
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Graph Principal Flow Network for Conditional Graph Generation
Anonymous Author(s)

ABSTRACT
Conditional graph generation is crucial and challenging since the
conditional distribution of graph topology and feature is compli-
cated and the semantic feature is hard to capture by the generative
model. In this work, we propose a novel graph conditional genera-
tive model, termed Graph Principal Flow Network (GPrinFlowNet),
which enables us to progressively generate graphs from low- to
high-frequency components. Our GPrinFlowNet effectively cap-
tures the subtle yet essential semantic features of graph topology,
resulting in high-quality generated graph data given a required
condition. Extensive experiments and ablation studies showcase
that our model achieves state-of-the-art performance compared to
existing conditional graph generation models.

CCS CONCEPTS
• Do Not Use This Code→ Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Graph generation, conditional graph generation, GFlowNet

ACM Reference Format:
Anonymous Author(s). 2018. Graph Principal Flow Network for Conditional
Graph Generation. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The task of conditional graph generation is crucial in various do-
mains such as automatic compound discovery, drug design, and
more [19, 34, 36, 37, 39]. It requires one to generate graph data con-
ditioned on a specific graph label, e.g. graph property, or category.
In general, a graph data with 𝑛 node is defined as G ≜ (X,A, 𝑦),
where X ∈ X ⊂ R𝑛×𝑑 is the node feature matrix, A ∈ A ⊂ R𝑛×𝑛 is
the graph adjacency matrix, and 𝑦 ∈ Y is the graph label. Suppose
the target graph distribution of interest is G, and each graph is
sampled from G ∼ G, the goal of conditional generation is to learn
a generative model 𝑔(·; ·) : (X × A) × Y ↦→ (X × A), such that
for each graph label ∀𝑦 ∈ Y, the distribution of 𝑔(𝝐 ;𝑦) approx-
imates the conditional graph distribution G|𝑦 well, where 𝝐 is a
noise sampled from a known prior 𝜋 .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

While there is a considerable amount of work and literature
dedicated to unconditional graph generation [44], the field of con-
ditional graph data generation is relatively understudied. The main
challenge in conditional graph data generation arises from two
factors: Firstly, the conditional graph distribution is highly com-
plicated, as the relationship between graph features and topology
varies significantly across different graph labels. Secondly, condi-
tional datasets typically consist of fewer data points, leading to a
higher demand for the effectiveness of the learning model due to
data scarcity.

Admittedly, unconditional models can be transformed into con-
ditional generators by integrating a graph label embedding mod-
ule, similar to conditional generative vision models [11]. How-
ever, existing unconditional graph generation models have inherent
limitations, making them unsuitable for unconditional generation.
Likelihood-based models, like [6, 24, 35], estimate the likelihood
function of the underlying graph data distribution to generate sam-
ples. Yet, these models struggle with complex graph structures and
computational burdens, making them less suitable for conditional
generation. Another class, diffusion-based models like [15, 22, 28],
illustrates the state-of-the-art performance in unconditional gen-
eration by denoising graph data through reverse diffusion SDE.
However, noise insertion in the diffusion process can corrupt se-
mantic information, hindering their ability to capture crucial graph
label modes. Hence, diffusion-based models fall short of conditional
generation models.

In this work, we leverage graph spectral theory to enhance the
learning of subtle yet crucial semantic features. Instead of fitting
the likelihood function or recovering the graph from uniform noise,
our approach involves progressive graph generation from low to
high-frequency components. The low-frequency components corre-
spond to the smallest principal components of the graph Laplacian
matrix. This step-by-step approach enables coarse-to-fine learning
of the graph. As shown in Figure 1, despite a minor difference in
the connection between the clusters, the upper and bottom graphs
have distinct graph labels with different topological properties and
connectivity. The low-frequency component (on the right) success-
fully discriminates the connectivity, while the diffusion process
results in a completely blurred adjacency matrix, failing to distin-
guish between them. Thus, the low-frequency component is an
ideal starting point for unconditional graph generation as it has a
smoother distribution, is easier to learn, and captures subtle yet
crucial semantic features of the graph label.

Building upon recent advancements in generative modeling,
specifically the Generative Flow Network (GFlowNet) [3, 4], we
propose a novel framework called Graph Principal Flow Net (GPrin-
FlowNet). This framework facilitates conditional graph generation
by employing a step-by-step coarse-to-fine approach. In the lan-
guage of GFlowNet, this progressive generation can be understood
as a Markov chain, where the 𝑘-th intermediate state represents
the graph adjacency reconstructed from the 𝑘 lowest principal com-
ponents of the graph Laplacian. Unlike GFlowNet, which focuses

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Data degeneration: forward diffusion

Conditional Generation: reversed diffusion

(a). Conventional diffusion process on graphs.

Data degeneration: finer to coarser

(b). Our proposed Graph Principal Flow Network.

Conditional Generation: forward transition

Step 200/1000 Step 400/1000 Step 800/1000 Step 2/10 Step 4/10 Step 8/10

Figure 1: A comparison between the degeneration of graph adjacency across different data degeneration states of diffusion-based
models and our GPrinFlowNet. The low-frequency component (green box) proficiently captures the subtle yet crucial patterns
that are discriminative to graph labels.

(d) Sample data

(a) Sample data

(e) Conditional generation by GDSS (f) Conditional generation by GPrinFlow

(b) Conditional generation by GDSS (c) Conditional generation by GPrinFlow

Category 1

Category 2

Category 1

Category 2

Figure 2: Non-cherry-picked random samples from the testing set as well as samples generated by GPrinFlow (ours) and GDSS
[16] under different graph categories. For GDSS, we use the authors’ released code to generate the samples. The red frame
indicates a sample is not correctly generated according to the class category, while the green frame indicates a sample is
correctly generated.

on discrete probabilistic modeling, GPrinFlowNet simultaneously
learns the continuous-valued graph feature and eigenvalues of the
graph Laplacian.

In Figure 2, we show a visualization of the conditional genera-
tion result of our model and the GDSS, which is a graph generation

model based on graph diffusion. On the left side, we show the syn-
thetic graph datasets with 2 categories: community graphs with
and without connections between communities, and graphs with
and without loops. The visualization demonstrates that our method

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Graph Principal Flow Network for Conditional Graph Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

can capture the important graph topology information and gen-
erate differentiative graphs according to the graph category as a
generation condition.

Our contributions are listed as follows.

• We discover the spectral conditional graph generation pro-
cedure through an eigenvalue perspective. The procedure
of graph generation can be formulated as a process of gen-
erating low-frequency terms, which describe the overall
properties of the graph, to high-frequency terms, which
describe the nuance of the graph properties.

• We propose the Graph Principal Flow Network (GPrinFlow)
(Section 4), which has high performance and is computation-
ally efficient for graph conditional generation. Extensive
experiments show that our model achieves state-of-the-art
performance compared to other types of graph generation
methods.

2 RELATEDWORK
2.1 Graph Generation
In recent years, there have been several advanced graph gener-
ation strategies proposed, as outlined in [24, 28, 35, 38, 39] and
[16]. Among these, GraphRNN [38] and GraphVAE [35] generate
nodes and edges sequentially with validity checks, while GAN-
based models [6], VAE-based models [24], flow-based models [39],
score-based models [16, 28] generate the entire graph in an inte-
grative way and exhibit high computational efficiency due to their
node permutation-invariant property, and spectral-based model
[22] generates the graph via spectral diffusion by reconstructing
the graph eigenvalues through the score-based diffusion.

Different from existing graph generation methods, our proposed
GPrinFlowNet networks adopt a novel generation method based on
the GFlowNet. Compared to graph diffusion models such as GDSS
[16], our model can generate graphs according to the conditional
faster and more accurately.

2.2 Molecule Generation
Molecule generations are often coherent with graph generation
methods, which aim at generating valid meaningful molecules with
high efficiency and uniqueness. Molecules inherently adopt a graph-
like structure with atoms as nodes interconnected by bonds, repre-
sented as edges, making them an optimal input for deep learning
models. These molecular graphs are commonly characterized us-
ing three matrices: node feature matrix, edge feature matrix, and
adjacency matrix. Initially stored in the SMILES format for ease of
access, molecules are converted to molecular graphs using tools
such as RDKit [17].

Earlier molecule generation approaches utilized sequence-based
generative models, representing molecules as SMILES strings. How-
ever, these methods often faced challenges from long dependency
modeling and had issues with validity since SMILES strings don’t
guarantee absolute correctness. As a result, recent studies have pre-
dominantly adopted graph representations for molecule structures.
A variety of graph generative models have been introduced, em-
ploying methods like variational auto-encoders [21, 35], generative

adversarial networks [1, 6], normalizing flows [23, 34], and graph
diffusion models [12, 16].

2.3 Generative Flow Networks
The generative flow networks (GFlowNets) are a stream of gen-
erative models which reside at the intersection of reinforcement
learning, deep generative models, and energy-based probabilistic
modelling. GFlowNets allow neural nets to model distributions over
data structures like graphs [3] to sample from them as well as to
estimate all kinds of probabilistic quantities (like free energies, con-
ditional probabilities on arbitrary subsets of variables, or partition
functions) which otherwise look intractable.

In recent times, there has been a significant uptick in efforts
focused on leveraging and enhancing the capabilities of GFlowNet.
[8] proposed the DAG-GFlowNet which adopts GFlowNet as an
alternative to MCMC for approximating the posterior distribution
over the structure of Bayesian networks, given a dataset of obser-
vations. [30] proposed the GAFlowNet which applies intermediate
rewards by intrinsic motivation to tackle the exploration problem in
sparse reward environments. [41] proposed the MLE-GFN based on
GFlowNets, which provides a means for unifying training and infer-
ence algorithms, and provides a route to shine a unifying light over
many generative models. In addition, GFlowNets have been applied
to various domains to enhance the model’s generation capability
on specific domains. For instance, [13] applied GFlowNets on the
biological sequence design; [27] adopted GFlowNets for molecule
design and drug discovery. In this work, we propose the GPrinFlow,
a novel methodology grounded in GFlowNets, revolutionizes with
graph conditional generation from a spectral perspective. Our pro-
posed method significantly enhances the conditional generation on
various types of graphs.

3 PRELIMINARIES
In this paper, we consider graph generation on an undirected and
weighted graph𝐺 , which is an ordered triple𝐺 ≜ (𝑉 , 𝐸,𝑊), where
𝑉 ≜ {𝑣𝑖 }𝑛𝑖=1 is a finite set of vertices, 𝐸 ⊂ 𝑉 ×𝑉 is the set of edges,
and𝑊 : 𝐸 ↦→ R+ is a weight function that assigns non-negative
values to each edge. The adjacency matrix A ∈ R𝑛×𝑛 is then given
by A[𝑖, 𝑗] ≜𝑊 (𝑣𝑖 , 𝑣 𝑗) · I{(𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸}, where I{·} is the indicator
function. The degree of node 𝑣 is 𝑑 (𝑣) ≜ ∑

𝑢:(𝑢,𝑣) ∈𝐸𝑊 (𝑢, 𝑣) and
the degree matrix is D ≜ diag(𝑑 (𝑣1), ..., 𝑑 (𝑣𝑛)) ∈ R𝑛×𝑛 . The nor-
malized Laplacian matrix is L ≜ I − D−1/2AD−1/2. [𝑛] denotes
{1, ..., 𝑛}.

From the conditional graph generation perspective, we consider
the graph generation on G ≜ (X,A), where X ∈ R𝑛×𝑑 represents
node features. We focus on the class-conditional graph generation:
use class labels 𝑦 as the generation constraints, and the entire
generation objective can be formulated as

Ĝ = 𝑓𝜃 (𝑦,G0), (1)

where Ĝ ≜ (X̂, Â), and (X̂, Â) are the generated feature matrix
and graph weighted adjacency matrix. 𝑓𝜃 (·) denotes the learnable
generation function, and G0 denotes a randomly sampled initial
state of the graph. The objective is to generate Ĝ|𝑦 that is similar
to G|𝑦 from the test set.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.1 Fundamentals of GFlowNet
Several pivotal developments in generative modeling have led to the
emergence of Generative Flow Network (GFlowNet), an advanced
model for probabilistic inference [3, 4, 8, 30, 42, 43]. GFlowNet
employs a reward function 𝑅(x) ∈ R+ to efficiently sample data
x from the data space X. Notably, GFlowNet’s sampling protocol
follows a Markovian trajectory 𝜏 = (s0, s1, ..., s𝑛), where s0 is the
initial state, s𝑖 is the 𝑖-th hidden state, and s𝑛 is the terminating
state with s𝑛 = x. It’s important to note that each hidden state
s𝑖 is derived from the state space S, which may differ from the
data space X. Furthermore, the sampling trajectories of GFlowNet,
denoted as T , form a Directed Acyclic Graph (DAG), with each
node representing a hidden state s ∈ S. As highlighted in [4], the
sampling process of GFlowNet is governed by the flow function 𝐹 (·).
This function ensures that the measure of incoming trajectories at
each hidden state is equal to the measure of outgoing trajectories.
Our primary objective is to learn a flow function 𝐹 (·) such that the
total mass of trajectories terminating at x is proportional to the
reward 𝑅(x), mathematically expressed as

∑
𝜏 :s𝑛=x 𝐹 (x) = 𝑅(x).

About the work of Bengio et al. [3], three principal supervisions
have been introduced for training GFlowNets. These encompass
the flow matching condition [3] as outlined in the same study, the
detailed balance condition [4], and the trajectory balance condition
[25]. All of these conditions aim to depict the conservation law of
flow mass from different levels of granularity. A definition for the
flow matching condition is∑︁

s𝑖−1

𝐹𝜽 (s𝑖−1, s𝑖) =
∑︁
s𝑖+1

𝐹𝜽 (s𝑖 , s𝑖+1), (2)

where 𝐹𝜽 (s, s′) ≜
∑
(s,s′) ∈𝜏 𝐹𝜽 (𝜏) is the learnable edge flow func-

tion. It promotes equality between the masses of incoming and
outgoing edge flows. The detailed balanced condition is given by

𝐹𝜽 (s𝑖)𝑃𝐹,𝜽 (s𝑖+1 |s𝑖) = 𝐹𝜽 (s𝑖+1)𝑃𝐵,𝜽 (s𝑖 |s𝑖+1), (3)

where 𝑃𝐹,𝝓 and 𝑃𝐵,𝝓 represent the forward and backward transition
probabilities. It aims to achieve equal mass for forward and back-
ward transitions between two consecutive states. To further accel-
erate the convergence and improve the performance of GFlowNet,
the trajectory balance objective extends the detailed balance cri-
terion to an entire trajectory by matching the forward and back-
ward trajectory probabilities 𝑃𝐹,𝜽 (𝜏) ≜

∏𝑛−1
𝑖=0 𝑃𝐹,𝜽 (s𝑖+1 |s𝑖) and

𝑃𝐵,𝜽 (𝜏) ≜ 𝑅 (𝑥)
𝑍𝜽

∏𝑛−1
𝑖=0 𝑃𝐵,𝜽 (s𝑖 |s𝑖+1), where 𝑍𝜽 is a learnable nor-

malization constant.

4 METHODOLOY
4.1 Coarse-to-fine Graph Generation Preserves

Semantic Information
In this section, we perform empirical analysis to demonstrate that
the coarse-to-fine (low- to high-frequency) graph generation cur-
riculum effectively preserves semantic information, i.e. correlation
between the graph and its label. While the semantic information
attenuates as the graph coarsens, it persists along the whole gen-
eration process. On the contrary, the diffusion graph generation
curriculum where the semantic information eventually vanishes.
Therefore, the coarse-to-fine graph generation turns out to be a
highly effective graph conditional generative diagram.

(a) Mutag (b) Enzymes (c) IMDB-binary

Figure 3: Experiments on the mutual information between
different graph frequency components to the graph label.
The x-axis is the percentage of eigenvalues used in the
dataset, and the y-axis is themutual information 𝐼 (Â, 𝑦). Each
blue point in the figure represents a result of each frequency
component. The green curve shows the mutual information
of our proposed method in selecting graph frequency com-
ponents from low to high.

As illustrated in Figure 1, the conditional graph generation pro-
cess can be well achieved by a spectral generation process in a step-
by-step eigenvalue generation manner. The underlying research
question would be: what kind of step-by-step eigenvalue genera-
tion process can enhance conditional graph generation? Intuitively,
conditional generation is distinct from unconditional generation,
since the condition plays an important role in guiding the gener-
ation process. Therefore, a high mutual information between the
eigenvalue generation steps to the condition is essential in guiding
the model to generate the desired graphs. Different eigenvalue has
different effects on the graph connectivity, topology, complexity,
etc, and these properties further relate to the graph category. Some
eigenvalues have high correlations to the graph categories while
some others have low correlations. Thus, in the step-by-step eigen-
value generation process, the eigenvalue generation sequence is
important in designing effective conditional graph generation, and
our objective is to obtain an effective generation sequence that
has high mutual information with the graph labels throughout the
generation process.

Starting from this point onward, we conduct a series of experi-
ments to analyze the mutual information of the inner step of our
spectral generation process to the generation conditions (i.e. graph
labels). We take three commonly used graph classification datasets
including Mutag [26], Enzymes [26] and IMDB-binary [26] datasets
as examples. We randomly select different percentages of the fre-
quency components (i.e. eigenvalues) ranging among [10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%], and we follow MINE [2] to
compute the mutual information 𝐼 (Â, 𝑦), where each Â is the re-
construction using the selected combination of the frequency com-
ponents. We further elaborate on the experiment details in the
Appendix.

We show the corresponding results in Figure 3. Each point in the
plot represents an individual experiment that evaluates the mutual
information of a randomly sampled graph set at the corresponding
percentage of the eigenvalues, and the green lines show selecting
the smallest 𝑥% of the eigenvalues, and 𝑥% refers to the value on
the x-axis. We can observe that for a fixed 𝑥% eigenvalues selection,
selecting the smallest eigenvalues can achieve higher mutual infor-
mation to the graph labels compared to other selection methods

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Principal Flow Network for Conditional Graph Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(i.e. the blue dots in the figure). Such a phenomenon corresponds to
the observation shown in Figure 1 and Figure 2, where generating
graphs through a coarser-to-finer strategy can enhance the gener-
ation performance. Related observations have been found in [40]
that small eigenvalues contain important information that is highly
graph-topology dependent. Intuitively, generating components that
are highly related to the condition instruction (i.e. graph labels)
can provide good guidance for the following generation steps. At
the coarser level, we generate the low-frequency/low-resolution
components that highly correlate to the graph categories, and in
the following steps, the generation steps aim to provide fine details
at the higher frequencies/resolution, to make the graph more clear
and interpretable.

4.2 Graph Principal Flow Network
Inspired by the findings in Section 4.1, we propose a low- to high-
frequency graph generation algorithm. Assume that each condi-
tional graph instance G|𝑦 is generated by a Markov sample path
𝜏 ≜ (s0 |𝑦, ..., s𝑛−1 |𝑦,G|𝑦), and our ultimate goal is to sample in
proportion to the fidelity of G|𝑦. To facilitate the learning process
of the transition policies between each successive hidden state
(s𝑖 |𝑦, s𝑖+1 |𝑦), we introduce the following Graph Principal Flow Net-
work. We define the graph Laplacian associated to the adjacency
matrix A as L ≜ D − A, where D is the diagonal degree matrix
defined by D[𝑖, 𝑖] ≜ ∑𝑛

𝑗=1 A[𝑖, 𝑗]. We denote the eigen decompo-
sition of L as L = U𝚲U⊤, where 𝜆𝑖 ≜ 𝚲[𝑖, 𝑖] is the 𝑖-th smallest
eigenvalue, and U[:, 𝑖] is the corresponding eigenvector.

Definition 1 (Graph Principal Flow Network). Suppose 𝑑 (·, ·) :
(X × A) × (X × A) ↦→ R+ is a graph discrepancy score, T is the
Graph Principal trajectory space, where each trajectory 𝜏 ∈ T is
defined by

𝜏 ≜ (s0 |𝑦, ..., s𝑛−1 |𝑦,G|𝑦), ∀𝑦 ∈ Y, (4)

G|𝑦 ≜ (X,A) |𝑦, s𝑛−1 |𝑦 ≜ (X𝑛−1,A𝑛−1) |𝑦. (5)

We assume that the transition between each (s𝑖 |𝑦, s𝑖+1 |𝑦) follows

(s𝑖+1 |s𝑖 , 𝑦) ∼ 𝑃𝐹,𝜽 (s𝑖+1 |s𝑖 ;𝑦), (6)
(s𝑖 |s𝑖+1, 𝑦) ∼ 𝑃𝐵,𝜽 (s𝑖 |s𝑖+1;𝑦). (7)

Here, 𝑃𝐹,𝜽 and 𝑃𝐵,𝜽 represent the learnable forward and backward
transition kernels, which are parameterized by 𝜽 . Then a Graph
Principal Flow Network is defined as (𝑑,T , 𝑃𝐹,𝜽 , 𝑃𝐵,𝜽), if there
exists a sequence of normalizers {𝑍𝑖 }𝑛𝑖=1 ⊂ R such that

𝑃𝐹,𝜽 (s𝑖+1 |s𝑖 ;𝑦)
𝑅(s𝑖 |𝑦)
𝑍𝑖

= 𝑃𝐵,𝜽 (s𝑖 |s𝑖+1;𝑦)𝑅(s𝑖+1 |𝑦)
𝑍𝑖+1

,

𝑅(s𝑖 |𝑦) ≜ exp(−𝑑 ((X𝑖 ,A𝑖), (X,A(𝑖)))) (8)

Here, A(𝑖) ∈ A is the 𝑖-th level granularity reconstruction of A,
that is

A(𝑖) [𝑘, 𝑗] ≜ (U𝚲𝑖U⊤) [𝑘, 𝑗] · 𝛿𝑘 𝑗 , 𝚲𝑖 ≜ diag(𝜆1, ..., 𝜆𝑖 , 0, ..., 0),

where the self-loop in A is omitted. X𝑖 denotes the feature at each
step 𝑖 . At the 𝑖-th step, our model is expected to generate both the
complete feature matrix X and the 𝑖-the level granularity recon-
struction of A.

GPrinFlowNet stands apart from the standard GFlowNet in two
crucial ways: Firstly, each hidden state of GPrinFlowNet resides
within a continuous-valued space. Secondly, as demonstrated in
equation 8, at the 𝑖-th intermediate step, the distribution of the
generated graph adjacency aligns with the distribution ofA(𝑖) at the
corresponding granularity level. This alignment effectively steers
GPrinFlowNet to generate conditional graph data incrementally,
from lower to higher frequency components.

We propose an effective parameterization and training objective
to train a GPrinFlowNet. Specifically, we parameterize the forward
and the backward transition kernels as learnable Gaussian distribu-
tions, i.e.

𝑃𝐹,𝜽 (s|s′;𝑦) ≜ 𝑁 (s; 𝜇𝐹,𝜽 (s′, 𝑦,U), Σ𝐹,𝜽 (s′, 𝑦,U)), (9)

𝑃𝐵,𝜽 (s|s′;𝑦) ≜ 𝑁 (s; 𝜇𝐵,𝜽 (s′, 𝑦,U), Σ𝐵,𝜽 (s′, 𝑦,U)), (10)

where the mean and covariance are learned by a multi-layer Graph
Convolutional Network (GCN) [7]. Now that the transition prob-
abilities have explicit expression, we can train the GPrinFlowNet
by minimizing the following Graph Principal Trajectory Balance
objective, which is defined as

L(𝜽 ;𝜏) ≜
𝑛−1∑︁
𝑖=0

(
log

𝑍𝑖,𝜽
∏𝑖−1

𝑗=0 𝑃𝐹,𝜽 (s𝑗+1 |s𝑗 ;𝑦)

𝑅(s𝑖 |𝑦)
∏𝑖−1

𝑗=0 𝑃𝐵,𝜽 (s𝑗 |s𝑗+1;𝑦)

)2

, (11)

where the normalizers {𝑍𝑖,𝜽 }𝑛𝑖=1 are trainable scalars.
In practice, for a labeled training sample (X,A, 𝑦) with 𝑛 nodes,

we first calculate the graph Laplacian L and the associated eigen-
vector U and eigenvalue matrix 𝚲. Starting from an initial state
𝑠0 = (X0,Λ0), we leverage the forward transition kernel 𝑃𝐹,𝜽
to generate a trajectory of graph samples (s0, ..., 𝑠𝑛), such that
s𝑖+1 ∼ 𝑃𝐹,𝜽 (s𝑖+1 |s𝑖 , 𝑦). Meanwhile, we compute the backward tran-
sition probability using the backward transition kernel 𝑃𝐵,𝜽 . Finally,
we calculate the graph principal trajectory balance objective by
equation 8, and we update the neural parameters 𝜽 via gradient
descent. The training process is detailed in Algorithm 1.

4.3 Conditional Generation with GPrinFlowNet
With a well-trained GPrinFlowNet, we can efficiently generate
high-quality conditional graph data in a maximum of 𝑛 steps, sub-
stantially fewer than the steps required by diffusion-based models.
The conditional generation process is detailed in Algorithm 2.

5 EXPERIMENTS
5.1 Conditional Graph Generation
Baselines and datasets.We compare our method with the state-of-
the-art graph generation method, including graph diffusion meth-
ods such as GDSS [15], EDP-GNN [29]; VAE-based methods such
as GraphVAE [35]; auto-regressive models such as GraphAF [34],
GraphDF [23], and GraphRNN [38]. Although these existing meth-
ods focus on unconditional generation, we effectively modify and
extend them for conditional generation by integrating a graph la-
bel embedding module, mirroring the approach we employed in
GPrinFlowNet. We adopt the AIDS [26] which contains 2 categories,
Enzymes [33] which contains 6 categories, and Synthie datasets
[9] which contains 4 categories for graph conditional generation.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Generation results on the conditional graph generation datasets. We report the MMD distances between the test datasets
and generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources that
take more than 10 days or are not applicable due to memory issues.

AIDS Enzymes Synthie

Real, |𝑉 | ≤ 95, |𝐶 | = 2 Real, |𝑉 | ≤ 125, |𝐶 | = 6 Synthetic, |𝑉 | ≤ 100, |𝐶 | = 4

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

GraphRNN [38] 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317
GraphAF [34] 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205
GraphDF [23] 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068
GraphVAE [35] 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953
GNF [20] 0.224 0.159 0.018 0.133 - - - - - - - -
EDP-GNN [28] 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226
GDSS1 [15] 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169

Ours 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056

Table 2: Conditional generation performance on QM9 with class label Δ𝜖 - Gap between 𝜖HOMO and 𝜖LUMO (Top), and QM9 with
class label 𝛼 - Isotropic polarizability (bottom). The best results in the first three metrics are highlighted in bold.

Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.72 0.059 10.423 100.00 94.10 88.17
GraphAF+FC 74.37 0.053 10.536 100.00 88.14 86.48
GraphDF 82.69 0.108 14.315 100.00 97.31 98.11

GraphDF+FC 93.74 0.121 14.846 100.00 98.79 98.20

One-shot

MoFlow 91.95 0.059 8.645 100.00 98.47 94.19
EDP-GNN 47.30 0.032 5.642 100.00 99.69 87.82
GraphEBM 8.13 0.096 10.404 100.00 97.61 96.27

GDSS 95.20 0.028 5.417 100.00 98.48 86.94
CDGS 99.41 0.021 3.326 100.00 96.79 69.73

GPrinFlowNet (Ours) 99.72 0.012 2.798 100.00 98.87 94.71

Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.47 0.063 11.057 100.00 94.51 88.63
GraphAF+FC 74.17 0.055 11.147 100.00 88.64 86.59
GraphDF 82.89 0.117 14.781 100.00 97.62 98.10

GraphDF+FC 93.48 0.134 14.482 100.00 98.58 98.54

One-shot

MoFlow 91.12 0.064 8.793 100.00 98.65 94.72
EDP-GNN 47.74 0.037 5.884 100.00 99.25 86.58
GraphEBM 8.03 0.104 10.527 100.00 97.90 97.01

GDSS 95.58 0.029 5.863 100.00 98.46 86.27
CDGS 99.44 0.023 3.741 100.00 96.83 69.62

GPrinFlowNet (Ours) 99.74 0.013 2.925 100.00 98.85 94.72

More details of the datasets and the evaluation metric are included
in Appendix A.

Results and analysis. Following the graph generation evalua-
tion setting [15], for each category, we adopt the same train versus
test split ratio as [15]. We measure the maximum mean discrepancy
(MMD) to compare the distributions of graph statistics between the
same number of generated and test graphs under each category,

including the degree, the clustering coefficient, and the number
of occurrences of orbits with 4 nodes [15, 38]. Then we report the
average of the degree, clustering coefficient, and the number of
occurrences among each category in Table 5. We also report the
mean MMD as our overall evaluation score under the Avg. column.
As shown in Figure 5, our proposed method turns out to be the best
performance among the state-of-the-art graph generation baselines.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Graph Principal Flow Network for Conditional Graph Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 1 Training GPrinFlowNet
Input: labeled training data S, the forward and the backward
transition networks 𝑃𝐹,𝜽 and 𝑃𝐵,𝜽 , the conditional and normal-
ized average feature matrix X̄|𝑦, learning rate 𝛼 > 0.
Output: 𝑃𝐹,𝜃 , 𝑃𝐵,𝜃 , {𝑍𝑖,𝜽 }𝑛𝑖=1
while not converge do

Sample data (X,A, 𝑦) ∼ S
(U,𝚲) ← EigenDecomp(A)
Initialize 𝜽 and s0 ← (X0, 0), X0 ∼ 𝑁 (X̄|𝑦, I)
L𝜽 ← 0, L𝐹 ← 0, L𝐵 ← 0
for 𝑖 = 0 to 𝑛 − 1 do

s𝑖+1 ∼ 𝑃𝐹,𝜽 (·|s𝑖 ;𝑦) {Forward transition}
L𝐹 ← L𝐹 + log 𝑃𝐹,𝜽 (s𝑖+1 |s𝑖 ;𝑦)
L𝐵 ← L𝐵 + log 𝑃𝐵,𝜽 (s𝑖 |s𝑖−1;𝑦)
L𝜽 ← L𝜽 + (log𝑍𝑖,𝜽 − log𝑅(s𝑖 |𝑦) + L𝐹 − L𝐵)2

end for
𝜽 ← 𝜽 − 𝛼∇L𝜽

end while
return (𝑃𝐹,𝜃 , 𝑃𝐵,𝜃 , {𝑍𝑖,𝜽 }𝑛𝑖=1)

Algorithm 2 Conditional Generation with GPrinFlowNet
Input: training data S, a target label 𝑦, the forward and the back-
ward transition policy networks 𝑃𝐹,𝜽 and 𝑃𝐵,𝜽 , the conditional
and normalized average eigenvector matrix Ū|𝑦 and feature ma-
trix X̄|𝑦, a temperature hyperparameter 𝜎 > 0.
Output: a plausible conditional graph data (X̂, Â)
Sample U ∼ 𝑁 (Ū|𝑦, 𝜎), X0 ∼ 𝑁 (X̄|𝑦, 𝜎)
Initialize s0 ← (X0, 0,U)
for 𝑖 = 0 to 𝑛 − 1 do

s𝑖+1 ∼ 𝑃𝐹,𝜽 (·|s𝑖 , 𝑦) {Forward transition}
end for
(X̂, Â) ← (X𝑛,U𝚲𝑛U⊤)
return (X̂, Â)

Specifically, compared to GDSS which is one of the state-of-the-
art graph generation methods based on the diffusion method, our
model achieves a 2.4× and 3.0× lower MMD score, demonstrating
the effectiveness of our model.

5.2 Conditional Generation on Molecules
Besides generic graph generation, our model can also generate or-
ganic molecules. We test our model with a well-known molecule
dataset: QM9 [32]. Following previous works [16, 23], the molecules
are kekulized by the RDKit library [17] with hydrogen atoms re-
moved.We split the molecules to 2 categories according to 𝜇 - dipole
moment, 3 categories according to Δ𝜖 - gap between 𝜖LUMO and
𝜖HUMO, and 2 categories according to 𝛼 - isotropic polarizability.
The split is according to the histogram of the corresponding mole-
cule properties shown in Figure 4. We show the details of splitting
molecule categories in the Appendix.

Similar to conditional graph generation, we train our model and
generate molecules according to the labels under each category. We
evaluate the quality of 10,000 generated molecules with validity
and validity w/o check, Frechet ChemNet Distance (FCD) [31],

(a) (b) (c)

Figure 4: The histogram of each graph properties: (a). dipole
moment (b) gap between 𝜖LUMO and 𝜖HUMO and (c) isotropic
polarizability of QM9 dataset.

Neighborhood subgraph pairwise distance kernel (NSPDK)
MMD [5], Uniqueness [15], and Novelty [15]. FCD computes the
distance between the testing and the generated molecules using
the activations of the penultimate layer of the ChemNet. (NSPDK)
MMD computes the MMD between the generated and the testing
set which takes into account both the node and edge features for
evaluation. Generally speaking, FCD measures the generation qual-
ity in the view of molecules in the chemical space, while NSPDK
MMD evaluates the generation quality from the graph structure
perspective. Besides, following [16], we also include the validity
w/o correction as another metric to explicitly evaluate the quality
of molecule generation before the correction procedure. It computes
the fraction of the number of valid molecules without valency cor-
rection or edge resampling over the total number of generated
molecules. In contrast, validity measures the fraction of the valid
molecules after the correction phase.
BaselinesWe compare our model with the state-of-the-art mole-
cule generationmodels. The baselines include SOTA auto-regressive
models: GraphAF [34] is a flow-based model, and GraphDF [23]
is a flow-based model using discrete latent variables. Following
GDSS [16], we modify the architecture of GraphAF and GraphDF
to consider formal charges in the molecule generation, denoted as
GraphAF+FC and GraphDF+FC, for fair comparisons. For the one-
shot model, we include MoFlow [39], which is a flow-based model;
EDP-GNN [28] and GDSS [28] which are both diffusion models;
and CDGS [12] which is a diffusion method based on discrete graph
structures.
ResultsWe show the conditional generation results according toΔ𝜖
- 𝜖LUMO and 𝜖HUMO in Table 2 (top) and𝛼 - isotropic polarizability in
Table 2 (bottom). GPrinFlowNet achieves the highest performance
under most of the metrics. The highest scores in NSPDK and FCD
show that GPrinFlowNet can generate molecules that have close
data distributions to the real molecules in both the chemical space
and graph space. Especially, our model outperforms GDSS and
CDGS which are state-of-the-art graph diffusion methods, in most
of the metrics, verifying that our proposed GPrinFlowNet is not
only suitable for generic graph generation but also advisable for
molecule designs.

5.3 Unconditional Graph Generation
We also conduct unconditional graph generation experiments with
the aforementioned state-of-the-art graph generation methods on
synthetic datasets: (1) Community-small [38] (12 ≤ 𝑁 ≤ 20):
contains 100 small community graphs. (2) Enzymes [33]. (10 ≤

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

𝑁 ≤ 125): contains 578 protein graphs which represent the protein
tertiary structures of the enzymes from the BRENDA database. (3)
Grid [38] (100 ≤ 𝑁 ≤ 400): contains 100 standard 2D grid graphs.
As shown in Table 3, our GPrinFlowNet still achieves state-of-the-
art generation results on the unconditional generation task.

5.4 Generation Speed Comparison
Furthermore, we compare the graph generation efficiency of some
representative aforementioned methods in Table 4. We record and
report the graph generation time (in seconds) for generating 100
samples. Our GPrinFlowNet achieves the highest generation speed
among all existing methods. The fast speed of our model’s genera-
tion capability originates from the fast-forward generation process
of our model. Specifically, compared to GDSS which is based on the
graph Gaussian diffusion, our model achieves 26× and 58× faster,
due to the generation mechanism by GPrinFlowNet and the lower
generation steps required.

Community-small Enzymes Grid
Avg. MMD↓ Avg. MMD↓ Avg. MMD↓

DeepGMG [18] 0.523 - -
GraphRNN [38] 0.080 0.043 -
GraphAF [34] 0.133 1.073 -
GraphDF [23] 0.070 0.922 -
GNF [20] 0.170 - -
GraphVAE [35] 0.623 0.730 0.846
EDP-GNN [28] 0.074 0.124 0.340
SubspaceDiff [14] 0.056 0.051 0.076
WSGM [10] 0.044 0.048 0.051
GDSS [15] 0.046 0.046 0.062

Ours 0.037 0.039 0.038

Table 3: Generation results on the unconditional graph
datasets. We report the MMD distances between the test
datasets and generated graphs. The best results are high-
lighted in bold (the smaller the better). Hyphen (-) denotes
out-of-resources that take more than 10 days or are not ap-
plicable due to memory issues.

Dataset GraphAF GraphDF EDP-GNN GDSS Ours

Community-small 357 2.47𝑒3 368 72 2.7
Enzymes 596 7.58𝑒3 665 128 10.2
Grid 5.83𝑒3 6.42𝑒4 7.58𝑒3 1.75𝑒3 30.89

Table 4: Graph generation time comparison (in seconds) for
generating 100 graphs under the methods’ default setting.

5.5 Ablation Studies
We further conduct ablation studies on how the intermediate su-
pervision (e.g. aligning the distribution of the 𝑖-th intermediate
output to the distribution of the reconstruction version of the adja-
cency matrix at the 𝑖-th granularity level) affects the performance
of GPrinFlowNet. The results presented in Table 5 underscore the

importance of imposing supervision to enable GPrinFlowNet to ef-
fectively learn the distribution of the reconstructed graph adjacency
matrix at various granularity levels.

Supervision scheme AIDS Enzymes Synthie

No supervision 0.037 0.075 0.086
Supervision per 10 steps 0.035 0.061 0.072
Supervision per 5 steps 0.032 0.054 0.066
Supervision per 2 steps 0.030 0.049 0.058
Supervision in every step 0.029 0.045 0.056

Table 5: Ablation studies on the supervision scheme. We
report themeanMMDover distributions of degree, clustering
coefficient, and the number of orbits, for conditional graph
generation.

To understand the effect of the generation sequence of the graph
spectral components on the overall conditional generation perfor-
mance, we conduct extra experiments to evaluate three different
generation procedures: (1) random sequence eigenvalue generation:
we apply our GPrinFlowNet to randomly generate the graph eigen-
values, and sort the eigenvalues from smallest to largest in the final
step; (2) large-to-small generation: we use our GPrinFlowNet to
generate the eigenvalues from largest to smallest, which is a reverse
manner of our current proposed method; (3) small-to-large genera-
tion: our currently proposed method. We show the corresponding
results in Table 6. From the results, we can observe that randomly
generating graph eigenvalues is the worst among the three meth-
ods. Although generating eigenvalues in a large-to-small manner
performs much better than random sequence eigenvalue genera-
tion, but it still performs worse than our proposed small-to-large
generation procedure.

Supervision scheme AIDS Enzymes Synthie

Random sequence eigenvalue generation 0.091 0.124 0.108
Large-to-small eigenvalue generation 0.047 0.068 0.075
Small-to-large eigenvalue generation 0.029 0.045 0.056

Table 6: Ablation studies on the eigenvalue generation proce-
dure. We report the mean MMD over distributions of degree,
clustering coefficient, and the number of orbits.

6 CONCLUSION
In this paper, we address the challenge of conditional graph gen-
eration using the Graph Principal Flow Network (GPrinFlowNet).
Through its progressive coarse-to-fine graph generation process,
GPrinFlowNet excels at capturing the subtle yet crucial seman-
tic features, making it the state-of-the-art conditional generation
model.

REFERENCES
[1] Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua

Bengio. 2018. Defactor: Differentiable edge factorization-based probabilistic
graph generation. arXiv preprint arXiv:1811.09766 (2018).

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Graph Principal Flow Network for Conditional Graph Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua
Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural
estimation. In International conference on machine learning. PMLR, 531–540.

[3] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua
Bengio. 2021. Flow network based generative models for non-iterative diverse
candidate generation. Advances in Neural Information Processing Systems 34
(2021), 27381–27394.

[4] Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and
Emmanuel Bengio. 2021. GFlowNet Foundations. CoRR abs/2111.09266 (2021).
arXiv:2111.09266 https://arxiv.org/abs/2111.09266

[5] Fabrizio Costa and Kurt De Grave. 2010. Fast neighborhood subgraph pairwise
distance kernel. In ICML.

[6] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model
for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018).

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Proceedings of the 30th International Conference on Neural Information Processing
Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA,
3844–3852.

[8] Tristan Deleu, António Góis, Chris Chinenye Emezue, Mansi Rankawat, Simon
Lacoste-Julien, Stefan Bauer, and Yoshua Bengio. 2022. Bayesian Structure
Learning with Generative Flow Networks. In The 38th Conference on Uncertainty
in Artificial Intelligence. https://openreview.net/forum?id=HElfed8j9g9

[9] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten
Borgwardt. 2013. Scalable kernels for graphs with continuous attributes. Ad-
vances in neural information processing systems 26 (2013).

[10] Florentin Guth, Simon Coste, Valentin De Bortoli, and Stéphane Mallat. 2022.
Wavelet Score-Based Generative Modeling. ArXiv abs/2208.05003 (2022).

[11] Jonathan Ho and Tim Salimans. 2021. Classifier-Free Diffusion Guidance. In
NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications.
https://openreview.net/forum?id=qw8AKxfYbI

[12] Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Conditional diffusion
based on discrete graph structures for molecular graph generation. arXiv preprint
arXiv:2301.00427 (2023).

[13] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks,
Bonaventure FP Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael
Kilgour, Dinghuai Zhang, et al. 2022. Biological sequence design with gflownets.
In International Conference on Machine Learning. PMLR, 9786–9801.

[14] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. 2022.
Subspace Diffusion Generative Models. In ECCV.

[15] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. 2022. Score-based generative model-
ing of graphs via the system of stochastic differential equations. In International
Conference on Machine Learning. PMLR, 10362–10383.

[16] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. 2022. Score-based Generative
Modeling of Graphs via the System of Stochastic Differential Equations. arXiv
preprint arXiv:2202.02514 (2022).

[17] Greg Landrum et al. 2016. RDKit: Open-Source Cheminformatics Software.
(2016). http://www.rdkit.org/

[18] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324
(2018).

[19] Huafeng Liu, Liping Jing, Jingxuan Wen, Pengyu Xu, Jiaqi Wang, Jian Yu, and
Michael K Ng. 2021. Interpretable Deep Generative Recommendation Models. J.
Mach. Learn. Res. 22 (2021), 202–1.

[20] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. 2019. Graph
normalizing flows. In NeurIPS.

[21] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. 2018.
Constrained graph variational autoencoders for molecule design. Advances in
neural information processing systems 31 (2018).

[22] Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. 2022. Fast Graph Generative
Model via Spectral Diffusion. arXiv preprint arXiv:2211.08892 (2022).

[23] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. 2021. Graphdf: A discrete flow model
for molecular graph generation. In ICML. 7192–7203.

[24] Tengfei Ma, Jie Chen, and Cao Xiao. 2018. Constrained generation of semantically
valid graphs via regularizing variational autoencoders. In NeurIPS.

[25] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Ben-
gio. 2022. Trajectory balance: Improved credit assignment in GFlowNets. In
Advances in Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?
id=5btWTw1vcw1

[26] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for
learning with graphs. arXiv preprint arXiv:2007.08663 (2020).

[27] Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym
Korablyov, Michael M Bronstein, and Yoshua Bengio. 2022. Evaluating general-
ization in gflownets for molecule design. In ICLR2022 Machine Learning for Drug
Discovery.

[28] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and
Stefano Ermon. 2020. Permutation invariant graph generation via score-based
generative modeling. In AISTATS. 4474–4484.

[29] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and
Stefano Ermon. 2020. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Artificial Intelligence and
Statistics. PMLR, 4474–4484.

[30] Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio.
2023. Generative Augmented Flow Networks. In The Eleventh International
Conference on Learning Representations. https://openreview.net/forum?id=urF_
CBK5XC0

[31] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter
Klambauer. 2018. Fréchet ChemNet distance: a metric for generative models for
molecules in drug discovery. Journal of chemical information and modeling 58, 9
(2018), 1736–1741.

[32] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole
Von Lilienfeld. 2014. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific data 1, 1 (2014), 1–7.

[33] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt,
Gregor Huhn, and Dietmar Schomburg. 2004. BRENDA, the enzyme database:
updates and major new developments. Nucleic acids research 32, suppl_1 (2004),
D431–D433.

[34] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian
Tang. 2020. Graphaf: a flow-based autoregressive model for molecular graph
generation. arXiv preprint arXiv:2001.09382 (2020).

[35] Martin Simonovsky and Nikos Komodakis. 2018. Graphvae: Towards generation
of small graphs using variational autoencoders. In Artificial Neural Networks
and Machine Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27. Springer,
412–422.

[36] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu,
and Wen Su. 2019. MCNE: an end-to-end framework for learning multiple
conditional network representations of social network. In KDD. 1064–1072.

[37] Yiding Yang, Zunlei Feng, Mingli Song, and Xinchao Wang. 2020. Factorizable
graph convolutional networks. In NeurIPS. 20286–20296.

[38] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive models. In
ICML. 5708–5717.

[39] Chengxi Zang and Fei Wang. 2020. MoFlow: an invertible flow model for gener-
ating molecular graphs. In KDD. 617–626.

[40] Hector Zenil, Narsis A Kiani, and Jesper Tegnér. 2015. Numerical investigation
of graph spectra and information interpretability of eigenvalues. In Bioinfor-
matics and Biomedical Engineering: Third International Conference, IWBBIO 2015,
Granada, Spain, April 15-17, 2015. Proceedings, Part II 3. Springer, 395–405.

[41] Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. 2022.
Unifying generative models with gflownets. arXiv preprint arXiv:2209.02606
(2022).

[42] Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. 2022.
Unifying Generative Models with GFlowNets. ArXiv abs/2209.02606 (2022).

[43] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron
Courville, and Yoshua Bengio. 2022. Generative Flow Networks for Discrete Prob-
abilistic Modeling. In Proceedings of the 39th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(Eds.). PMLR, 26412–26428. https://proceedings.mlr.press/v162/zhang22v.html

[44] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and
Shu Wu. 2022. A survey on deep graph generation: Methods and applications.
arXiv preprint arXiv:2203.06714 (2022).

9

https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
https://openreview.net/forum?id=HElfed8j9g9
https://openreview.net/forum?id=qw8AKxfYbI
http://www.rdkit.org/
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=5btWTw1vcw1
https://openreview.net/forum?id=urF_CBK5XC0
https://openreview.net/forum?id=urF_CBK5XC0
https://proceedings.mlr.press/v162/zhang22v.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A COMPLETE EXPERIMENT RESULTS AND
EXPERIMENT DETAILS

We follow the evaluation setting of [15, 38]: we split the data into
train/test set according to [15, 38], and sample the same number
of graphs as in the test set. Then, we use the maximum mean dis-
crepancy (MMD) to compare the distributions of graph statistics
between the same number of generated and test graphs. We follow
[15, 38] to measure the distribution difference of degree, clustering
coefficient, and the number of occurrences of orbits with 4 nodes.
We further average the MMDs and present them in the fourth
column under each dataset. We present the complete experiment re-
sults for conditional graph generation in Table 7, and unconditional
graph generation in Table 8.

The average results of the Enzymes dataset reported in the GDSS
original paper is 0.032. However, the best result we can obtain using
the author’s released code and checkpoint with careful fine-tuning
is 0.046.

In our experiments in Figure 3, we randomly select different
percentages of the frequency components (i.e. eigenvalues) ranging

among [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%]. For example,
10% eigenvalues means that we randomly select 10% eigenvalues
from the graph and use those eigenvalues to compute Â. Then we
follow MINE [2] to compute the mutual information 𝐼 (Â, 𝑦), and
we plot the result 𝐼 (Â, 𝑦) as one dot under the 𝑥 = 0.1 in the figure.

A.1 Additional Experiments on Conditional
Molecule Generations

For conditional molecule generations, we use 𝛼 - isotropic polar-
izability, Δ𝜖 - the gap between 𝜖HOMO and 𝜖LOMO, and 𝜇 - dipole
moment as the category indicators. For isotropic polarizability, we
set the 𝛼 ≤ 78 as one category and 𝛼 > 78 as the second category.
For gap between 𝜖HOMO and 𝜖LOMO, we set Δ𝜖 ≤ 6 as one category,
6 < Δ𝜖 ≤ 8 as the second category and Δ𝜖 > 8 as the third category.
For dipole moment, we set 𝜇 ≤ 3 one category and 𝜇 > 3 as the
other category.

We show the molecule conditional generation results with 𝜇 -
dipole moment as a graph category indicator in Table 9.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Graph Principal Flow Network for Conditional Graph Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

AIDS Enzymes Synthie

Real, |𝑉 | ≤ 95, |𝐶 | = 2 Real, |𝑉 | ≤ 125, |𝐶 | = 6 Synthetic, |𝑉 | ≤ 100, |𝐶 | = 4

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

GraphRNN [38] 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317
GraphAF [34] 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205
GraphDF [23] 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068
GraphVAE [35] 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953
GNF [20] 0.224 0.159 0.018 0.133 - - - - - - - -
EDP-GNN [28] 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226
GDSS1 [15] 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169

Ours 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056

Table 7: Generation results on the conditional graph generation. We report the MMD distances between the test datasets and
generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources that
take more than 10 days or are not applicable due to memory issues.

Community-small Enzymes Grid

Synthetic, 12 ≤ |𝑉 | ≤ 20 Real, 10 ≤ |𝑉 | ≤ 125 Synthetic, 100 ≤ |𝑉 | ≤ 400

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

DeepGMG [18] 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN [38] 0.080 0.120 0.040 0.080 0.017 0.043 0.021 0.043
GraphAF [34] 0.18 0.200 0.020 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF [23] 0.060 0.120 0.030 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE [35] 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF [20] 0.200 0.200 0.110 0.170 - - - - - - - -
EDP-GNN [28] 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340
SubspaceDiff [14] 0.057 0.098 0.012 0.056 0.037 0.099 0.018 0.051 0.124 0.013 0.090 0.076
WSGM [10] 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051
GDSS1 [15] 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062

Ours 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 0.056 0.042 0.015 0.038

Table 8: Generation results on the unconditional graph datasets. We report the MMD distances between the test datasets and
generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources that
take more than 10 days or are not applicable due to memory issues.

Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.48 0.049 9.372 100.00 94.51 88.83
GraphAF+FC 74.72 0.053 9.248 100.00 88.64 86.59
GraphDF 82.47 0.094 13.489 100.00 97.62 98.10

GraphDF+FC 93.31 0.114 13.476 100.00 98.58 98.54

One-shot

MoFlow 91.58 0.053 8.024 100.00 98.65 94.72
EDP-GNN 47.72 0.030 5.081 100.00 99.25 86.58
GraphEBM 8.91 0.087 9.970 100.00 97.90 97.01

GDSS 95.76 0.022 5.047 100.00 98.46 86.27
CDGS 99.17 0.017 3.024 100.00 96.83 69.62

GPrinFlowNet (Ours) 99.79 0.011 2.627 100.00 98.64 93.75

Table 9: Conditional generation performance on QM9 with class label 𝜇 - dipole moment. The best results in the first three
metrics are highlighted in bold.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Generation
	2.2 Molecule Generation
	2.3 Generative Flow Networks

	3 Preliminaries
	3.1 Fundamentals of GFlowNet

	4 Methodoloy
	4.1 Coarse-to-fine Graph Generation Preserves Semantic Information
	4.2 Graph Principal Flow Network
	4.3 Conditional Generation with GPrinFlowNet

	5 Experiments
	5.1 Conditional Graph Generation
	5.2 Conditional Generation on Molecules
	5.3 Unconditional Graph Generation
	5.4 Generation Speed Comparison
	5.5 Ablation Studies

	6 Conclusion
	References
	A Complete Experiment Results and experiment details
	A.1 Additional Experiments on Conditional Molecule Generations

