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Abstract

Computing olympiads contain some of the most challenging problems
for humans, requiring complex algorithmic reasoning, puzzle solving, in
addition to generating efficient code. However, it has been understudied
as a domain to evaluate language models (LMs). In this paper, we intro-
duce the USACO benchmark with 307 problems from the USA Computing
Olympiad, along with high-quality unit tests, reference code, and official
analyses for each problem. These resources enable us to construct and test
a range of LM inference methods for competitive programming for the first
time. We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot
chain-of-thought prompting, and our best inference method improves it
to 20.2% using a combination of self-reflection and retrieval over episodic
knowledge. However, this is far from solving the benchmark. To better
understand the remaining challenges, we design a novel human-in-the-loop
study and surprisingly find that a small number of targeted hints enable
GPT-4 to solve 13 out of 15 problems previously unsolvable by any model
and method. Our benchmark, baseline methods, quantitative results, and
qualitative analysis serve as an initial step toward LMs with grounded,
creative, and algorithmic reasoning.

1 Introduction

Code generation has become an important domain to evaluate and deploy language models
(LMs). However, with the scaling of LMs and the development of new inference meth-
ods (Wei et al., 2022; Shinn et al., 2023; Chen et al., 2023; Zhou et al., 2022), many popular
coding benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
have been saturated with solve rates above 90%. To drive further progress, we need more
challenging benchmarks that reveal limitations of existing models and inference methods,
and provide actionable insights for improving LM’s algorithmic reasoning.

Competitive programming is a natural fit for this pursuit, as it has been designed to
rigorously evaluate the human ability to reason about complex scenarios and create novel
algorithms. However, previous explorations of competitive programming lack exhaustive
unit test suites, lack problem analyses, or lack enough problem diversity to comprehensively
evaluate algorithmic reasoning (Li et al., 2022; Hendrycks et al., 2021; Jain et al., 2024).

We thus introduce USACO, a carefully crafted coding benchmark with 307 challenging
problems from past USA Computing Olympiad (USACO) competitions. As shown in
Figure 1, each problem describes a task to solve in a fictional scenario, along with some
example tuples of inputs, outputs, and explanations. Solving these problems not only
require a wide range of algorithmic, mathematical, and commonsense knowledge, but
also grounded and creative reasoning: unlike previous program synthesis benchmarks,
successful models must reason over ad hoc environments, creating novel algorithms tailored
to each problem scenario. On USACO, even the best LM (GPT-4) only reaches a zero-shot
pass@1 solve rate of 8.7% using zero-shot chain-of-thought prompting.

To study more advanced inference-time methods on competitive programming, for the
first time, our benchmark also collects high-quality unit tests, reference code solutions, and

*Equal contribution. Code, data, examples: https://princeton-nlp.github.io/USACOBench/.
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✍ I/O Format

🧩 Problem

     🐮 🐄 🐄 🐮
Cow    1        2      3       4 

Key:
🐮 Guernsey
🐄 Holstein

     🐮 🐄 
       1      2 

     🐄 
       3 

     🐮 
      4 

🐄  🐄 🐮
 2      3    4

Only one possible leader pair:
● Cow 2’s list has all cows of its breed (🐄)
● Cow 1’s list has the other breed’s leader (cow 2) 

📖 Example

Figure 1: Example USACO problem description, formatting instructions, and illustration
(problem id: 1275 bronze leaders). Solving this problem requires a combination of grounded
reasoning about the concept of leaders, creative thinking to precisely count different cases of
leader pairs, and algorithmic reasoning to perform these ad hoc operations in linear time.

official analysis for each problem, along with corresponding instructional texts in the form
of competition programming textbooks. Based on these resources, we construct a range of
baseline methods based on retrieval (Gao et al., 2023), self-reflection (Shinn et al., 2023; Chen
et al., 2023), and their combinations. We find that combining retrieval over similar problems
and solutions and self-reflection maximizes performance gains, well over doubling the
zero-shot solve rate of GPT-4. However, all methods are still far from solving the benchmark
above bronze level, the easiest difficulty tier.

To further understand the limitations and potentials of LM reasoning toward competitive
programming, we perform a novel human study where humans interact with LMs in a
conversational “tutoring” setup by pointing out errors and giving minimal hints. To our
surprise, on a subset of 15 problems where GPT-3.5 and GPT-4 can never solve using any
inference methods, such a human-in-the-loop setup leads to GPT-4 solving 13 out of 15
problems, whereas GPT-3.5 solves none. This indicates the emergent potential of stronger
LMs to incorporate high-quality feedback, the need to develop new methods that can
generate such human-level corrective feedback, and a re-thinking of the right metric for
measuring model capabilities beyond the overly strict execution success.

To summarize, our contributions of our work are:

• We propose the USACO benchmark, the first benchmark based on olympiad pro-
gramming with high quality test cases, problem analyses, and auxiliary resources.

• For the first time, we construct and test LM inference methods for Olympiad pro-
gramming, such as self-reflection and retrieval. Our results indicate a combination
of retrieval and self-reflection can significant boost performance, but is still far from
solving the benchmark.

• We conduct a novel human-in-the-loop study to characterize the capabilities and
limitations of LMs for Olympiad programming, complementary to automatic experi-
ments based on execution success. We find that only certain models can successfully
incorporate feedback, uncovering latent differences between models

2 Related Work

Code Generation Benchmarks Language model performance on simple program synthe-
sis has been thoroughly explored (Yu et al., 2018; Chen et al., 2021; Austin et al., 2021; Zan
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et al., 2022), with HumanEval being the general standard for benchmarking new models
on code synthesis. However, current models, aided by inference techniques, can achieve
up to a 94% solve rate on HumanEval (Zhou et al., 2023), indicating a need for harder,
more complex, yet self-contained coding tasks to probe the upper limit of code reason-
ing. Competitive programming questions have thus been proposed as a more difficulty
evaluation metric, with most problems coming from online platforms such as Codeforces,
Atcoder, Kattis...(Li et al., 2023b; Huang et al., 2023; Jain et al., 2024; Hendrycks et al., 2021;
Li et al., 2022). However, these problems largely do not contain quality problem analyses,
comprehensive correctness-defining test cases, with many problems being presented purely
symbolically. This means that it can only weakly evaluates the model’s ability to creatively
reason in grounded problem environments, a crucial ability of well-rounded reasoners.

Inference Time Methods for LMs Inference time methods have seen significant success in
improving reasoning capabilities by conditioning generations on environment feedback,
task-specific knowledge, natural language reflections, and planned summaries (Shinn et al.,
2023; Chen et al., 2023; Madaan et al., 2023; Yao et al., 2022; Zelikman et al., 2022; Zhou
et al., 2023; Gao et al., 2023; Le et al., 2022). However, their utility on code domains has
only previously been explored on simple program synthesis tasks such as HumanEval and
MBPP (Chen et al., 2021; Austin et al., 2021). In this paper, we additional provide insights
on their performance in competitive programming, a much more difficult domain. Our
instantiation of retrieval augmented generation additionally takes inspiration from cognitive
architectures for humans reasoning (Sumers et al., 2023) and classical case-based reasoning
literature (Aamodt & Plaza, 1994; Schank, 1983), mirroring the types of information humans
find useful for problem solving.

Human Model Interaction Sumers et al. (2022) investigates agent learning from human
provided feedback under synthetic tasks. Macina et al. (2023) aims to provide a tutoring
ruleset to effectively engage LMs in dialogue math problem solving. In this paper we adopt
a similar setup to code, applying a specified interaction ruleset to gauge the ability of models
to respond to feedback.

3 The USACO Benchmark

The USACO benchmark consists of 307 high-quality expert-written problems from past USA
Computing Olympiad contests (https://usaco.org). Each problem consists of a problem
description with instructions for reading and writing from standard input and output; 0-2
sample tests; 10-17 hidden tests verifying solution correctness; time and memory limits
verifying solution complexity; and an official human-written problem analysis explaining the
solution in detail with corresponding Python code.

Problem Difficulty Problems are divided into tiers of increasing difficulty consisting
of bronze, silver, gold, and platinum. At all levels, solutions typically require ad hoc
algorithmic reasoning and, unlike interview-level problems, rarely follow directly from
well-known algorithms. Gold and platinum problems may additionally require knowledge
of known algorithms and data structures, often using them in unorthodox ways.

Task Formulation A model is given the problem description, including any available
samples, and time and memory limits. The model must then produce a code solution, which
is run by the judge and accepted if it produces the expected outputs on all hidden tests
under the given limits, enforcing both correctness and the desired asymptotic efficiency.
Note that the model cannot get access to hidden test inputs or outputs, but can receive
information on how many tests a given solution has passed.

Task Features We find several features of USACO that make it an effective LLM evaluator.
Firstly, USACO problems contain detailed problem environments encouraging grounded,
creative reasoning. Problem narratives are high quality, and avoid purely symbolic coding
questions such as many presented on platforms like LeetCode or Kattis. Thus, problems
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Benchmark Exhaustive
Unit Tests

Expert-Written
Problem Analyses

Non-Symbolic
Environments

HumanEval (Chen et al., 2021) ! % %

APPS (Hendrycks et al., 2021) % % !

CodeContests (Li et al., 2022) % % !

USACO (ours) ! ! !

Table 1: The USACO benchmark features high-quality problem environments with grounded
creative reasoning, complete hidden tests, and expert-written problem analyses with both
gold solution reasoning and Python code.

focus on a model’s ability to reason creatively and ground insights and algorithmic designs
to the details of a given scenario. Furthermore, problems are tiered in difficulty (see Table
3), with bronze tier problems serving as an effective test of pure reasoning, requiring
no formal knowledge of data structures and algorithms. At higher tiers, problems go
beyond basic implementation of algorithms, instead requiring creative, grounded algorithm
design specific to the desiderata and constraints of the given scenario. Finally, the USACO
benchmark includes expert-written problem analyses containing both natural language
and gold Python solutions to all problems, enabling development of rich inference-time
techniques and nuanced evaluation beyond unit test execution.

Difficulty Core Skills Evaluated

Bronze simulation, complete search, sorting, greedy

Silver binary search, comparators, graphs, trees,
floodfill, prefix sums, bitwise operators

Gold dynamic programming, disjoint set union,
spanning trees, Euler tour, combinatorics

Platinum segment tree, range queries, binary jumping,
sweep line, convex hull, flows

Table 2: Core skills evaluated at each tier of USACO, from https://usaco.guide/.

Construction: Problems We collect 484 problems from https://usaco.org detailing mate-
rials on contests hosted between 2011 and 2023 using a custom HTML parser, and use regular
expressions to extract wall clock time and memory constraints from problem descriptions.
which are manually verified using solutions with correct and incorrect asymptotics.

Construction: Problem analyses To assist the development of rich inference-time methods
and evaluations, we select the 307 problems out of 484 with full problem analyses. We parse
an English-only analysis without code, as well as a ground truth standalone Python 3 code
snippet. For the majority of problems where Python code is unavailable, we prompt GPT-4
to translate the code to Python 3 and validate that all code solutions pass hidden tests on
the given constraints.

3.1 Baseline Results

We begin by evaluating zero-shot performance of models representing state-of-the-art
coding performance as a baseline: this includes GPT-3.5 (gpt-3.5-turbo-1106), GPT-4 (gpt-4-
1106-preview), Claude-3-sonnet, (claude-3-sonnet-20240229), CodeLlama2-Instruct-7B, and
Deepseek-Coder-Instruct-7B (Roziere et al., 2023; Guo et al., 2024; OpenAI et al., 2023). This
is summarized in Table 3. Unless otherwise indicated, models were prompted with chain of
thought (Wei et al., 2022), refer to figure 6 for full prompts. Following previous work on
competitive programming (Li et al., 2022; Hendrycks et al., 2021), we evaluate primarily
based on the unbiased pass@k metric defined in (Chen et al., 2021).

Solve rates near zero for gold difficulty and above. We find that USACO presents a
strong challenge to current generation models. Weaker models like GPT-3.5, CodeLlama,
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Statistics USACO

Number of problems 307
Avg words per problem 452.9

Avg words per problem analysis 1107.8

Bronze problems 123
Silver problems 100
Gold problems 63

Platinum problems 21

Model Pass@1

CodeLlama (7B) 0.19
DeepSeek Coder (7B) 1.04
GPT-3.5 0.59
Claude-3-Sonnet 2.61
GPT-4 8.7

Human Average 35.83

Table 3: Statistics and zero-shot pass@1 performances on USACO. Human performance
estimated through past contest performance.

and DeepSeeker cannot solve any problem above silver difficulty, while newer models
like GPT-4 have near-zero pass rates for gold difficulty problems and above. For full
per-difficulty solve rates, refer to Appendix B.3.

For stronger models, most errors are algorithmic. Other than CodeLlama, we find that no
model errors are significantly due to compilation errors. We detail full results in Appendix
B.2. This shows at the very least, models are effective in generating syntactically correct
code, and indicates more nuanced issues in generations such as problem misunderstandings.
We document some samples of problems and their errors in Appendix 7 and perform brief
qualitative analysis.

Problem release date impacts performance. We test temporal effects by additionally
evaluating models on a small selection of 36 problems released after training cutoff dates.
We find that solve rate drops to 0 for all models. However, we do note that USACO questions
are well known to increase in difficulty every year, making this likely an effect of difficulty
increases, inclusion of reasoning in pre-training data, as well as small sample size. Despite
this, the overall performance is still quite poor.

4 Inference Time Techniques for Better Reasoning

Past work has demonstrated that curated prompting and retrieval strategies can significantly
improve performance on various tasks across natural language processing, multi-task QA,
and embodied intelligence (Yao et al., 2022; Wang et al., 2023; Madaan et al., 2023). To
investigate the effectiveness of such inference-time methods, we adapt self-reflection and
retrieval techniques widely successful in other domains to USACO.

4.1 Self-Reflection

Self-reflection techniques aims to allow models to iteratively improve generations by condi-
tioning future output on execution feedback of previous attempts. We primarily experiment
with Reflexion (Shinn et al., 2023), a representative technique that additionally maintains an
episodic buffer of past attempts to induce better reasoning in future trials.

Setup The model is first prompted to solve the problem, generating a code solution as
well as an explanation of the code. For each iteration of reflection, the model is prompted
to first reflect on what went wrong previously, then fix the previous code, given the the
execution output of the previous solution, the previous solution itself, as well as the contents
of a buffer of past solve attempts. After each iteration, the previous attempt as well as the
execution results is added to the buffer. This loop iterates until a maximum number of
debugging steps is reached. We set this hyperparameter i = 3 as we observe no empirical
gains in solve rate past 3 rounds of debugging: see Appendix C.5.

4.2 Retrieval Augmented Generation

Retrieval augmented generation (RAG) has similarly proven to reduce hallucinations and
improve reasoning capabilities in a variety of domains. (Gao et al., 2023; Su et al., 2024;
Shypula et al., 2023). However, it has seen limited usage in coding domains as it is difficult
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Figure 2: Overview of inference methods tested: self-reflection (left) prompts the model to
review execution feedback to revise its generation; retrieval (right) uses the problem and
a draft solution to query relevant semantic and episodic knowledge to generate a more
informed final solution.

to pinpoint what types of knowledge is useful in aiding code generation. We note that
when solving problems, humans tend to recall either task-specific, established algorithms,
facts, and concepts about the domain, or past experiences and generalizations from solving
previous, similar problems relative to the problem at hand. This represents semantic
knowledge, and episodic knowledge respectively (Sumers et al., 2023). Inspired by this, we
curate two setups we aptly name semantic retrieval and episodic retrieval, and instantiate
the semantic knowledge store as a competitive programming textbook, and the episodic
knowledge store as the bank of USACO problems and solutions not currently being solved.

Semantic Knowledge Store We use the cp-algs textbook (https://cp-algorithms.com),
which contains 30 human-written chapters on algorithmic concepts specifically targeted
to the USA Computing Olympiad. Chapters contain English text as well as code snippets.
Entire chapters barely fit within the context limit of GPT-4: therefore when lower context
models (like GPT-3.5), or multiple types of knowledge are incorporated, we truncate the
retrieved chapter to fit within the context length.

Episodic Knowledge Store We simulate a setup where the model has seen all other prob-
lems in the USACO set except for the current one it is solving, simulating a k-fold evaluation
that holds out one problem at a time: this allows us to maximally investigate the potential
of retrieval on the relatively small dataset (we obtain similar results with a more traditional
train-test split, as detailed in Appendix A. For each ”seen” problem, its corresponding
problem description, english solution, and python solution code is concatenated together to
form documents to retrieve over. We tune over the number of problems to retrieve, p, and
find that p = 2 is optimal for GPT-4, and p = 1 is optimal for GPT-3.5 and thus report these
numbers. Full details can be found in Appendix C.5.

Retrieval Query Ablations on retrieval queries indicate that the most effective retrieval
query utilizes the current problem description, as well as an initial solution attempt con-
taining code and english explanation. This allows accurate retrieve relevant algorithm
descriptions from the underlying retrieval corpus, as solely utilizing the problem descrip-
tions does not allow retrieval over algorithmic keywords. We do not count this initial
generation as an attempt as it does not get evaluated by our local judge. Additional details
on ablation experiments can be found in Appendix C.3.

Setup Models are prompted with the problem description, and first generate an initial
solution to be used in the retrieval query. This initial solution, along with the problem de-
scription, is fed into a BM25 retrieval function, and the highest ranking document is inserted
into the context to aid the real solving process. Prompts can be found in Appendix C.7.
We additionally note that retrieval-based methods and reflection methods are orthogonal
and can be sequentially applied. Thus, we test settings combining various combinations of
retrieval types, as well as retrieval combined with reflection.
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Technique GPT-3.5 GPT-4

Zero-shot 0.59 8.70

Reflexion 0.97 12.38
Semantic Retrieval 2.04 10.26
Episodic Retrieval 5.49 14.33

Semantic + Episodic 6.76 12.54
Semantic + Reflexion 2.64 11.82
Episodic + Reflexion 8.79 20.20

Semantic + Episodic + Reflexion 7.52 18.05

Figure 3: Pass@1 Performance of Reflexion and Retrieval based methods on USACO.

Evaluation All methods are evaluated Pass@1.For self-reflection, we adapt methodology
in Shinn et al. (2023), and provide only the execution results of the exposed sample test
cases for models to reflect over. GPT-3.5 and GPT-4 were used for initial experiments: future
work will involve expanding results on open source models.

4.3 Results

We summarize model performances under each setting in table 4.2. Combining episodic
retrieval and reflexion maximizes performance gains by well over doubling the performance
of zero-shot GPT-4. We condense key findings below:

Episodic Retrieval works across model sizes, unlike Reflexion. We find that the ability
to self-reflect effectively is an emergent property of stronger models, consistent with (Shinn
et al., 2023; Chen et al., 2023). However, both semantic and episodic retrieval are still
effective, with episodic retrieval even causing GPT-3.5 to approach GPT-4’s zero-shot
performance. This is likely because self-reflection relies on the internal model’s strength to
reason over sparse, binary reward signals. Retrieval, on the other hand, allows models to
reference existing reasoning and code snippets, requiring less intrinsic model capabilities.
Our findings thus corroborate Li et al. (2023a), where LMs can understand much more
complex competitive programming solutions than they can produce.

Episodic Retrieval and Reflexion have strong synergy. Episodic Retrieval reaches new
maximums when combined with Reflexion, but not with Semantic Retrieval. We find that
for GPT-4, 70.2% of newly solved problems (relative to zero-shot) with semantic retrieval
are also newly solved by episodic retrieval. It provides one possible explanation as to why
combining the two may decrease performance: the additional knowledge provided by our
implementation of semantic retrieval trades off against its long contexts, which current
LLMs are known to be struggle with (Liu et al., 2024). In contrast, only 45.9% of newly
solved problems with Reflexion overlap with episodic retrieval, pointing to better synergy.

Platinum problems remain unsolved. Although solve rates on gold problems grow
significantly, platinum problems remain unsolved, posing an open challenge for future
inference techniques and foundation models. For more details, refer to Appendix C.2

Performance gains are not due to memorization. A competing hypothesis for the success
of retrieval is that adding retrieved solutions increases memorization effects for the problem
currently being evaluated, rather than the model critically engaging with the content of the
retrieved content itself. To test for this, we remove critical sections of retrieved solutions
and find significant drops in performance. In addition, qualitative analysis indicates no
significant overlap in generated and official published solutions. Full experiment details
can be found in Appendix C.1.

4.4 Qualitative Analysis

We focus our qualitative analysis on the improvements of retrieval, our individually
strongest inference-time technique. Here, we isolate 3 examples of problems newly solvable
with RAG in figure 4.

7



Published as a conference paper at COLM 2024

Figure 4: Three examples of problems previously unsolved, but solved with retrieval.

Example 1: Models can borrow reasoning about similar problem environments Here,
both the central problem and the most relevant retrieved problem requires models to parse
and operate over parenthesis-only strings. The retrieved solution + code thus provides
models with sample reasoning over this tricky and mistake-prone problem environment,
allowing models to generate more accurate code.

Example 2: Models can adopt existing code structure and algorithms In this example,
both problems require the use of Dijkstra’s shortest path algorithm. However, the initial
implementation contains many small, nuanced bugs due to its attempts to push the entire
solution into a single function. This not only makes the code less modular, but it also leaves
greater room for error. With episodic retrieval, we see the model grounding itself in the
retrieved content, borrowing significant code structure and algorithmic reasoning of the
retrieved problem.

Example 3: Models can utilize algorithmic concepts and reasoning from texts The given
problem here requires finding a shortest path within a grid containing roadblocks. We see
that the model fetches a textbook chapter on lowest common ancestor algorithms, which
covers tangentially applicable graph traversal techniques to the problem. Interestingly
enough, it does not fetch the chapter on Dijkstra’s algorithm for shortest paths, the algorithm
utilized in the official problem analysis. Visual inspection of the Dijkstra’s chapter indicated
that the chapter was short and light on details, thus receiving a low retrieval score. This
highlights the flexibility of the retrieval query to adapt to low quality documents, finding
suitable replacements.

5 Human-in-the-loop Guidance

In benchmark evaluations, we found a wide diversity in the distribution of model errors:
from problem misunderstandings, to subtle off-by-one implementation issues. To further
examine how far a model is from solving a given problem, we perform a human study via
an interactive “tutoring setup.”
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Setup A human provided with problem solutions engages in a multi-turn exchange with
a model, at each step providing feedback on mistakes under a specified ruleset. Notably,
the human is not allowed to provide specific fixes rather only general instructions (e.g.,
“you are using the wrong algorithm” or “this code may result in index out of bounds”). The
full interaction ruleset is detailed in Appendix D.1. The model is then prompted to fix its
mistakes: we allow a maximum of 1 code execution to simulate a pass@1 setup, a maximum
of 5 code generations to limit conversation length, and a total of 3 attempts per problem.

LLM

Human

Problem
Description 

Interactive Tutoring

Draft 1
def Dynamic(args): 

...

Feedback 1
Per-day cost is 1, not

K...

LLM

Draft 2
OK, I see my error.
def Dynamic(args): 

...

... ...Human

Feedback 2
Better. You have an

index out of bounds...

Judge + Tests

Judge + Tests

...

Feedback 1
Per-day cost is 1, not

K...

Model % Solved

GPT-3.5 0%
GPT-3.5 + tutoring 0%
GPT-4 0%
GPT-4 + tutoring 86.7%

Figure 5: Human-in-the-loop in-
teractive “tutoring” setup: GPT-
4 successfully incorporates feed-
back while GPT-3.5 does not.

Results Surprisingly, we find that on a small set of 15
problems1 on which GPT-3.5 and GPT-4 achieve zero pass
rate using all of the above inference-time methods, the
human-in-the-loop setup raises GPT-4 performance from
0% to 86.7% (13 problems solved) while not improving
GPT-3.5 performance from 0%. Qualitatively, GPT-3.5 con-
sistently hallucinates fixes irrelevant to feedback, while
GPT-4 pinpoints accurate algorithmic fixes in response to
minimalistic feedback. A sample trajectory is provided
in Appendix D.2.

Problem-level Analysis We found that GPT-4 was more
responsive to blanket feedback that its algorithm or un-
derstanding of an environment concept was incorrect,
and more capable of landing on the correct strategy in its
second attempt, whereas GPT-3.5’s retries are typically
similarly unhelpful. For example, GPT-4 lands on the cor-
rect overall solution strategy after being instructed to not
use a heap in “Hungry Cow,” and similarly after being
instructed not to use DP in “The Lost Cow.” In “Photo-
shoot,” it suffices to ask GPT-4 “Is there any way we can
use the inherent ordering of the cows and directly calcu-
late the number of steps necessary?” to correct it from a
simulation to a precomputed parity-counting approach;
explaining this to GPT-3.5 does not yield any progress.
Similarly, GPT-4 is also able to follow instructions on spe-
cific fixes, unlike GPT-3.5. For example, on “The Lost Cow,” GPT-4 tends to calculate the
next position using the current position instead of the initial position – if given this fact, it
produces the correct implementation. 2

Discussion Our human-in-the-loop results highlight that the full capabilities of models
may not be captured by solve rate; among two models failing on a given problem, one
may be one correction away from a fully correct solution, whereas the other may funda-
mentally misunderstand the problem scenario. This motivates better evaluation metrics
beyond execution success (pass@k). Another perspective on our results is that GPT-4 has
further reasoning capabilities that may be “unlocked” by human-level corrective feedback,
highlighting the need for better methods to generate such feedback.

6 Conclusion

In this paper, we introduce the USACO benchmark for rigorously evaluating code language
models on tasks involving grounded ad hoc reasoning and novel algorithmic thinking.
We observe that foundation models previously shown to excel at basic coding tasks like
HumanEval (Chen et al., 2021) perform poorly zero-shot in these more challenging scenarios,

113 bronze, 1 silver, 1 gold. We focused on bronze problems since models performed poorly on
harder difficulties.

2See https://benshi34.github.io/blog/2024/human-in-the-loop/ for more trajectories and anal-
ysis for different difficulty levels.
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but that providing models with task-specific knowledge stores can well over double zero-
shot performance. We hope that our evaluation of current models’ limitations and findings
on the effectiveness of semantic and episodic knowledge help lay groundwork for its
integration into future models and language agents alike.

7 Reproducibility

We release all data and code at https://princeton-nlp.github.io/USACOBench/, as
well as human in the loop trajectories at https://benshi34.github.io/blog/2024/
human-in-the-loop/. We advise others to use isolated execution environments when repro-
ducing experiments as the generated code is not validated before execution.
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A Evaluating with a train-test split

As described in Section 4.2, our episodic retrieval evaluation setting involves holding
out one problem at a time (i.e., retrieves from the solutions of all other test problems),
with the intention of maximally capturing the effect of retrieval on the relatively small
dataset available. We expect that this does not lead to any significant dataset leakage across
evaluation, as problems are highly independent and ad hoc, with little solution logic shared
by even problems of the same algorithm type.

Technique GPT-3.5 GPT-4

Zero-Shot (7B) 0.795 8.87
Reflexion (7B) 0.89 11.92

Episodic Retrieval 2.65 9.93
Reflexion + Episodc Retrieval 4.64 14.57

Table 4: A standard train-test split shows similar results across inference-time techniques,
compared to our leave-one-out episodic retrieval setting.

Nonetheless, we re-ran the majority of the inference-time techniques against a setting with
a more standard train-test split. We standardize problem difficulty by generating the same
difficulty distribution as the entire USACO set. As shown in Figure A, as expected, the
standard split (train n=200, test n=107) yields similar conclusions with slightly reduced
retrieval effectiveness. This is because the amount of problems retrieved over is reduced,
thus on average decreasing problem similarity between retrieved problems and the problem
currently being solved. Additionally, we re-tune p (number of retrieved passages) on this
train set only, and recover the same optimal values as the leave-one-out setting.

B USACO Details

B.1 USACO Zero-Shot Prompt

Figure 6: USACO zero-shot prompt. We find that asking the model to describe its reasoning
+ pseudocode first lead to more parse-able and human-interpretable generations, making
qualitative analysis greatly simplified. It is also beneficial for utilization in retrieval queries,
as it contains more algorithmic keywords. However, it does not boost the performance sig-
nificantly: the choice to prompt it to do the extra steps for zero-shot performance evaluation
is more for interpretability benefits.
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B.2 USACO Zero-Shot Error Breakdown

Model Wrong Ans. TLE MLE Runtime Syntax + Other

CodeLlama (7B) 61.10 5.05 0 9.89 23.85
DeepSeek Coder (7B) 80.62 10.04 0 6.82 1.86
Claude-3-Sonnet 55.70 24.42 0 14.66 2.61
GPT-3.5 77.42 7.02 0 13.37 1.82
GPT-4 44.15 38.20 0 10.41 1.18

Table 5: Error distributions zero-shot, in %. TLE indicates time limit exceeded, and MLE
indicates memory limit exceeded. ”Other” generally represents errors stemming from
models outputting incorrectly formatted code.

B.3 USACO Zero-Shot Performance By Difficulty

Model Bronze Silver Gold Platinum

CodeLlama (7B) 0.41 0 0 0
DeepSeek Coder (7B) 2.30 0 0 0

GPT-3.5 1.46 0 0 0
Claude-3-Sonnet 5.69 1.00 0 0

GPT-4 19.11 3.10 0.16 0

Table 6: Zero-shot performance of models by difficulty
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B.4 USACO Qualitative Analysis

Figure 7: An overview of some common, general errors on bronze problems, as easier
problems generally have only 1-2 points of failure and is simpler to analyze.
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B.5 Sample Generation

Figure 8: Sample zero-shot generation by GPT-4
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C Inference Time Methods

C.1 Addressing Memorization

We address memorization by performing ablations on the corpus in table C.1: if retrieved
problem solutions were spurring regurgitation of memorized solutions to the current prob-
lem, removing core parts of the retrieved solutions should not dwindle this effect. However,
we find that it does: utilizing solely the problem description only retains 3.18% of the
performance, suggesting that models are truly utilizing the reasoning of similar problems
provided in context to inform their generations.

Retrieval Content % of maximum performance

PD 3.18
PD + Code + English Solution 100

Table 7: Ablations on episodic corpus content. PD represents problem description.

C.2 Per Difficulty Pass Rates

Model Bronze Silver Gold Platinum

Reflexion 24.39 5 4.76 0
Semantic Retrieval 19.72 6.0 1.98 0
Episodic Retrieval 26.22 9.5 3.6 0
Episodic Retrieval + Reflexion 35.77 14.0 6.35 0

Table 8: GPT-4 Pass@1 rates for inference methods per difficulty: We report incrementally
superior methods.

C.3 Retrieval Query Ablations

Query Content Performance

PD 13.36
PD + Attempted Code Solution 14.33

PD + Attempted English + Code Solution 14.98

Table 9: Ablations on retrieval query, PD represents problem description. Performance
measured in pass@1. We find that generally most retrieval queries are somewhat effective,
however, including code attempts as well as english solution performs the best, as it allows
the maximum matching of relevant keywords between compared documents.
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C.4 Environment duplicates

Figure 9: A list of problems that were not originally solved zero-shot, but is solved with
episodic retrieval, as well as a list of the relevant problems retrieved by problem id, listed in
decreasing order of relevancy.

Problem environment duplicate retrieval We want to quickly point out here that USACO
reuses problem environments occasionally. For example, there exists both gold and platinum
versions of the problem ”pareidolia,” both asking users to develop different algorithms
regarding to strings. Although the problems utilize the same problem environment, the
algorithms and reasoning behind the solutions differ greatly, making it still a nontrivial task
to solve the problem even given the solutions to the alternate problem. Additionally, we
find that only 33% of newly solved problems contain one or more retrieved content that fall
into this category: the full list can be found in figure 9. The rest retrieve problems that are
completely separate.

C.5 Hyperparameter Tuning

Problems Retrieved Pass@1

p = 1 13.03
p = 2 14.33
p = 3 13.11
p = 4 12.38

Table 10: Episodic retrieval hyperparameter tuning: Here we tune over how many problems
to retrieve over on the USACO307 dataset. GPT-4-turbo-1106 was used in all experiments
here. We see that p = 2 is optimal in pass@1. We did not test resampling for greater numbers
of p to conserve budget as performance in pass@1 was already dropping.
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Reflexion Iterations Pass@i

i = 0 8.7
i = 1 10.75
i = 2 12.28
i = 3 12.38
i = 4 12.38
i = 5 12.40

Table 11: Reflection iteration tuning: Here we tune over how many times to iterate. All
experiments were done with GPT-4. i = 0 indicates the original solve rate without any
reflection. We see that solve rates remain relatively static after 3 iterations.

C.6 Reflexion Prompt

Figure 10: Reflexion prompt

C.7 Retrieval Prompts

Figure 11: Episodic Retrieval Prompt
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Figure 12: Semantic Retrieval Prompt

Figure 13: Reflexion + Retrieval Prompt
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D Human-in-the-loop

D.1 Human-in-the-loop Prompt

Figure 14: The prompt given to human tutors when interacting with the model. We manually
inspect trajectories to ensure rules were followed. To limit the amount of conversation, we
only allow the model to generate code 5 times: however, the code is only allowed to be
executed once to simulate a pass@1 setup.

D.2 Human-in-the-loop sample trajectory
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Figure 15: Sample human tutoring trajectory on the problem 786 bronze the lost cow
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