
Published as a workshop paper at Deep RL Workshop (NeurIPS 2021)

EMBODIMENT PERSPECTIVE OF REWARD DEFINITION
FOR BEHAVIOURAL HOMEOSTASIS

Naoto Yoshida1,2, Tatsuya Daikoku2, Yukie Nagai2,3, and Yasuo Kuniyoshi1
1Department of Mechano-Informatics, The University of Tokyo
2International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo
3Institute for AI and Beyond, The University of Tokyo
{n-yoshida, kuniyosh}@isi.imi.i.u-tokyo.ac.jp
{daikoku.tatsuya, nagai.yukie}@mail.u-tokyo.ac.jp

ABSTRACT

In this work, we propose a neural homeostat, a neural machine that stabilises the
internal physiological state through interactions with the environment. Based on
this framework, we demonstrate that behavioural homeostasis with low-level con-
tinuous motor control emerges from an embodied agent using only rewards com-
puted by the agent’s local information. Using the bodily state of the embodied
agent as the reward source, the complexity of the reward definition is ‘outsourced’
into the coupled dynamics of the bodily state and the environment. Therefore, our
definition of the reward is simple, but the optimised behaviour of the agent can be
surprisingly complex. Our contributions are 1) an extension of homeostatic rein-
forcement learning to enable continuous motor control using deep reinforcement
learning; 2) a comparison of homeostatic reward definitions from previous stud-
ies, where we found that homeostatic rewards using the difference of the drive
function performed best; and 3) a demonstration of the emergence of adaptive
behaviour from low-level motor control through direct optimisation of the home-
ostatic objective.

1 INTRODUCTION

The definition of rewards for general-purpose autonomous agents has been a long-debated problem
(Lewis et al., 2010; Baldassarre, 2011; Silver et al., 2021). Moreover, defining rewards for desired
purposes is a known problem in the reinforcement learning (RL) community (Clark & Amodei,
2016; Amodei et al., 2016), and complex reward definitions are necessary for sophisticated tasks.
In this work, we introduce the embodiment perspective of the reward definition. Our definition of
the reward is simple, but the optimised behaviour of the agent is surprisingly complex. We show
that the complexity of the reward definition can be outsourced into the coupled-dynamics of the
bodily state and the environment. Indeed, we simulated the internal dynamics of the agent as an
additional complexity in our experiments. Nevertheless, there is no need to actually perform those
simulations in embodied agents because such dynamics are inherent in real autonomous agents (like
robots, animals).

Homeostasis, the stabilisation of the internal body state, is considered a fundamental func-
tion of animals. Richter (1943) suggested adaptive behaviour in animals as the realisation of
homeostasis in living organisms. In addition, Hull (1943) proposed in his classical study that
the reduction of ‘drive’ defines the learning motivation, and the drive arises due to the phys-
iological needs of the body. Because of the simplicity of the idea, homeostasis as a foun-
dation of adaptive behaviours has been adopted by many researchers in ethology (Barnard,
2004; McFarland & Bösser, 1993), nutritional science (Simpson et al., 2010), human-agent in-
teraction (Blumberg, 1997; Ogata & Sugano, 2000b; Breazeal, 2002) and computational neuro-
science (Keramati & Gutkin, 2011; Gu & FitzGerald, 2014; Seth, 2014; Keramati & Gutkin, 2014;
Pezzulo et al., 2015; Hulme et al., 2019; Man & Damasio, 2019). An intuitive explanation of the
emergence of adaptive behaviour in homeostasis is shown in Figure 1.
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Figure 1: Our hypothetical mechanism of the emergence of the adaptive motor control from the
homeostatic objective. The agent has a target signal distribution (setpoint) of specific sensor stimuli
(green-dotted distribution). The agent receives the current sensor stimuli from the inside of the body
(red distribution). Then, he tries to match the current sensation to the target. In order to do so, the
agent has to control the inside of the body directly (homeostasis) or interact with the environment
through behaviours (behavioural homeostasis, allostasis). (Figure created with BioRender.com)

In spite of numerous consistent proposals of homeostasis as an elementary objective, the compu-
tational approach to the direct optimisation of this objective is limited (Konidaris & Barto, 2006;
Keramati & Gutkin, 2014). This limitation is because the optimisation for behavioural homeosta-
sis naturally needs to treat multimodal sensations. These sensations include interoceptive signals
(visceral signals, energy levels, and water levels) in addition to proprioception (joint states) and
exteroception (vision, sounds). In addition, interoceptive signals can be regarded as context vari-
ables in multitask RL (Hallak et al., 2015; Sodhani et al., 2021). In our homeostatic RL setting
(Keramati & Gutkin, 2014), the context variable changes continuously through agent-environment
interactions. Furthermore, the behavioural objective (drinking water, eating fruit for carbohydrates,
cooling the body temperature) dynamically changes depending on the body’s internal state (water
level, nutritional state, body temperature). Due to these differences in dynamics, RL for homeostasis
differs from single-task multimodal RL and formal multitask RL.

These fundamental complexities of the homeostatic problem require the radical simplification
of the value function estimation or small-scale experiments, as determined in previous studies
(Whitehead et al., 1993; Bersini, 1994; Konidaris & Barto, 2006; Keramati & Gutkin, 2014). Recent
advances in deep RL approaches for continuous motor control have enabled researchers to use the
universal approximation function, which has led to impressive results in robotics (Schulman et al.,
2016), the control of the anatomical rodent model (Merel et al., 2020), and the humanoid control
with visual image inputs from low-level continuous motor signals (Merel et al., 2019). However,
the application of deep RL to homeostatic control problems has only recently been applied to dis-
crete action domains (Yoshida, 2017).

In this study, our methodological focus was on scaling up homeostatic RL to the high-dimensional
motor control domain. We hypothesise that complex adaptive motor control emerges from embod-
ied homeostatic reward signals. We demonstrated our method in two novel environments. The first
environment is an extended version of the classical homeostatic environment two-resource problem
(TRP) (Spier, 1997). The second is a temperature regulation environment in which the agent needs
to regulate body temperature in addition to energy homeostasis. Our contributions are 1) an exten-
sion of homeostatic reinforcement learning to enable continuous motor control using deep RL; 2)
a comparison of homeostatic reward definitions from previous studies, where we found that home-
ostatic rewards using the difference of the drive function performed best; and 3) a demonstration
of the emergence of adaptive behaviour from low-level motor control through direct optimisation
of the homeostatic objective. Our neural realisation of a homeostatic system is reminiscent of the
homeostat (Ashby, 1952) developed in a classical cybernetic study. Therefore, we refer to our class
of neural system as neural homeostat.
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Figure 2: Two-resource problem environment. (left) A sketch of the internal physiological state
dynamics of the agent. If the internal state is inside the grey area, the agent is ‘alive’. If it reaches
the outside of this area, the agent ‘dies’, and the episode terminates. (middle) Overview of the field
of the two-resource problem environment. There are randomly distributed food resources (four red
balls and six blue balls) and a quadruped robot in the arena. (right) The body temperature regulation
environment. In this environment, the agent needs to regulate both the energy resource and the core
body temperature.

2 NEURAL HOMEOSTAT FOR BEHAVIOURAL HOMEOSTASIS

In this section, we introduce a class of architecture called a neural homeostat. This architecture
describes the minimal architecture required to realise behavioural homeostasis with the continuous
motor control as an integration of homeostasis and deep RL. An overview of our problem setting is
presented in Figure 2. An agent is in an environment (middle and right panels) and has an internal
physiological state in the body (left panel). The agent’s goal lies inside the agent’s body: stabilisation
of the internal state in a particular area.

The agent receives three types of multidimensional observations: exteroception xe, a proprioception
xp and an interoception xi1. The agent constructs a reward function using these observations, and
interoception is used to construct the fundamental reward function rhomeo for homeostasis.

2.1 HOMEOSTATIC REWARD WITH REWARD SHAPING

RL is a machine learning framework that maximises the expectation of the agent’s future cumulative
sum of rewards

∑∞
t=0 γ

trr through interactions with the environment (Sutton & Barto, 2018). Here,
t is the time step, rt is the reward, and 0 ≤ γ < 1 is the discount factor. An agent receives an
observation x from the environment in a single time step and returns an action u from the parametric
stochastic policy πθ. RL algorithms optimise the policy through interactions with the environment.

Homeostatic RL intends to stabilise the internal state of the agent through RL (Keramati & Gutkin,
2014; Hulme et al., 2019). To achieve this goal, we employ interoception as a source of the el-
ementary reward for homeostasis. In our study, we employed the quadratic homeostatic drive
D(xi

t) = ||xi
t − xi

∗||2, where xi
∗ is an interoceptive target. We used the differential form of the

homeostatic reward function, which has also been proposed in previous studies (Keramati & Gutkin,
2014; Hulme et al., 2019):

rhomeo = β1(D(xi
t)−D(xi

t+1)), (1)

where β1 > 0 is a positive constant. We call this reward definition the homeostatic reward with
reward shaping, or simply the ‘homeostatic-shaped’ reward. The quadratic form of the drive
r = −D(xi

t) is the reward definition proposed by other studies (McFarland & Houston, 1981;
McFarland & Bösser, 1993), and its probabilistic interpretation is also provided in another study
(Yoshida, 2017). In Supplementary Material D, we explain that the differential form of the re-
ward definition can be derived by using policy-invariant transformations (Ng et al., 1999) from the
quadratic reward. Furthermore, as a representation of the prior distribution for motor outputs and
agent posture, we applied proprioceptive cost in addition to homeostatic reward:

rcost = −β2||x̃p
t − x̃p

∗||2 − β3||ut||2, (2)

1Minimally exteroception and proprioception may be treated equally in our framework.
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where x̃p
∗ and x̃p are the default (torso in upright position) and current posture, u is the agent’s action,

and β2 and β3 are positive constants. We believe that these posture information can be computed
within the agent, and that there is no need for an oracle-like mechanism outside the robot (Lee et al.,
2020). The total reward function is described as:

rtotal = rhomeo + rcost. (3)

We used β2 = 0.005, and β3 = 0.001 throughout the study.

We can show that our problem setting can be explained using divergence minimisation (Hafner et al.,
2020b) between the actual distribution and the Gaussian target distribution. In this context, the
cost terms for interoceptive and proprioceptive correspond to Gaussian target distributions for those
inputs. The details of the derivation are provided in Supplementary Material D.

2.2 ALTERNATIVE REWARD DEFINITIONS

Homeostatic control can be achieved using several alternative definitions. To confirm the effec-
tiveness of the homeostatic-shaped reward definition, it was compared with three alternative re-
ward definitions. A straightforward example is the quadratic homeostatic reward without reward
shaping rhomeo = −β1D(xi

t), which is treated in the previous studies (McFarland & Houston,
1981; Keramati & Gutkin, 2014; Yoshida, 2017). We will call this reward definition the (funda-
mental) ‘homeostatic’ reward. The second alternative is a quadratic reward with a baseline shift.
In this definition, we employ a reward baseline b > 0, and the quadratic reward is shifted by
r̃homeo = −β1D(xi

t) + b. Because the quadratic term cannot be positive, this reward definition
generates positive- and negative-reward areas in the interoception space. We note that this baseline
shift does not change the optimal policy. A similar definition of this reward function was also em-
ployed in a previous study for homeostatic control (Bersini, 1994) in a simple grid environment,
and it performed the best among the definitions proposed in that environment. This definition will
henceforth be denoted as the ‘homeostatic-biased’ reward definition. Finally, the third definition is
the ‘Cart-Pole’ style reward (Sutton & Barto, 2018). The reward is zero except for at the terminal
state (death, resetting state), which provides −β1. We denote this as ‘cart-pole’ reward definition.
The cart-pole is the simplest definition among others, and this definition may have a theoretical ad-
vantage in that the terminal reward bounds the value function. However, this definition does not
utilise the information of the internal state, except for the terminal states.

All four definitions of the reward function are task-general regarding the arbitrariness of their so-
lutions for homeostatic control. In the experiment section, we compare the reward definitions to
compare their learning performance in terms of survival time steps in the environment. In prelimi-
nary experiments, we conducted a hyperparameter search of the scaling of the homeostatic term of
the reward β1 and the bias term b in {0.01, 0.1, 1, 10, 100, 1000}, and then we compared the results
with the best parameter settings.

2.3 AGENT ARCHITECTURES AND OPTIMIZATION

In our experiments, we employed the proximal policy optimisation (PPO) with the generalised ad-
vantage estimator (GAE) (Schulman et al., 2017; 2016). We used a fully connected architecture
with two hidden layers for both the policy network πθ and the value prediction network Vφ, which
have 256 and 64 units in their hidden layers, with hyperbolic activation units, respectively. A beta
distribution Beta(αθ,βθ) is used as the output of the policy network (Chou et al., 2017; Hsu et al.,
2020). αθ(x) and βθ(x) are branched outputs of the policy network, which are parameterized by θ
with an observation x. Because the output of the beta policy is restricted in the d-dimensional space
[0, 1]d, outputs are scaled into [−1, 1]d as actions that are used in the environment.

The objective to be maximized in the update is described as

J(θ,φ) = Êπold

[
LCLIP (θ)− c1L

V F (φ) + c2S(πθ)− c3D̃(πold||πθ)
]
, (4)

where θ is the policy parameter and φ is the value prediction parameter. Êπold [·] represents the
empirical average sampled using the previous policy πold. LCLIP (θ) is the surrogate loss of PPO
for the policy improvement, LV F (φ) is the value-prediction loss, and S(πθ) is the entropy bonus.
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D̃(πold||πθ) is the approximated Kullback-Leibler divergence penalty between current and the pre-
vious policy, which is known to stabilise the optimisation (Hsu et al., 2020). Detailed descriptions
of the architecture and objectives are provided in Supplementary Material A. We use the same hy-
perparameters c1 = 0.5, c2 = 0.001 and c3 = 0.001 throughout this study.

We used the Adam optimizer with epsilon parameter 10−5 for optimisation with a learning rate that
started from 3×10−4 and linearly decreased to 10−5 along with 500 PPO iterations. 3×105 training
batch data were collected using ten worker threads, and a mini-batch size of 5×104 was used for the
stochastic gradient descent. Additional hyperparameters are provided in Supplementary Material A.

3 EXPERIMENTS

Two experiments were conducted. The first was a two-resource foraging experiment that extended
the classical homeostatic problem into a continuous motor control domain. The second experiment
was a thermal regulation experiment in which the agents were required to regulate their core body
temperature while regulating energy homeostasis.

3.1 TWO-RESOURCE PROBLEM WITH CONTINUOUS MOTOR CONTROL

This section introduces TRP (Figure 2, middle), which is proposed in the context of the theoretical
ethology (Spier, 1997). In this environment, there is an agent and randomly distributed food re-
sources in the field. The agent can act in the field, which was developed using a dynamics simulator
(Todorov et al., 2012). The agent model is based on the quadruped robot ‘Ant’ (Schulman et al.,
2016) from the food-gathering environment (Duan et al., 2016; Li et al., 2020). We used the ‘low-
gear’ version of the Ant asset, in which the stability of the motion is improved. In our experiments,
the action of the agent was the motor torque of each joint. The dimension of the control d was
eight, and the control space was normalised so that the control is in the d-dimensional unit cube
u ∈ [−1, 1]d.

The agent has a two-dimensional continuous internal state that corresponds to the nutritional state of
the agent. Two types of food resources (four red balls and six blue balls in the field) correspond to
the dimensions of the nutritional state of the agent. Unequal numbers of red and blue balls require
the agent to balance the food collection instead of simply collecting the food types equally. The
agent consumed the nutrient resources linearly with time steps. If the agent’s body sphere gets
close enough to a food resource, this food is consumed, and the nutritional state is recharged with
a predefined quantity. New food resources were randomly generated. Our experiment assumes that
the agent directly observes the internal state as the interoceptive sensory input xi.

We utilised a simplified metabolic model of the internal nutritional state described in a previous
study (Konidaris & Barto, 2006). The updates of the nutritional state xi for both of the red and blue
resources are described as

xi
t+1 = xi

t − δidefault + δifoodI
i
t , (5)

where δidefault is the default consumption of nutritions, and δifood is the inlet of the nutrition when the
agent captures the food resource. It is one if the agent gets close enough (less than 1m in the sim-
ulator); otherwise zero. We used the same parameters used in a previous study (Konidaris & Barto,
2006); δidefault = 0.00015 and δifood = 0.1. A single episode starts from nutritional states uniformly
sampled from U [− 1

6 ,
1
6 ] for each nutrient. An episode terminates if any one of the internal variables

exceeds the viable range [−1, 1], and the environment is reset afterwards.

The agent’s observations are composed of a 40-dimensional exteroception xe, a 27-dimensional
proprioception xp and a two-dimensional interoception xi. Exteroception is the agent’s percep-
tual signals outside of the body, composed of range sensor stimuli (20 different directions around
the agent) for two kinds of food resources. Proprioception is the observation that reports the self-
movement and positions of the agent’s body, and we assume that this involves the agent’s joint
angles, rotational and positional speed, the height and posture information of the torso. Interocep-
tion is the direct observation of the internal nutritional state of the agent, which is composed of a
two-dimensional continuous vector.
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3.2 BODY TEMPERATURE REGULATION WHILE FORAGING

In this experiment, we introduced an alternative homeostatic setting inspired by the thermoregula-
tion of animals. The agent needs to regulate the core body temperature through interactions in the
environment while maintaining energy homeostasis. Here, we only implemented the simplified dy-
namics of the thermal system to demonstrate the proof-of-concept of our method. The actual biolog-
ical thermoregulation system is sophisticated and complex (Porter et al., 1973; Terrien et al., 2011;
Tan & Knight, 2018). The environment is shown in the right panel of Figure 2. Food resources are
randomly distributed over a square arena with randomly generated terrain. In the thermal regulation
experiment, we used temperature dynamics in addition to one-dimensional nutritional dynamics.

We implemented a dynamic model of core body temperature in the environment, inspired by ther-
modynamic models of animals in thermal biology (Porter et al., 1973; Fei et al., 2012) and thermal
models of electric motors (Venkataraman et al., 2005). We model the dynamics of the body temper-
ature τ as

C
dτ

dt
= δQ(τ, u, uev), (6)

where τ is the animal’s core body temperature and C is the heat capacity of the body. δQ is the
amount of heat that is added to the body of the agent.

The agent has a nine-dimensional action. u is the eight-dimensional motor output, and uev ∈ [−1, 1]
is a one-dimensional ‘evaporative’ action that controls the heat dissipation rate. A detailed descrip-
tion of the calculation of δQ is provided in Supplementary Material C. The core body temperature is
normalised to the map [307, 315] in Kelvin degrees to [−1, 1]. Thus, the setpoint of the normalised
body core temperature is zero, which corresponds to 38 ◦C (311 K). The agent has a one-dimensional
nutrient state, which has the same dynamics as the previous experiment. The interoceptive signal xi

is is defined as a two-dimensional signal composed of a one-dimensional nutrient state and the nor-
malised core temperature of the agent. The agent receives the same exteroception and propriocep-
tion, in which the range finder stimulus represents the distance to food resources in this environment
(red balls, 20 dimensions).

4 RESULTS

4.1 HOMEOSTATIC FORAGING WITH CONTINUOUS MOTOR CONTROL IN THE TRP

The performance summaries of each reward setting in the TRP environment are shown in Figure 3
(top). Because reward definitions vary, we compared the performance using the average length of the
episodes during the 10 test runs. In addition, we manually terminated test runs if the agent exceeded
60,000 steps because trained agents can survive an arbitrarily long time in the environment, and
sometimes the evaluation process takes an unreasonably long time.

From Figure 3 (top-left), we can observe that the homeostatic-shaped, homeostatic, and homeostatic-
biased reward could improve the episode length. In addition, the homeostatic-shaped setting
achieved the best performance. However, the cart-pole definition failed to improve the policy. Be-
cause the cart-pole definition cannot provide intermediate reinforcing signals when food resources
are captured, we suspect that this definition of homeostatic reward can be effective in small-scale
environments. Figure 3 (top-right) shows the growth of the total number of environments resetting
during the 500 PPO iterations with ten parallel agents. This criterion can capture the property that
sampler agents can also survive in the environment (Shimoguchi & Kurashige, 2019). We can ob-
serve that the growth in the number gradually decreases with the training iteration with successful
reward definitions.

The bottom panels of Figure 3 show the sampled behaviour of the agent after 500 PPO iterations with
the homeostatic-shaped reward. As shown in the plot (bottom-right panel), internal states fluctuate
within a specific range, and the agent starts to capture food resources requested according to the
level of the nutrient state at that time step. In an additional experiment, we found that the simple
food-capturing reward (+1 reward if the agent receives any food resources, otherwise zero) could
not result in homeostatic behaviour (Supplementary Material E).
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Figure 3: Training performance of the methods. The horizontal axis is the number of PPO iterations.
Vertical axes reflect the average episode lengths (top left) and increases in the number of episode
terminations (top right; lower is better). Thin lines represent the results of five independent runs,
and thick lines represent mean performance. The bottom panels are examples of the behaviour of
the agent after the optimization. (bottom left) An example of the foraging behaviour of the agent.
(bottom right) Internal dynamics of internal states throughout 40,000 decision steps.

Figure 4: Behavioural experiment of the trained agent in the TRP. In this experiment, the agent’s
interoception was clamped at specific values, and the behavioural preference toward food resources
was observed. (left) The overview of the initial condition of the experiment. The positions of red
and blue balls were randomly changed between trials. The result was averaged over five individually
trained agents. (middle) Food collection tendency of the agent, depending on the specific clamped
interoception. (right) Interoception-dependent preference of the food collection of the agent. The
blue and red areas represent the behavioural preference of the agents toward corresponding food
resources.

4.1.1 BEHAVIOURAL PREFERENCE IN RESPONSE TO THE INTEROCEPTION

To verify that the optimised agent selects food resources depending on the agent’s interoception in-
stead of simply collecting resources randomly, we manually clamped the agent’s nutritional state at
specific levels and observed the choice of food resources. We found that agents were still active un-
der this condition, and they changed their behaviours depending on their interoception. The setting
of this experiment is shown in Fig.4 (left). An agent was located in the centre of the field, and six
red and blue resources were randomly scattered around the agent at a fixed distance. This process
did not include the training process, and all the agent parameters were fixed during the experiment.
An additional explanation is provided in Supplementary Material F.

The middle panel in Figure 4 shows the possibility that the agent captured any one of the red or blue
resources. We can observe that the food capture diminishes in the range of xi

red > 0 & xi
blue > 0,

which explain the suppression of the food capturing behaviour when nutrient states are both ‘ful-
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Figure 5: Training performance of the methods. (top-left) Average episode length of 5 runs. (top-
middle) Growth of total episodes along with PPO iterations. (top-right) An example of the time-lapse
of the agent’s behaviour when trained under the homeostatic-shaped condition. a) Changes to the
energy level (grey) and the core body temperature (red) of the agent (trained under the homeostatic-
shaped condition) during 40,000 time steps. b) Changes to normalized body temperatures by time
step. The grey curve represents the normal condition (no clamping). The red and blue curves
represent the results of the observation clamping of the body temperature at 0.2 (‘over-heat’) and
−0.2 (‘freezing’). c) Motor activities of the normal (grey), ‘over-heat’ (red), and ‘freezing’ (blue)
conditions with temperature-clamped observations. Motor activities were calculated by the root
mean squared sum of the motor actions.

filled’. In addition, the panel shows that the agent stops foraging when both the red and blue resource
deficits are large. We have provided an additional discussion on this point in Supplemental Material
F. The right panel shows that the agent’s preference for food resources depends on interoception.
The red area indicates a preference for red resources, which is the same for the blue area. This panel
clearly demonstrates the agent’s interoception-dependent strategy; the agent takes the appropriate
food when any one of the nutrient levels become negative. To observe the interplay between the
agent’s behavioural strategy and the environmental condition, we tried the same experiment using
agents trained in the TRP with the (red: 5, blue: 5) condition. In this preliminary trial, we observed
a similar results with (red: 4, blue: 6) condition (Supplementary Material G). Further investigation
is needed to observe the effect of resource conditions in the environment toward the behavioural
strategy of the agent.

4.2 BODY TEMPERATURE CONTROL WHILE FORAGING

The left two panels at the top of Figure 5 show the performance improvement results that occurred
in the experiment. We observed that the agents with homeostatic-shaped and homeostatic-biased
settings successfully controlled both their energy level and core body temperature. However, as
shown in the panels, the homeostatic and cart-pole settings could not achieve survival behaviours
in this environment. The top-right and bottom-left panels show an example of the behaviour of the
agent trained with the homeostatic-shaped condition.

To demonstrate that the agent successfully obtained thermal homeostasis, we clamped the agent’s
body temperature interoception to specific fixed values. Then, we observed changes in the actual
body temperature along with the time steps. We note that these clamping conditions did not signif-
icantly change the energy homeostasis, as observed in the TRP experiments. Panel (b) represents
the 10-average results of the clamped agents (‘over-heat’: τ = 0.2, ‘freezing’: τ = −0.2) and
the normal agent (grey). As expected, the agent with the ‘over-heat’ observation (red) constantly
tried to decrease the body temperature, and the agent with the ‘freezing’ observation (blue) kept
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increasing the body temperature. Panel (c) shows the average motor activities of each condition.
We can see that the motor activities of the freezing-observation agent (blue) was significantly large,
and the agent with an overheated observation (red) moved less than the normal agent. In addition to
this experiment, we observed that the agent regulated the body temperature in response to external
perturbations of body temperature (Supplementary Material H). These results would demonstrate
that an agent actively regulates body temperature using motor control. Finally, we compared the
behaviour of the evaporative action, but we could not find consistent behaviours between the trained
agents in this setting. We suspect that the contribution of evaporative actions was limited in this
experimental condition and the control of motor activities was sufficient for the homeostasis, as the
environmental temperature function supports cooling of the agent’s body temperature.

5 DISCUSSIONS AND RELATED STUDIES

Computational neuroscientists have explained homeostasis as a predictive error reduction process
regarding the body’s internal state (Gu & FitzGerald, 2014; Seth, 2014; Keramati & Gutkin, 2014;
Pezzulo et al., 2015; Hulme et al., 2019). For example, Stephan connected the allostatic mechanism
(Sterling, 1988; 2012) with an active inference process (Friston et al., 2017) and conducted a simple
low-dimensional computational experiment of interoceptive control by using hierarchical generative
models (Penny & Stephan, 2014; Stephan et al., 2016). Although homeostatic RL aims at a similar
perspective, it more directly utilises RL theories to explain homeostatic behaviours (Hulme et al.,
2019). In our study, with the help of the advance of deep RL, we conducted a direct optimisation of
the behavioural homeostasis with continuous motor control to scale up the homeostatic RL.

The RL approach to the regulation of the internal states of an agent was pioneered by Bersini
(1994). The divergence minimisation perspective of behaviour optimisation has been discussed
in the machine learning community (Hafner et al., 2020b; Ghasemipour et al., 2020). The con-
cept of matching the target distribution and the actual distribution is also linked with active in-
ference (Friston et al., 2009; Friston & Ao, 2012) and our perspective (Supplementary Material D).
From this perspective, the application of divergence minimisation to interoception is new in neu-
ral homeostat. Furthermore, this naturally results in a generic objective for autonomous agents.
Ogata & Sugano (1997; 2000a) reported the emergence of autonomous heat control using cooling
fans in a robot from the viewpoint of homeostatic control in robotics. Our thermal regulation exper-
iment can be regarded as a generalisation of such research.

Finally, from the perspective of the reward definition problem in RL, our homeostatic reward defi-
nition rhomeo is simple. Indeed the introduction of the dynamics of the body’s internal states may
appear to be a technical definition of reward after all. However, these dynamics are realised by the
physical dynamics of the embodied agent (batteries, metabolic system, heat capacity, etc.). There-
fore there is no need to implement them in the real world. Rather, the complexity of the definition
in the reward function is ‘outsourced’ into the coupled dynamics of the agent’s body and the envi-
ronment.

6 CONCLUSION

In this research, using a deep RL approach, we scaled up the idea of homeostatic RL as a principle
of reward definition for an autonomous embodied agent. Our neural homeostat demonstrated the
realisation proof of homeostatic behaviours from low-level motor control, which can emerge from
the interoceptive reward definition by coupling the dynamics of the agent’s internal state and the
environment. Our environments require only minimal cognitive capabilities, and reactive agents are
sufficient to solve foraging tasks. The extension of agents to treat more advanced cognitive functions
should be addressed in future research.
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