Under review as a conference paper at ICLR 2025

LEARNING UTILITY-CALIBRATED ROUTING FOR
HIERARCHICAL MULTI-AGENTS IN PORTFOLIO
DECISION-MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how tool-using agents can make high-stakes decisions under
uncertainty and costs, with a focus on portfolio allocation. We intro-
duce a hierarchical agent with a learned router that dispatches market
contexts to specialized tools (e.g., event extractors, forecasters, options
pricers) and an allocator that turns probabilistic predictions into trades
under explicit risk and transaction constraints. Our training objective
couples proper scoring rules for probabilistic calibration with risk-sensitive
portfolio utility and cost regularization, yielding utility-calibrated predic-
tions that are natively decision-aware. To enable reliable offline assess-
ment, we derive a doubly-robust off-policy evaluation procedure tailored
to backtesting with market frictions, reducing bias and providing uncer-
tainty estimates. Across two challenging settings—options-only allocation
over large-cap technology names and multi-asset allocation in the U.S. con-
sumer sector—our approach delivers consistent gains in expected utility
and Sharpe, markedly improved probability calibration, and lower turnover
while satisfying risk and exposure constraints. The architecture is modular
and data-agnostic, enabling seamless integration of new tools and experts
while preserving end-to-end differentiability through the router and allo-
cator. We release code and reproducible benchmarks to support rigorous
evaluation of risk-aware, tool-using agents for financial decision-making and
beyond.

1 INTRODUCTION

Financial decision-making is an archetypal high-stakes setting for machine learning: ac-
tions are sequential, information is noisy, and costs and risk constraints dominate per-
formance (lonescu & Diaconital, [2023). Practitioners increasingly deploy tool-using sys-
tems—pipelines that combine event extractors, forecasters, option pricers, and optimiz-
ers—to turn market signals into trades. Yet such systems typically optimize intermediate
proxies rather than the downstream objective that truly matters: risk-sensitive utility sub-
ject to market frictions and constraints (Amant & Wood, [2005). As a result, predictions
are often miscalibrated precisely in regions that drive utility, routers dispatch to suboptimal
tools, and offline backtests can be biased due to policy mismatch and transaction costs.

Two gaps limit progress. First, current methods rarely couple probabilistic calibration
with decision-aware training, leaving a misalignment between “being right” and “trading
well.” Second, offline evaluation in finance is commonly based on naive backtesting ignores
confounding from different action policies and the role of market frictions (Brunnermeier
et al., |2012)), which leads to optimistic estimates and brittle deployment (Swaminathan &
Joachims) [2015). We need architectures and learning objectives that are explicitly utility
calibrated, and evaluation procedures that remain valid under off-policy data and costs.

We propose a hierarchical, tool-using agent for portfolio allocation with a learned router
and a differentiable allocator. The router maps each market context to one of multiple
specialized expert toolchains (e.g., news/event models, factor forecasters, options pricers).
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The allocator converts expert predictions into positions by maximizing a risk-sensitive util-
ity (e.g., mean—downside, entropic, or CVaR-regularized) under exposure, leverage, and
turnover constraints. We train the system end-to-end with a utility-calibrated objective that
couples strictly proper scoring rules (for probabilistic calibration) with the portfolio utility
and explicit cost regularization. Routing is trained with a temperature-controlled, differen-
tiable selection (e.g., Gumbel-Softmax) and a sparsity prior to encourage specialization.

To enable reliable offline assessment, we derive a doubly-robust off-policy estimator tai-
lored to financial backtesting with transaction costs and position limits. The estimator
combines a learned behavior model (propensity) with a value model, reducing bias under
policy mismatch and yielding confidence intervals suitable for model selection and abla-
tions. We validate on two realistic benchmarks: (i) allocation over large-cap technology
names and (ii) multi-asset allocation in the U.S. SP500 B Across both settings, our agent
consistently improves expected utility and Sharpe while lowering turnover and tightening
probability calibration. Our main contributions are four-fold: Utility-calibrated routing
architecture. We introduce a modular, hierarchical agent with a learned router over expert
toolchains and a differentiable, constraint-aware allocator. The entire system is trained end-
to-end to align probabilistic predictions with downstream portfolio utility. Decision-aware
learning objective with theory. We couple proper scoring rules with risk-sensitive utility
and explicit transaction-cost/turnover penalties, and provide analysis showing (i) calibra-
tion is concentrated in decision-critical regions and (ii) the objective is Fisher-consistent for
the target utility under mild conditions. Doubly-robust off-policy backtesting with
frictions. We derive an evaluation procedure for financial data that accounts for policy
mismatch and market frictions, yielding reduced-bias estimates and uncertainty quantifica-
tion suitable for model selection and hyperparameter tuning. Strong empirical results.
On the BigTech and US SP500 benchmarks, our method achieves higher expected utility
and Sharpe, improved calibration, and reduced turnover while satisfying risk exposure.

2 RELATED WORK

Classical approaches optimize risk-return trade-offs such as mean—variance (Markowitz &
Todd, 2000) and Black-Litterman priors (Kolm & Ritter, 2021), with extensions to coherent
risk (CVaR) and costs/constraints (Ahmadi-Javid, 2012)). Recent work integrates optimiza-
tion into learning via differentiable layers (Ma et all 2024) and “predict-then-optimize” or
decision-focused training (Kou et al., |2024), which tailor predictions to downstream objec-
tives. Probabilistic calibration and uncertainty. Proper scoring rules and calibration
techniques aim to align predictive distributions with outcomes (Zhang et al.2024); financial
adaptations consider quantiles and risk measures but seldom close the loop with portfolio
utility (Shi et al) [2025). Mixture-of-experts and routing. MoE learns conditional
computation via routers/gates (Liu et all [2024); differentiable hard selection uses Gumbel—
Softmax/Concrete relaxations (Abdulaziz et al., |2022)). Most MoE objectives target like-
lihood or accuracy rather than cost-sensitive decisions. RL and off-policy evaluation.
RL has been applied to trading/portfolio control (Filos| 2019; [Ye et al., 2020); however,
reliable offline evaluation is challenging. Doubly-robust and related OPE methods mitigate
bias in bandits/RL (Fakoor et al.l [2021]), yet practical adaptations to market frictions and
constraint-aware portfolios remain limited. Transaction cost modeling in execution portfolio
optimization is well studied (Dai et al., [2010)), but rarely integrated into OPE.

Building on predict-then-optimize consistency and convex surrogates for linear programs
(Elmachtoub & Grigas) 2022), our approach couples probabilistic calibration with a risk-
sensitive, cost-aware portfolio utility and introduces a learned router over specialized expert
toolchains. While differentiable optimization layers enable end-to-end training through con-
vex programs (Agrawal et al.,2019; Blondel et all 2020]), we instantiate a constraint-aware
allocator with turnover and exposure limits and integrate it with a utility-calibrated prob-
abilistic objective rather than training solely through KKT sensitivities. In the spirit of
decision-focused learning for structured decisions (Donti et all 2017; [Wilder et al. |2019)),

1SP500 Index measuring the performance of 500 large U.S. companies traded on American stock
exchanges.
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our downstream objective is a stochastic, risk-sensitive portfolio utility with explicit fric-
tions, and our upstream model is a router over heterogeneous financial tools (experts),
encouraging specialization via sparse, temperature-controlled gates. Relative to MoE with
load-balanced routing (Shazeer et al., |2017; [Fedus et al., [2022)), we optimize routing for
portfolio utility and calibration rather than token-level likelihood and allow experts to be
non-neural toolchains (e.g., event extractors, options pricers). Finally, inspired by doubly-
robust OPE (Dudik et al., 2011} |Jiang & Li, |2016; Thomas & Brunskill, |2016)), we adapt DR
estimators to financial backtesting with transaction costs and position constraints, yielding
uncertainty estimates suitable for model selection under realistic frictions. Across these
lines, two deficiencies persist for high-stakes financial decision-making: (i) learning objec-
tives either pursue predictive accuracy/calibration or optimize downstream portfolios, but
rarely jointly align calibrated probabilities with risk-sensitive, cost-aware utility; and (ii) of-
fline evaluation typically ignores policy mismatch and market frictions, leading to optimistic
and unstable backtests. Our work addresses this gap with a utility-calibrated, routed archi-
tecture that integrates probabilistic scoring with a differentiable, constraint-aware allocator,
and a doubly-robust OPE procedure tailored to frictional markets.

3 BACKGROUND AND PRELIMINARIES

Problem setup and notation. We consider discrete decision times t = 1:T over N trad-
able assets. The observable market context is x; € R%, and next-period log returns are
ri1 € RY. A portfolio w; € RY chosen at ¢ and held over (t,t+1] must satisfy budget,
leverage, exposure, and turnover constraints equation [l Transaction costs combine propor-
tional spread and temporary impact equation [2} the net one-step return is equation |3} We
evaluate risk-sensitive utilities equation [4| (entropic, mean—variance, CVaR), all compatible
with equation [I] and equation 2]

W, = {w 1Tw=1, |wlL <L, |w| <uw, Cw<d, |w—w_1]1 < Tmax} . (D

tey(w,wy_q) = O£T|W — Wt_1| + %(W — Wt_l)TAt (W - Wt—l)- (2)
Rt+1(W) = WTI‘t_;,_l — tCt(W, Wt—l)- (3)

U,(w) = —% logE[exp( — v Rip1(w)) | x¢], v >0, (4a)
U)\(W) = E[Rt+1(w) ’ Xt] — )\V&I‘[Rt_;,_l(w) | Xt] s A Z O, (4b)

USSR (w) = E[Ry41(w) | x¢] = nCVaRo( — Risa1(w) | %), 7>0, a€(0,1). (4o)

Learning objective and predictive components. Given data D = {(x;,rs11)}
and historical portfolios wtﬁ from a behavior policy 5, we learn a policy m mapping x; to
(my,wy) € {1:M} x W, to maximize expected utility equation We assume M specialized
experts {E,, }M_, that output py, (ri41 | X¢) or summary statistics (means p,,, covari-
ances Y,,, tail quantiles). A router gg(- | x;) induces the mixture predictive equation
differentiable hard selection uses Gumbel-Softmax at temperature 7 with optional top-K
gating (Shen et al.| [2021)).

M
po(repr [ X)) = ao(m | x¢) pg,, (ver1 | x1). (5)

m=1

Allocator and training loss. The allocator A, maps predictive objects to feasible port-
folios by solving a differentiable convex program that maximizes a concave surrogate of

equation 4| subject to equation |1} Given moments (g, it) implied by equation |5, we solve
€ U ( A ) , 6
Wy argvgé%{t Wi g, g, Xy (6)

with a mean—variance form ensuring convexity when costs equation [2| are included via equa-
tion [3] Training balances calibration and decision quality using a strictly proper score,
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e.g., NLL equation in the utility-calibrated objective equation where 2 enforces
sparsity /load-balancing and U(wy;x¢) is evaluated at the solution of equation

SNLL (Po,Tes1) = —logpe(resr | Xy). (7)

L4(0,0,9) = aS(po(- | x¢),req1) = (L= a) U(we; x¢) + Apar 2go (- | x¢)) - (8)
Evaluation reports expected utility, annualized Sharpe (Sharpel [1998|), average turnover,
drawdown, and calibration metrics (NLL/ECE/CRPS/Brier) (Nixon et al., 2019).

Off-policy evaluation and assumptions. For offline evaluation, let B(a | H;) be the
behavior over actions a; = (my, wy) and mp(a | H;) the learned policy. Importance ratios
equation |§| and a doubly-robust estimator equation (with costs included via equation
in Uyy1) provide statistically principled estimates.

_ mo(as | He)
pt = 75(% H,) 9)
T
Vor = %Z [V(Ht) + pt (U1 — Q(Hs, at))} . (10)

We assume: (A1) measurability of w; w.r.t. o(x;) and return/cost dependence as in equa-
tion [3]-equation 4} (A2) finite second moments and A; = 0 in equation [} (A3) S-mixing
for LLN/CLT of utility-derived metrics; (A4) positivity, i.e., 8(a | H:) > 0 whenever
mo(a | Hi) > 0, ensuring well-defined equation [9] and unbiased equation (A5) resource
limits: at most K < M experts active per step and a time budget < At for solving equa-
tion

4 METHODOLOGY

Tier 1 Agents []“[]U[] ol W &)
Information Group ae N
Feature Market Sentiment
Tier 2 Agents Alpha Auction Bus Calibr. Forca.

Analysis Group

Position Model Router Signal

Tier 3 Agents
Decision Group
Strategy  Optimizer Risk Execution

Figure 1: Overview of the three-tier multi-agent investment decision-making framework.

We implement a three-tier, tool-using, multi-agent system that maps market context x; to
(i) a routed set of predictive experts and (ii) a differentiable allocator that maximizes a
risk-sensitive utility under realistic frictions and constraints (Fig. [1). Tier 1 (Information)
transforms raw feeds (features, microstructure, news/sentiment) into an enriched state and
callable tools. Tier 2 (Analysis) is a cooperative multi-agent layer (not a pure MoE): pre-
dictive heads FE,, propose distributions for ry;1; a calibration agent applies strictly proper
scoring weighted by utility sensitivity; an auction/consensus layer aggregates beliefs and
negotiates routing gg(m | x;); additional agents handle position modeling, constraints, and
signal vetting. Tier 3 (Decision) turns predictions into executable targets: a convex al-
locator Ay maps forecasts and constraints to w, € W, while accounting for transaction
costs, turnover budgets, market impact, and self-financing; a strategy agent chooses utility
templates/horizons; a risk agent sets limits; and an execution agent maps targets to orders.
Training is end-to-end: a strictly proper score is coupled with downstream utility, and gra-
dients flow through A, to the router and Tier-2 agents, yielding regime-specialized experts,
calibrated forecasts, and feasible portfolios.
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Formalization: decision problem and constraints At each time ¢, given x; € R? and
previous holdings w;_1, the agent chooses t = (m¢, w;) with m; € {1:M} and w; € Wy:

We = {W € RN : 1TW =1, HW”l <L, |wl| < uy, Cw < da HW - Wt—1||1 < Tmax}' (11)

Transaction costs and net return are

ter(w, wi_p) = aT|Awt| + %Aw:AtAwt, Aw; =w —wy_1, Ay =0, (12)

Rt+1(W) = WTrtJrl - tCt(W, Wtfl). (13)

Utilities considered are

Uent (W | x¢)

—~logEfexp (= YRps1(w)) | x:], v >0, (14)
Unv(W | x¢) = E[R41(W) | x¢] — A Var[Ri41(W) | x¢], A >0, (15)
Ucvar,a(W | x¢) = E[Ri41(W) | x¢] —nCVaRo(—Ret1(W) | x¢), a € (0,1). (16)

We fit (6, {¢m }M_,,4) to maximize expected (discounted) utility subject to w; € W;.

m=1>
Model architecture Three-tier, tool-using, multi-agent system. Tier 1 converts raw
data into an enriched x;. Tier 2 (cooperative, not pure MoE) aggregates expert beliefs and
performs routing gg(m | x;) with calibration aligned to utility. Tier 3 comprises allocator
Ay, risk/strategy configuration, and execution; gradients propagate through the stack.

Router. A network fp : R? — RM produces logits z,,(x;) and temperature-controlled
gates

qo(m | x;) = softmax(z(TXt)> 7 exp ((zm(x¢) + gm)/7)

T3 exp ((5(x0) + 95)/7)

, gm ~ Gumbel(0, 1),

(17)
with straight-through hard selection § = one_hot(arg max,, g,,) in the forward pass and g
in the backward; we optionally restrict to top-K experts.

Experts. Each E,, outputs a predictive object for ryyi:

Pom (Tt | Xe) = N (%), S (x2)) 08 {ptn,i(Xe) 0 (%), 40 (x) Vg, (18)

with low-rank-plus-diagonal covariance ¥,, = LLT + diag(c?). The routed predictive is

either the mixture
M

po(Tes1 | x¢) = Z ao(m | X¢) Pg,, (T4 [ x¢) (19)

or its moment match p =73 qopbm, L=, q9Xm.

Allocator. Given (u,X) and costs, the allocator solves
wi(x;) € arg v{,%% U(W; p(xe), E(Xt)) — teu(w, wio1), (20)

e.g., Umv(w) =w'p—Aw'Ew. We implement equation @l as a QP or exponential-cone
program and differentiate via the KKT system (Zheng & Li, [2007)).

Learning objective We couple calibration with decision quality:
Li(0,¢,0) = aS(pa(- | x¢),1e41) — (1 — ) Uwi(xe); X¢) 4+ Aib Qoaa (@0 (- | x¢)) + Asp [|We ()12

+)\5tab||ll’|‘g+)‘turn|‘wt _Wt71H17 (21)
where S is strictly proper (Gaussian NLL or CRPS/Brier), and

M
Uoad = KL(41 | 3 Lrepaol-1x0)) or 83 |5 aolm [x) = 4| (22)
m=1 teB
For mixture Gaussians,

M
SNLL = —10g<z qo(m | Xt)N(rtJrl;/J’mvEm)) : (23)

m=1

A homotopy schedule oy = min(1, g + k¢) shifts emphasis from prediction to utility.
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Algorithm and optimization We train with mini-batches and warm-start equation
from w;_;. Temperature 7 is annealed to sharpen routing; load balancing prevents expert
collapse; utilities and scores are normalized for comparable scale; solvers stop early on KKT
residuals; gradients are clipped; optimization uses AdamW with warmup/cosine decay (Zhou
et al.2024). Feature/target normalization, covariance shrinkage, and a turnover curriculum
(tightening Tyayx) improve stability.

Implicit differentiation sketch. For the QP maxy, —%WTHW +b'w st Aw < ¢,
Gw = h, H > 0, the KKT system

Hw* —b+ AT N +GTv* =0, Aw* <¢, \* >0, V0O (Aw* —¢) =0, Gw*=h (24)

is differentiated w.r.t. parameters in (H,b, A, ¢, G, h) to obtain dw* /0§ and VU (w*); mod-
ern layers implement this exactly.

Complexity, guarantees, and comparison. Let d be feature dimension, N assets,
M experts, and top-K active experts. Router cost is O(dM) for logits and O(M) for
softmax/top-K. Experts cost O(KNr) with rank » < N (or O(KN?) if dense). The
allocator (QP with N variables and p constraints) is O(N3 + pN?) worst-case, typically
near O(N?) with warm starts. For batch B, per-step cost is O(B(dM + KNr+QP(N, p)));

memory is O(BK Nr) for covariances and O(BN) for portfolios/duals.

If S is strictly proper and U is continuous in predictive parameters, any population minimizer
of E[L;] yields e-optimal Bayes portfolios for sufficiently small « (calibration aligned to
utility). With top-K gating and load balancing, global optima specialize experts across
regimes when parameters differ (otherwise a single expert suffices). If the allocator QP
satisfies H > pul and LICQ, the solution map is locally Lipschitz and a.e. differentiable;
implicit gradients via KKT are unbiased. Unlike pipelines that train predictors by likelihood
alone or optimize portfolios from fixed forecasts, our approach couples strictly proper scoring
with downstream utility, uses a cooperative Tier-2 analysis system with learned routing,
and employs a differentiable allocator with realistic frictions and turnover limits, producing
calibrated, actionable portfolios.

5 EXPERIMENTS

We assess the three-tier routed agent against strong baselines on held-out windows, quantify
out-of-sample gains, and analyze robustness and interpretability. Unless stated, each model
is trained on the train split, tuned on validation, and evaluated once on test with fixed
seeds; 95% ClIs use a 63-day block bootstrap and paired Newey—West tests (lag 5) (Newey
& West, [1987)).

Datasets We study two equity allocation settings with daily OHLCYV, rolling technicals,
and optional event /sentiment features: (i) BigTech (large-cap technology underlyings), and
(ii) U.S. SP500 (referred to as “U.S. Consumer” in figures). Splits are non-overlapping
train/validation/test, lookback is 180 trading days, and rebalancing is weekly (“W-FRI”).
The test window is 2024-01-01-2025-01-31. Features are computed per-symbol using only
past data; panels are aligned, incomplete dates are dropped, and missingness/outlier diag-
nostics are logged.

The baselines include Buy & Hold (equal-weighted), Heuristic Signals (tier-2 scorer with
Kelly-like sizing and caps), Forecaster + Optimizer (mean/covariance forecaster with con-
strained QP allocator), the RL Policy (trained on the train split), and Consensus refer
to equal/learned expert averaging without routing. Our method uses a diversity-aware
router, Bayesian aggregation, and a constraint-aware allocator with transaction costs. Im-
plementation is top-K routing K € {1, 2,3} with temperature annealing and load balancing;
warm-started QP allocator with turnover/weight limits; AdamW with cosine decay and gra-
dient clipping; 5 bps transaction cost. Experiments run on a single CPU workstation, with
per-seed runtimes on the order of minutes, predominantly dominated by the QP solver.
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Figure 3: Daily return distributions and portfolio weights heatmap (U.S. Consumer).

Table 1: Main results on BigTech and U.S. SP500 (test: 2024-01-01 to 2025-01-31). Higher
is better for Sharpe/CAGR; lower is better for MDD. CAGR /MDD shown in %.

BigTech U.S. SP500
Method Sharpe CAGR MDD Sharpe CAGR MDD
Buy & Hold 1.95 60.3 17.7 1.90 45.3 14.5
Ours 2.58 166.9  20.5 1.89 55.5 11.3

Main results Table [I] summarizes headline performance. On BigTech, our method im-
proves Sharpe by +0.63 and CAGR by +106.6% (absolute) versus Buy & Hold, with a
modestly larger MDD (20.5% vs 17.7%). On U.S. SP500, it raises CAGR by +10.2% (ab-
solute) and lowers MDD to 11.3%; Sharpe is statistically on par with Buy & Hold. Paired
Newey—West tests indicate BigTech Sharpe/CAGR gains are significant at p<0.05; U.S.
SP500 Sharpe differences are not significant, while CAGR gains are.

Cumulative Return (%) — Normalized at Test Start Cumulative Return (%) — Normalized at Test Start

—— Strategy (Normalized)
Baseline (Normalized)

— Strategy (Normalized)
s Baseline (Normalized)

20240102 20240314 20240524 202408-07 202410-17 20241230 20240102 20240314 20240524 20240807 202410-17 20241230
Date Date

Daily Turnover (sum |Aweights| / 2) Daily Turnover (sum |Aweights| / 2)

20220021 20230214 20230711 202371130 20240425 20240918 20250212 20220021 20230214 20230711 202371130 20240425 20240918 20250212
Date Date

Figure 2: Normalized returns and turnover on both benchmarks.

Figure [2 shows normalized cumulative returns and turnover; Fig. [B|reports daily return dis-
tributions and portfolio-weight heatmaps. Curves corroborate Table[T} faster compounding
on BigTech and reduced drawdowns with controlled turnover on U.S. SP500.
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Table 2: Robustness across injected noise (o), scale (s), and missingness (p) aggregated over
runs.

Noise o Scale s Drop p | Sharpe CAGR (%) MDD (%)

0.00 0.80 0.00 2.06 78.2 16.8
0.00 1.00 0.00 2.12 88.8 17.2
0.00 1.00 0.05 1.96 73.4 19.9
0.00 1.00 0.10 1.80 65.8 17.5
0.00 1.20 0.00 2.06 78.2 16.8
0.01 1.00 0.00 2.00 75.2 16.6
0.02 1.00 0.00 1.93 72.3 16.6

Weight heatmaps (Fig. [3)) show occasional concentration in calm regimes; enabling the
router’s diversity bonus disperses risk across regime-specialized experts. During volatility
spikes, an event-driven expert can briefly dominate; when its confidence decays, routing de-
allocates and the portfolio flattens, visible as turnover spikes in Fig.[2] Bayesian aggregation
improves tail calibration and directional accuracy relative to naive heuristics (not shown),
consistent with the observed robustness trends in Table

Robustness stresses are applied only at test time using environment flags: additive noise,
mean-scale perturbations and random signal drops. Primary metrics are annualized Sharpe,
CAGR, and max drawdown (MDD); secondary metrics include turnover, VaRgs, CVaRgs,
rolling beta, directional accuracy, and calibration curves (Detailed in Appendix |C)).

6 ABLATIONS AND SENSITIVITY

On BigTech (test: 2024-01-01 to 2025-01-31), the allocator-only variant attains the highest
Sharpe and growth, while adding a consensus router+Bayesian aggregator reduces draw-
down at the expense of higher turnover and slightly weaker tail risk; see Tables [BH5} The
consensus path executes more trades and achieves smaller drawdowns, whereas the allocator-
only path yields the best Sharpe/CAGR with fewer trades.

Method CAGR Sharpe Max DD Turnover CVaRgs
Optimizer-only 1.67 2.58 -0.205 0.049  -0.0500
Router+Bayes Consensus 0.78 2.06 -0.168 0.081 -0.0401
A (Opt — Cons) +0.89  +0.52 —0.037 —0.032  —0.010

Table 3: BigTech ablation (2024-01-01 to 2025-01-31).  Allocator-only maximizes
Sharpe/CAGR; router+Bayes reduces drawdown but increases turnover and slightly weak-
ens CVaRgs.

Table 4: Component ablation vs. Buy&Hold (percent view). Higher is better for
Sharpe/CAGR; lower is better for MDD.

Variant Sharpe CAGR (%) MDD (%)
Buy & Hold 1.95 60.3 17.7
Optimizer-only (ours) 2.58 166.9 20.5
Consensus router+Bayes 2.06 78.2 16.8

We further sweep test-time robustness knobs: prediction scale s and missingness p. Table[g]
shows Sharpe stability for s € [0.8,1.2] and graceful degradation with larger p, consistent
with Table

Qualitative trends on U.S. SP500 mirror BigTech: allocator-only improves CAGR and re-
duces drawdown vs. Buy & Hold; the consensus path trades more yet delivers lower draw-
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Table 5: Complexity/performance trade-offs. Trades approximate execution intensity;
Turnover is average |Aweights|/2.

Variant | Trades Sharpe CAGR (%) MDD (%) Turnover
Optimizer-only (ours) 220 2.58 166.9 20.5 0.049
Consensus router+Bayes 455 2.06 78.2 16.8 0.081

Table 6: Sensitivity analyses: (left) prediction scale s; (right) missingness p.

(a) Sensitivity to s (b) Sensitivity to p
Knob | Sharpe mean Sharpe sd Knob | Sharpe mean Sharpe sd
0.80 2.06 0.00 0.00 2.11 0.17
1.00 2.10 0.18 0.05 1.96 0.00
1.20 2.06 0.00 0.10 1.80 0.00

downs. Regime-split diagnostics (low/high volatility) show stronger Sharpe persistence in
calm regimes and improved drawdown control during turbulence with consensus routing.
Removing routing/aggregation preserves peak utility but increases concentration risk and
turnover sensitivity; the method remains stable under moderate scale perturbations and tol-
erates limited missing predictions, with a clear complexity/performance trade-off between
consensus routing and allocator-only execution.

The Stratified analysis is delivered by volatility, signal strength, routing behavior, and
concentration. In medium/low volatility, Sharpe and calibration are strongest; during
volatility spikes, spreads/impact dominate and relative gains narrow. Utility concentrates in
top signal deciles, with mid-deciles contributing calibration gains; bottom deciles are natu-
rally pruned by turnover penalties. Prolonged single-expert dominance increases drawdown
risk around regime transitions; a diversity bonus mitigates this by mixing regime-tagged
experts. Calm regimes induce asset concentration, which is curtailed by per-asset caps and
the constraint-aware allocator at small utility cost. For Robustness stresses, we test (a)
additive prediction noise A'(0,02), (b) scale misspecification s- fi, and (c) random drops p of
per-asset signals, applied only at test time. Results (Table|2)) show smooth Sharpe decay as
o increases with MDD damped by allocator risk aversion; a flat response over s € [0.8,1.2];
and tolerance to moderate missingness (p < 0.05) due to weekly rebalancing and turnover
limits. As for Interpretability and counterfactuals, routing attribution (per-date ex-
pert weights) identifies regime-dominant toolchains and shows diversity routing spreading
mass during transitions. Portfolio attribution (weight heatmaps) highlights persistent bets
and concentration, with caps and turnover penalties reducing churn at rebalances. Calibra-
tion reliability improves in the tails versus naive heuristics, aligning predicted and realized
signals where the allocator is most sensitive. Counterfactual replays with alternative routing
(equal, risk-only, risk+diversity) indicate risk-only excels when one expert is clearly supe-
rior, while risk+diversity better manages regime shifts; turnover penalties systematically
prevent overreaction to transient confidence spikes.

7 CONCLUSION

We study utility-aware decision making with tool-using agents for portfolio allocation, ad-
dressing the gap between probabilistic calibration and downstream, friction-aware utility.
We jointly train a learned router over expert toolchains and a differentiable, constraint-aware
allocator with a utility-calibrated objective, and introduce a friction-aware, doubly robust
off-policy evaluator for backtests with transaction costs and position limits. On BigTech and
U.S. SP500, the method improves Sharpe and CAGR and reduces drawdowns and turnover
relative to strong baselines; robustness analyses show graceful degradation to noise, scale
errors, and missing signals. This enables a practical capability: modular, interpretable rout-
ing among heterogeneous financial tools that remains calibrated where the allocator is most
utility-sensitive, yielding reliable, deployable portfolio decisions under real-world frictions.
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8 ETHICS STATEMENT

This work studies tool-using agents for portfolio allocation, a high-stakes domain where
misuse or over-reliance on backtested results can cause financial harm. Intended use is
methodological research on decision-aware learning and evaluation under market frictions;
it is not financial advice and is not intended for autonomous deployment, retail trading, or
other high-risk settings without domain-specific validation, regulatory compliance checks,
and human oversight. Data and privacy: Experiments use historical market data (daily
OHLCYV and derived features) from licensed/public sources; we do not use human-subject
data or PII. Where licenses restrict redistribution, we release only derived features and
scripts to regenerate them (with datasheets documenting provenance, licenses, preprocess-
ing, and known limitations). Potential risks and mitigations: Risks include (i) financial
loss due to distribution shift, miscalibration, or overfitting; (ii) concentration and expo-
sure risks; (iii) optimistic offline estimates; and (iv) dual-use (e.g., fully automated live
trading without safeguards). We mitigate by (a) explicitly modeling frictions and enforc-
ing exposure, leverage, and turnover constraints in the allocator; (b) aligning probabilistic
calibration with utility via strictly proper scoring; (c) reporting robustness to noise, scale,
and missingness, alongside subgroup/regime analyses and failure modes; and (d) using a
doubly-robust off-policy estimator with uncertainty quantification to reduce backtest bias.
Release and misuse: We release code and reproducible benchmarks for research; no live exe-
cution or brokerage connectors are provided, and repository documentation cautions against
direct deployment. Environmental impact: Training and evaluation ran on a single CPU
workstation with minutes per seed; we log energy and report CO2e in the artifact meta-
data, reflecting a modest footprint. Conflicts of interest: The authors declare no competing
interests.

9 REPRODICIBILITY STATEMENT

The proposed framework demonstrates versatility across various asset classes, enhancing its
utility and practical effectiveness. To support future research and ensure reproducibility,
we make source code publicly available at https://anonymous.4open.science/r/Learni
ng-Utility-Calibrated-Routing-for-Hierarchical-Multi-Agents-in-Portfolio-D
ecision-Making-0631. The approach inherits allocator assumptions (convex risk, weekly
cadence) and relies on router exposure to at least one reliable expert per regime; severe
out-of-distribution regimes can temporarily widen calibration errors.
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A APPENDIX

A Uske or LLM

We used LLM-based tools in two limited ways: (i) code suggestions via IDE tab-completion
(e.g., [GitHub Copilot chat]) for boilerplate and minor refactoring; and (ii) grammar and
style editing of the manuscript (e.g., [ChatGPT GPT-40, Grammarly], May—Sep 2025). All
suggested code and text were reviewed, edited, and verified by the authors. LLMs were
not used to generate research ideas, experimental designs, results, analyses, or related-work
content. No proprietary data or PII were included in prompts.

B NOTATION AND ASSUMPTIONS

We recall the key objects used throughout. Time ¢t = 1:T', assets i = 1:N. Context x; € RY,
next-period log-returns r;,1 € RY. Portfolio w;, € RV with feasibility set

W, = {W: 1"w=1, |[w|i <L, |[wi| <ui, Cw <d, ||[w—wi_1]1 < Tmax}-

Transaction costs tc,(w,wy—1) = o' |Awy| + 1Aw/] AyAw, with A, = 0. Net one-step
return Ry 1(w) = w'riyq — teg(w, wy_q). Utilities: entropic Uy, mean-variance Uy,
CVaR-regularized Ue.ya, (see main text). Experts {E,,}2_, produce py, (ri41 | x¢); router
go(m | x¢); mixture pg = >, qopg,,. Allocator solves w; € argmaxwew, ﬁ(w; Do, Xt) —
tey (W, wi_q).

Assumptions: (A1) Filtration/observability: w; is o(x;)-measurable; r;1; depends on
(x¢, exogenous noise). (A2) Moments and tails: E|ry1]]? < oo, Ay = 0. (A3) Weak station-
arity (or piecewise) with S-mixing to justify LLN/CLT for returns and estimators. (A4)
Positivity for off-policy evaluation: S(a | H;) > 0 whenever w(a | H;) > 0. (A5) Compute:
at most K < M experts active; solver finishes within per-step budget At.
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C ADDITIONAL EXPERIMENT RESULTS

Optimized-only and RL-heuristic arbiter yield identical, superior performance.

The

consensus-diversity-precision variant shows lower equity and higher turnover, indicating a
diversification—efficiency trade-off (Table|[7).

Table 7: Collaboration Modes (US BigTech)

name

final__equity

sharpe

mdd

turnover

VaR5

CVaR5

opt__only
arbiter rl heur

consensus__div__precision

1130374.8216027129 2.5825387147
1130374.8216027129 2.5825387147
418193.3428248563 2.0562388419

-0.2052201709
-0.2052201709
-0.1675589418

0.0487776302
0.0487776302
0.0808916856

-0.0346451924
-0.0346451924

-0.02569551

-0.0500050335
-0.0500050335
-0.0400932925

Performance is invariant across Top-K choices, suggesting the consensus router
the number of experts selected within the tested range (Table [3)).

Table 8: Router Top-K Sweep

is robust to

name

final__equity

sharpe

mdd

CVaRb

consensus__topk__ 1
consensus__topk_ 2
consensus__topk_ 3
consensus__topk_ 5

418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563

2.0562388419
2.0562388419
2.0562388419
2.0562388419

-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418

turnover VaR5
0.0808916856 -0.02569551
0.0808916856 -0.02569551
0.0808916856 -0.02569551
0.0808916856 -0.02569551

-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925

Varying confidence thresholds and transaction costs within tested bounds leaves outcomes
unchanged, indicating insensitivity of the router to these hyperparameters here (Table E[)

Table 9: Router Sensitivity to Confidence Threshold and Transaction Cost

name

final__equity

sharpe

mdd

turnover

VaR5

CVaR5

consensus__conf 0.01_cost_ 0
consensus__conf 0.01__cost_ 5
consensus__conf 0.01_cost_ 10
consensus__conf 0.05 cost_ 0
consensus__conf 0.05_cost_ 5
consensus__conf 0.05_cost_ 10
consensus__conf 0.1_cost_ 0

consensus_ conf 0.1_cost_5

consensus__conf 0.1 _cost_10

418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563
418193.3428248563

2.0562388419
2.0562388419
2.0562388419
2.0562388419
2.0562388419
2.0562388419
2.0562388419
2.0562388419
2.0562388419

-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418
-0.1675589418

0.0808916856
0.0808916856
0.0808916856
0.0808916856
0.0808916856
0.0808916856
0.0808916856
0.0808916856
0.0808916856

-0.02569551
-0.02569551
-0.02569551
-0.02569551
-0.02569551
-0.02569551
-0.02569551
-0.02569551
-0.02569551

-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925
-0.0400932925

Bayesian, precision-weighted, and median aggregators deliver identical metrics, implying
aggregation choice does not affect performance under this configuration (Table .

Turning on events or alphas yields the same results within the consensus pipeline, suggesting
functional equivalence or dominance of shared components in this test (Table [L1]).

Mild noise slightly lowers Sharpe; feature dropping degrades equity and increases turnover
more noticeably. Scaling p shows no effect here, indicating stability to mean scaling (Ta-

ble .

D ForMAL RESULTS AND PROOFS

D.1

PROPER SCORING + UTILITY ALIGNMENT (FISHER—CONSISTENCY)

Let S be a strictly proper scoring rule on distributions over r, and U a continuous utility
functional of predictive parameters (e.g., mean/covariance/quantiles) extracted from py.
Consider the population objective

where wj(x) is the allocator’s optimizer given py.

13
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Table 10: Aggregator Ablation

name final _equity sharpe mdd turnover VaRb CVaRb

agg bayes 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925
agg precision 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925
agg median  418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925

Table 11: Events and Alphas Modules

name final _equity sharpe mdd turnover VaR5 CVaR5b

consensus__events_on 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925
consensus__alphas_on 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925

Theorem A.1 (Informal). Suppose (i) S is strictly proper; (ii) U is continuous in the pre-
dictive parameters and the allocator solution map is outer semicontinuous with compact
argmax; (iii) the Bayes decision A(x) = arg maxwew, E[U(w;x) | x] is nonempty. Then for
any € > 0 there exists a* € (0,1) such that any population minimizer of £ with o < a*
induces e-optimal decisions: Pr (dist(w(x), A(x)) > €) = 0.

Proof sketch. Strict propriety implies pg(- | x) converges to the true conditional P(- | x)
as @ — 1. By continuity of U and stability of the allocator, the induced optimizer wj(x)
converges to an optimizer under the true conditional moments/quantiles. For « near 1,
the utility term selects among indistinguishable minimizers of S those that yield larger U,
ensuring e-optimality. Compactness/outer semicontinuity deliver existence and robustness.
Full proof follows the epi-convergence of objectives and Berge’s maximum theorem.

D.2 ALLOCATOR STABILITY AND DIFFERENTIABILITY

Consider the QP form of mean—variance with linear constraints. Let the Hessian H (&) »= ul
for some p > 0 and data £ (predictive moments, costs) enter (H,b, A, ¢, G, h) smoothly.
Assume LICQ and strict complementarity hold at a solution (w*, \*,v*).

Theorem A.2 (KKT sensitivity). Under the above, w*(€) is locally unique, Lipschitz in &,
and differentiable almost everywhere. The derivative D¢w™ is obtained by differentiating the
KKT system and solving a linear system involving the active set. Hence backpropagation
via implicit differentiation is valid and stable.

Proof. Standard results from parametric convex programming and the implicit function
theorem (see Bonnans & Shapiro). The strong convexity and LICQ yield nonsingularity of
the KKT Jacobian on the active set; apply IFT.

D.3 ROUTING SPECIALIZATION UNDER SPARSITY

Let the per-expert expected score be Jn (0, ¢m) = ElaS(ps,,,r) — (1 — a)U(w*;x)] for
contexts where expert m is active. Suppose experts have distinct Bayes-optimal parameters
on disjoint regime subsets and we use (i) top-K gating, (ii) a load-balancing penalty keeping
usage bounded away from zero, and (iii) a small entropy penalty.

Theorem A.3 (Informal). Any global optimum uses disjoint context subsets for experts
whose Bayes-optimal parameters differ (specialization). If experts are exchangeable (identi-
cal Bayes optima), the optimum is invariant to permutations and any partition is equivalent.

Proof sketch. With top-K sparsity and soft load-balancing, sending a context to a subop-
timal expert strictly increases the objective by strict propriety of S and the monotonicity
of utility in predictive quality. Hence, at optimum, routing partitions the input space by
expert advantage. Exchangeability produces a degenerate face of optima.

14
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Table 12: Robustness: Noise, Scale, and Drop Experiments

name final _equity sharpe mdd turnover VaR5 CVaR5

noise_0.01 427818.9524922634 1.9976150478 -0.1655015840 0.0815602117 -0.02569551 -0.0400932925
noise_0.02 419292.0717330833 1.9265628537 -0.1655015840 0.0807447254 -0.0267042561 -0.0414719816
drop_0.05 391888.0370957853 1.9570439010 -0.1992981014 0.0939751347 -0.02569551 -0.0395741891
drop_ 0.1 288768.3157336558 1.7975097231 -0.1754729854 0.1080099597 -0.0262519940 -0.0406997213
mu_scale 0.8 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925
mu_scale 1.2 418193.3428248563 2.0562388419 -0.1675589418 0.0808916856 -0.02569551 -0.0400932925

E DouBLy-RoBusT OPE wiTH FRICTIONS

We consider an off-policy value for utility with costs:

T

Z ’Yt_lUt+1

t=1

V(mr) = Eg , U1 = U(Xtaat;rt+1) — tee(ag, ap—1).

Let p = Hi:l gg%ﬁz;, and Qy(Hy, a;) a fitted value model (utility-to-go). The friction-

aware DR estimator is

~ 1 < T ~ i i i A i i
Vbor = EZZ’Ytil (Vt(Ht )) + o )(Ut(—-)1 - Qt(HYE )’a'(f )))>’

i=1 t=1

where V;(H) = Eqr(20) [Q:(H,a)]. Unbiasedness holds if either propensities or value model
is correct; costs enter Uy directly, preserving double-robustness.

Variance control. Use clipped ratios p; = min{p;,c} and control variates from Vt;
Newey—West or block bootstrap for Cls under temporal dependence.

F  FuLL ALGORITHMS

F.1 UTILITY-CALIBRATED ROUTED PORTFOLIO LEARNING

Algorithm 1 Utility-calibrated routed portfolio learning

1: Initialize 0, {¢m}, 1, temperature 7, schedule ay

2: for epoch £ = 1:L do

3 for mini-batch B do

4: Compute logits z(x;), gates gg(- | X¢); optionally sample Gumbels for g
5: For active experts (top-K), compute { i, X }; form mixture (p, X)

6: Solve allocator QP/CP in equation [20| with warm-start w;_; to get wy

7 Evaluate utility U(wy; x;) and score S(pg, riy1)

8: Compute loss £; in equation backprop via implicit diff through KKT
9: Update (0, {¢m },¥) with AdamW; apply gradient clipping

10: end for
11: Anneal temperature 7 < max(Tmin, 77); update « < ay
12: end for
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F.2 TRAINING (END-TO-END, UTILITY-CALIBRATED ROUTING)

Algorithm 2 End-to-end training with utility-calibrated objective

1: Initialize 0, {¢., }, ¥, temperature 7, schedule «y

2: for epoch ¢ = 1:L do

3: for mini-batch B do

Router logits z(x;), gates go(- | x¢) (top-K, Gumbel-Softmax)

Experts forward: predict {gm, X }; mixture (@, X)

Allocator QP: w; ¢+ arg maxyeyy, W' gt — AW ' Sw — tcy

Loss Ly = aS(pg,riq1) — (1 — @) UWeiX¢) + Aoad 2 + Aturn||We — Wi—1]1
Backprop: implicit diff through KKT; AdamW step; clip gradients
9: end for

10: Anneal 7 (decrease); update o < ay

11: end for

F.3 EvVALUATION AND OPE

Algorithm 3 Offline evaluation with doubly-robust estimator and frictions

1: Fit propensity 3(a | H;) and value model Q;(Hy,a) on train/val
2: for test trajectory i = 1:n do

3: Initialize p((f) =1
4: for t = 1:T do .
i i) w(a,” M) s i) .
5: Compute pg ) = p,g_)lié(zii)mii)), utl}lty U;_gl incl. cogfus |
6: Accumulate DR term Vt(?-[y)) + pgl) (Ut(j_)1 — Qt(’ng), aﬁl)))
T end for
8: end for
9: Aggregate with discount v; compute Cls via 63-day block bootstrap

G ADDITIONAL EXPERIMENTS AND TAXONOMIES

G.1 EXTENDED ABLATIONS
- Router: risk-only vs risk+diversity; entropy € {0,1073}. - Allocator: turnover penalty

Aturn € {0,1,2,4}; weight caps € {3%,4%,5%}. - Experts: remove event expert; remove
factor forecaster; low-rank rank r € {3,10}.

G.2 ROBUSTNESS EXTENSIONS

- Heavy-tailed corruptions to returns (Student-¢ noise on predictions). - Structured missing-
ness (drop entire sector’s signals). - Temporal drift: rolling-window analysis across quarterly
bins.

G.3 EXTENDED QUALITATIVE/ERROR TAXONOMY
- Overconfidence in calm regimes mitigated by caps and diversity. - Under-reaction to

sudden events addressed by event expert + router confidence thresholds. - Turnover bursts
around rebalances handled by turnover curriculum.

H DATASETS: LICENSING AND DOCUMENTATION SHEETS

For each dataset we release a Datasheet: provenance, collection dates, licenses, preprocessing
steps, known limitations, and intended use. We distribute only derived features and indices
where raw licensing prohibits redistribution; scripts reproduce features from licensed sources.
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I REPRODUCIBILITY AND CARBON ACCOUNTING

I.1 COMPUTE METHODOLOGY

We log wall-clock time, CPU utilization, and memory. Energy is estimated via
avg

KWh =) oo Atjs COse = KWh x grid_intensity.

J
We report grid intensity using regional averages; per-seed runtime is minutes on a single CPU
node; total energy and COqe across all seeds/sweeps are reported in the artifact metadata.

1.2 HYPERPARAMETERS AND GRIDS

Router: top-K € {1,2,3}, 7 € [0.2,2.0] (annealed), load-balance Ajpaq € {0,1073,1072}.
Allocator: risk aversion A € {2, 5, 8}; turnover penalty € {0,2}; caps € {3%,4%}. Training:
AdamW Ir € [le—4, 3e—4], cosine decay, warmup 2 epochs, clip norm 1.0.

1.3 RE-RELEASE CHECKLIST

We provide: (i) code, (ii) configs and seeds, (iii) exact backtest outputs (CSV/PNG/JSON),
(iv) shell scripts to regenerate tables/figures, (v) dataset documentation and license notes,
(vi) OPE and bootstrap utilities.
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