interpretable
irreducible features. We show the top 20 feature clusters, measured by the product of (1− ϵ-mixture

3Experiment code: ttps://anonymous.4open.science/r/MultiDimensionalFeatures-D6D4
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Table 1: Aggregate model accuracy on days
of the week and months of the year modular
arithmetic tasks. Performance broken down
by problem instance in Appendix I.

Model Weekdays Months

Llama 3 8B 29 / 49 143 / 144

Mistral 7B 31 / 49 125 / 144

GPT-2 8 / 49 10 / 144

Mon Tue
Wed

Thu
FriSat

Sun

Jan Feb Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

Figure 4: Top two PCA components on the α to-
ken. Colors show α. Left: Layer 30 of Mistral on
Weekdays. Right: Layer 5 of Llama on Months.

index ) and seperability index, in Appendix G. The Fig. 1 clusters rank 9, 15, and 28 by this metric
out of all 1000 clusters.

5 CIRCULAR REPRESENTATIONS IN LARGE LANGUAGE MODELS

In this section, we examine tasks in which models use the multi-dimensional features we discovered
in Section 4, thereby providing evidence that these representations are indeed the fundamental unit of
computation for some problems. Inspired by prior work studying circular representations in modular
arithmetic (Liu et al., 2022), we define two prompts that represent “natural” modular arithmetic tasks:

Weekdays task: “Let’s do some day of the week math. Two days from Monday is”
Months task: “Let’s do some calendar math. Four months from January is”

For Weekdays, we range over the 7 days of the week and durations between 1 and 7 days to get
49 prompts. For Months, we range over the 12 months of the year and durations between 1 and
12 months to get 144 prompts. Mistral 7B and Llama 3 8B (AI@Meta, 2024) achieve reasonable
performance on the Weekdays task and excellent performance on the Months task (measured
by comparing the highest logit valid token against the ground truth answer), as summarized in
Table 1. Interestingly, although these problems are equivalent to modular arithmetic problems
α + β ≡ ? (mod m) for m = 7, 12, both models get trivial accuracy on plain modular addition
prompts, e.g. “5 + 3 (mod 7) ≡”. Finally, although GPT-2 has circular representations, it gets trivial
accuracy on Weekdays and Months.

To simplify discussion, let α be the day of the week or month of the year token (e.g. “Monday” or
“April”), β be the duration token (e.g. “four” or “eleven”), and γ be the target ground truth token the
model should predict, such that (abusing notation) we have α+ β = γ. Let the prompts of the task
be parameterized by j, such that the jth prompt asks about αj , βj , and γj .

We confirm that Llama 3 8B and Mistral 7B have circular representations of α on this task by
examining the PCA projections of hidden states across prompts at various layers on the α token. We
plot two of these in Fig. 4 and show all layers in Fig. 18. These plots show circular representations as
the highest varying two components in the model’s representation of α at many layers.

5.1 INTERVENING ON CIRCULAR DAY AND MONTH REPRESENTATIONS

We now experiment with intervening on these circular representations. We base our experiments
on the common interpretability technique of activation patching, which replaces activations from
a “dirty” run of the model with the corresponding activations from a “clean” run (Zhang & Nanda,
2023). Activation patching empirically tests whether a specific model component, position, and/or
representation has a causal influence on the model’s output. We employ a custom subspace patching
method to allow testing for whether a specific circular subspace of a hidden state is sufficient to
causally explain model output. Specifically, our patching technique relies on the following steps
(visualized in Fig. 5):

1. Find a subspace with a circle to intervene on: Using a PCA reduced activation subspace
to avoid overfitting, we train a “circular probe” to identify representations which exhibit strong

7
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Figure 5: Visual representation of the
circular intervention process. Top: We
learn a circular probe on the PCA projec-
tion of a training set. Bot: To intervene,
we change the circular representation to
α′
j and average ablate other dimensions.
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Figure 6: Mean and 96% error bars for intervening on the
α token across layers using different intervention methods.
The circular intervention technique outperforms patching
only the top 5 PCA components and leaving the rest un-
changed, and almost reaches the upper bound performance
of patching the entire layer.

circular patterns. More formally, let xj
i,l be the hidden state at layer l token position i for prompt

j. Let Wi,l ∈ Rk×d be the matrix consisting of the top k principal component directions of
xj
i,l. In our experiments, we set k = 5. We learn a linear probe P ∈ R2,k from Wi,l · Xi,l to a

unit circle in α. In other words, if circle(α) = [cos(2πα/7), sin(2πα/7)] for Weekdays and
circle(α) = [cos(2πα/12), sin(2πα/12)] for Months, P is defined as follows:

P = argmin
P′∈R2,k

∑
xj
i,l

∥∥∥P′ ·Wi,l · xj
i,l − circle(α)

∥∥∥2
2

(5)

2. Intervene on the subspace: Say our initial prompt had α = αj and we are intervening with
α = αj′ . In this step, we replace the model’s projection on the subspace P ·Wi,l, which will be
close to circle(αj), with the “clean” point circle(αj′). Note that we do not use the hidden
state xj′

i,l from the “clean” run, only the “clean” label αj′ . In practice, other subspaces of xj
i,l are

used by the model in alternate pathways to compute the answer, so if we just intervene on the circular
subspace the logit difference effect is not as pronounced. To solve this problem, we average out the
portion of the activation not in the intervened subspace. Letting xi,l be the average of xj

i,l across all
prompts indexed by j and P+ be the pseudoinverse of P, we intervene via the formula

xj∗

i,l = xi,l +Wi,l
TP+(circle(αj′)− xi,l) (6)

We run our patching on all 49 Weekday problems and 144 Month problems and use as “clean”
runs the 6 or 11 other possible values for β, resulting in a total of 49 ∗ 6 patching experiments for
Weekdays and 144 ∗ 11 patching experiments for Months. We also run baselines where we (1)
replace the entire subspace corresponding to the first 5 PCA dimensions with the corresponding
subspace from the clean run, (2) replace the entire layer with the corresponding layer from the clean
run, and (3) replace the entire layer with the average across the task. The metric we use is average
logit difference across all patching experiments between the original correct token (αj) and the
target token (αj′). See Fig. 6 for these interventions on all layers of Mistral 7B and Llama 3 8B on
Weekdays and Months.

The main takeaway from Fig. 6 is that circular subspaces are causally implicated in computing γ,
especially for Weekdays. Across all models and tasks, early layer interventions on the circular
subspace have almost the same intervention effect as patching the entire layer, and are usually better
than patching the top PCA dimensions from the clean problem. Patching experiments in Appendix J
show α is copied to the final token on layers 15 to 17, which is why interventions drop off there.
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Figure 7: Off distribution interventions
on Mistral layer 5 on the Weekdays
task. The color corresponds to the high-
est logit γ after performing the circular
subspace intervention on that point.

To investigate exactly how models use the circular sub-
space, we perform off distribution interventions. We mod-
ify Eq. (6) so that instead of intervening on the circumfer-
ence circle(α), we sweep over a grid of positions (r, θ)
within the circle:

xj∗

i,l = xi,l +Wi,l
TP+[r cos(θ), r sin(θ)]T − xi,l) (7)

We intervene with r ∈ [0, 0.1, . . . , 2], θ ∈
[0, 2π/100, . . . , 198π/100] and record the highest
logit γ after the forward pass. Fig. 7 displays these
results on Mistral layer 5 for β ∈ [2, 3, 45]. They imply
that Mistral treats the circle as a multi-dimensional
representation with α encoded in the angle.

5.2 UNCOVERING
OUTPUT REPRESENTATIONS USING REGRESSION

So far, we have focused on examining and intervening on
the representation for α, which we present as a circle in the
top PCA components on top of the α token. In this section,
we examine how the generated output, γ, is represented.

First, to isolate the rough circuit for Weekdays and Months, we perform layer-wise activation
patching on 40 random pairs of prompts. The results, displayed in Appendix K, show that the circuit
to compute γ consists of MLPs on top of the α and β tokens, a copy to the token before γ, and
further MLPs there (roughly similar to what Stolfo et al. (2023) find in prior work studying arithmetic
circuits). Thus, we know where to look for a representation of γ: in the second half of the layers on
the token before γ. However, patching alone cannot tell use how γ is represented.

4 2 0 2 4

3

2

1
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1

2

3

Mon

Tue Wed

Thu

Fri

SatSun

Figure 8: Top two PCA com-
ponents of residual errors after
EVR with one-hot in α and β.
Mistral 7B Weekdays, layer
25, final token. Colored by γ.

Unlike α, γ has no obvious circular (or linear) pattern in the top
PCA components on these layers. To determine the representation
for γ, we introduce a more powerful technique we call Explanation
via Regression (EVR): given a set of token sequences with a corre-
sponding set of hidden states Xi,l, we choose a set of interpretable
explanation functions of the input tokens {gj(t)}. The r2 value of
a linear regression from {gj(t)} to Xi,l tells us how much of the
variance in the activations the {gj(t)} explain, and conversely the
residuals show the exact components of the representation we have
yet to explain.

More details and experiments using EVR to completely break down
language model states are in Appendix K. Here, we use EVR to
determine the representation for γ by plotting the top two PCA
components of the layer 25 Mistral 7B activations after subtracting
the components that can be explained using a regression with one
hot functions in α and β (i.e. g1 = [α = 0],g2 = [β = 1],g3 = [α = 1], . . .). The result, shown in
Fig. 8, is an incredibly clear circle in γ, which suggests that the model’s generated representation
of γ lies along a circle. A simple PCA projection was not enough to find this result because the
representation for γ has interference from α and β, which the EVR removes. This suggests that the
models may be generating γ by using a trigonometry based algorithm like the “clock” Nanda et al.
(2023a) or “pizza” Zhong et al. (2024) algorithm in late MLP layers.

5.3 CONTINUITY OF CIRCULAR REPRESENTATIONS

In past sections, the representations of the interpretable numeric quantities we have discovered
have been mostly discontinuous; that is, the days of the week and months of the year in Fig. 1 and
Fig. 15 are clustered at the vertices of a heptagon and dodecagon, and there is nothing "between"
adjacent weekdays or months along the circle. In this section, we will examine the "continuity"
of the circular features we have discovered. Although continuity of the representation is not a
requirement of Definition 3, it would further decrease the ϵ-mixture index, and would also increase
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our subjective perception of the circular feature as an intrinsic model feature representing a continuous
quantity (time). Thus, we create a synthetic dataset containing the text "[very early/very late] on
[Monday/Tuesday/.../Sunday]" and simply plot the projections of the layer 30 activations into the
top two PCA components of the activations of [Monday/Tuesday/.../Sunday]. The results, shown
in Fig. 9, show that Mistral 7B indeed can map intermediate quantities to their expected place in
the circle: the very early and very late version of each weekday are more towards the last and the
next weekday along the circle, respectively. We show similar results for "[morning/evening] on
[Monday/Tuesday/.../Sunday]" in Appendix Fig. 21.

6 DISCUSSION

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Morning MonEvening MonMorning Tue
Evening Tue

Morning Wed

Evening Wed

Morning Thu
Evening Thu

Morning Fri
Evening Fri

Morning Sat
Evening Sat

Morning Sun
Evening Sun

Figure 9: Layer 30 Mistral 7B activa-
tions for [morning/evening] on [Mon-
day/Tuesday/.../Sunday], plotted pro-
jected into the PCA plane for [Mon-
day/Tuesday/.../Sunday].

Our work proposes a significant refinement to the simple
one-dimensional linear representation hypothesis. While
previous work has convincingly shown the existence of
one-dimensional features, we find evidence for irreducible
multi-dimensional representations, requiring us to gener-
alize the notion of a feature to higher dimensions. For-
tunately, we find that existing unsupervised feature ex-
traction methodologies like sparse autoencoders can read-
ily be applied to discover multi-dimensional representa-
tions. However, we think our work raises interesting ques-
tions about whether individual SAE features are appropri-
ate “mediators” (Mueller et al., 2024) for understanding
model computation, if some features are in fact multi-
dimensional. Although taking a multi-dimensional repre-
sentation perspective may be more complicated, we be-
lieve that uncovering the true (perhaps multi-dimensional)
nature of model representations is necessary for discover-
ing the underlying algorithms that use these representations. Ultimately, our field aims to turn complex
circuits in future more-capable models into formally verifiable programs (Tegmark & Omohundro,
2023; Dalrymple et al., 2024), which requires the ground truth “variables” of language models; we
believe this work takes an important step towards discovering these variables.

Limitations: It is unclear why we did not find more interpretable multi-dimensional features. We
are unsure if we are failing to interpret some of the high-scoring multi-dimensional features, if
most multi-dimensional features lie in dimensions higher than two, if our clustering technique is
not powerful enough to find some features, or if there are truly not that many. Additionally, our
definitions for irreducible features (Definition 2) are purely statistical and not intervention based,
and also had to be relaxed to hold in practice, resulting in measures that return a possibly subjective
“degree” of reducibility (Definition 3). Thus, although this work provides preliminary evidence for the
multi-dimensional superposition hypothesis (Hypothesis 2), it is still unclear if this theory provides
the best description for the representations models use.
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A MULTI-DIMENSIONAL FEATURE CAPACITY

The Johnson-Lindenstrauss (JL) Lemma (Johnson & Lindenstrauss, 1984) implies that we can choose
eCdδ2 pairwise one-dimensional δ-orthogonal vectors to satisfy Hypothesis 1 for some constant C,
thus allowing us to build the model’s feature space with a number of one-dimensional δ-orthogonal
features exponential in d. We now prove a similar result for low-dimensional projections (the main
idea of the proof is to combine δ-orthogonal vectors as guaranteed from the JL lemma):

Theorem 1. For any d′ and δ, it is possible to choose 1
dmax

eC1(d/d
′2)δ2 pairwise δ-orthogonal

matrices Ai ∈ Rni×d′
for some constant C1. Furthermore, it is not possible to choose more than

eC2(d−dmaxδ log( 1
δ )) for some constant C2.

We will first prove a lemma that will help us prove Theorem 1.
Lemma 1. Pick n pairwise δ-orthogonal unit vectors in v1, . . . ,vn ∈ Rd. Let y ∈ Rd be a unit norm
vector that is a linear combination of unit norm vectors v1, . . . ,vn with coefficients z1 . . . , zn ∈ R.
We can write A = [v1, . . . ,vn] and z = [z1, . . . , zn]

T , so that we have y =
∑n

k=1 zkvk = AzT

with ∥y∥2 = 1. Then, ∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ = ∥z∥1 ≤
√

n

1− δn

Proof. We will first bound the L2 norm of z. If σn is the minimum singular value of A, then we
have via standard singular value inequalities (Higham, 2021)

σn ≤
∥y∥2
∥z∥2

=⇒ ∥z∥2 ≤
∥y∥2
σn

=
1

σn

Thus we now lower bound σn. The singular values are the square roots of the eigenvalues of the
matrix ATA, so we now examine ATA. Since all elements of A are unit vectors, the diagonal
of ATA is all ones. The off diagonal elements are dot products of pairs of δ-orthogonal vectors,
and so are within the range [−δ, δ]. Then by the Gershgorin circle theorem (Gershgorin, 1931), all
eigenvalues λi of ATA are in the range

(1− δ(n− 1), 1 + δ(n− 1))

In particular, σ2
n = λn ≥ 1 − δ(n − 1), and thus σn ≥

√
1− δ(n− 1). Plugging into our upper

bound for ∥z∥2, we have that ∥z∥2 ≤ 1/
√
1− δ(n− 1). Finally, the largest L1 for a point on an

n-hypersphere of radius r is when all dimensions are equal and such a point has magnitude
√
nr, so

∥z∥1 ≤
√

n

1− δ(n− 1)
≤
√

n

1− δn

Theorem 1. For any d′ and δ, it is possible to choose 1
dmax

eC1(d/d
′2)δ2 pairwise δ-orthogonal

matrices Ai ∈ Rni×d′
for some constant C1. Furthermore, it is not possible to choose more than

eC2(d−dmaxδ log( 1
δ )) for some constant C2.

Proof. By the JL lemma (Johnson & Lindenstrauss, 1984; , https://mathoverflow.net/users/2554/bill
johnson), for any d and δ, we can choose eCdδ2 δ-orthogonal unit vectors in Rd indexed as vi, for
some constant C. Let Ai = [vdmax∗i, . . . ,vdmax∗i+ni−1] where each element in the brackets is a
column. Then by construction all Ai are matrices composed of unique δ-orthogonal vectors and
there are 1

dmax
eCdδ2 matrices Ai.

Now, consider two of these matrices Ai = [v1, . . . ,vni ] and Aj = [u1, . . . ,unj ], i ̸= j; we will
prove that they are f(δ)-orthogonal for some function f . Let yi =

∑ni

k=1 zi,kvk be a vector in the
colspace of Ai and yj =

∑nj

k=1 zj,kuk be a vector in the colspace of Aj , such that yi and yj are
unit vectors. To prove f(δ)-orthogonality, we must bound the absolute dot product between yi and
yj :
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|yi · yj | =
∣∣∣∣∣
(

ni∑
k=1

zi,kvk

)
·
(

nj∑
k=1

zj,kuk

)∣∣∣∣∣
=

∣∣∣∣∣
ni∑

k1=1

nj∑
k2=1

(zi,k1
vk1

) · (zj,k2
uk2

)

∣∣∣∣∣
≤

ni∑
k1=1

nj∑
k2=1

|zi,k1
zj,k2
| |vk1

· uk2
| Triangle Inequality

≤
ni∑

k1=1

nj∑
k2=1

|zi,k1
zj,k2
| δ All vi,uj are δ orthogonal

= δ

ni∑
k1=1

nj∑
k2=1

|zi,k1
zj,k2
|

= δ

∣∣∣∣∣
ni∑
k=1

zi,k

∣∣∣∣∣
∣∣∣∣∣
nj∑
k=1

zj,k

∣∣∣∣∣ Factoring the product

≤ δ

√
ni

1− δni

√
nj

1− δnj
By Lemma 1

≤ δdmax

1− δdmax
ni, nj ≤ dmax by assumption

Thus Ai and Aj are f(δ)-orthogonal for f(δ) = δdmax/(1 − δdmax), and so it is possible to
choose 1

dmax
eCdδ2 pairwise f(δ)-orthogonal projection matrices. Remapping the variable δ with

δ 7→ f−1(δ) = δ/(dmax(1 + δ)), we find that it is possible to choose 1
dmax

eCdδ2/((1+δ)2d2
max)

pairwise δ-orthogonal projection matrices. Because 1 + δ is at most 2 with δ ∈ (0, 1), we can further
simplify the exponent and find that it is possible to choose 1

dmax
eC(d/d2

max)δ
2/4 pairwise δ-orthogonal

projection matrices. Absorbing the 4 into the constant C finishes the proof of the lower bound.

For the upper bound, we can proceed much more simply. Consider k pairwise δ-orthogonal matrices
Ai ∈ Rd′

. Since these matrices are full rank, their column spaces each parameterize a subspace
of dimension d′, and so by a result from (Alon, 2003) it is possible to choose eCd′δ2 log( 1

δ ) almost
orthogonal vectors in this subspace. Furthermore, by our definition of δ-orthogonal matrices, all pairs
of these vectors between subspaces will be δ-orthogonal. Finally, again by (Alon, 2003) we cannot
have more than eCdδ2 log( 1

δ ) δ-orthogonal vectors overall, so we have that

keCdmaxδ
2 log( 1

δ ) < eCdδ2 log( 1
δ )

and simplfying,

k < eC(d−dmax)δ
2 log( 1

δ )

These results imply that models can still represent an exponential number of higher dimensional
features. However, there is a large exponential gap between the lower and upper bound we have shown.
If the lower bound is reasonably tight, then this would mean that models would be highly incentivized
to fit features within the smallest dimensional space possible, suggesting a reason for recent work
showing interesting compressed encodings of multi-dimensional features in toy problems (Morwani
et al., 2023).

Note that the proof assumes the “worst case” scenario that all of the features are dimension dmax,
while in practice many of the features may be 1 or low dimensional, so the effect on the capacity of a
real model that represents multi-dimensional features is unlikely to be this extreme.
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Finally, we note that the dictionary learning literature may have discovered similar results in the past
(which we were unaware of), see Foucart & Rauhut (2013).

B MORE ON REDUCIBILITY

B.1 ADDITIONAL INTUITION FOR DEFINITIONS

Here, we present some extra intuition and high level ideas for understanding our definitions and
the motivation behind them. Roughly, we intend for our definitions in the main text to identify
representations in the model that describe an object or concept in a way that fundamentally takes
multiple dimensions. We operationalize this as finding a subspace of representations that 1. has
basis vectors that “always co-occur” no matter the orientation 2. is not made up of combinations of
independent lower-dimensional features.

1. The first condition is met by the mixture part of our definition. The feature in question should
be part of an irreducible manifold, and so should “fill” a plane or hyperplane. There shouldn’t be
any part of the plane where the probability distribution of the feature is concentrated, because this
region is then likely part of a lower dimensional feature. The idea of this part of the definition is
to capture multi-dimensional objects; if the entire multi-dimensional space is truly being used to
represent a high-dimensional object, then the representations for the object should be “spread out”
entirely through the space.

2. The second condition is met by the separability part of our definition. This part of the definition is
intended to rule out features that co-occur frequently but are fundamentally not describing the same
object or concept. For example, latitude and longitude are not a mixture in that they frequently co-
occur, but we do not think it is necessarily correct to say they are part of the same multi-dimensional
feature because they are independent.

B.2 EMPIRICAL IRREDUCIBLE FEATURE TEST DETAILS

Our tests for reducibility require the computation of two quantities S(f) for the separability index
and Mϵ(f) for the ϵ-mixture index. We describe how we compute each index in the following two
subsections.

B.2.1 SEPARABILITY INDEX

We define the separability index in Equation 2 as

S(f) =min I(a;b)

where the min is over rotations R used to split f ′ = Rf + c into a and b. In two dimensions, the
rotation is defined by a single angle, so we can iterate over a grid of 1000 angles and estimate the
mutual information between a and b for each angle. We first normalize f by subtracting off the mean
and then dividing by the root mean squared norm of f (and multiplying by

√
2 since the toy datasets

are in two dimensions). To estimate the mutual information, we first clip the data f to a 6 by 6 square
centered on the origin. We then bin the points into a 40 by 40 grid, to produce a discrete distribution
p(a, b). After computing the marginals p(a) and p(b) by summing the distribution over each axis, we
obtain the mutual information via the formula

I(a;b) =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
(8)

B.2.2 ϵ-MIXTURE INDEX

We define the ϵ-mixture index in Equation 3 as

Mϵ(f) = max
v∈Rdf , c∈R

P
(
|v · f + c| < ϵ

√
E[(v · f + c)2]

)
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Figure 10: Testing irreducibility of synthetic features. Left in each subfigure: Distributions of x.
For feature a, 63.96% lies within the narrow dotted lines, indicating the feature is likely a mixture.
For feature b, 17.84% lies within the wide lines, indicating the feature is unlikely to be a mixture.
The green cross indicates the angle θ that minimizes mutual information. Middle in each subfigure:
Histograms of the distribution of v · x with red lines indicating a 2ϵ-wide region. Right in each
subfigure: Mutual information between a and b as a function of the rotation angle θ of matrix R.
Feature b has a large minimum mutual information so is unlikely to be separable; feature a has a
medium value of minimum mutual information of about 0.37 bits.

The challenge with computing Mϵ(f) is to compute the maximum. We opted to maximize via gradient
descent; and we guaranteed differentiability by softening the inequality < with a sigmoid,

Mϵ,T (f ,v, c) =E

(
σ

(
1

T

(
ϵ− |v · f + c|√

E[(v · f + c)2]

)))
(9)

where T is a temperature, which we linearly decay from 1 to 0 throughout training. We optimize
for v and c using this loss Mϵ,T (f ,v, c) using full batch gradient descent over 10000 steps with
learning rate 0.1. With the solution (v∗, c∗), the final value of Mϵ,T=0(f ,v

∗, c∗) is then our estimate
of Mϵ(f).

We also run the irreducibility tests on additional synthetic feature distributions in Fig. 11a and
Fig. 11b.

C ALTERNATIVE DEFINITIONS

In this section, we present an alternative definition of a reducible feature that we considered during our
work. This chiefly deals with multi-dimensional features from the angle of computational reducibility
as opposed to statistical reducibility. In other words, this definition considers whether representations
of features on a specific set of tasks can be split up without changing the accuracy of the task. This
captures an interesting (and important) aspect of feature reducibility, but because it requires a specific
set of prompts (as opposed to allowing unsupervised discovery) we chose not to use it as our main
definition.

Our alternative definitions consider representation spaces that are possibly multi-dimensional, and
defines these spaces through whether they can completely explain a function h on the output logits.
We consider a group theoretic approach to irreducible representations, via whether computation
involving multiple group elements can be decomposed.
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(b) Testing S(d) and Mϵ(d) on an irreducible feature d

Figure 11: Testing irreducibility of synthetic features. Left in each subfigure: Distributions of x.
For feature c, 7.94% lies within the narrow dotted lines, indicating the feature is unlikely to be a
mixture. For feature d, 25.90% lies within the wide lines, indicating the feature is likely a mixture.
The green cross indicates the angle θ that minimizes mutual information. Middle in each subfigure:
Histograms of the distribution of v · x with red lines indicating a 2ϵ-wide region. Right in each
subfigure: Mutual information between a and b as a function of the rotation angle θ of matrix R.
Both features have a small (< 0.5 bits) minimum mutual information and so are likely separable.

C.1 ALTERNATIVE DEFINITION: INTERVENTIONS AND REPRESENTATION SPACES

Assume that we restrict the input set of prompts T = {tj} to some subset of prompts and that we
have some evaluation function h that maps from the output logit distribution of M to a real number.
For example, for the Weekdays problems, T is the set of 49 prompts and h could be the argmax
over the days of week logits. Abusing notation, we let M also be the function from the layer we are
intervening on; this is always clear from context. Then we can define a representation space of xj

i,l as
a subspace in which interventions always work:
Definition 5 (Representation Space). Given a prompt set T = {tj}, a rank-r dimensional repre-
sentation space of intermediate value xj

i,l is a rank r projection matrix P such that for all j, j′,

h(M((I − P )xj
i,l + Pxj′

i,l)) = h(M(xj′

i,l)).

Note that it immediately follows that the rank d dimensional matrix Id is trivially a rank d representa-
tion space for all prompt sets T .
Definition 6 (Minimality). A representation space P of rank r is minimal if there does not exist a
lower rank representation space.

A minimal representation with rank > 1 is a multi-dimensional representation.
Definition 7 (Alternative Reducibility). A representation space P of rank r is reducible if there are
orthonormal representation spaces P1 and P2 (such that P1 + P2 = P , P1P2 = 0) where

h(M(P1x
j
i,l) +M(P2x

j
i,l)) = h(M(P1x

j
i,l + P2x

j
i,l))

for all j, j′.

Suppose T , h and M define the multiplication of two elements in a finite group G of order n. Then if
we interpret the embedding vectors as the group representations, our definition of reducibility implies
to the standard group-theoretical definition of irreducibility –– specifically, reducibility into a tensor
product representation.
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D TOY CASE OF TRAINING SAES ON CIRCLES

To explore how SAEs behave when reconstructing irreducible features of dimension df > 1, we
perform experiments with the following toy setup. Inspired by the circular representations of integers
that networks learn when trained on modular addition (Nanda et al., 2023a; Liu et al., 2022), we
create synthetic datasets of activations containing multiple features which are each 2d irreducible
circles.

First however, consider activations for a single circle – points uniformly distributed on the unit circle
in R2. We train SAEs on this data with encoder Enc(x) = ReLU(We(x− bd) + be) and decoder
Dec(f) = Wdf + bd. We train SAEs with m = 2 and m = 10 with the Adam optimizer and
a learning rate of 10−3, sparsity penalty λ = 0.1, for 20,000 steps, and a warmup of 1000 steps.
In Fig. 12 we show the dictionary elements of these SAEs. When m = 2, the network must use both
SAE features on each input point, and uses db to shift the reconstructed circle so it is centered at the
origin. When m = 10, db ≈ 0 and the features spread out across the circle having close neighbors,
with only a subset being active on any one input.

2 1 0 1 2
2

1

0

1

2
sparsity loss: 1.93
SAE hidden activations
db

Reconstruction
Dictionary element

1 0 1

1

0

1

sparsity loss: 1.27, seed=2

db

Reconstruction
Dictionary element

1 0 1

1

0

1

sparsity loss: 1.28, seed=4

db

Reconstruction
Dictionary element

Figure 12: SAEs trained to reconstruct a single 2d circle with m = 2 (left) and m = 10 (middle and
right) dictionary elements. When there are several SAE features, there is not a natural choice feature
directions, and the dictionary elements spread out across the circle.

We now consider synthetic activations with multiple circular features. Our data consists of points in
R10, where we choose two orthogonal planes spanned by (e1, e2) and (e3, e4), respectively. With
probability one half a points is sampled uniformly on the unit circle in the e1-e2 plane, otherwise the
point will be sampled uniformly on the unit circle in the e3-e4 plane. We train SAEs with m = 64
on this data with the same hyperparameters as the single-circle case.

We now apply the procedure described in Section 4 to see if we can automatically rediscover these
circles. Encouragingly, we first find that the alive SAE features align almost exactly with either
the e1-e2 or the e3-e4 plane. When we apply spectral clustering with n_clusters = 2 to the
features with the pairwise angular similarities between dictionary elements as the similarity matrix
(Fig. 13, left), the two clusters correspond exactly to the features which span each plane. As described
in Section 4, given a cluster of dictionary elements S ⊂ {1, . . . ,m}, we run a large set of activations
through the SAE, then filter out samples which don’t activate any element in S. For samples which
do activate an element of S, reconstruct the activation while setting all SAE features not in S to have
a hidden activation of zero. If some collection of SAE features together represent some irreducible
feature, we want to remove all other features from the activation vector, and so we only allow SAE
features in the collection to participate in reconstructing the input activation. We find that this
procedure almost exactly recovers the original two circles, which encouraged us to apply this method
for discovering the features shown in Fig. 1 and Fig. 15.

E TRAINING MISTRAL SAES

Our Mistral 7B (Jiang et al., 2023) sparse autoencoders (SAEs) are trained on over one billion tokens
from a subset of the Pile (Gao et al., 2020) and Alpaca (Peng et al., 2023) datasets. We train our SAEs
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Figure 13: Automatic discovery of synthetic circular features by clustering SAE dictionary elements.

on layers 8, 16, and 24 out of 32 total layers to maximize coverage of the model’s representations.
We use a 16× expansion factor, yielding a total of 65536 dictionary elements for each SAE.

To train our SAEs, we use an Lp sparsity penalty for p = 1/2 with sparsity coefficient λ = 0.012.
Before an SAE forward pass, we normalize our activation vectors to have norm

√
dmodel = 64 in

the case of Mistral. We do not apply a pre-encoder bias. We use an AdamW optimizer with weight
decay 10−3 and learning rate 0.0002 with a linear warm up. We apply dead feature resampling
(Bricken et al., 2023) five times over the course of training to converge on SAEs with around 1000
dead features.

F GPT-2 AND MISTRAL 7B DICTIONARY ELEMENT CLUSTERING

In this section, we first present pseudocode in Alg. 1 for the overall high level technique that finds
multi-dimensional features and that uses clustering as a subroutine. We then provide the specific
clustering algorithm implementations we use for GPT-2 and Mistral.

Algorithm 1: High Level Clustering Approach For Finding Multi-D Features
Input: Dictionary elements D, activation vectors Xi,l, SAE
Output: Irreducible multi-dimensional features
Si,j ← CosineSim(Di, Dj);
clusters← Cluster(S);
reconstructions← {};
for cluster in clusters do

Rcluster ← ids of dictionary elements in cluster;
for xi,l in Xi,l do

encoding ← ReLU(E · xi,l);
if max(encoding[Rcluster]) > 0 then

r ← D[:, Rcluster] · encoding;
reconstructions← reconstructions ∪ {r};

end
end

end
features← {};
for R in reconstructions do

proj ← PCA(R);
if TestIrreducible(proj) then

Add proj to features;
end

end
return features
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F.1 GPT-2-SMALL METHODS AND RESULTS

For GPT-2-small, we perform spectral clustering on the roughly 25k layer 7 SAE features
from (Bloom, 2024), using pairwise angular similarities between dictionary elements as the similarity
matrix. We use n_clusters = 1000 and manually looked at roughly 500 of these clusters. For
each cluster, we looked at projections onto principal components 1-4 of the reconstructed activations
for these clusters. In Fig. 14, we show projections for the most interesting clusters we identified,
which appear to be circular representations of days of the week, months of the year, and years of the
20th century.

Figure 14: Projections of days of week, months of year, and years of the 20th century representations
onto top four principal components, showing additional dimensions of the representations than Fig. 1.

F.2 MISTRAL 7B METHODS AND RESULTS

For Mistral 7B, our SAEs have 65536 dictionary elements and we found it difficult to run spectral
clustering on all of these at once. We therefore develop a simple graph based clustering algorithm
that we run on Mistral 7B SAEs:

1. Create a graph G out of the dictionary elements by adding directed edges from each
dictionary element to its k closest dictionary elements by cosine similarity. We use k = 2.
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2. Make the graph undirected by turning every directed edge into an undirected edge.

3. Prune edges with cosine similarity less than a threshold value τ . We use τ = 0.5.

4. Return the connected components as clusters.

We run this algorithm on the Mistral 7B layer 8 SAE (216 dictionary elements) and find roughly
2700 clusters containing between 2 and 1000 elements. We manually inspected roughly 2000 of
these. From these, we re-discover circular representations of days of the week and months of the
year, shown in Fig. 15. However, we did not find other obviously interesting and clearly irreducible
features.

We also investigate the sensitivity of this method to τ and k by varying τ and k and showing the max
Jaccard similarity between any of the resulting clusters and the days of the week cluster we show
in Fig. 15. We show the results in Fig. 16, where we find that varying k has minimal effect, while
varying τ shows 3 regimes: small τ causes all features to group in one cluster, so the days of the
week cluster is not found; medium τ causes the days of the week cluster to become identifiable; large
τ causes all features to be divided into their own clusters.

Figure 15: Circular representations of days of the week and months of the year which we discover
with our unsupervised SAE clustering method in Mistral 7B. Unlike similar features in GPT-2, we
also find an additional “weekend” representation in between Saturday and Sunday representations
(left) and additional representations of seasons among the months (right). For instance, “winter”
tokens activate a region of the circle in between the representation of January and December.
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Figure 16: Hyperparameter regimes where the days of the week cluster exists. The cluster exists in
the regime between all features clumping together and all features being in their own cluster; this
regime seems reasonably stable.
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As future work, we think it would be exciting to develop better clustering techniques for SAE
features. Our graph based clustering technique could likely be improved by more recent efficient
and high-quality graph based clustering techniques, e.g. hierarchical agglomerate clustering with
single-linkage (Lattanzi et al., 2020). Additionally, we believe we would see a large improvement by
setting edge weights to be a combination of both the cosine and Jaccard similarity of the dictionary
elements, e.g. max(cosine, Jaccard).

G OTHER DISCOVERED CLUSTERS

In Fig. 17, we plot the top 11 ranked clusters by the product of a) the measured separability index
and b) one minus the measured ϵ-mixture index with ϵ = 0.1 (this is just one of many possible ways
to get an ordered ranking from a two-parameter score). We color by both the current token (which
results in clear patterns for all tokens) and the next token (to see if we find belief states as found by
Shai et al. (2024) in toy transformers). We note that weekdays are ranked 9 and so are shown in
the plot. Additionally, the next token patterns of the ‘such’ cluster and the ‘B’ cluster do seem to
display some clustering independently of the the current token pattern, which might lend the belief
state hypothesis some support.

H FURTHER EXPERIMENT DETAILS

H.1 ASSETS INFORMATION

We use the following open source models for our experiments: Llama 3 8B (AI@Meta, 2024) (custom
Llama 3 license https://llama.meta.com/llama3/license/), Mistral 7B (Jiang et al.,
2023) (released under the Apache 2 License), and GPT-2 (Radford et al., 2019) (modified MIT
license, see https://github.com/openai/gpt-2/blob/master/LICENSE).

H.2 MACHINE INFORMATION

Intervention experiments were run on two V100 GPUs using less than 64 GB of CPU RAM; all exper-
iments can be reproduced from our open source repository in less than a day with this configuration.
We use the TransformerLens library (Nanda & Bloom, 2022) for intervention experiments. ϵ-mixture
index measurements on toy datasets took about one minute each, on 8GB of CPU RAM. EVR
experiments take seconds on 8GB of CPU RAM and are dominated by time taken to human-interpret
the RGB plots.

GPT-2 SAE clustering and plotting was run on a cluster of heterogeneous hardware. Spectral
clustering and computing reconstructions + plotting was done on CPUs only. We made reconstruction
plots for 500 clusters, with each taking less than 10 minutes. Mistral 7B SAE reconstruction plots
were made on the same cluster. We made roughly 2000 reconstruction plots for Mistral 7B (and
manually inspected each), with each taking less than 20 minutes to generate. Jobs were allocated
64GB of memory each.

Mistral SAE training was run on a single V100 GPU. Initially caching activations from Mistral 7B on
one billion tokens took approximately 60 hours. Training the SAEs on the saved activations took
another 36 hours.

H.3 ERROR BAR CALCULATION

In Fig. 6 we report 96% error bars for all intervention methods. To compute these error bars, we
loop over all intervention methods and all layers and compute a confidence interval for each (method,
layer) pair across all prompts. Assuming normally distributed errors, we compute error bars with the
following standard formula:

EB = µ± z ∗ SE
where µ is the sample mean, z is the z score (slightly larger than 2 for 96% error bars), and SE is the
standard error (the standard deviation divided by the square root of the number of samples). We use
standard Python functions to compute this value.
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Figure 17: Top 10 GPT-2 clusters by Mixture and Separability Index.
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Figure 18: Projections onto the top two PCA dimensions of model hidden states on the α token show
that circular representations of α are present in various layers.

The reason that the Months error bars are smaller than the Weekdays error bars is because there
are more Months prompts: there are 12 ∗ 12 ∗ 11 = 1584 intervention effect values, rather than
7 ∗ 7 ∗ 6 = 294 intervention effect values.

I MORE WEEKDAYS AND MONTHS PLOTS AND DETAILS

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Early MonLate MonEarly Tue
Late Tue

Early Wed
Late Wed

Early ThuLate Thu

Early FriLate Fri

Early SatLate Sat

Early SunLate Sun

Figure 21: Layer 30 Mistral 7B ac-
tivations for [very early/very late] on
[Monday/Tuesday/.../Sunday], plotted
projected into the PCA plane for [Mon-
day/Tuesday/.../Sunday].

We show the results of Mistral 7B and Llama 3 8B on all
individual instances of Weekdays that at least one of the
models get wrong in Table 2 and present a similar table
for Months in Table 3.

We show projections onto the top two PCA directions
for both Mistral 7B and Llama 3 8B in Fig. 18 on the
hidden layers on top of the α token, colored by α. These
are similar plots to Fig. 4, except they are on all layers.
The circular structure in α is visible on many—but not
all—layers. Much of the linear structure visible is due to
β.

In Fig. 19 and Fig. 20, we report MLP and attention head
patching results for Weekdays and Months. We experi-
ment on 20 pairs of problems with the same α and different
β and 20 pairs of problems with the same β and different
α, for a total of 40 pairs of problems. For each pair of
problems, we patch the MLP/attention outputs from the
"clean" to the "dirty" problem for each layer and token,
and then complete the forward pass. Defining the logit difference as the logit of the clean γ minus the
logit of the dirty γ, we record what percent of the difference between the original logit difference
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Figure 19: Attention and MLP patching results on Weekdays. Results are averaged over 20 different
runs with fixed α and varying β and 20 different runs with fixed β and varying α.
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Figure 20: Attention and MLP patching results on Months. Results are averaged over 20 different
runs with fixed α and varying β and 20 different runs with fixed β and varying α.

of the dirty problem and the logit difference of the clean problem is recovered upon intervening,
and average across these 40 percentages for each layer and token. This gives us a score we call the
Average Intervention Effect.
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Table 2: Weekdays finegrained results. Row ommited if both models get it correct.

α β Ground truth γ Mistral top γ Mistral correct? Llama top γ Llama correct?

1 1 Wednesday Wednesday Yes Thursday No
3 1 Friday Friday Yes Tuesday No
4 1 Saturday Saturday Yes Thursday No
3 2 Saturday Saturday Yes Tuesday No
4 2 Sunday Sunday Yes Wednesday No
5 2 Monday Monday Yes Tuesday No
2 3 Saturday Friday No Saturday Yes
3 3 Sunday Sunday Yes Tuesday No
4 3 Monday Monday Yes Tuesday No
0 4 Friday Thursday No Friday Yes
3 4 Monday Monday Yes Tuesday No
0 5 Saturday Friday No Saturday Yes
1 5 Sunday Saturday No Wednesday No
2 5 Monday Sunday No Monday Yes
4 5 Wednesday Tuesday No Tuesday No
6 5 Friday Thursday No Thursday No
1 6 Monday Sunday No Thursday No
2 6 Tuesday Monday No Tuesday Yes
3 6 Wednesday Tuesday No Tuesday No
4 6 Thursday Thursday Yes Tuesday No
5 6 Friday Friday Yes Thursday No
6 6 Saturday Thursday No Thursday No
0 7 Monday Sunday No Tuesday No
1 7 Tuesday Sunday No Tuesday Yes
2 7 Wednesday Sunday No Wednesday Yes
3 7 Thursday Sunday No Thursday Yes
4 7 Friday Thursday No Tuesday No
5 7 Saturday Friday No Saturday Yes
6 7 Sunday Friday No Thursday No

For simplicity of presentation, we clip all of the (few) negative intervention averages to 0 (prior
work (Zhang & Nanda, 2023) has also found negative-effect attention heads during patching experi-
ments).

Finally, in Fig. 21, we show another example of the continuity of the circular days of the week
representation in Mistral 7B.

J PATCHING

In this section, we present results to support a claim that MLPs (and not attention blocks) are
responsible for computing γ. In Fig. 23, we deconstruct states on top of the final token (before
predicting γ) on Llama 3 8B Months (we show a similar plot for the states on the final token
of Mistral 7B on Weekdays in the main text in Fig. 22. These plots show that the value of γ is
computed on the final token around layers 20 to 25. To show that this computation of occurs in the
MLPs, we must show that no attention head is copying γ from a prior token or directly computing γ.

We first perform a patching experiment with the same setup Fig. 20 and Fig. 19 on individual
attention heads on the final token. From the patching results we identify the top 10 attention heads
by average intervention effect. For each attention head, we compute one EVR run with explanatory
functions equal to one-hot functions of α and β (resulting in 14 functions gi for Weekdays and
24 for Months) and one with explanatory functions equal to one-hot functions of α, β, and γ. We
find that for all layers before 25, adding γ to the explanatory functions adds almost no explanatory
power. Since we established above that the model has already computed γ at this point, we know that
attention heads do not participate in computing γ.
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Table 3: Months finegrained results. Row ommited if both models get it correct.

α β Ground truth γ Mistral top γ Mistral correct? Llama top γ Llama correct?

0 4 May April No May Yes
6 4 November October No November Yes
0 6 July June No July Yes
0 7 August July No August Yes
1 7 September October No September Yes
3 7 November October No November Yes
5 7 January December No January Yes
6 7 February January No February Yes
7 7 March February No March Yes
9 7 May April No May Yes
4 9 February February Yes January No
2 10 January December No January Yes
8 10 July June No July Yes
1 11 January December No January Yes
2 11 February December No February Yes
3 11 March February No March Yes
7 11 July June No July Yes
8 11 August July No August Yes
9 11 September August No September Yes
0 12 January December No January Yes

To isolate the rough circuit for Weekdays and Months, we perform layer-wise activation patching
on 40 random pairs of prompts. The results, displayed in Fig. 20 show that the circuit to compute
γ consists of MLPs on top of the α and β tokens, a copy to the token before γ, and further MLPs
there (roughly similar to prior work studying arithmetic circuits (Stolfo et al., 2023)). Moreover,
fine-grained patching in Appendix K shows that there are just a few responsible attention heads
for the writes to the token before γ. However, patching alone cannot tell use how or where γ is
represented. For that, we need a new technique, which we expand on in the next section.

K EXPLANATION VIA REGRESSION (EVR)

In this section, we introduce a new technique for empirically explaining hidden representations
in algorithmic problems: explanation via regression (EVR). Given a set of tokens T with a
corresponding set of hidden states Xi,l, we explain the variance in Xi,l by adding together hand-
chosen functions of t. This gives us an explanation of what the transformation T → Xi,l computes.
For a given choice of explanation functions {gi(t)}, the r2 value of a linear regression from {gi(t)}
to Xi,l gives a measure of the explained variance in Xi,l. But what functions gi should we choose?

We build a list of gi iteratively and greedily. At each iteration, we perform a linear regression with the
current list g1 . . .gk, visualize and interpret the residual prediction errors, and build a new function
gk+1 representing these errors to add to the list. Once most variance is explained, we can conclude
that g1, . . . ,gk constitutes the entirety of what is represented in the hidden states. This information
tells us what can and cannot be extracted via a linear probe, without having to train any probes.
Furthermore, if we treat each gi as a feature (see Definition 1), then the linear regression coefficients
tell us which directions in Xi,l these features are represented in, connecting back to Hypothesis 2.

We apply EVR to Months and Weekdays. Since Xi,l consists of modular addition problems with
two inputs α and β, we can visualize the errors as we iteratively construct g1, . . . ,gk by making a
heatmap with α and β on the two axes, where the color shows what kind of error is made. More
specifically, we take the top 3 PCA components of the error distribution and assign them to the
colors red, green, and blue. We call the resulting heatmap a residual RGB plot. Errors that depend
primarily on α, β, or γ show up as horizontal, vertical, or diagonal stripes on the residual RGB plot.

In Fig. 22, we perform EVR on the layer 17-29 hidden states of Mistral 7B on the Weekdays
task; additional deconstructions are in Appendix K. We find that a circle in γ develops and grows in
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Figure 22: EVR residual RGB plots on Mistral hidden states on the Weekdays final token, layers 17
to 29. From top to bottom, we show each residual RGB plot after adding the function(s) gi labelled
just underneath, as well as the resulting r2 value. We write “tmr” meaning “tomorrow” for β = 1.
We also write “circle for x” meaning the inclusion of two functions gi(x) = {cos, sin}(2πx/7).
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Figure 23: Iterative deconstruction of hidden state representations on the final token on Llama 3 8B,
Months.

explanatory power; we plot the layer 25 residuals after explaining with one hot functions in α and β
(i.e. g1 = [α = 0],g2 = [β = 1],g3 = [α = 1], . . .) in Fig. 8 to show this incredibly clear circle in
γ. This suggests that the models may be generating γ by using a trigonometry based algorithm like
the “clock” (Nanda et al., 2023a) or “pizza” (Zhong et al., 2024) algorithm in late MLP layers.
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Under review as a conference paper at ICLR 2025

Table 4: Highest intervention effect attention heads from fine-grained attention head patching, as well
as EVR results with one hot α, β and one hot α, β, γ.

(a) Mistral 7B, Weekdays.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

28 18 0.22 0.39 0.73
18 30 0.17 0.95 0.96
15 13 0.17 0.94 0.95
22 15 0.11 0.77 0.82
16 21 0.09 0.92 0.93
28 16 0.08 0.42 0.69
15 14 0.06 0.98 0.99
30 24 0.05 0.43 0.79
21 26 0.04 0.53 0.63
14 2 0.04 0.93 0.95

(b) Llama 3 8B, Weekdays.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

17 0 0.18 0.98 0.99
17 1 0.08 0.98 0.98
19 10 0.08 0.95 0.96
30 17 0.07 0.85 0.90
17 3 0.07 0.93 0.95
17 27 0.06 1.00 1.00
31 22 0.05 0.37 0.78
21 9 0.04 0.73 0.78
20 28 0.04 1.00 1.00
30 16 0.04 0.73 0.85

(c) Mistral 7B, Months.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

20 28 0.15 0.76 0.76
17 0 0.10 0.77 0.77
25 14 0.08 0.19 0.61
17 1 0.07 0.80 0.82
17 3 0.06 0.71 0.71
31 22 0.06 0.12 0.67
17 27 0.05 0.58 0.58
19 4 0.05 0.40 0.66
19 10 0.04 0.62 0.62
30 26 0.04 0.51 0.62

(d) Llama 3 8B, Months.

L H Average
Inter-

vention
Effect

EVR R2

One Hot
α, β

EVR R2

One Hot
α, β, γ

15 13 0.26 0.62 0.62
16 21 0.17 0.76 0.76
18 30 0.13 0.77 0.77
28 18 0.11 0.13 0.52
28 16 0.07 0.13 0.52
21 25 0.05 0.65 0.70
15 14 0.03 0.72 0.72
17 26 0.02 0.77 0.77
31 1 0.02 0.11 0.57
21 24 0.02 0.30 0.45
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