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Abstract

Weak Supervision is a common approach that001
aims to tackle the need for large labeled002
datasets. In this setting, labeling functions au-003
tomatically assign heuristic, often noisy, labels004
to data samples. In this work, we provide a005
method for learning from weak labels by sep-006
arating two types of mutually exclusive infor-007
mation associated with the labeling functions:008
information related to the target label and infor-009
mation specific to one labeling function only.010
Both types of information are reflected to differ-011
ent degrees by all labeled instances. In contrast012
to previous works that aimed at correcting or013
removing wrongly labeled instances, we learn014
a branched deep model that uses all data as015
is, but splits the labeling function information016
in the latent space. Specifically, we propose017
the end-to-end model SepLL which extends a018
transformer classifier by introducing a latent019
space for labeling function specific and task-020
specific information. The learning signal is021
only given by the labeling functions matches,022
no pre-processing or label model is required023
for our method. Notably, the task prediction is024
made from the latent layer without any direct025
task signal. Experiments on the Wrench text026
classification tasks show that our model is com-027
petitive with the state-of-the-art, and yields a028
new best average performance.029

1 Introduction030

In recent years, large language modelling ap-031

proaches have proven their applicability to a wide032

range of tasks, mainly due to the pre-training and033

fine-tuning paradigm. This has created a need for034

large labeled datasets as training on these datasets035

enables models to achieve state-of-the-art perfor-036

mance. However, obtaining manually created la-037

bels is expensive, tedious and often requires expert038

knowledge. As a consequence, significant areas of039

research are devoted to addressing this challenge040

by minimizing the need for labeled data. For ex-041

ample, research directions include transfer learning042

(Ruder et al., 2019) or few-shot learning (Brown 043

et al., 2020). Another research direction to address 044

this challenge is weakly supervised learning. The 045

idea is to use human intuitions, heuristics and ex- 046

isting resources, e.g., related databases, to create 047

weak (noisy) labels. 048

Several approaches have been proposed to in- 049

crease the quality of the resulting labels. For exam- 050

ple, Ratner et al. (2017) use generative modeling 051

to learn a probability distribution over the labeling 052

function matches, i.e., weak labels, and unknown 053

true labels in order to denoise the labels and subse- 054

quently train a classifier. Recently, several works 055

use student-teacher schemes that use knowledge in- 056

herent to pre-trained models (Karamanolakis et al., 057

2021; Cachay et al., 2021; Ren et al., 2020). Usu- 058

ally a summary statistic of weak labels, such as ma- 059

jority vote, is used as ground truth and iteratively 060

updated during training, for example by employing 061

a regularization based on the prediction confidence 062

of the model (Yu et al., 2021). Thus, most meth- 063

ods share the property that the weak labels, i.e., 064

the learning signals, are transformed or updated 065

throughout the learning process. 066

Instead of updating the weak labeling, we want 067

to keep the weak labels as-is and make use of a 068

different intuition. Each labeling function provides 069

information relevant to the prediction task but also 070

information only related to the function itself. The 071

idea is to view these two types of information as 072

mutually exclusive and build a model which sepa- 073

rates them. 074

To this end, we propose SepLL, an end-to-end 075

model which stacks two branched latent layers, rep- 076

resenting target-task-related and labeling-function- 077

related information, on top of a transformer en- 078

coder and recombines them for predicting labeling 079

function occurrences. Then, the learning signal is 080

only given by the weak labels as is. Notably, the 081

task prediction is performed from the latent space 082

without any direct supervision. Multiple informa- 083
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tion routing strategies are employed to improve the084

separation.085

In order to evaluate the performance, exper-086

iments on the text classification tasks of the087

WRENCH benchmark (Zhang et al., 2021) are per-088

formed. The standard model achieves state-of-the-089

art performance when compared to standalone mod-090

els as well as when combined and compared with091

the self-improvement method Cosine (Yu et al.,092

2021). An ablation study shows the importance of093

each information routing strategy. The experiments094

show that in addition to its task performance, the095

model is able to memorize the labeling function096

information.097

The contributions can be summarized in three098

parts: 1) We introduce a new intuition what type099

of information labeling functions provide and turn100

it into a method, SepLL, reflecting the intuition in101

the latent space. 2) We provide an analysis through102

experiments on the WRENCH benchmark, an abla-103

tion study and an in depth analysis of the two latent104

spaces. 3) We provide the code and a suitably trans-105

formed version of the input data. 1106

2 Related Work107

Weak Supervision. A main concern in machine108

learning is that a large amount of labeled data is109

needed in order to train models that achieve a state-110

of-the-art performance. Among others, the field111

of weak supervision aims to address this issue.112

The idea is to formalize human knowledge or in-113

tuitions into weak supervision sources, called la-114

beling functions, which can be used to produce115

weak labels. Examples of labeling functions are116

heuristic rules, e.g., keywords, regular expressions,117

other pre-trained classifiers or knowledge bases in118

distant supervision (Mintz et al., 2009; Hoffmann119

et al., 2011; Takamatsu et al., 2012).120

A main challenge that appears in a weak super-121

vision setting is how to create accurate labeling122

functions and how to unify and denoise them. Ma-123

jority vote, Snorkel (Ratner et al., 2017) (based124

on data programming) and Flying Squid (Fu et al.,125

2020) are methods that compute weak labels based126

on generative models over the labeling function127

matches and unknown true labels. These models128

are referred to as label models. Subsequently so129

called end-models, e.g., BERT-style classifiers (De-130

vlin et al., 2019), or methods dedicated to noisy131

training labels are used to train a final model.132

1To be published upon acceptance.

Recently, neural methods, including the use of 133

pre-trained models, gained more traction. (Cachay 134

et al., 2021) use a classifier and a probabilistic 135

encoder for the labeling function matches and opti- 136

mize them using a noise-aware loss. Similarly, Ren 137

et al. (2020) combine a classifier and a attention- 138

based denoiser, but also include unlabeled sam- 139

ples. Yu et al. (2021) introduced Cosine, which 140

is a method to self-optimize classification models. 141

They leverage contrastive learning and confidence 142

regularization, i.e., high-confidence samples, to op- 143

timize a model’s performance. 144

Other approaches use additional signals. For 145

instance, ImplyLoss (Awasthi et al., 2020) uses 146

access to exemplars, i.e., single, correctly labeled 147

samples and ASTRA (Karamanolakis et al., 2021) 148

follows an attention based student-teacher mecha- 149

nism with an additional supervision of a few manu- 150

ally annotated labeled samples. Zhu et al. (2022) 151

uses a meta self-refinement approach which makes 152

use of access to the validation performance. 153

Our experiments are built on the Weak Super- 154

vision Benchmark (Wrench) (Zhang et al., 2021), 155

which is a framework that aims to provide a uni- 156

fied and standardized way to run and evaluate weak 157

supervision approaches. A wide range of tasks, 158

datasets and implementations of weak supervision 159

methods are available. 160

Latent Variable Modelling. There is work re- 161

garding latent variable modelling in other areas of 162

machine learning, which has influenced the ratio- 163

nale behind this work. Research in representation 164

learning has focused on modelling mutually inde- 165

pendent factors of variation, e.g., color in computer 166

vision, explicitly in some latent space. Often this is 167

called disentanglement (Bengio et al., 2013). This 168

is transferable to our setting as we aim to obtain 169

the task prediction as a disentangled factor. An 170

important early technique is Independent Compo- 171

nent Analysis (ICA) (Comon, 1994). Kingma and 172

Welling (2014) introduced variational autoencoders 173

(VAE’s) to neural networks, allowing complex data 174

distributions to be represented as simple distribu- 175

tions in the latent space. An extension is given 176

by β-VAE (Higgins et al., 2017), which is more 177

suitable for disentanglement. In addition, there has 178

been progress on theoretical work, which aims to 179

give an insight on what information is identifiable 180

by using self-supervised learning (SSL), e.g., Zim- 181

mermann et al. (2021) prove under certain assump- 182

tions that it inverts the data generation process. An 183
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Figure 1: Overview of SepLL. Text gets embedded into Z by a Transformer encoder, and then this representation
is split into labeling function-specific and task-specific information. The task-specific information is translated
back into the LF space and re-combined into L̂. A cross-entropy loss between the distribution of labeling function
matches L and L̂ is minimized. The latent task prediction Ŷ can be used for classification.

interesting perspective is the separation of content184

and style, e.g., the animal in a picture (content) and185

the camera angle of the image (style). Under milder186

assumptions as in Zimmermann et al. (2021), it is187

proved by von Kügelgen et al. (2021) that this sepa-188

ration is achieved using SSL. Mentioned works are189

not directly applicable to our task, because we want190

to separate general aspects of labeling functions,191

which are useful for prediction tasks, from labeling192

function specific aspects.193

3 Method194

The motivation of this work is that each labeling195

function provides two types of information.On the196

one hand, it provides information about the target197

task, e.g., spam detection, and on the other hand it198

provides information related to the labeling func-199

tion itself. This translates to our model, called200

SepLL, which aims to separate these two types of201

signals in a latent space. Figure 1 provides an202

overview of SepLL.203

In this section, we first introduce some notation204

and then describe the architecture of SepLL. Fol-205

lowing, the training mechanisms, which aim to206

support the separation of the two information types207

are discussed.208

3.1 Problem Setup and Notation209

In general, the goal is to solve classification tasks,210

e.g., spam detection asks whether a text is spam or211

not. The input space is denoted by X and the un-212

known labels are denoted by Y = {y1, . . . , yc}. 213

Additionally m labeling functions li : X → 214

{y} ∪ ∅, i = 1, . . . ,m are given where each label- 215

ing function (LF) either assigns a dedicated specific 216

label y ∈ Y to a sample or abstains from labeling. 217

If a label is assigned, we say a labeling function 218

matches a sample. The task is to use input X and 219

labeling functions li to learn a mapping X → Y . 220

We use the format of the Knodle (Sedova et al., 221

2021) framework, where each labeling function is 222

encoded as a labeler for exactly one class. This is 223

in contrast to other conventions where a single la- 224

beling function is allowed to label multiple classes, 225

e.g., Ratner et al. (2016). This convention can 226

easily be transformed into our setting, by splitting 227

multi-class LFs into multiple class-specific LFs. 228

The matching matrix L ∈ {0, 1}n×m describes 229

whether labeling function j matches sample i by 230

setting Lij = 1, otherwise Lij = 0. The mapping 231

matrix T ∈ {0, 1}m×|Y | reflects a simple mapping 232

between labeling function i and class j by Tij = 1, 233

otherwise Tij = 0. 234

3.2 Basic Model 235

First, the model transforms input text X into a 236

latent representation Z using an encoder h : X → 237

Rd. In this case, a pre-trained transformer encoder 238

transforms input text x ∈ X into the <CLS>-token 239

embedding z = h(x) ∈ Rd. 240

Following, there are two transformations fỸ : 241

Rd → R|Y | and fL̃ : Rd → Rm, which are real- 242

ized by two multi-layer perceptrons. The goal is 243
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to train the model such that fỸ (x) reflects the task244

information and fL̃(x) the remaining LF-related in-245

formation. Note that the resulting output represents246

the log-space and the transformation to probabili-247

ties happens later.248

Afterwards, the two latent layers are combined249

again and compared to the training signal, which is250

purely given by the LF matches L. The T matrix251

is used to map the target label information to the252

corresponding LF information by253

fL̂(z) = fỸ (z)T
⊤ + fL̃(z) ∈ Rm (1)254

where z = h(x) is the latent representation. Cru-255

cially, the T matrix establishes the connection be-256

tween task path and LF path.257

In order to run the optimization we compare the258

combined signals to the labeling functions matches.259

Therefore we define the LF distribution as the nor-260

malized L matrix, i.e., Pij =
Lij∑
k Lik

.261

Finally, the loss is computed as the cross entropy262

between the labeling function distribution and the263

prediction264

CE(P,Q) =
1

n

n∑
i=1

l∑
j=1

pij log(qij) (2)265

where the prediction probability Q is given by a266

softmax activation over fL̂.267

The task prediction is computed using a softmax268

activation on the latent task signal, i.e.,269

P (yi|x) =
(
fŶ (z)

)
i
=

e(fỸ (z))
i∑c

j=1 e
(fỸ (z))

j

(3)270

where z = h(x) is again the latent representation.271

Thus, no direct supervision is performed.272

3.3 Latent information routing273

Clearly, the separation could easily collapse by just274

using the labeling function path, i.e., there is no275

apparent reason why the LF prediction L̂ is not276

only based on the LF-specific path. Therefore we277

introduce three schemes supporting the separation278

of information. Firstly a regularization, secondly279

an adaption of the learning label and thirdly the280

inclusion of unlabeled samples are discussed.281

Regularization. The easiest solution to the prob-282

lem is to introduce standard regularization schemes.283

We consider the L2 regularization as suitable be-284

cause it encourages the optimization to put similar285

weight on the parameters. We test two types of 286

L2 regularization. Firstly, standard weight decay 287

is used which employs an L2 regularization on all 288

parameters, including the transformer encoder. Sec- 289

ondly, an additional L2 regularization is applied to 290

fL̃. The goal is to regularize the labeling function 291

path such that more weight is put on the class pre- 292

diction path. In the experimental part we refer to 293

the two types as weight decay and L2 regulariza- 294

tion, respectively. 295

Noise Injection. Our hypothesis is that the op- 296

timization routine puts weight on the task-specific 297

path if two labeling functions belonging to the same 298

class match simultaneously. But most of the time 299

samples are only matched by a single labeling func- 300

tion. Thus, we inject noise in the form of additional 301

“hallucinated” matches into the labeling function 302

matrix L. If a sample is matched by a labeling 303

function, we create a match for all other labeling 304

functions for the same class with a probability pro- 305

portional to a random factor λ ∈ [0, 1], which is a 306

hyperparameter. 307

Usage of Unlabeled Samples. It has been pre- 308

viously shown, e.g., by Ren et al. (2020) and Yu 309

et al. (2021) that it is effective in weak supervi- 310

sion settings to make use of unlabeled samples XU , 311

i.e., samples where no labeling function matches. 312

Apart from a performance increase it was shown 313

that the learning gets more robust. Thus, we adapt 314

this semi-supervised learning approach. In order 315

to comply with our basic model, we need to create 316

a labeling function distribution QU . We take the 317

simplest idea and define QU as the uniform dis- 318

tribution over the labeling function matches, i.e., 319

(QU )ij =
1
m for all unlabeled samples i and label- 320

ing functions j. 321

4 Experimental Setup 322

Before analysing the experiments, we discuss the 323

experimental setup. More specifically, an overview 324

of the used datasets, baselines, hyperparameters 325

and some notes on reproducibility and implementa- 326

tional details are given. 327

4.1 Datasets 328

For the experiments we used all text classification 329

datasets that are currently included in the Wrench 330

benchmark. As shown in Table 1 the datasets reflect 331

varying properties, such as sample size, coverage 332

or the amount of labeling functions. 333

Five out of eight datasets represent binary classi- 334
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Dataset #Classes #LF’s # Train # Coverage # Dev # Test

IMDb 2 9 20000 88% 2500 2500
Yelp 2 15 30400 83% 3800 3800
Youtube 2 10 1586 88% 120 250
SMS 2 73 4571 41% 500 500
AGNews 4 9 96000 69% 12000 12000
TREC 6 68 4965 95% 500 500
Spouse 2 9 22254 26% 2811 2701
SemEval 9 164 1749 100% 178 600

Table 1: Statistics describing the datasets as they are used in the WRENCH framework. Coverage is computed on
the train set by dividing the number of samples having at least one match by the number of samples.

fication problems. These are: (i) Youtube (Alberto335

et al., 2015), which consists of text comments from336

YouTube videos, each labeled as spam or non-spam,337

(ii) SMS (Almeida et al., 2011), which is a mo-338

bile phone spam corpus, which contains real SMS339

messages that are spam or non-spam, (iii) IMDb re-340

view dataset (Maas et al., 2011) contains reviews341

from IMDb and each review is labeled as positive or342

negative, (iv) Yelp (Zhang et al., 2015) consists of343

positive or negative reviews from the Yelp Dataset344

Challenge 2015, (v) Spouse (Corney et al., 2016)345

, which is a relation classification dataset, where346

we decide for each sentence if it contains a spouse347

relation or not. Three datasets correspond to multi-348

label problems: (i) AGNews (Zhang et al., 2015)349

consists of news articles classified into 4 classes,350

(ii) TREC (Li and Roth, 2002) is a question clas-351

sification dataset, where the questions are classified352

into 6 labels, and (iii) SemEval (Hendrickx et al.,353

2010) contains sentences collected from the Web354

and the task is to identify the relation between two355

nominals tagged in each sentence among 9 types356

of semantic relations.357

4.2 Baselines358

We compare SepLL to several traditional and state-359

of-the-art models that can be categorized in 4 ap-360

proach types: supervised, statistical, neural and361

cosine based (see Table 2). Wherever possible the362

RoBERTa-base (Liu et al., 2020) backbone model363

is used.364

For the supervised approach (Gold +365

RoBERTa), which serves as an upper bound, we366

perform a standard fine-tuning of a RoBERTa (Liu367

et al., 2020) pre-trained model using gold labels.368

The statistical approaches are: (i) Majority Vote369

(MV) As the name suggests, majority vote picks370

the label indicated by the majority of labeling func-371

tion matches. In case there is no match, a random 372

label is chosen, (ii) Data Programming (DP) em- 373

ploys Snorkel DP (Ratner et al., 2017) to obtain 374

weak labels and (iii) Flying Squid (FS) (Fu et al., 375

2020) is a label model making use of so-called 376

triplet methods. 377

In the neural category of baselines there are three 378

dedicated end-to-end models: (i) WeaSEL (Cachay 379

et al., 2021) uses a classifier and a probabilistic en- 380

coder combined with a noise-aware loss function, 381

(ii) Denoise (Ren et al., 2020) uses a classifier and 382

an attention-based denoiser, mutually optimizing 383

each other, (iii) KnowMAN is an adversarial ar- 384

chitecture that aims to learn representations that 385

are invariant to the labeling function signals (März 386

et al., 2021). In addition to learning a classifier for 387

the end task, a labeling function discriminator is 388

trained and its negative gradient is used to update a 389

shared feature extractor. 390

We also employ models that combine the labels 391

obtained by MV, DP and FS with the RoBERTa 392

model (MV+RoBERTa, DP+RoBERTa and 393

FS+RoBERTa respectively) (Liu et al., 2020). 394

Cosine (Yu et al., 2021) takes a pre-trained 395

classifier and uses contrastive learning and confi- 396

dence regularization to improve the performance of 397

the classifier. Cosine is a model-agnostic method 398

for self-training that can be combined with any 399

classifier and is not specific to weak supervi- 400

sion. It has been observed that Cosine particu- 401

larly helps with standard weak supervision meth- 402

ods like majority voting and data programming, 403

and we include the best-performing combinations 404

from Wrench (MV+Cosine, DP+Cosine), as well 405

as SepLL+Cosine in our experiments. Additional 406

information on the baselines is given in appendix 407

A. 408
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IMDb Yelp Youtube SMS AGNews Trec Spouse Semeval Avg.

Supervised
Gold+RoBERT† 93.25 97.13 95.68 96.31 91.39 96.68 - 93.23 88.58
Statistical
MV† 71.04 70.21 84.00 23.97 63.84 60.80 20.81 77.33 59.00
DP† (Ratner et al., 2017) 70.96 69.37 82.00 23.78 63.90 64.20 21.12 71.00 58.29
FS† (Fu et al., 2020) 70.36 68.68 76.80 0.00 60.98 31.40 34.3 31.83 46.79
Neural
WeaSEL (Cachay et al., 2021) 85.16 91.23 96.40 2.94 85.92 64.2 0.00 44.30 58.77
Denoise† (Ren et al., 2020) 76.22 71.56 76.56 91.69 83.45 56.20 22.47 80.83 69.87
KnowMAN (März et al., 2021) 59.00 76.76 94.00 92.80 84.68 65.20 25.48 80.50 72.30
MV+RoBERTa† 85.76 89.91 96.56 94.17 86.88 66.28 17.99 84.00 77.69
DP+RoBERTa† 86.26 89.59 95.60 28.25 86.81 72.12 17.62 70.57 68.35
FS+RoBERTa† 86.95 92.08 93.84 10.72 86.69 30.44 0.0 31.83 54.07
SepLL 83.57 91.32 97.50 95.45 85.47 81.25 43.2 87.33 83.14

Cosine based (Yu et al., 2021)
MV+Cosine† 88.22 94.23 97.60 96.67 88.15 77.96 40.5 86.20 83.69
DP+Cosine† 87.91 94.09 96.80 31.71 87.53 82.36 28.86 75.17 73.05
SepLL+Cosine 88.00 95.07 97.60 97.01 86.28 83.40 43.37 86.83 84.70

Table 2: Results on the Wrench benchmark tasks. Accuracy values are reported for all datasets, except for SMS and
Spouse where the binary F1 is shown due to the large class imbalance. Numbers directly taken from the Wrench
paper are marked by †.

4.3 Hyperparameters409

Two types of hyperparameters are tuned, namely410

transformer related hyperparameters and informa-411

tion routing related ones. We perform a grid search412

on these and take the best model based on the413

validation set. The first group includes a learn-414

ing rate in {1−5, 2−5, 5−5}, a batch size of 16 and415

warmup steps in {0, 100}. For information rout-416

ing related hyperparameters we search for weight417

decay in {0, 0.01, 0.001}, L2-regularization on the418

LF path in {0.1, 0.5, 0., 1.}, and for noise injection419

λ ∈ {0., 0.1, 0.2, 0.05}. SepLL is always trained420

using AdamW (Loshchilov and Hutter, 2019).421

4.4 Implementation and Reproducibility422

Our implementation is in JAX (Bradbury et al.,423

2018), using the Huggingface transformers library424

(Wolf et al., 2020) as a high level interface.425

In order to save resources, we report numbers426

directly from the Wrench paper, whenever appli-427

cable. In other cases, we use the datasets and the428

evaluation setting of Wrench, and the original im-429

plementations and reported hyper-parameters of430

the respective publications.431

We use RoBERTa-base as backbone of most432

models, so all models use approximately 125 mil-433

lion parameters. Fine-tuning one instance takes be-434

tween 5 and 60 minutes, depending on the dataset435

size. The experiments are performed on a Nvidia436

DGX-1 using a single Tesla V100 graphics card437

per run. 438

5 Experiments 439

This section provides an analysis of the capabilities 440

of the model. After the general performance analy- 441

sis, an ablation study of the information strategies 442

is performed. Furthermore, we investigate how 443

much information flows through the path associ- 444

ated with the latent class prediction, and how much 445

though the other, LF-specific path. 446

5.1 General Performance 447

The results are split into two parts. Firstly, a 448

comparison with the standard baselines is given. 449

Secondly, we analyse the impact of Cosine sep- 450

arately, as we view it as a general framework to 451

self-optimize the prediction performance of any 452

pre-trained classifier. The results are shown in Ta- 453

ble 2. SepLL outperforms the standard baselines 454

on all tasks except IMDb and AGNews. We think 455

this is due to the fact that both datasets are rather 456

large while having a low number of labeling func- 457

tions. The same trend is observable when combined 458

with Cosine. On most tasks a new state-of-the-art 459

is reached. A negative exception is given by Se- 460

mEval, where Cosine is not able to generalize from 461

our base model. Importantly, the average perfor- 462

mance over all tasks is improved by a margin of 463

6% on the standard baselines and 1% in the Cosine 464

section, relative to the respective best-performing 465
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avg

Full Model 83.14
− Weight decay 82.73
− L2-reg. 82.59
− Unlabeled data 82.11
− Noise injection 81.77
Basic model 80.85

Table 3: Ablation of information routing strategies.
Each strategy is removed individually. The basic model
does not use any strategy. The average is taken over all
datasets on the test set.

comparison method.466

5.2 Ablation of Information Routing467

Strategies468

In order to understand the impact of the routing469

strategies we perform an ablation study, which is470

shown in Table 3. Starting from the full model,471

each routing strategy is removed individually, and472

in the last row all strategies are removed. The table473

shows the average performance over all datasets.474

Given that there are different types of metrics this475

is just an aggregate view of the performance – a476

detailed ablation including the performance per477

task is given in Appendix B.478

We observe that each strategy helps the perfor-479

mance of the end model and that the noise injection480

strategy has the highest positive impact. This re-481

inforces the initial assumption that a sample has a482

larger learning impact on the task-specific path if483

multiple labeling functions belonging to one class484

match simultaneously.485

Nevertheless, the basic model (without active486

routing) performs decent in comparison to the base-487

lines in Table 2. This is surprising because there is488

no apparent incentive to prevent the model to col-489

lapse to the LF path. One possible explanation is490

that the gradient updates nevertheless flow through491

both paths and still update the task path in a way492

that it is consistent with the LF-prediction. More-493

over, predicting the LF through the task-path, albeit494

less accurate, is more parameter efficient than go-495

ing through the LF-path.496

5.3 Labeling Function Memorization497

As a by-product of the architecture, it is possible498

to predict whether a labeling function matches or499

not. As these matches represent the learning signal,500

an evaluation of the prediction of labeling function501

matches also shows how much information is re- 502

tained. In Figure 2 multiple metrics are computed 503

to analyze the memorization of matches. The ac- 504

curacy and the F1-score (because the matrix L is 505

sparse) for LF-predictions, averaged over all test 506

sets, are computed to measure memorization of the 507

labeling functions matches. 508

In order to transform logits into predictions, we 509

compute the softmax activation on the functions fL̃ 510

and fL̂, and define the prediction as 511

Lij = 1 ⇔ softmax (f∗(zi))j >
4

m
512

otherwise Lij = 0, i.e., if a sample has 4 times the 513

probability of the uniform distribution. To com- 514

pute the task predictions, we apply the same thresh- 515

old to the softmax of the mapped task logits, i.e., 516

softmax
(
fỸ (zi)T

⊤). We call the outputs of the 517

softmax prediction distribution. The diagram on 518

the right in Figure 2 displays the cross-entropy be- 519

tween the LF distribution P (see section 3) and the 520

prediction distributions, and the uniform distribu- 521

tion U [0, 1]. 522

The results show that the prediction from the 523

final output and from the LF path are nearly iden- 524

tical. Interestingly, the latent LF path achieves a 525

slightly better accuracy but slightly worse F1-score. 526

In comparison to the full and the latent model the 527

cross-entropy between Ỹ and P is high where the 528

latter approaches the cross-entropy between L̂ and 529

the uniform distribution. These results indicate that 530

Ỹ does not substantially influence the prediction of 531

L. Still, the prediction made from the task-related 532

path fỸ reaches an average F1-score of 88.5%, 533

which shows that it still contains much of the infor- 534

mation needed to predict LF matches. In appendix 535

C an additional figure shows that the difference 536

between performance on the training set and the 537

test set is low, indicating that there is little to no 538

overfitting towards the training LF distribution. 539

5.4 Impact of Number of LF Matches 540

One could expect that it is easier to predict the class 541

label for samples with many labeling functions 542

matches. Figure 3 shows the performance of each 543

task on the test set in relation to the number of 544

labeling function matches (note that we use those 545

LF-matches only for analysis purposes, they are 546

not observed by the model) . The figure does not 547

contain SemEval as it has exactly one match per 548

sample. 549
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Figure 2: The figure shows the accuracy (left), the F1-score (center) and the cross-entropy (right) between true
labels L and the predictions based on the full model fL̂ and the latent representations fỸ , fL̃ predictions. On the
right an additional comparison to the uniform distribution is presented.

Figure 3: Performance (accuracy or F1 score) on the
tasks given the amount of labeling function matches
(test set).

Interestingly, the performance on samples with550

no LF-match is, for most datasets (apart from551

Spouse), almost on par with samples that include552

patterns from one or more LFs. It is therefore fair to553

say that the model generalizes beyond the labeling554

function information.555

An exception is given by the Spouse dataset,556

which has the lowest coverage in the training set557

(see Table 1). Appendix D provides additional558

numbers, including a table which shows the amount559

of samples per number of LF-matches per dataset.560

6 Conclusion561

This work tackles weak supervision in a novel way.562

Instead of denoising the weak labels or iteratively563

updating them, the weak labels are used as the train-564

ing target as-is. We introduce the model SepLL,565

which separates information relevant for the target566

task through the usage of two latent spaces. One567

latent space is used to perform downstream task568

prediction, the other one aims to keep the labeling569

function specific information. Thus, the prediction570

is made from the latent space without any direct571

supervision. Experiments show that the model is 572

able to achieve state-of-the-art performance. An 573

additional investigation shows that the model is 574

able to memorize the labeling function information. 575

Hence, the model cannot only be used for down- 576

stream tasks but also to predict labeling function 577

matches. 578

7 Limitations 579

As in the experiments in the Wrench benchmark, 580

we use validation data for early stopping. If a set- 581

ting was purely weakly supervised, with no anno- 582

tated data, this would not be possible. To ensure 583

comparability, we stick to the Wrench setup, which 584

assumes that the cost of annotating a small sample 585

size for validation is acceptable in most scenarios. 586

Weak supervision performance highly depends 587

on the quality and other properties of the labeling 588

functions. In contrast to more standardized scenar- 589

ios of machine learning, e.g. in supervised learning, 590

where it can be assumed that training and test data 591

samples are drawn i.i.d. from the same distribution, 592

such arguments cannot be made about the label- 593

ing functions and their relationship to the correct 594

annotations. 595

Formal analysis, as it has been attempted some- 596

times for weak supervision, relies on heavy assump- 597

tions, which are typically unrealistic and likely to 598

be wrong. Such assumptions could be: the weak 599

labelers produce noise following a defined noise 600

distribution; the weak annotations are independent 601

given the class label; each weak labeler exceeds a 602

threshold accuracy; etc. In this paper, we do not at- 603

tempt a formal analysis based on such assumptions. 604

However, we compare to other methods which are 605

based on such assumptions, and we outperform 606

them in our experiments. With other data sets, po- 607

tentially showing other characteristics (other tasks, 608

8



other languages, other labeling functions), the per-609

formance could be different. In particular, since610

the weakly supervised method performs almost as611

well as the supervised model, there is a need for612

tasks and datasets that are more challenging.613

Another limitation is that currently our model614

is only implemented for classification, not for se-615

quence tagging. This adaptation would be possi-616

ble, but is not trivial since sequential dependencies,617

unlabeled tokens, search, etc. would need to be618

carefully handled. We leave these extensions for619

future work.620
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weight decay in {1−4, 7−7} and learning rate in822

{1−4, 1−5, 2−5}. Unfortunately we were unable823

to obtain reasonable performance on the skewed824

datasets SMS and Spouse. The original paper does825

not use pre-trained language models, thus no direct826

comparison is possible. We decided to take the827

same encoder for all models.828

KnowMAN (März et al., 2021). The values are829

set similar to the original paper. Batch size is 16,830

hidden size 700, dropout is 0.4 and trained is up831

to 5 epochs. The classifier(C) and the discrimina-832

tor(D) use Adam (Kingma and Ba, 2014) with a833

learning rate of 1−4 and the feature extractor(F)834

uses AdamW (Loshchilov and Hutter, 2019) with835

the same learning rate. For all three, num_layer is836

set to 1.837

B Ablations838

In addition to the summarized ablation in section839

5.2, Table 4 shows the impact of the ablations on840

task level. We observe that in general, the results841

for each task agree with the average.842

C Labeling Function Memorization843

The detailed numbers corresponding to the evalua-844

tion of section 5.3 are given in Table 5. The abso-845

lute difference between train and test split is shown846

in Figure 4. The differences are low for accuracy,847

F1-score and cross-entropy, thus we conclude that848

there is no or rather little overfitting towards the849

train set.850

D Impact of number of matches851

Table 5 provides detailed numbers for Figure 3.852

Since Figure 3 does not reflect how many sam-853

ples correspond to a certain number of LF matches,854

detailed counts are added in Table 7. This is an im-855

portant addition as a performance measurement on856

a small number of samples is not indicative of the857

true performance. Luckiliy, usually the number of858

matching samples per number of matching labeling859

functions is distributed rather well.860
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IMDb Yelp Youtube SMS AGNews Trec Spouse SemEval Avg.

Full model 83.57 91.32 97.50 95.45 85.47 81.25 43.20 87.33 83.14
− Weight decay 83.57 91.32 97.50 95.45 85.47 79.03 42.55 86.99 82.73
− L2 reg. 83.25 91.14 97.08 94.57 85.47 79.03 43.20 86.99 82.59
− Unlabeled data 82.13 88.34 97.50 95.45 85.32 81.25 39.89 86.99 82.11
− Noise injection 82.13 88.34 97.50 95.45 85.46 78.43 39.89 86.99 81.77
Basic model 82.13 86.89 97.08 93.85 85.14 74.80 39.89 86.99 80.85

Table 4: Extension of the ablation in Table 3, showing all datasets.

Dataset L̃ Acc. L̂ Acc. Ỹ Acc. L̃ F1 L̂ F1 Ỹ F1 L̃ CE L̂ CE Ỹ CE U [0, 1] CE

IMDb 90.21 90.24 86.88 89.41 89.58 80.77 1.42 1.41 2.11 2.20
Yelp 91.44 91.46 89.94 89.46 89.51 85.18 2.19 2.13 2.58 2.71
Youtube 82.80 83.00 81.60 76.32 77.03 73.33 1.72 1.70 2.16 2.30
SMS 96.41 95.65 99.28 97.59 97.19 98.92 4.26 5.31 4.76 4.29
AGNews 91.05 91.54 89.48 89.06 90.45 84.50 1.72 1.66 1.92 2.20
Trec 99.42 99.23 95.49 99.42 99.24 95.90 1.11 1.05 3.59 4.22
Spouse 95.98 96.32 95.81 94.64 95.89 93.76 2.03 2.01 2.14 2.20
SemEval 99.47 98.45 92.70 99.52 98.81 95.55 1.55 1.21 3.36 5.10
Avg. 93.35 93.24 91.40 91.93 92.21 88.49 2.00 2.06 2.83 3.15

Table 5: Extension of Figure 2, showing all numbers explicitly. The presented metrics are accuracy, macro F1-score
and cross entropy (CE) between true LF matrix L (see section 3) and the rows which are the full model fL̂, the
latent layers fL̃, fỸ and the uniform distribution U [0, 1].

Figure 4: This is extension to Figure 2, describing the same metrics. But here we compute the the absolute difference
between the metrics computed on the train set and the test set.

0 1 2 3 4 5

IMDb 81.58 84.35 82.80 0.00 0.00 0.0
Yelp 91.00 91.25 91.48 92.84 89.93 62.5
Youtube 88.89 100.00 98.84 95.56 87.50 0.0
SMS 95.12 97.44 88.89 100.00 0.00 0.0
AGNews 77.48 88.38 90.81 87.50 87.50 0.0
Trec 94.74 81.40 73.81 85.71 85.71 0.0
Spouse 22.06 49.51 62.77 85.71 0.00 0.0
SemEval 0.00 85.09 0.00 0.00 0.00 0.0

Table 6: Detailed numbers corresponding to Figure
3. The columns describe the number of matches a
sample has, the cells the performance, i.e. accuracy
or F1-score.

#matches total 0 1 2 3 4 5

IMDb 2953 304 1521 593 0 0 0
Yelp 5732 611 1463 1092 475 139 16
Youtube 460 18 86 86 45 8 0
SMS 263 302 148 37 12 0 0
AGNews 11367 3699 5622 2318 336 24 0
Trec 788 19 301 84 70 21 0
Spouse 1019 1951 519 196 33 1 0
SemEval 764.0 0 436 0.0 0.0 0.0 0.0

Table 7: It is shown how many samples there are in total and split
up in number of matches per sample. Numbers are computed
on the test set.
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