

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING UTILITY-CALIBRATED ROUTING FOR HIERARCHICAL MULTI-AGENTS IN PORTFOLIO DECISION-MAKING

Anonymous authors

Paper under double-blind review

ABSTRACT

We study how tool-using agents can make high-stakes decisions under uncertainty and costs, with a focus on portfolio allocation. We introduce a hierarchical agent with a learned router that dispatches market contexts to specialized tools (e.g., event extractors, forecasters, options pricers) and an allocator that turns probabilistic predictions into trades under explicit risk and transaction constraints. Our training objective couples proper scoring rules for probabilistic calibration with risk-sensitive portfolio utility and cost regularization, yielding utility-calibrated predictions that are natively decision-aware. To enable reliable offline assessment, we derive a doubly-robust off-policy evaluation procedure tailored to backtesting with market frictions, reducing bias and providing uncertainty estimates. Across two challenging settings—options-only allocation over large-cap technology names and multi-asset allocation in the U.S. consumer sector—our approach delivers consistent gains in expected utility and Sharpe, markedly improved probability calibration, and lower turnover while satisfying risk and exposure constraints. The architecture is modular and data-agnostic, enabling seamless integration of new tools and experts while preserving end-to-end differentiability through the router and allocator. We release code and reproducible benchmarks to support rigorous evaluation of risk-aware, tool-using agents for financial decision-making and beyond.

1 INTRODUCTION

Financial decision-making is an archetypal high-stakes setting for machine learning: actions are sequential, information is noisy, and costs and risk constraints dominate performance (Ionescu & Diaconita, 2023). Practitioners increasingly deploy tool-using systems—pipelines that combine event extractors, forecasters, option pricers, and optimizers—to turn market signals into trades. Yet such systems typically optimize intermediate proxies rather than the downstream objective that truly matters: risk-sensitive utility subject to market frictions and constraints (Amant & Wood, 2005). As a result, predictions are often miscalibrated precisely in regions that drive utility, routers dispatch to suboptimal tools, and offline backtests can be biased due to policy mismatch and transaction costs.

Two gaps limit progress. First, current methods rarely couple probabilistic calibration with decision-aware training, leaving a misalignment between “being right” and “trading well.” Second, offline evaluation in finance is commonly based on naive backtesting ignores confounding from different action policies and the role of market frictions (Brunnermeier et al., 2012), which leads to optimistic estimates and brittle deployment (Swaminathan & Joachims, 2015). We need architectures and learning objectives that are explicitly utility calibrated, and evaluation procedures that remain valid under off-policy data and costs.

We propose a hierarchical, tool-using agent for portfolio allocation with a learned *router* and a differentiable *allocator*. The router maps each market context to one of multiple specialized expert toolchains (e.g., news/event models, factor forecasters, options pricers).

054 The allocator converts expert predictions into positions by maximizing a risk-sensitive utility
 055 (e.g., mean–downside, entropic, or CVaR-regularized) under exposure, leverage, and
 056 turnover constraints. We train the system end-to-end with a *utility-calibrated* objective that
 057 couples strictly proper scoring rules (for probabilistic calibration) with the portfolio utility
 058 and explicit cost regularization. Routing is trained with a temperature-controlled, differen-
 059 tiable selection (e.g., Gumbel–Softmax) and a sparsity prior to encourage specialization.

060 To enable reliable offline assessment, we derive a doubly-robust off-policy estimator tai-
 061 loled to financial backtesting with transaction costs and position limits. The estimator
 062 combines a learned behavior model (propensity) with a value model, reducing bias under
 063 policy mismatch and yielding confidence intervals suitable for model selection and abla-
 064 tions. We validate on two realistic benchmarks: (i) allocation over large-cap technology
 065 names and (ii) multi-asset allocation in the U.S. SP500 ¹. Across both settings, our agent
 066 consistently improves expected utility and Sharpe while lowering turnover and tightening
 067 probability calibration. Our main contributions are four-fold: **Utility-calibrated routing**
 068 **architecture**. We introduce a modular, hierarchical agent with a learned router over expert
 069 toolchains and a differentiable, constraint-aware allocator. The entire system is trained end-
 070 to-end to align probabilistic predictions with downstream portfolio utility. **Decision-aware**
 071 **learning objective with theory**. We couple proper scoring rules with risk-sensitive utility
 072 and explicit transaction-cost/turnover penalties, and provide analysis showing (i) calibra-
 073 tion is concentrated in decision-critical regions and (ii) the objective is Fisher-consistent for
 074 the target utility under mild conditions. **Doubly-robust off-policy backtesting with**
 075 **frictions**. We derive an evaluation procedure for financial data that accounts for policy
 076 mismatch and market frictions, yielding reduced-bias estimates and uncertainty quantifica-
 077 tion suitable for model selection and hyperparameter tuning. **Strong empirical results**.
 078 On the BigTech and US SP500 benchmarks, our method achieves higher expected utility
 079 and Sharpe, improved calibration, and reduced turnover while satisfying risk exposure.

2 RELATED WORK

082 Classical approaches optimize risk–return trade-offs such as mean–variance (Markowitz &
 083 Todd, 2000) and Black–Litterman priors (Kolm & Ritter, 2021), with extensions to coherent
 084 risk (CVaR) and costs/constraints (Ahmadi-Javid, 2012). Recent work integrates optimiza-
 085 tion into learning via differentiable layers (Ma et al., 2024) and “predict-then-optimize” or
 086 decision-focused training (Kou et al., 2024), which tailor predictions to downstream objec-
 087 tives. **Probabilistic calibration and uncertainty**. Proper scoring rules and calibration
 088 techniques aim to align predictive distributions with outcomes (Zhang et al., 2024); financial
 089 adaptations consider quantiles and risk measures but seldom close the loop with portfolio
 090 utility (Shi et al., 2025). **Mixture-of-experts and routing**. MoE learns conditional
 091 computation via routers/gates (Liu et al., 2024); differentiable hard selection uses Gumbel–
 092 Softmax/Concrete relaxations (Abdulaziz et al., 2022). Most MoE objectives target like-
 093 lihood or accuracy rather than cost-sensitive decisions. **RL and off-policy evaluation**.
 094 RL has been applied to trading/portfolio control (Filos, 2019; Ye et al., 2020); however,
 095 reliable offline evaluation is challenging. Doubly-robust and related OPE methods mitigate
 096 bias in bandits/RL (Fakoor et al., 2021), yet practical adaptations to market frictions and
 097 constraint-aware portfolios remain limited. Transaction cost modeling in execution portfolio
 098 optimization is well studied (Dai et al., 2010), but rarely integrated into OPE.

099 Building on predict-then-optimize consistency and convex surrogates for linear programs
 100 (Elmachtoub & Grigas, 2022), our approach couples probabilistic calibration with a risk-
 101 sensitive, cost-aware portfolio utility and introduces a learned router over specialized expert
 102 toolchains. While differentiable optimization layers enable end-to-end training through con-
 103 vex programs (Agrawal et al., 2019; Blondel et al., 2020), we instantiate a constraint-aware
 104 allocator with turnover and exposure limits and integrate it with a utility-calibrated prob-
 105 abilistic objective rather than training solely through KKT sensitivities. In the spirit of
 106 decision-focused learning for structured decisions (Donti et al., 2017; Wilder et al., 2019),

107 ¹SP500 Index measuring the performance of 500 large U.S. companies traded on American stock
 exchanges.

108 our downstream objective is a stochastic, risk-sensitive portfolio utility with explicit fric-
 109 tions, and our upstream model is a router over heterogeneous financial tools (experts),
 110 encouraging specialization via sparse, temperature-controlled gates. Relative to MoE with
 111 load-balanced routing (Shazeer et al., 2017; Fedus et al., 2022), we optimize routing for
 112 portfolio utility and calibration rather than token-level likelihood and allow experts to be
 113 non-neural toolchains (e.g., event extractors, options pricers). Finally, inspired by doubly-
 114 robust OPE (Dudík et al., 2011; Jiang & Li, 2016; Thomas & Brunskill, 2016), we adapt DR
 115 estimators to financial backtesting with transaction costs and position constraints, yielding
 116 uncertainty estimates suitable for model selection under realistic frictions. Across these
 117 lines, two deficiencies persist for high-stakes financial decision-making: (i) learning objec-
 118 tives either pursue predictive accuracy/calibration *or* optimize downstream portfolios, but
 119 rarely *jointly* align calibrated probabilities with risk-sensitive, cost-aware utility; and (ii) of-
 120 line evaluation typically ignores policy mismatch and market frictions, leading to optimistic
 121 and unstable backtests. Our work addresses this gap with a utility-calibrated, routed archi-
 122 tecture that integrates probabilistic scoring with a differentiable, constraint-aware allocator,
 123 and a doubly-robust OPE procedure tailored to frictional markets.
 124

3 BACKGROUND AND PRELIMINARIES

126 **Problem setup and notation.** We consider discrete decision times $t = 1:T$ over N tradable
 127 assets. The observable market context is $\mathbf{x}_t \in \mathbb{R}^d$, and next-period log returns are
 128 $\mathbf{r}_{t+1} \in \mathbb{R}^N$. A portfolio $\mathbf{w}_t \in \mathbb{R}^N$ chosen at t and held over $(t, t+1]$ must satisfy budget,
 129 leverage, exposure, and turnover constraints equation 1. Transaction costs combine propor-
 130 tional spread and temporary impact equation 2; the net one-step return is equation 3. We
 131 evaluate risk-sensitive utilities equation 4 (entropic, mean-variance, CVaR), all compatible
 132 with equation 1 and equation 2.

$$133 \quad \mathcal{W}_t = \{ \mathbf{w} : \mathbf{1}^\top \mathbf{w} = 1, \|\mathbf{w}\|_1 \leq L, |w_i| \leq u_i, C\mathbf{w} \leq \mathbf{d}, \|\mathbf{w} - \mathbf{w}_{t-1}\|_1 \leq \tau_{\max} \}. \quad (1)$$

$$135 \quad \text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}) = \boldsymbol{\alpha}^\top |\mathbf{w} - \mathbf{w}_{t-1}| + \frac{1}{2} (\mathbf{w} - \mathbf{w}_{t-1})^\top \Lambda_t (\mathbf{w} - \mathbf{w}_{t-1}). \quad (2)$$

$$137 \quad R_{t+1}(\mathbf{w}) = \mathbf{w}^\top \mathbf{r}_{t+1} - \text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}). \quad (3)$$

$$138 \quad 139 \quad U_\gamma(\mathbf{w}) = -\frac{1}{\gamma} \log \mathbb{E}[\exp(-\gamma R_{t+1}(\mathbf{w}) \mid \mathbf{x}_t)], \quad \gamma > 0, \quad (4a)$$

$$141 \quad U_\lambda(\mathbf{w}) = \mathbb{E}[R_{t+1}(\mathbf{w}) \mid \mathbf{x}_t] - \lambda \text{Var}[R_{t+1}(\mathbf{w}) \mid \mathbf{x}_t], \quad \lambda \geq 0, \quad (4b)$$

$$142 \quad U_{\eta, \alpha}^{\text{CVaR}}(\mathbf{w}) = \mathbb{E}[R_{t+1}(\mathbf{w}) \mid \mathbf{x}_t] - \eta \text{CVaR}_\alpha(-R_{t+1}(\mathbf{w}) \mid \mathbf{x}_t), \quad \eta \geq 0, \alpha \in (0, 1). \quad (4c)$$

144 **Learning objective and predictive components.** Given data $\mathcal{D} = \{(\mathbf{x}_t, \mathbf{r}_{t+1})\}_{t=1}^T$
 145 and historical portfolios \mathbf{w}_t^β from a behavior policy β , we learn a policy π mapping \mathbf{x}_t to
 146 $(m_t, \mathbf{w}_t) \in \{1:M\} \times \mathcal{W}_t$ to maximize expected utility equation 4. We assume M specialized
 147 experts $\{E_m\}_{m=1}^M$ that output $p_{\phi_m}(\mathbf{r}_{t+1} \mid \mathbf{x}_t)$ or summary statistics (means $\boldsymbol{\mu}_m$, covari-
 148 ances Σ_m , tail quantiles). A router $q_\theta(\cdot \mid \mathbf{x}_t)$ induces the mixture predictive equation 5;
 149 differentiable hard selection uses Gumbel-Softmax at temperature τ with optional top- K
 150 gating (Shen et al., 2021).

$$151 \quad 152 \quad p_\theta(\mathbf{r}_{t+1} \mid \mathbf{x}_t) = \sum_{m=1}^M q_\theta(m \mid \mathbf{x}_t) p_{\phi_m}(\mathbf{r}_{t+1} \mid \mathbf{x}_t). \quad (5)$$

155 **Allocator and training loss.** The allocator A_ψ maps predictive objects to feasible port-
 156 folios by solving a differentiable convex program that maximizes a concave surrogate of
 157 equation 4 subject to equation 1. Given moments $(\hat{\boldsymbol{\mu}}_t, \hat{\Sigma}_t)$ implied by equation 5, we solve

$$159 \quad \mathbf{w}_t \in \arg \max_{\mathbf{w} \in \mathcal{W}_t} \hat{U}(\mathbf{w}; \hat{\boldsymbol{\mu}}_t, \hat{\Sigma}_t, \mathbf{x}_t), \quad (6)$$

161 with a mean-variance form ensuring convexity when costs equation 2 are included via equa-
 162 tion 3. Training balances calibration and decision quality using a strictly proper score,

e.g., NLL equation 7, in the utility-calibrated objective equation 8, where Ω enforces sparsity/load-balancing and $U(\mathbf{w}_t; \mathbf{x}_t)$ is evaluated at the solution of equation 20.

$$S_{\text{NLL}}(p_\theta, \mathbf{r}_{t+1}) = -\log p_\theta(\mathbf{r}_{t+1} | \mathbf{x}_t). \quad (7)$$

$$\mathcal{L}_t(\theta, \phi, \psi) = \alpha S(p_\theta(\cdot | \mathbf{x}_t), \mathbf{r}_{t+1}) - (1 - \alpha) U(\mathbf{w}_t; \mathbf{x}_t) + \lambda_{\text{bal}} \Omega(q_\theta(\cdot | \mathbf{x}_t)). \quad (8)$$

Evaluation reports expected utility, annualized Sharpe (Sharpe, 1998), average turnover, drawdown, and calibration metrics (NLL/ECE/CRPS/Brier) (Nixon et al., 2019).

Off-policy evaluation and assumptions. For offline evaluation, let $\beta(a | \mathcal{H}_t)$ be the behavior over actions $a_t = (m_t, \mathbf{w}_t)$ and $\pi_\theta(a | \mathcal{H}_t)$ the learned policy. Importance ratios equation 9 and a doubly-robust estimator equation 10 (with costs included via equation 3 in U_{t+1}) provide statistically principled estimates.

$$\rho_t = \frac{\pi_\theta(a_t | \mathcal{H}_t)}{\beta(a_t | \mathcal{H}_t)}. \quad (9)$$

$$\widehat{V}_{\text{DR}} = \frac{1}{T} \sum_{t=1}^T \left[\hat{V}(\mathcal{H}_t) + \rho_t (U_{t+1} - \hat{Q}(\mathcal{H}_t, a_t)) \right]. \quad (10)$$

We assume: (A1) measurability of \mathbf{w}_t w.r.t. $\sigma(\mathbf{x}_t)$ and return/cost dependence as in equation 3–equation 4; (A2) finite second moments and $\Lambda_t \succeq 0$ in equation 2; (A3) β -mixing for LLN/CLT of utility-derived metrics; (A4) positivity, i.e., $\beta(a | \mathcal{H}_t) > 0$ whenever $\pi_\theta(a | \mathcal{H}_t) > 0$, ensuring well-defined equation 9 and unbiased equation 10; (A5) resource limits: at most $K \ll M$ experts active per step and a time budget $\leq \Delta t$ for solving equation 20.

4 METHODOLOGY

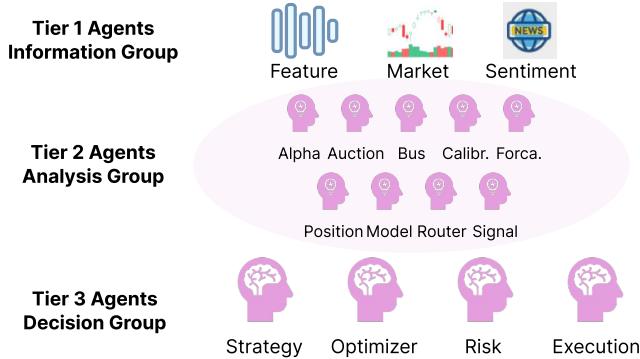


Figure 1: Overview of the three-tier multi-agent investment decision-making framework.

We implement a three-tier, tool-using, multi-agent system that maps market context \mathbf{x}_t to (i) a routed set of predictive experts and (ii) a differentiable allocator that maximizes a risk-sensitive utility under realistic frictions and constraints (Fig. 1). Tier 1 (Information) transforms raw feeds (features, microstructure, news/sentiment) into an enriched state and callable tools. Tier 2 (Analysis) is a cooperative multi-agent layer (not a pure MoE): predictive heads E_m propose distributions for \mathbf{r}_{t+1} ; a calibration agent applies strictly proper scoring weighted by utility sensitivity; an auction/consensus layer aggregates beliefs and negotiates routing $q_\theta(m | \mathbf{x}_t)$; additional agents handle position modeling, constraints, and signal vetting. Tier 3 (Decision) turns predictions into executable targets: a convex allocator A_ψ maps forecasts and constraints to $\mathbf{w}_t \in \mathcal{W}_t$ while accounting for transaction costs, turnover budgets, market impact, and self-financing; a strategy agent chooses utility templates/horizons; a risk agent sets limits; and an execution agent maps targets to orders. Training is end-to-end: a strictly proper score is coupled with downstream utility, and gradients flow through A_ψ to the router and Tier-2 agents, yielding regime-specialized experts, calibrated forecasts, and feasible portfolios.

216 **Formalization: decision problem and constraints** At each time t , given $\mathbf{x}_t \in \mathbb{R}^d$ and
 217 previous holdings \mathbf{w}_{t-1} , the agent chooses $t = (m_t, \mathbf{w}_t)$ with $m_t \in \{1:M\}$ and $\mathbf{w}_t \in \mathcal{W}_t$:

$$\mathcal{W}_t = \left\{ \mathbf{w} \in \mathbb{R}^N : \mathbf{1}^\top \mathbf{w} = 1, \|\mathbf{w}\|_1 \leq L, |w_i| \leq u_i, C\mathbf{w} \leq \mathbf{d}, \|\mathbf{w} - \mathbf{w}_{t-1}\|_1 \leq \tau_{\max} \right\}. \quad (11)$$

218 Transaction costs and net return are
 219

$$\text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}) = \alpha^\top |\Delta \mathbf{w}_t| + \frac{1}{2} \Delta \mathbf{w}_t^\top \Lambda_t \Delta \mathbf{w}_t, \quad \Delta \mathbf{w}_t = \mathbf{w} - \mathbf{w}_{t-1}, \quad \Lambda_t \succeq 0, \quad (12)$$

$$R_{t+1}(\mathbf{w}) = \mathbf{w}^\top \mathbf{r}_{t+1} - \text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}). \quad (13)$$

220 Utilities considered are
 221

$$U_{\text{ent}}(\mathbf{w} | \mathbf{x}_t) = -\frac{1}{\gamma} \log \mathbb{E}[\exp(-\gamma R_{t+1}(\mathbf{w})) | \mathbf{x}_t], \quad \gamma > 0, \quad (14)$$

$$U_{\text{mv}}(\mathbf{w} | \mathbf{x}_t) = \mathbb{E}[R_{t+1}(\mathbf{w}) | \mathbf{x}_t] - \lambda \text{Var}[R_{t+1}(\mathbf{w}) | \mathbf{x}_t], \quad \lambda \geq 0, \quad (15)$$

$$U_{\text{cvar},\alpha}(\mathbf{w} | \mathbf{x}_t) = \mathbb{E}[R_{t+1}(\mathbf{w}) | \mathbf{x}_t] - \eta \text{CVaR}_\alpha(-R_{t+1}(\mathbf{w}) | \mathbf{x}_t), \quad \alpha \in (0, 1). \quad (16)$$

222 We fit $(\theta, \{\phi_m\}_{m=1}^M, \psi)$ to maximize expected (discounted) utility subject to $\mathbf{w}_t \in \mathcal{W}_t$.
 223

230 **Model architecture** Three-tier, tool-using, multi-agent system. Tier 1 converts raw
 231 data into an enriched \mathbf{x}_t . Tier 2 (cooperative, not pure MoE) aggregates expert beliefs and
 232 performs routing $q_\theta(m | \mathbf{x}_t)$ with calibration aligned to utility. Tier 3 comprises allocator
 233 A_ψ , risk/strategy configuration, and execution; gradients propagate through the stack.
 234

235 **Router.** A network $f_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^M$ produces logits $z_m(\mathbf{x}_t)$ and temperature-controlled
 236 gates

$$q_\theta(m | \mathbf{x}_t) = \text{softmax}\left(\frac{z(\mathbf{x}_t)}{\tau}\right)_m, \quad \tilde{g}_m = \frac{\exp((z_m(\mathbf{x}_t) + g_m)/\tau)}{\sum_j \exp((z_j(\mathbf{x}_t) + g_j)/\tau)}, \quad g_m \sim \text{Gumbel}(0, 1), \quad (17)$$

240 with straight-through hard selection $\hat{g} = \text{one_hot}(\arg \max_m \tilde{g}_m)$ in the forward pass and \tilde{g}
 241 in the backward; we optionally restrict to top- K experts.
 242

243 **Experts.** Each E_m outputs a predictive object for \mathbf{r}_{t+1} :

$$p_{\phi_m}(\mathbf{r}_{t+1} | \mathbf{x}_t) = \mathcal{N}(\boldsymbol{\mu}_m(\mathbf{x}_t), \Sigma_m(\mathbf{x}_t)) \quad \text{or} \quad \{\mu_{m,i}(\mathbf{x}_t), \sigma_{m,i}(\mathbf{x}_t), q_{m,i}^{(\alpha)}(\mathbf{x}_t)\}_{i=1}^N, \quad (18)$$

244 with low-rank-plus-diagonal covariance $\Sigma_m = LL^\top + \text{diag}(\boldsymbol{\sigma}^2)$. The routed predictive is
 245 either the mixture
 246

$$p_\theta(\mathbf{r}_{t+1} | \mathbf{x}_t) = \sum_{m=1}^M q_\theta(m | \mathbf{x}_t) p_{\phi_m}(\mathbf{r}_{t+1} | \mathbf{x}_t) \quad (19)$$

247 or its moment match $\boldsymbol{\mu} = \sum_m q_\theta \boldsymbol{\mu}_m$, $\Sigma = \sum_m q_\theta \Sigma_m$.
 248

249 **Allocator.** Given $(\boldsymbol{\mu}, \Sigma)$ and costs, the allocator solves

$$\mathbf{w}_t(\mathbf{x}_t) \in \arg \max_{\mathbf{w} \in \mathcal{W}_t} \widehat{U}(\mathbf{w}; \boldsymbol{\mu}(\mathbf{x}_t), \Sigma(\mathbf{x}_t)) - \text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}), \quad (20)$$

250 e.g., $\widehat{U}_{\text{mv}}(\mathbf{w}) = \mathbf{w}^\top \boldsymbol{\mu} - \lambda \mathbf{w}^\top \Sigma \mathbf{w}$. We implement equation 20 as a QP or exponential-cone
 251 program and differentiate via the KKT system (Zheng & Li, 2007).
 252

253 **Learning objective** We couple calibration with decision quality:

$$\mathcal{L}_t(\theta, \phi, \psi) = \alpha S(p_\theta(\cdot | \mathbf{x}_t), \mathbf{r}_{t+1}) - (1 - \alpha) U(\mathbf{w}_t(\mathbf{x}_t); \mathbf{x}_t) + \lambda_{\text{lb}} \Omega_{\text{load}}(q_\theta(\cdot | \mathbf{x}_t)) + \lambda_{\text{sp}} \|\mathbf{w}_t(\mathbf{x}_t)\|_1 + \lambda_{\text{stab}} \|\boldsymbol{\mu}\|_2^2 + \lambda_{\text{turn}} \|\mathbf{w}_t - \mathbf{w}_{t-1}\|_1, \quad (21)$$

254 where S is strictly proper (Gaussian NLL or CRPS/Brier), and

$$\Omega_{\text{load}} = \text{KL}\left(\frac{1}{M} \mathbf{1} \middle\| \frac{1}{B} \sum_{t \in \mathcal{B}} q_\theta(\cdot | \mathbf{x}_t)\right) \quad \text{or} \quad \beta \cdot \sum_{m=1}^M \left| \frac{1}{B} \sum_{t \in \mathcal{B}} q_\theta(m | \mathbf{x}_t) - \frac{1}{M} \right|. \quad (22)$$

255 For mixture Gaussians,

$$S_{\text{NLL}} = -\log \left(\sum_{m=1}^M q_\theta(m | \mathbf{x}_t) \mathcal{N}(\mathbf{r}_{t+1}; \boldsymbol{\mu}_m, \Sigma_m) \right). \quad (23)$$

256 A homotopy schedule $\alpha_\ell = \min(1, \alpha_0 + \kappa \ell)$ shifts emphasis from prediction to utility.
 257

270 **Algorithm and optimization** We train with mini-batches and warm-start equation 20
 271 from \mathbf{w}_{t-1} . Temperature τ is annealed to sharpen routing; load balancing prevents expert
 272 collapse; utilities and scores are normalized for comparable scale; solvers stop early on KKT
 273 residuals; gradients are clipped; optimization uses AdamW with warmup/cosine decay (Zhou
 274 et al., 2024). Feature/target normalization, covariance shrinkage, and a turnover curriculum
 275 (tightening τ_{\max}) improve stability.

276 **Implicit differentiation sketch.** For the QP $\max_{\mathbf{w}} -\frac{1}{2}\mathbf{w}^\top H\mathbf{w} + \mathbf{b}^\top \mathbf{w}$ s.t. $A\mathbf{w} \leq \mathbf{c}$,
 277 $G\mathbf{w} = \mathbf{h}$, $H \succ 0$, the KKT system

$$278 \quad H\mathbf{w}^* - \mathbf{b} + A^\top \lambda^* + G^\top \nu^* = 0, \quad A\mathbf{w}^* \leq \mathbf{c}, \quad \lambda^* \geq 0, \quad \lambda^* \odot (A\mathbf{w}^* - \mathbf{c}) = 0, \quad G\mathbf{w}^* = \mathbf{h} \quad (24)$$

281 is differentiated w.r.t. parameters in $(H, \mathbf{b}, A, \mathbf{c}, G, \mathbf{h})$ to obtain $\partial\mathbf{w}^*/\partial\xi$ and $\nabla_\xi U(\mathbf{w}^*)$; mod-
 282 ern layers implement this exactly.

284 **Complexity, guarantees, and comparison.** Let d be feature dimension, N assets,
 285 M experts, and top- K active experts. Router cost is $O(dM)$ for logits and $O(M)$ for
 286 softmax/top- K . Experts cost $O(KNr)$ with rank $r \ll N$ (or $O(KN^2)$ if dense). The
 287 allocator (QP with N variables and p constraints) is $O(N^3 + pN^2)$ worst-case, typically
 288 near $O(N^2)$ with warm starts. For batch B , per-step cost is $O(B(dM + KNr + QP(N, p)))$;
 289 memory is $O(BKNr)$ for covariances and $O(BN)$ for portfolios/duals.

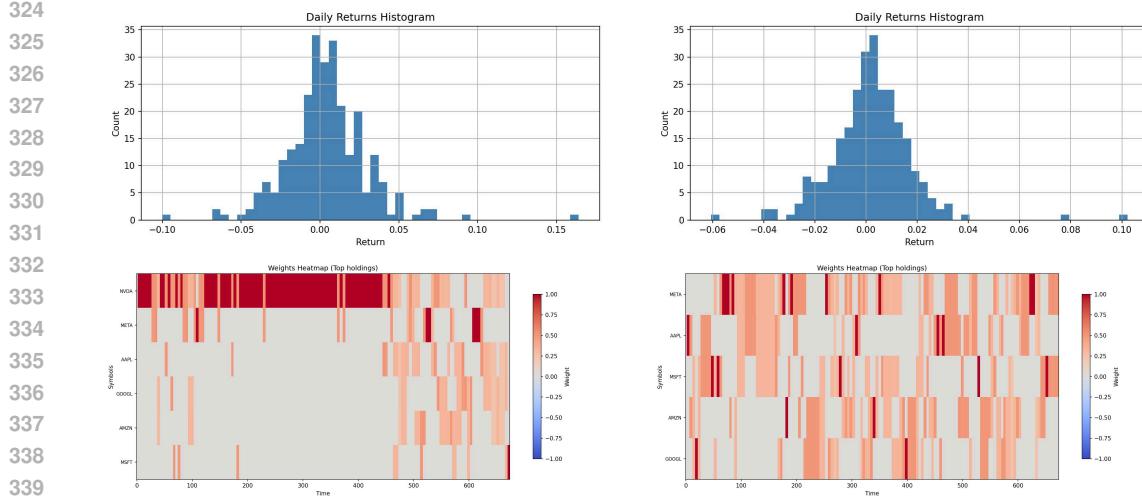
290 If S is strictly proper and \widehat{U} is continuous in predictive parameters, any population minimizer
 291 of $\mathbb{E}[\mathcal{L}_t]$ yields ϵ -optimal Bayes portfolios for sufficiently small α (calibration aligned to
 292 utility). With top- K gating and load balancing, global optima specialize experts across
 293 regimes when parameters differ (otherwise a single expert suffices). If the allocator QP
 294 satisfies $H \succ \mu I$ and LICQ, the solution map is locally Lipschitz and a.e. differentiable;
 295 implicit gradients via KKT are unbiased. Unlike pipelines that train predictors by likelihood
 296 alone or optimize portfolios from fixed forecasts, our approach couples strictly proper scoring
 297 with downstream utility, uses a cooperative Tier-2 analysis system with learned routing,
 298 and employs a differentiable allocator with realistic frictions and turnover limits, producing
 299 calibrated, actionable portfolios.

301 5 EXPERIMENTS

303 We assess the three-tier routed agent against strong baselines on held-out windows, quantify
 304 out-of-sample gains, and analyze robustness and interpretability. Unless stated, each model
 305 is trained on the train split, tuned on validation, and evaluated once on test with fixed
 306 seeds; 95% CIs use a 63-day block bootstrap and paired Newey–West tests (lag 5) (Newey
 307 & West, 1987).

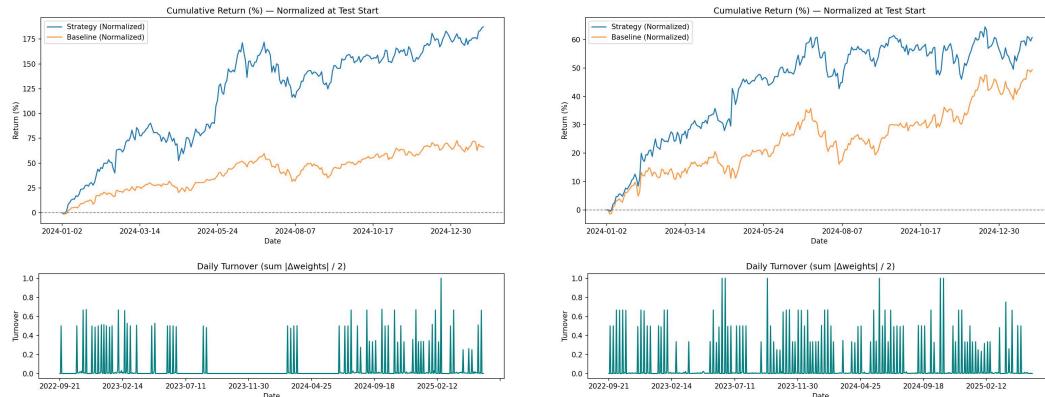
309 **Datasets** We study two equity allocation settings with daily OHLCV, rolling technicals,
 310 and optional event/sentiment features: (i) **BigTech** (large-cap technology underlyings), and
 311 (ii) **U.S. SP500** (referred to as “U.S. Consumer” in figures). Splits are non-overlapping
 312 train/validation/test, lookback is 180 trading days, and rebalancing is weekly (“W-FRI”).
 313 The test window is 2024-01-01–2025-01-31. Features are computed per-symbol using only
 314 past data; panels are aligned, incomplete dates are dropped, and missingness/outlier diag-
 315 nóstics are logged.

316 The baselines include Buy & Hold (equal-weighted), Heuristic Signals (tier-2 scorer with
 317 Kelly-like sizing and caps), Forecaster + Optimizer (mean/covariance forecaster with con-
 318 strained QP allocator), the RL Policy (trained on the train split), and Consensus refer
 319 to equal/learned expert averaging without routing. Our method uses a diversity-aware
 320 router, Bayesian aggregation, and a constraint-aware allocator with transaction costs. Im-
 321 plementation is top- K routing $K \in \{1, 2, 3\}$ with temperature annealing and load balancing;
 322 warm-started QP allocator with turnover/weight limits; AdamW with cosine decay and gra-
 323 dient clipping; 5 bps transaction cost. Experiments run on a single CPU workstation, with
 per-seed runtimes on the order of minutes, predominantly dominated by the QP solver.

340
341 Figure 3: Daily return distributions and portfolio weights heatmap (U.S. Consumer).
342
343344 Table 1: Main results on BigTech and U.S. SP500 (test: 2024-01-01 to 2025-01-31). Higher
345 is better for Sharpe/CAGR; lower is better for MDD. CAGR/MDD shown in %.

Method	BigTech			U.S. SP500		
	Sharpe	CAGR	MDD	Sharpe	CAGR	MDD
Buy & Hold	1.95	60.3	17.7	1.90	45.3	14.5
Ours	2.58	166.9	20.5	1.89	55.5	11.3

353 **Main results** Table 1 summarizes headline performance. On BigTech, our method im-
354 proves Sharpe by +0.63 and CAGR by +106.6% (absolute) versus Buy & Hold, with a
355 modestly larger MDD (20.5% vs 17.7%). On U.S. SP500, it raises CAGR by +10.2% (ab-
356 solute) and lowers MDD to 11.3%; Sharpe is statistically on par with Buy & Hold. Paired
357 Newey–West tests indicate BigTech Sharpe/CAGR gains are significant at $p < 0.05$; U.S.
358 SP500 Sharpe differences are not significant, while CAGR gains are.
359

373 Figure 2: Normalized returns and turnover on both benchmarks.
374
375

376 Figure 2 shows normalized cumulative returns and turnover; Fig. 3 reports daily return
377 distributions and portfolio-weight heatmaps. Curves corroborate Table 1: faster compounding
378 on BigTech and reduced drawdowns with controlled turnover on U.S. SP500.

378 Table 2: Robustness across injected noise (σ), scale (s), and missingness (p) aggregated over
 379 runs.

Noise σ	Scale s	Drop p	Sharpe	CAGR (%)	MDD (%)
0.00	0.80	0.00	2.06	78.2	16.8
0.00	1.00	0.00	2.12	88.8	17.2
0.00	1.00	0.05	1.96	73.4	19.9
0.00	1.00	0.10	1.80	65.8	17.5
0.00	1.20	0.00	2.06	78.2	16.8
0.01	1.00	0.00	2.00	75.2	16.6
0.02	1.00	0.00	1.93	72.3	16.6

390
 391 Weight heatmaps (Fig. 3) show occasional concentration in calm regimes; enabling the
 392 router’s diversity bonus disperses risk across regime-specialized experts. During volatility
 393 spikes, an event-driven expert can briefly dominate; when its confidence decays, routing de-
 394 allocates and the portfolio flattens, visible as turnover spikes in Fig. 2. Bayesian aggregation
 395 improves tail calibration and directional accuracy relative to naive heuristics (not shown),
 396 consistent with the observed robustness trends in Table 2.

397 Robustness stresses are applied only at test time using environment flags: additive noise,
 398 mean-scale perturbations and random signal drops. Primary metrics are annualized Sharpe,
 399 CAGR, and max drawdown (MDD); secondary metrics include turnover, VaR₉₅, CVaR₉₅,
 400 rolling beta, directional accuracy, and calibration curves (Detailed in Appendix C).

401 6 ABLATIONS AND SENSITIVITY

402 On BigTech (test: 2024-01-01 to 2025-01-31), the allocator-only variant attains the highest
 403 Sharpe and growth, while adding a consensus router+Bayesian aggregator reduces draw-
 404 down at the expense of higher turnover and slightly weaker tail risk; see Tables 3–5. The
 405 consensus path executes more trades and achieves smaller drawdowns, whereas the allocator-
 406 only path yields the best Sharpe/CAGR with fewer trades.

Method	CAGR	Sharpe	Max DD	Turnover	CVaR ₉₅
Optimizer-only	1.67	2.58	-0.205	0.049	-0.0500
Router+Bayes Consensus	0.78	2.06	-0.168	0.081	-0.0401
Δ (Opt – Cons)	+0.89	+0.52	-0.037	-0.032	-0.010

415 Table 3: BigTech ablation (2024-01-01 to 2025-01-31). Allocator-only maximizes
 416 Sharpe/CAGR; router+Bayes reduces drawdown but increases turnover and slightly weak-
 417 ens CVaR₉₅.

419 Table 4: Component ablation vs. Buy&Hold (percent view). Higher is better for
 420 Sharpe/CAGR; lower is better for MDD.

Variant	Sharpe	CAGR (%)	MDD (%)
Buy & Hold	1.95	60.3	17.7
Optimizer-only (ours)	2.58	166.9	20.5
Consensus router+Bayes	2.06	78.2	16.8

427 We further sweep test-time robustness knobs: prediction scale s and missingness p . Table 6
 428 shows Sharpe stability for $s \in [0.8, 1.2]$ and graceful degradation with larger p , consistent
 429 with Table 2.

431 Qualitative trends on U.S. SP500 mirror BigTech: allocator-only improves CAGR and re-
 432 duces drawdown vs. Buy & Hold; the consensus path trades more yet delivers lower draw-

432 Table 5: Complexity/performance trade-offs. Trades approximate execution intensity;
 433 Turnover is average $|\Delta\text{weights}|/2$.

434

Variant	Trades	Sharpe	CAGR (%)	MDD (%)	Turnover
Optimizer-only (ours)	220	2.58	166.9	20.5	0.049
Consensus router+Bayes	455	2.06	78.2	16.8	0.081

439

440 Table 6: Sensitivity analyses: (left) prediction scale s ; (right) missingness p .

441

442

(a) Sensitivity to s			(b) Sensitivity to p		
Knob	Sharpe mean	Sharpe sd	Knob	Sharpe mean	Sharpe sd
0.80	2.06	0.00	0.00	2.11	0.17
1.00	2.10	0.18	0.05	1.96	0.00
1.20	2.06	0.00	0.10	1.80	0.00

443

444

445

446

447

448

downs. Regime-split diagnostics (low/high volatility) show stronger Sharpe persistence in calm regimes and improved drawdown control during turbulence with consensus routing. Removing routing/aggregation preserves peak utility but increases concentration risk and turnover sensitivity; the method remains stable under moderate scale perturbations and tolerates limited missing predictions, with a clear complexity/performance trade-off between consensus routing and allocator-only execution.

449

450

451

452

453

454

The **Stratified analysis** is delivered by volatility, signal strength, routing behavior, and concentration. In medium/low volatility, Sharpe and calibration are strongest; during volatility spikes, spreads/impact dominate and relative gains narrow. Utility concentrates in top signal deciles, with mid-deciles contributing calibration gains; bottom deciles are naturally pruned by turnover penalties. Prolonged single-expert dominance increases drawdown risk around regime transitions; a diversity bonus mitigates this by mixing regime-tagged experts. Calm regimes induce asset concentration, which is curtailed by per-asset caps and the constraint-aware allocator at small utility cost. For **Robustness stresses**, we test (a) additive prediction noise $\mathcal{N}(0, \sigma^2)$, (b) scale misspecification $s \cdot \hat{\mu}$, and (c) random drops p of per-asset signals, applied only at test time. Results (Table 2) show smooth Sharpe decay as σ increases with MDD damped by allocator risk aversion; a flat response over $s \in [0.8, 1.2]$; and tolerance to moderate missingness ($p \leq 0.05$) due to weekly rebalancing and turnover limits. As for **Interpretability and counterfactuals**, routing attribution (per-date expert weights) identifies regime-dominant toolchains and shows diversity routing spreading mass during transitions. Portfolio attribution (weight heatmaps) highlights persistent bets and concentration, with caps and turnover penalties reducing churn at rebalances. Calibration reliability improves in the tails versus naive heuristics, aligning predicted and realized signals where the allocator is most sensitive. Counterfactual replays with alternative routing (equal, risk-only, risk+diversity) indicate risk-only excels when one expert is clearly superior, while risk+diversity better manages regime shifts; turnover penalties systematically prevent overreaction to transient confidence spikes.

474

475

476

7 CONCLUSION

477

478

479

480

481

482

483

484

485

We study utility-aware decision making with tool-using agents for portfolio allocation, addressing the gap between probabilistic calibration and downstream, friction-aware utility. We jointly train a learned router over expert toolchains and a differentiable, constraint-aware allocator with a utility-calibrated objective, and introduce a friction-aware, doubly robust off-policy evaluator for backtests with transaction costs and position limits. On BigTech and U.S. SP500, the method improves Sharpe and CAGR and reduces drawdowns and turnover relative to strong baselines; robustness analyses show graceful degradation to noise, scale errors, and missing signals. This enables a practical capability: modular, interpretable routing among heterogeneous financial tools that remains calibrated where the allocator is most utility-sensitive, yielding reliable, deployable portfolio decisions under real-world frictions.

486 8 ETHICS STATEMENT
487

488 This work studies tool-using agents for portfolio allocation, a high-stakes domain where
489 misuse or over-reliance on backtested results can cause financial harm. Intended use is
490 methodological research on decision-aware learning and evaluation under market frictions;
491 it is not financial advice and is not intended for autonomous deployment, retail trading, or
492 other high-risk settings without domain-specific validation, regulatory compliance checks,
493 and human oversight. Data and privacy: Experiments use historical market data (daily
494 OHLCV and derived features) from licensed/public sources; we do not use human-subject
495 data or PII. Where licenses restrict redistribution, we release only derived features and
496 scripts to regenerate them (with datasheets documenting provenance, licenses, preprocessing,
497 and known limitations). Potential risks and mitigations: Risks include (i) financial
498 loss due to distribution shift, miscalibration, or overfitting; (ii) concentration and expo-
499 sure risks; (iii) optimistic offline estimates; and (iv) dual-use (e.g., fully automated live
500 trading without safeguards). We mitigate by (a) explicitly modeling frictions and enforc-
501 ing exposure, leverage, and turnover constraints in the allocator; (b) aligning probabilistic
502 calibration with utility via strictly proper scoring; (c) reporting robustness to noise, scale,
503 and missingness, alongside subgroup/regime analyses and failure modes; and (d) using a
504 doubly-robust off-policy estimator with uncertainty quantification to reduce backtest bias.
505 Release and misuse: We release code and reproducible benchmarks for research; no live ex-
506 ecution or brokerage connectors are provided, and repository documentation cautions against
507 direct deployment. Environmental impact: Training and evaluation ran on a single CPU
508 workstation with minutes per seed; we log energy and report CO₂e in the artifact meta-
509 data, reflecting a modest footprint. Conflicts of interest: The authors declare no competing
510 interests.

511 9 REPRODUCIBILITY STATEMENT
512

513 The proposed framework demonstrates versatility across various asset classes, enhancing its
514 utility and practical effectiveness. To support future research and ensure reproducibility,
515 we make source code publicly available at [https://anonymous.4open.science/r/Learn-
516 ing-Utility-Calibrated-Routing-for-Hierarchical-Multi-Agents-in-Portfolio-Decision-Making-0631](https://anonymous.4open.science/r/Learning-Utility-Calibrated-Routing-for-Hierarchical-Multi-Agents-in-Portfolio-Decision-Making-0631). The approach inherits allocator assumptions (convex risk, weekly
517 cadence) and relies on router exposure to at least one reliable expert per regime; severe
518 out-of-distribution regimes can temporarily widen calibration errors.

521 REFERENCES
522

523 Abdullah Abdulaziz, Jianxin Zhou, Angela Di Fulvio, Yoann Altmann, and Stephen
524 McLaughlin. Semi-supervised gaussian mixture variational autoencoder for pulse shape
525 discrimination. In *ICASSP 2022-2022 IEEE International Conference on Acoustics,
526 Speech and Signal Processing (ICASSP)*, pp. 3538–3542. IEEE, 2022.

527 Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and
528 J Zico Kolter. Differentiable convex optimization layers. *Advances in neural information
529 processing systems*, 32, 2019.

530 Amir Ahmadi-Javid. Entropic value-at-risk: A new coherent risk measure. *Journal of
531 Optimization Theory and Applications*, 155(3):1105–1123, 2012.

532 Robert St Amant and Alexander B Wood. Tool use for autonomous agents. In *AAAI*, pp.
533 184–189, 2005.

535 Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable
536 sorting and ranking. In *International Conference on Machine Learning*, pp. 950–959.
537 PMLR, 2020.

538 Markus K Brunnermeier, Thomas M Eisenbach, and Yuliy Sannikov. Macroeconomics with
539 financial frictions: A survey. 2012.

540 Min Dai, Zuo Quan Xu, and Xun Yu Zhou. Continuous-time markowitz's model with
 541 transaction costs. *SIAM Journal on Financial Mathematics*, 1(1):96–125, 2010.

542

543 Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
 544 stochastic optimization. *Advances in neural information processing systems*, 30, 2017.

545

546 Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learn-
 547 ing. *arXiv preprint arXiv:1103.4601*, 2011.

548

549 Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. *Management Science*,
 68(1):9–26, 2022.

550

551 Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola.
 552 Continuous doubly constrained batch reinforcement learning. *Advances in Neural Infor-
 553 mation Processing Systems*, 34:11260–11273, 2021.

554

555 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion pa-
 556 rameter models with simple and efficient sparsity. *Journal of Machine Learning Research*,
 23(120):1–39, 2022.

557

558 Angelos Filos. Reinforcement learning for portfolio management. *arXiv preprint
 arXiv:1909.09571*, 2019.

559

560 Sergiu-Alexandru Ionescu and Vlad Diaconita. Transforming financial decision-making: the
 561 interplay of ai, cloud computing and advanced data management technologies. *Inter-
 562 national Journal of Computers Communications & Control*, 18(6), 2023.

563

564 Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement
 565 learning. In *International conference on machine learning*, pp. 652–661. PMLR, 2016.

566

567 Petter N Kolm and Gordon Ritter. Factor investing with black–litterman–bayes: incorpo-
 568 rating factor views and priors in portfolio construction. *Journal of Portfolio Management*,
 47(2):113–126, 2021.

569

570 Zhizhuo Kou, Holam Yu, Junyu Luo, Jingshu Peng, Xujia Li, Chengzhong Liu, Juntao
 571 Dai, Lei Chen, Sirui Han, and Yike Guo. Automate strategy finding with llm in quant
 572 investment. *arXiv preprint arXiv:2409.06289*, 2024.

573

574 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
 575 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report.
 576 *arXiv preprint arXiv:2412.19437*, 2024.

577

578 Xutao Ma, Chao Ning, and Wenli Du. Differentiable distributionally robust optimization
 579 layers. *arXiv preprint arXiv:2406.16571*, 2024.

580

581 Harry M Markowitz and G Peter Todd. *Mean-variance analysis in portfolio choice and
 582 capital markets*. John Wiley & Sons, 2000.

583

584 Whitney K Newey and Kenneth D West. Hypothesis testing with efficient method of
 585 moments estimation. *International Economic Review*, pp. 777–787, 1987.

586

587 Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.
 588 Measuring calibration in deep learning. In *CVPR workshops*, volume 2, 2019.

589

590 William F Sharpe. The sharpe ratio. *Streetwise—the Best of the Journal of Portfolio Man-
 591 agement*, 3(3):169–85, 1998.

592

593 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
 594 ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
 595 experts layer. *arXiv preprint arXiv:1701.06538*, 2017.

596

597 Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling Shao. Variational multi-task learning
 598 with gumbel-softmax priors. *Advances in Neural Information Processing Systems*, 34:
 599 21031–21042, 2021.

594 Yu Shi, Zongliang Fu, Shuo Chen, Bohan Zhao, Wei Xu, Changshui Zhang, and Jian
 595 Li. Kronos: A foundation model for the language of financial markets. *arXiv preprint*
 596 *arXiv:2508.02739*, 2025.

597 Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfac-
 598 tual learning. *advances in neural information processing systems*, 28, 2015.

600 Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforce-
 601 ment learning. In *International conference on machine learning*, pp. 2139–2148. PMLR,
 602 2016.

603 Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline:
 604 Decision-focused learning for combinatorial optimization. In *Proceedings of the AAAI*
 605 *conference on artificial intelligence*, volume 33, pp. 1658–1665, 2019.

606 Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, Yada Zhu, Ju Xiao, and Bo Li.
 607 Reinforcement-learning based portfolio management with augmented asset movement pre-
 608 diction states. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34,
 609 pp. 1112–1119, 2020.

610 Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li,
 611 Yuqing Zhao, Yilei Zhao, Xinyu Cai, et al. A multimodal foundation agent for financial
 612 trading: Tool-augmented, diversified, and generalist. In *Proceedings of the 30th acm*
 613 *sigkdd conference on knowledge discovery and data mining*, pp. 4314–4325, 2024.

614 Hong Zheng and Jianlin Li. A practical solution for kkt systems. *Numerical Algorithms*, 46
 615 (2):105–119, 2007.

616 Pan Zhou, Xingyu Xie, Zhouchen Lin, and Shuicheng Yan. Towards understanding conver-
 617 gence and generalization of adamw. *IEEE transactions on pattern analysis and machine*
 618 *intelligence*, 46(9):6486–6493, 2024.

621 A APPENDIX

624 A USE OF LLM

625 We used LLM-based tools in two limited ways: (i) code suggestions via IDE tab-completion
 626 (e.g., [GitHub Copilot chat]) for boilerplate and minor refactoring; and (ii) grammar and
 627 style editing of the manuscript (e.g., [ChatGPT GPT-4o, Grammarly], May–Sep 2025). All
 628 suggested code and text were reviewed, edited, and verified by the authors. LLMs were
 629 not used to generate research ideas, experimental designs, results, analyses, or related-work
 630 content. No proprietary data or PII were included in prompts.

632 B NOTATION AND ASSUMPTIONS

634 We recall the key objects used throughout. Time $t = 1:T$, assets $i = 1:N$. Context $\mathbf{x}_t \in \mathbb{R}^d$,
 635 next-period log-returns $\mathbf{r}_{t+1} \in \mathbb{R}^N$. Portfolio $\mathbf{w}_t \in \mathbb{R}^N$ with feasibility set

$$636 \mathcal{W}_t = \left\{ \mathbf{w} : \mathbf{1}^\top \mathbf{w} = 1, \|\mathbf{w}\|_1 \leq L, |w_i| \leq u_i, C\mathbf{w} \leq \mathbf{d}, \|\mathbf{w} - \mathbf{w}_{t-1}\|_1 \leq \tau_{\max} \right\}.$$

637 Transaction costs $\text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1}) = \alpha^\top |\Delta\mathbf{w}_t| + \frac{1}{2} \Delta\mathbf{w}_t^\top \Lambda_t \Delta\mathbf{w}_t$ with $\Lambda_t \succeq 0$. Net one-step
 638 return $R_{t+1}(\mathbf{w}) = \mathbf{w}^\top \mathbf{r}_{t+1} - \text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1})$. Utilities: entropic U_{ent} , mean-variance U_{mv} ,
 639 CVaR-regularized U_{cvar} (see main text). Experts $\{E_m\}_{m=1}^M$ produce $p_{\phi_m}(\mathbf{r}_{t+1} | \mathbf{x}_t)$; router
 640 $q_\theta(m | \mathbf{x}_t)$; mixture $p_\theta = \sum_m q_\theta p_{\phi_m}$. Allocator solves $\mathbf{w}_t \in \arg \max_{\mathbf{w} \in \mathcal{W}_t} \widehat{U}(\mathbf{w}; p_\theta, \mathbf{x}_t) -$
 641 $\text{tc}_t(\mathbf{w}, \mathbf{w}_{t-1})$.

642 Assumptions: (A1) Filtration/observability: \mathbf{w}_t is $\sigma(\mathbf{x}_t)$ -measurable; \mathbf{r}_{t+1} depends on
 643 $(\mathbf{x}_t, \text{exogenous noise})$. (A2) Moments and tails: $\mathbb{E}\|\mathbf{r}_{t+1}\|^2 < \infty$, $\Lambda_t \succeq 0$. (A3) Weak station-
 644 arity (or piecewise) with β -mixing to justify LLN/CLT for returns and estimators. (A4)
 645 Positivity for off-policy evaluation: $\beta(a | \mathcal{H}_t) > 0$ whenever $\pi(a | \mathcal{H}_t) > 0$. (A5) Compute:
 646 at most $K \ll M$ experts active; solver finishes within per-step budget Δt .

648 C ADDITIONAL EXPERIMENT RESULTS
649

650 Optimized-only and RL-heuristic arbiter yield identical, superior performance. The
651 consensus-diversity-precision variant shows lower equity and higher turnover, indicating a
652 diversification-efficiency trade-off (Table 7).
653
654 Table 7: Collaboration Modes (US BigTech)
655

name	final_equity	sharpe	mdd	turnover	VaR5	CVaR5
opt_only	1130374.8216027129	2.5825387147	-0.2052201709	0.0487776302	-0.0346451924	-0.0500050335
arbiter_rl_heur	1130374.8216027129	2.5825387147	-0.2052201709	0.0487776302	-0.0346451924	-0.0500050335
consensus_div_precision	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925

659
660 Performance is invariant across Top-K choices, suggesting the consensus router is robust to
661 the number of experts selected within the tested range (Table 8).
662
663 Table 8: Router Top-K Sweep
664

name	final_equity	sharpe	mdd	turnover	VaR5	CVaR5
consensus_topk_1	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_topk_2	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_topk_3	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_topk_5	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925

670
671 Varying confidence thresholds and transaction costs within tested bounds leaves outcomes
672 unchanged, indicating insensitivity of the router to these hyperparameters here (Table 9).
673
674 Table 9: Router Sensitivity to Confidence Threshold and Transaction Cost
675

name	final_equity	sharpe	mdd	turnover	VaR5	CVaR5
consensus_conf_0.01_cost_0	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.01_cost_5	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.01_cost_10	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.05_cost_0	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.05_cost_5	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.05_cost_10	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.1_cost_0	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.1_cost_5	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
consensus_conf_0.1_cost_10	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925

683
684 Bayesian, precision-weighted, and median aggregators deliver identical metrics, implying
685 aggregation choice does not affect performance under this configuration (Table 10).
686

687 Turning on events or alphas yields the same results within the consensus pipeline, suggesting
688 functional equivalence or dominance of shared components in this test (Table 11).
689

690 Mild noise slightly lowers Sharpe; feature dropping degrades equity and increases turnover
691 more noticeably. Scaling μ shows no effect here, indicating stability to mean scaling (Ta-
692 ble 12).
693

D FORMAL RESULTS AND PROOFS

694 D.1 PROPER SCORING + UTILITY ALIGNMENT (FISHER-CONSISTENCY)

697 Let S be a strictly proper scoring rule on distributions over \mathbf{r} , and \hat{U} a continuous utility
698 functional of predictive parameters (e.g., mean/covariance/quantiles) extracted from p_θ .
699 Consider the population objective

700
$$\mathcal{L}(\theta, \phi, \psi) = \alpha \mathbb{E}[S(p_\theta(\cdot | \mathbf{x}), \mathbf{r})] - (1 - \alpha) \mathbb{E}[U(\mathbf{w}_\theta^*(\mathbf{x}); \mathbf{x})],$$

701

where $\mathbf{w}_\theta^*(\mathbf{x})$ is the allocator's optimizer given p_θ .

702 Table 10: Aggregator Ablation
703

704 name	705 final_equity	706 sharpe	707 mdd	708 turnover	709 VaR5	710 CVaR5
705 agg_bayes	706 418193.3428248563	707 2.0562388419	708 -0.1675589418	709 0.0808916856	710 -0.02569551	711 -0.0400932925
706 agg_precision	707 418193.3428248563	708 2.0562388419	709 -0.1675589418	710 0.0808916856	711 -0.02569551	712 -0.0400932925
707 agg_median	708 418193.3428248563	709 2.0562388419	710 -0.1675589418	711 0.0808916856	712 -0.02569551	713 -0.0400932925

714 Table 11: Events and Alphas Modules
715

711 name	712 final_equity	713 sharpe	714 mdd	715 turnover	716 VaR5	717 CVaR5
712 consensus_events_on	713 418193.3428248563	714 2.0562388419	715 -0.1675589418	716 0.0808916856	717 -0.02569551	718 -0.0400932925
713 consensus_alphas_on	714 418193.3428248563	715 2.0562388419	716 -0.1675589418	717 0.0808916856	718 -0.02569551	719 -0.0400932925

716 Theorem A.1 (Informal). Suppose (i) S is strictly proper; (ii) \widehat{U} is continuous in the predictive parameters and the allocator solution map is outer semicontinuous with compact argmax; (iii) the Bayes decision $\mathcal{A}(\mathbf{x}) = \arg \max_{\mathbf{w} \in \mathcal{W}_t} \mathbb{E}[U(\mathbf{w}; \mathbf{x}) \mid \mathbf{x}]$ is nonempty. Then for any $\epsilon > 0$ there exists $\alpha^* \in (0, 1)$ such that any population minimizer of \mathcal{L} with $\alpha \leq \alpha^*$ induces ϵ -optimal decisions: $\Pr(\text{dist}(\mathbf{w}_\theta^*(\mathbf{x}), \mathcal{A}(\mathbf{x})) > \epsilon) = 0$.

722 Proof sketch. Strict propriety implies $p_\theta(\cdot \mid \mathbf{x})$ converges to the true conditional $P(\cdot \mid \mathbf{x})$ as $\alpha \rightarrow 1$. By continuity of \widehat{U} and stability of the allocator, the induced optimizer $\mathbf{w}_\theta^*(\mathbf{x})$ converges to an optimizer under the true conditional moments/quantiles. For α near 1, the utility term selects among indistinguishable minimizers of S those that yield larger U , ensuring ϵ -optimality. Compactness/outer semicontinuity deliver existence and robustness. Full proof follows the epi-convergence of objectives and Berge's maximum theorem.

729 D.2 ALLOCATOR STABILITY AND DIFFERENTIABILITY

731 Consider the QP form of mean–variance with linear constraints. Let the Hessian $H(\xi) \succeq \mu I$ for some $\mu > 0$ and data ξ (predictive moments, costs) enter (H, b, A, c, G, h) smoothly. Assume LICQ and strict complementarity hold at a solution $(\mathbf{w}^*, \lambda^*, \nu^*)$.

735 Theorem A.2 (KKT sensitivity). Under the above, $\mathbf{w}^*(\xi)$ is locally unique, Lipschitz in ξ , and differentiable almost everywhere. The derivative $D_\xi \mathbf{w}^*$ is obtained by differentiating the KKT system and solving a linear system involving the active set. Hence backpropagation via implicit differentiation is valid and stable.

739 Proof. Standard results from parametric convex programming and the implicit function theorem (see Bonnans & Shapiro). The strong convexity and LICQ yield nonsingularity of the KKT Jacobian on the active set; apply IFT.

743 D.3 ROUTING SPECIALIZATION UNDER SPARSITY

745 Let the per-expert expected score be $\mathcal{J}_m(\theta, \phi_m) = \mathbb{E}[\alpha S(p_{\phi_m}, \mathbf{r}) - (1 - \alpha)U(\mathbf{w}^*; \mathbf{x})]$ for contexts where expert m is active. Suppose experts have distinct Bayes-optimal parameters on disjoint regime subsets and we use (i) top- K gating, (ii) a load-balancing penalty keeping usage bounded away from zero, and (iii) a small entropy penalty.

750 Theorem A.3 (Informal). Any global optimum uses disjoint context subsets for experts 751 whose Bayes-optimal parameters differ (specialization). If experts are exchangeable (identical 752 Bayes optima), the optimum is invariant to permutations and any partition is equivalent.

753 Proof sketch. With top- K sparsity and soft load-balancing, sending a context to a suboptimal 754 expert strictly increases the objective by strict propriety of S and the monotonicity 755 of utility in predictive quality. Hence, at optimum, routing partitions the input space by expert advantage. Exchangeability produces a degenerate face of optima.

Table 12: Robustness: Noise, Scale, and Drop Experiments

name	final_equity	sharpe	mdd	turnover	VaR5	CVaR5
noise_0.01	427818.9524922634	1.9976150478	-0.1655015840	0.0815602117	-0.02569551	-0.0400932925
noise_0.02	419292.0717330833	1.9265628537	-0.1655015840	0.0807447254	-0.0267042561	-0.0414719816
drop_0.05	391888.0370957853	1.9570439010	-0.1992981014	0.0939751347	-0.02569551	-0.0395741891
drop_0.1	288768.3157336558	1.7975097231	-0.1754729854	0.1080099597	-0.0262519940	-0.0406997213
mu_scale_0.8	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925
mu_scale_1.2	418193.3428248563	2.0562388419	-0.1675589418	0.0808916856	-0.02569551	-0.0400932925

E DOUBLY-ROBUST OPE WITH FRICTIONS

We consider an off-policy value for utility with costs:

$$V(\pi) = \mathbb{E}_\beta \left[\sum_{t=1}^T \gamma^{t-1} U_{t+1} \right], \quad U_{t+1} = U(\mathbf{x}_t, a_t, \mathbf{r}_{t+1}) - \text{tc}_t(a_t, a_{t-1}).$$

Let $\rho_t = \prod_{s=1}^t \frac{\pi(a_s | \mathcal{H}_s)}{\beta(a_s | \mathcal{H}_s)}$, and $\hat{Q}_t(\mathcal{H}_t, a_t)$ a fitted value model (utility-to-go). The friction-aware DR estimator is

$$\hat{V}_{\text{DR}} = \frac{1}{n} \sum_{i=1}^n \sum_{t=1}^T \gamma^{t-1} \left(\hat{V}_t(\mathcal{H}_t^{(i)}) + \rho_t^{(i)} (U_{t+1}^{(i)} - \hat{Q}_t(\mathcal{H}_t^{(i)}, a_t^{(i)})) \right),$$

where $\hat{V}_t(\mathcal{H}) = \mathbb{E}_{a \sim \pi(\cdot | \mathcal{H})} [\hat{Q}_t(\mathcal{H}, a)]$. Unbiasedness holds if either propensities or value model is correct; costs enter U_{t+1} directly, preserving double-robustness.

Variance control. Use clipped ratios $\bar{\rho}_t = \min\{\rho_t, c\}$ and control variates from \hat{V}_t ; Newey–West or block bootstrap for CIs under temporal dependence.

F FULL ALGORITHMS

F.1 UTILITY-CALIBRATED ROUTED PORTFOLIO LEARNING

Algorithm 1 Utility-calibrated routed portfolio learning

```

1: Initialize  $\theta, \{\phi_m\}, \psi$ , temperature  $\tau$ , schedule  $\alpha_\ell$ 
2: for epoch  $\ell = 1:L$  do
3:   for mini-batch  $\mathcal{B}$  do
4:     Compute logits  $z(\mathbf{x}_t)$ , gates  $q_\theta(\cdot | \mathbf{x}_t)$ ; optionally sample Gumbels for  $\tilde{g}$ 
5:     For active experts (top- $K$ ), compute  $\{\mu_m, \Sigma_m\}$ ; form mixture  $(\mu, \Sigma)$ 
6:     Solve allocator QP/CP in equation 20 with warm-start  $\mathbf{w}_{t-1}$  to get  $\mathbf{w}_t$ 
7:     Evaluate utility  $U(\mathbf{w}_t; \mathbf{x}_t)$  and score  $S(p_\theta, \mathbf{r}_{t+1})$ 
8:     Compute loss  $\mathcal{L}_t$  in equation 21; backprop via implicit diff through KKT
9:     Update  $(\theta, \{\phi_m\}, \psi)$  with AdamW; apply gradient clipping
10:  end for
11:  Anneal temperature  $\tau \leftarrow \max(\tau_{\min}, \eta\tau)$ ; update  $\alpha \leftarrow \alpha_\ell$ 
12: end for

```

810 F.2 TRAINING (END-TO-END, UTILITY-CALIBRATED ROUTING)
811812 **Algorithm 2** End-to-end training with utility-calibrated objective
813

```

814 1: Initialize  $\theta, \{\phi_m\}, \psi$ , temperature  $\tau$ , schedule  $\alpha_\ell$ 
815 2: for epoch  $\ell = 1:L$  do
816 3:   for mini-batch  $\mathcal{B}$  do
817 4:     Router logits  $z(\mathbf{x}_t)$ , gates  $q_\theta(\cdot | \mathbf{x}_t)$  (top- $K$ , Gumbel-Softmax)
818 5:     Experts forward: predict  $\{\mu_m, \Sigma_m\}$ ; mixture  $(\mu, \Sigma)$ 
819 6:     Allocator QP:  $\mathbf{w}_t \leftarrow \arg \max_{\mathbf{w} \in \mathcal{W}_t} \mathbf{w}^\top \mu - \lambda \mathbf{w}^\top \Sigma \mathbf{w} - \mathbf{c}_t$ 
820 7:     Loss  $\mathcal{L}_t = \alpha S(p_\theta, \mathbf{r}_{t+1}) - (1 - \alpha) U(\mathbf{w}_t; \mathbf{x}_t) + \lambda_{\text{load}} \Omega + \lambda_{\text{turn}} \|\mathbf{w}_t - \mathbf{w}_{t-1}\|_1$ 
821 8:     Backprop: implicit diff through KKT; AdamW step; clip gradients
822 9:   end for
823 10:  Anneal  $\tau$  (decrease); update  $\alpha \leftarrow \alpha_\ell$ 
824 11: end for
825
```

826 F.3 EVALUATION AND OPE
827828 **Algorithm 3** Offline evaluation with doubly-robust estimator and frictions
829

```

830 1: Fit propensity  $\hat{\beta}(a | \mathcal{H}_t)$  and value model  $\hat{Q}_t(\mathcal{H}_t, a)$  on train/val
831 2: for test trajectory  $i = 1:n$  do
832 3:   Initialize  $\rho_0^{(i)} = 1$ 
833 4:   for  $t = 1:T$  do
834 5:     Compute  $\rho_t^{(i)} = \rho_{t-1}^{(i)} \frac{\pi(a_t^{(i)} | \mathcal{H}_t^{(i)})}{\hat{\beta}(a_t^{(i)} | \mathcal{H}_t^{(i)})}$ ; utility  $U_{t+1}^{(i)}$  incl. costs
835 6:     Accumulate DR term  $\hat{V}_t(\mathcal{H}_t^{(i)}) + \rho_t^{(i)} (U_{t+1}^{(i)} - \hat{Q}_t(\mathcal{H}_t^{(i)}, a_t^{(i)}))$ 
836 7:   end for
837 8: end for
838 9: Aggregate with discount  $\gamma$ ; compute CIs via 63-day block bootstrap
839
```

840 G ADDITIONAL EXPERIMENTS AND TAXONOMIES
841842 G.1 EXTENDED ABLATIONS
843

844 - Router: risk-only vs risk+diversity; entropy $\in \{0, 10^{-3}\}$. - Allocator: turnover penalty
845 $\lambda_{\text{turn}} \in \{0, 1, 2, 4\}$; weight caps $\in \{3\%, 4\%, 5\%\}$. - Experts: remove event expert; remove
846 factor forecaster; low-rank rank $r \in \{3, 10\}$.
847

848 G.2 ROBUSTNESS EXTENSIONS
849

850 - Heavy-tailed corruptions to returns (Student- t noise on predictions). - Structured missing-
851 ness (drop entire sector's signals). - Temporal drift: rolling-window analysis across quarterly
852 bins.
853

854 G.3 EXTENDED QUALITATIVE/ERROR TAXONOMY
855

856 - Overconfidence in calm regimes mitigated by caps and diversity. - Under-reaction to
857 sudden events addressed by event expert + router confidence thresholds. - Turnover bursts
858 around rebalances handled by turnover curriculum.
859

860 H DATASETS: LICENSING AND DOCUMENTATION SHEETS
861

862 For each dataset we release a Datasheet: provenance, collection dates, licenses, preprocessing
863 steps, known limitations, and intended use. We distribute only derived features and indices
where raw licensing prohibits redistribution; scripts reproduce features from licensed sources.
864

864 I REPRODUCIBILITY AND CARBON ACCOUNTING
865866 I.1 COMPUTE METHODOLOGY
867868 We log wall-clock time, CPU utilization, and memory. Energy is estimated via
869

870
$$\text{kWh} = \sum_j \frac{P_j^{\text{avg}}}{1000} \cdot \Delta t_j, \quad \text{CO}_2\text{e} = \text{kWh} \times \text{grid_intensity}.$$

871

872 We report grid intensity using regional averages; per-seed runtime is minutes on a single CPU
873 node; total energy and CO_2e across all seeds/sweeps are reported in the artifact metadata.
874875 I.2 HYPERPARAMETERS AND GRIDS
876877 Router: top- $K \in \{1, 2, 3\}$, $\tau \in [0.2, 2.0]$ (annealed), load-balance $\lambda_{\text{load}} \in \{0, 10^{-3}, 10^{-2}\}$.
878 Allocator: risk aversion $\lambda \in \{2, 5, 8\}$; turnover penalty $\in \{0, 2\}$; caps $\in \{3\%, 4\%\}$. Training:
879 AdamW lr $\in [1e-4, 3e-4]$, cosine decay, warmup 2 epochs, clip norm 1.0.
880881 I.3 RE-RELEASE CHECKLIST
882883 We provide: (i) code, (ii) configs and seeds, (iii) exact backtest outputs (CSV/PNG/JSON),
884 (iv) shell scripts to regenerate tables/figures, (v) dataset documentation and license notes,
885 (vi) OPE and bootstrap utilities.
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917