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Abstract

Text-to-SQL, which enables natural language
interaction with databases, serves as a pivotal
method across diverse industries. With new, more
powerful large language models (LLMs) emerg-
ing every few months, fine-tuning has become
incredibly costly, labor-intensive, and error-prone.
As an alternative, zero-shot Text-to-SQL, which
leverages the growing knowledge and reason-
ing capabilities encoded in LLMs without task-
specific fine-tuning, presents a promising and
more challenging direction. To address this chal-
lenge, we propose Alpha-SQL, a novel approach
that leverages a Monte Carlo Tree Search (MCTS)
framework to iteratively infer SQL construction
actions based on partial reasoning states. To
enhance the framework’s reasoning capabilities,
we introduce LLM-as-Action-Model to dynami-
cally generate SQL construction actions during
the MCTS process, steering the search toward
more promising SQL queries. Moreover, Alpha-
SQL employs a self-supervised reward function
to evaluate the quality of candidate SQL queries,
ensuring more accurate and efficient query gener-
ation. Experimental results show that Alpha-SQL
achieves 69.7% execution accuracy on the BIRD
development set, using a 32B open-source LLM
without fine-tuning. Alpha-SQL outperforms the
best previous zero-shot approach based on GPT-
4o by 2.5% on the BIRD development set. The
code is available at https://github.com/
HKUSTDial/Alpha-SQL.

1. Introduction
Text-to-SQL (a.k.a. NL2SQL) converts natural language
queries into SQL, simplifying access to relational databases

1The Hong Kong University of Science and Technology
(Guangzhou) 2Renmin University of China 3Huawei Technologies
Ltd. Correspondence to: Yuyu Luo <yuyuluo@hkust-gz.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and enabling both lay and expert users to derive insights ef-
fectively (Liu et al., 2024; Luo et al., 2018a;b; 2022b; 2021;
2022a; 2025; Liu et al., 2025b; Luo et al., 2023). With the
advancement of large language models (LLMs), methods
like CHASE-SQL (Pourreza et al., 2025) have achieved
competitive results on benchmarks such as BIRD (Li et al.,
2023c). Generally, these LLM-based Text-to-SQL meth-
ods fall into two categories: trained methods and zero-shot
methods.

Training LLMs for Text-to-SQL. Pre-training or fine-
tuning LLMs on task-specific datasets is a common ap-
proach to improving Text-to-SQL performance (Li et al.,
2024b; Gao et al., 2024b; Talaei et al., 2024; Li et al., 2024a;
Zhu et al., 2025). While effective, this method requires
extensive labeled datasets and significant computational re-
sources for model training (Lin et al., 2025). Moreover, as
newer and more powerful LLMs emerge, the training pro-
cess must be repeated to maintain competitive performance,
further increasing the cost and effort (Wu et al., 2025).

Zero-Shot LLMs for Text-to-SQL. As an alternative, zero-
shot Text-to-SQL methods, such as DAIL-SQL (Gao et al.,
2024a) and C3 (Dong et al., 2023), leverage the general
knowledge encoded in LLMs to generate SQL queries with-
out requiring task-specific fine-tuning, which eliminates the
dependence on labeled datasets and computationally inten-
sive training. While this approach offers a practical and
cost-effective solution, it faces a fundamental challenge.

The key challenge in zero-shot Text-to-SQL is the difficulty
of transferring and generalizing knowledge from pre-trained
LLMs to the specific task of SQL generation, based on
natural language queries and database schemas, without
fine-tuning on task-specific annotated data. This limitation
makes it difficult for the model to handle the complex map-
ping between natural language queries and diverse database
schemas, impeding its ability to accurately interpret schema
relationships, construct complex SQL queries, and maintain
robustness across various contexts.

Our Methodology and Contributions. To address the
above challenges, we propose Alpha-SQL, a novel approach
that enables zero-shot Text-to-SQL as a process of progres-
sive SQL construction, where queries are progressively built
step-by-step. The key idea of Alpha-SQL is to decompose
the task into smaller, more manageable sub-tasks, each with
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Figure 1. Alpha-SQL: A plug-in framework boosting small open-
source LLMs. Our method significantly improves Qwen2.5’s per-
formance by 15%-20% across different model sizes (7B-32B)
without fine-tuning, surpassing even GPT-4o based zero-shot Text-
to-SQL SOTA (RSL-SQL) on the BIRD (Dev) dataset.

contextual guidance, making it easier for the model to han-
dle complexity at each step. To achieve this, we model the
progressive construction process as a search problem over
a tree-structured space, where nodes represent partial rea-
soning states, and edges denote SQL construction actions
(e.g., selecting a table or revising a SQL clause). By itera-
tively selecting edges (actions) from the root to a leaf node,
Alpha-SQL progressively constructs a valid SQL query.

Based on this idea, Alpha-SQL leverages a Monte Carlo
Tree Search (MCTS) framework (Coulom, 2006; Xie et al.,
2024) to generate and explore SQL construction actions
dynamically. To facilitate efficient and effective search
within the MCTS framework, we introduce the following
novel techniques.

First, to enhance reasoning capabilities during the search
process, we propose the LLM-as-Action-Model, which in-
vokes an LLM as the reasoning action model in the MCTS
framework to generate step-by-step reasoning (i.e., Chain-
of-Thought) after each action taken. This reasoning is stored
in each node alongside the partial state, enabling Alpha-SQL
to maintain context and track the LLM’s thought process
throughout the SQL construction process. This ensures that
each SQL construction action is both context-aware and
aligned with the overall reasoning path, which can guide the
search toward more promising SQL queries.

Second, to ensure accurate and efficient query generation
during the MCTS search process, we introduce a self-
supervised reward function to evaluate the quality of can-
didate SQL queries. Specifically, for each reasoning path,
Alpha-SQL generates multiple candidate SQL queries us-
ing high-temperature sampling, filters out invalid queries,
and computes a self-consistency score by comparing the
execution results of the sampled queries with those of the
predicted SQL. This helps prioritize promising paths and re-
fines the exploration process. Finally, Alpha-SQL calculates
the self-consistency scores of all candidate SQL queries and
selects the SQL with the highest score as the final output.

In summary, Alpha-SQL is a fine-tuning-free, plug-and-play
Text-to-SQL framework that enhances small open-source
LLMs for Text-to-SQL tasks. As shown in Figure 1, it can
integrate and boost existing LLMs without fine-tuning on
Text-to-SQL datasets. Extensive experiments show Alpha-
SQL’s strong performance, achieving 69.7% execution accu-
racy on the BIRD development set, significantly outperform-
ing existing zero-shot methods. Ablation studies confirm
the effectiveness of our reasoning actions, and performance
improves with more MCTS rollouts.

2. Related Work
Text-to-SQL. The Natural Language to SQL (Text-to-SQL,
a.k.a., NL2SQL) task involves translating natural language
questions into SQL queries. The emergence of Pre-trained
Language Models (PLMs) like T5 (Raffel et al., 2020)
subsequently improved the performance of Text-to-SQL
tasks (Scholak et al., 2021; Li et al., 2023a;b; Gu et al.,
2023). More recently, the development of LLMs has fur-
ther advanced Text-to-SQL capabilities. However, apply-
ing LLMs directly remains challenging due to issues like
schema alignment, complex query generation, etc (Liu et al.,
2024). To address this, recent works (Pourreza et al., 2025;
Talaei et al., 2024; Li et al., 2024a; Cao et al., 2024; Liu
et al., 2025a; Fan et al., 2024) have explored decomposing
Text-to-SQL into subtasks, such as candidate SQL gener-
ation, refinement, and selection. For example, CHASE-
SQL (Pourreza et al., 2025) employs a multi-step pipeline
to generate and validate SQL candidates, mitigating errors
introduced by direct generation.

Building on this direction, we propose Alpha-SQL, a pro-
gressive SQL construction framework that uses MCTS for
dynamic query generation. Unlike prior methods relying on
static pipelines or fine-tuning, Alpha-SQL leverages LLMs
as action models, guiding the search in a context-aware man-
ner, enabling efficient exploration and improved accuracy
without task-specific labeled data.

Test-time Computation. Recent advances in test-time com-
putation (Snell et al., 2024; Liu et al., 2025a) have sig-
nificantly improved LLM performance without modifying
model parameters. Techniques such as planning, search,
and verification during inference have enhanced reasoning
across various tasks (Wei et al., 2022; Yao et al., 2023;
Qiu et al., 2024; Hao et al., 2023; Zhang et al., 2025; Teng
et al., 2025; Zhu et al., 2024; Zhang et al., 2024b). Recent
methods, including tree-based search (Yao et al., 2023) and
Best-of-N sampling (Qiu et al., 2024), further optimized
inference through structured search. Recent work has also
explored MCTS-based reasoning to enhance the capabilities
of LLMs (Qi et al., 2024). While effective in general rea-
soning tasks, these methods do not fully address the unique
challenges of Text-to-SQL, such as schema understanding,
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generating semantically accurate SQL, and refining outputs
based on execution feedback.

Alpha-SQL builds on test-time computation principles with
a search-based SQL generation framework designed for
zero-shot Text-to-SQL. Unlike prior work, it integrates
LLM-driven reasoning into the MCTS process for progres-
sive SQL query construction, optimizing the action space
and incorporating database feedback to improve accuracy.

3. Alpha-SQL
3.1. Zero-shot Text-to-SQL

Text-to-SQL Task. Let D = (T , C,R) represent a rela-
tional database, where T is the set of tables, C is the set of
columns in those tables, and R denotes the relationships
between tables (e.g., primary key-foreign key constraints).
Let Q denote all well-specified natural language questions
over D, and Y all valid SQL queries over D.

The goal is to find a mapping function f such that for any
given question q ∈ Q, f(q,D) produces a syntactically and
semantically correct SQL query y ∈ Y .

In the zero-shot setting, the key challenge is to construct a
mapping function f without task-specific labeled data. This
requires the model to generalize across unseen SQL queries
and databases, relying solely on pre-trained knowledge and
the provided database schema.

Formulating Text-to-SQL as a Search Problem. We de-
fine the Text-to-SQL task as a search problem over a vast
space of potential SQL queries, where the search space S
consists of all valid SQL queries for a given database D and
question q. To structure this space, we represent S as a tree
Ψ = (V,E), where:

(1) Nodes (V ): Each node v ∈ V represents a partial reason-
ing state at a specific step in the query construction process.
As shown in Figure 2, The root node v0 represents the
initial empty query and contains the input question q and
database schema D. Intermediate nodes store incremental
reasoning steps, such as identifying column values, select-
ing functions, or constructing SQL clauses. A leaf node or
termination node vt represents either a fully constructed
SQL query or a state where a termination action is applied.

(2) Edges (E): Each edge e ∈ E corresponds to an action
in the query construction process, such as selecting a table,
adding a condition, or applying an aggregation function.
These actions model transitions between intermediate query
states in the search tree.

(3) A Path from Root to Leaf Nodes (Candidate SQL): A
path from the root node v0 to a leaf node vt corresponds to a
sequence of SQL construction actions that, when composed,
forms a complete SQL query y ∈ S . The SQL query y can

𝑞 = “What’s the rank of Bob in the 
football match?”
𝐷 = “CREATE TABLE ̀ players` (…)”

Column Value Thinking:
In the above question, there is a 
specific filter about match type and 
player name. So I need use 
`player`.`name` = ‘Bob’ and 
`match`.`match_type` = ‘football’.

𝑎1: Column Value
Identification

𝑎2: Column Function
Identification

𝑎3: SQL Generation

Column Function Thinking: …

SQL Generation Thinking:
Based on my previous thoughts, I 
need a WHERE clause to filter the 
match type and player, and there is 
no functions needed. Thus, the final 
SQL query is:
SELECT T1.rank FROM players AS T1 
JOIN matches AS T2 ON T1.id = 
T2.player_id WHERE T1.name = ‘Bob’ 
AND T2.match_type = ‘football’;

𝒗𝟎
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𝒗𝟑

Edges (Actions) Nodes

LLM-as-Action-Model

𝑎4: Termination

𝒗𝟒

Figure 2. Example of the search tree formulation for Text-to-SQL.

be expressed as: y = v0 ⊕ v1 ⊕ · · · ⊕ vt, where ⊕ denotes
the concatenation or composition of the actions represented
by the nodes along the path.

Our goal is to identify an optimal reasoning path in the
search tree that constructs an accurate SQL query for a given
natural language question q and database schema D.

Complexity of the Search Space. Efficiently exploring the
search space S for Text-to-SQL generation is a significant
challenge due to its combinatorial nature. The size of S,
denoted as |S|, grows exponentially with the complexity of
the database schema D and the question q. For instance, the
number of potential queries grows exponentially with the
number of tables, columns, possible join conditions, and
nested subqueries. This makes exhaustive search practically
impossible, and therefore an efficient search strategy needs
to be used to explore this vast space effectively and identify
the correct SQL query.

3.2. An Overview of Alpha-SQL

To address the challenges of navigating the exponential
search space S and generating high-quality SQL queries
from a natural language question q, we propose Alpha-
SQL, a novel framework that leverages Monte Carlo Tree
Search (MCTS).

MCTS-based Search with LLM-as-Action-Model. Build-
ing upon the search problem formulation in Section 3.1,
Alpha-SQL employs MCTS to construct and explore the
search tree Ψ = (V,E). Given an input question q, database
D, and an LLM M , the MCTS process iteratively builds Ψ.
The root node v0 ∈ V represents the initial state with an
empty SQL query. The edges e ∈ E represent an action a,
where we invoke the LLM M to select a SQL construction
action such as schema selection or column value identifica-
tion, as shown in Figure 2. The MCTS process iteratively
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Figure 3. An Overview of Alpha-SQL.

invokes M to apply actions during the search, exploring
different paths. Each node vi ∈ V represents a partial
reasoning state after applying a sequence of actions. A com-
plete path from the root to a termination (leaf) node forms
a reasoning trajectory corresponding to a candidate SQL
query. The MCTS process generates multiple such trajecto-
ries, forming a set T = {τ1, τ2, . . . , τn} of candidate SQL
queries. Therefore, Alpha-SQL can efficiently explore the
vast search space S defined in the problem formulation.

Self-Supervised Rewards. The reward function plays a
crucial role in the MCTS process by evaluating the utility
of each action, guiding the search toward more promising
SQL queries. Traditional methods like Outcome Reward
Models (Zelikman et al., 2022) and Progress Reward Mod-
els (Uesato et al., 2022) require domain-specific labeled
data for training, making them difficult to generalize across
different datasets (Zhang et al., 2024a).

Inspired by human reasoning, we observe that individu-
als who are confident in their answers tend to consistently
provide the same response across multiple attempts, indi-
cating high confidence in their solution. Conversely, when
responses vary, it suggests low confidence, implying un-
certainty and lower reliability (Qi et al., 2024). This funda-
mental intuition directly informs and forms the conceptual
foundation of our innovative self-consistency-based reward
function. Within this function, the perceived confidence
or correctness of a candidate SQL query is quantitatively
determined by the consistency of its execution results when
compared against those obtained from a diverse set of mul-
tiple sampled queries. The reward is computed as:

R(y, q,D) = 1

N

N∑
i=1

1[Execute(y,D) = Execute(yi,D)],

where yi are sampled SQL queries, and N is the number
of samples. This formulation reinforces SQL queries that
consistently yield stable execution results, enabling Alpha-
SQL to prioritize reliable reasoning trajectories without
requiring annotated data.

4. The Design Details of Alpha-SQL
4.1. LLM-as-Action-Model

A key challenge in zero-shot text-to-SQL is the difficulty of
transferring general knowledge from pre-trained language
models to the specific task of SQL generation.

To enhance the reasoning capabilities of our framework,
we propose the LLM-as-Action-Model, which leverages
LLMs to generate reasoning actions (i.e., CoT Thoughts)
dynamically based on the current context of the problem.
As shown in Figure 3, LLM-as-Action-Model empowers
the LLMs to generate appropriate action outputs based on
the question, database schema, and current partial reasoning
state (including previous actions), enabling the model to
build a valid SQL query in a step-by-step manner.

Formally, at step i of the reasoning process (vi), MCTS
selects an SQL construction action ai from the action space,
which is defined later. Based on the reasoning trajectory
v0⊕· · ·⊕vi, the LLM is prompted to execute ai and generate
the next state vi+1:

vi+1 = LLM(q,D, Actions(v0, · · · , vi), P rompt(ai)),

where Actions(·) refers to all previous reasoning steps in
the trajectory, and Prompt(·) represents the prompt instruc-
tion for a specific action.
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SQL Construction Reasoning Action Space. The action
space defines the set of potential reasoning steps an LLM
can take to decompose and solve Text-to-SQL problems. It
is crucial for the LLM-as-Action Model to guide the pro-
gressive construction of SQL queries by specifying possible
actions at each stage. Previous works (Pourreza et al., 2025;
Talaei et al., 2024; Gao et al., 2024b) used limited actions
and fixed pipelines, which restricted the model’s ability to
explore the full space of potential solutions.

Inspired by human thinking, where some might jump
straight to the answer while others first clarify the question
and break it down into subtasks, we introduce new reason-
ing actions, such as question rewriting (Qi et al., 2024),
alongside existing ones. In total, our action space defines
seven distinct reasoning actions. The specific prompts for
each action are illustrated in Appendix A.2.

A1: Question Rephrasing. Text-to-SQL systems need to
handle diverse question styles and ambiguities from differ-
ent user groups (Liu et al., 2024). While NL-Rewriter (Ma
et al., 2024) addresses this through experience-based ques-
tion rewriting, it struggles in zero-shot scenarios where
training data is unavailable. Building on rStar (Qi et al.,
2024), we use few-shot prompting to decompose questions
into a structured (conditions list, question) format.

A2: Schema Selection. Databases often contain complex
schemas, but individual SQL queries typically use only a
small subset of available elements. This mismatch creates
challenges for accurate SQL generation (Liu et al., 2024).
Prior work has established schema selection as a critical
component of SQL generation (Cao et al., 2024; Pourreza
et al., 2025; Talaei et al., 2024). Following (Talaei et al.,
2024), we use Chain-of-Thought (CoT) prompting to iden-
tify the relevant schema subset for each user question, which
then guides subsequent query generation.

A3: Column Value Identification. Text-to-SQL systems
need to accurately identify filtering conditions in user ques-
tions. For example, “What is Bob’s best ranking in foot-
ball matches?” requires filtering on both name (“Bob”)
and match type (“football”) (e.g., WHERE name =
‘Bob’ AND match type = ‘football’). CHESS-
SQL (Talaei et al., 2024) found that 20% of errors in the
BIRD development set stem from incorrect filtering columns
or value selection. To address this, we introduce a column
value identification action that evaluates potential filtering
values before SQL generation.

A4: Column Function Identification. Complex SQL
queries often require aggregate functions (e.g., COUNT)
and scalar functions (e.g., STRFTIME). For example,
the question “How many people were born in 2024?”
necessitates both date manipulation (STRFTIME(‘%Y’,
people.date of birth) = ‘2024’) and aggrega-

Table 1. Action Space with Ordering.
Previous Action Valid Next Actions

− A1, A2, A3, A4, A5

A1: Question Rephrasing A2, A3, A4, A5

A2: Schema Selection A3, A4, A5

A3: Column Value Identification A2, A4, A5

A4: Column Function Identification A2, A3, A5

A5: SQL Generation A6, A7

A6: SQL Revision A7

A7: Termination −

tion (COUNT(people.id)). Analysis by CHASE-
SQL (Pourreza et al., 2025) revealed that function-related
errors account for 19% of mistakes in the BIRD develop-
ment set. To improve function handling ability, we introduce
a column function identification action during inference.

A5: SQL Generation. SQL generation is the core com-
ponent of Text-to-SQL systems. CHASE-SQL (Pourreza
et al., 2025) introduced a Divide-and-Conquer CoT strategy
that breaks down complex queries into multiple subtasks,
solves them independently, and combines solutions. This
method particularly excels at handling nested queries. We
incorporate this strategy into our reasoning action space.

A6: SQL Revision. LLMs can generate syntactically in-
valid SQL queries in complex scenarios (Wang et al., 2025;
Pourreza et al., 2025). Drawing inspiration from human
debugging practices, we implement an execution-guided
correction mechanism. Our approach provides the LLM
with the user question, schema, incorrect SQL, and execu-
tion results to guide query revision. The system performs
multiple correction rounds until either obtaining a valid SQL
query or reaching a maximum attempt limit Nrevision.

A7: Termination. The termination action is invoked when
the reasoning process yields the final predicted SQL, signi-
fying the conclusion of a reasoning trajectory. We specify
that the termination action must occur following either SQL
Generation or SQL Revision actions.

Action Ordering and Constraints. Each reasoning trajec-
tory follows a structured order, ensuring logical coherence.
For example, some actions, like SQL Revision, must oc-
cur only after SQL Generation. Table 1 defines the valid
transitions between actions. Furthermore, to prevent the
possibility of infinite loops and ensure forward progress in
the reasoning trajectory, we impose a constraint that restricts
each defined action to appear only once within any single
query construction process.

4.2. MCTS for Candidate SQL Generation

Candidate SQL Generation with MCTS Rollout. We
generate Candidate SQL through multiple MCTS rollouts.
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Specifically, each rollout includes four distinct phases: Se-
lection, Expansion, Simulation, and Backpropagation.

(1) Selection. This phase identifies promising nodes for
expansion by traversing from the root node (v0) to ei-
ther an unexpanded leaf or termination node. We use Up-
per Confidence Bound applied to Trees (UCT) (Kocsis &
Szepesvári, 2006) to balance exploration and exploitation

during node selection: UCT (v, a) = Q(v,a)
N(v,a) + c

√
lnN(v)
N(v,a) ,

where N(v, a) counts visits to action a from node v, and
N(v) tracks total visits to node v. Q(v, a) is the estimated
reward for action a from node v, updated via backpropaga-
tion. We select the action with the maximum UCT score
and move to the resulting child node. Notably, if there exist
any unvisited child nodes (i.e., N(v, a) = 0), we prioritize
the selection of such nodes over UCT selection.

(2) Expansion. The expansion phase generates child nodes
from the selected node. Valid actions are determined by
the node type (Table 1) and executed via LLM prompt-
ing. Each action is sampled Nexpansion times with tempera-
ture Texpansion, creating Nexpansion×|Evalid| child nodes,
where |Evalid| represents the number of valid actions. This
sampling approach enhances reasoning diversity.

(3) Simulation. A complete simulation process consists
of iterative node selection and expansion until reaching a
termination node. Throughout the simulation process, all
newly expanded child nodes are persistently maintained
within the tree structure.

(4) Backpropagation. At a termination node (vt), backprop-
agation begins by evaluating the predicted SQL using the
self-supervised reward function from Section 3.2. We iden-
tify the action (A5 or A6) that produced the final SQL, then
sample Nreward SQL queries with temperature Treward to
ensure diversity. The reward value r is calculated from
the self-consistency score between the execution results of
the sampled and predicted SQLs. The process then back-
tracks from vt to the root node, updating Q(v, a) and N(v)
values for all nodes along the path v0 ⊕ · · · ⊕ vt using:
Q(v, a) = Q(v, a) + r, N(v) = N(v) + 1. These up-
dated values guide future search directions through the UCT
formula in subsequent rollouts.

After Nrollout rollouts, we collect all complete trajectories
that reach termination nodes, forming a set of candidate
SQL reasoning trajectories T = {τ1, τ2, . . . , τn}.

Final SQL Selection. To select the optimal trajectory and
SQL query from T , we leverage the convergent nature of
Text-to-SQL: different reasoning paths yield equivalent SQL
queries for a given question. We execute all predicted SQL
queries and select the one with the highest execution result
consistency as the final prediction. This approach differs
from previous methods like CHASE-SQL (Pourreza et al.,

2025), which rely on fine-tuned proprietary models such as
Gemini-1.5-Flash, requiring extensive domain-specific data.

We show the pseudo-code of Alpha-SQL in Appendix A.1.

Pruning Strategies. Alpha-SQL incorporates schema con-
straints and semantic rules into the search process to prune
invalid paths early. A key aspect of our pruning strategy
is the elimination of redundant nodes. For instance, when
performing a Schema Selection action, we may sample the
LLM M multiple times (e.g., 3 times). Although the Chain-
of-Thought content generated by M may differ in each sam-
ple, if the final selected schema subset is identical, we create
only one child node instead of three duplicate nodes. This
de-duplication significantly reduces the branching factor of
the search tree without loss of information.

4.3. Database Value Retrieval

Efficiently and accurately retrieving database values rel-
evant to a user’s natural language question is crucial for
Text-to-SQL generation (Liu et al., 2024). SQL queries
typically reference a limited subset of column values ex-
tracted from potentially extensive databases, primarily for
utilization within filtering conditions, such as those spec-
ified in WHERE clauses. However, a significant challenge
arises from the potential semantic discrepancies between
how a user phrases their query and how values are stored
in the database (e.g., a user might say “America” while the
database stores “United States”). Following Talaei et al.
(2024), we employ a two-stage approach involving offline
pre-processing and online retrieval.

Offline Pre-processing. In the offline phase, we focus on
pre-processing database values to facilitate fast and accurate
retrieval during the online phase. This process specifically
targets TEXT type column values, as these are most prone to
ambiguities and variations in user queries. For these selected
textual column values, we apply the MinHash (Datar et al.,
2004) technique to generate compact signatures. These Min-
Hash signatures are then stored locally, creating an indexed
and optimized representation of the database values that are
most likely to require disambiguation.

Online Retrieval. During the online phase, when a user sub-
mits a natural language question, we first extracts relevant
keywords from the question, which can be guided by few-
shot prompts (Appendix A.3). Once the keywords are identi-
fied, Locality Sensitive Hashing (LSH) (Datar et al., 2004) is
utilized in conjunction with the pre-computed MinHash sig-
natures stored locally. This LSH-based search allows for ef-
ficient retrieval of database values that are semantically sim-
ilar to the extracted keywords. The retrieved values are then
subject to further filtering based on predefined editing simi-
larity and semantic similarity thresholds (ϵedit, ϵsemantic).
The semantic matching employs OpenAI’s text-embedding-

6



Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search

3-large model. The finally selected, relevant database values
are then incorporated into the database schema prompt pro-
vided to our LLM-as-Action-Model, enriching the context
for the SQL generation process.

5. Experiments
5.1. Experimental Setup

Datasets. We utilize the Spider (Yu et al., 2018) and
BIRD (Li et al., 2023c) development sets for evaluation.
Spider contains 1034 (NL, SQL) pairs, and BIRD includes
1534 pairs, with BIRD queries being more complex and
containing domain-specific keywords like CASE and IIF.

To facilitate more comparison experiments while reducing
computational costs (Sections 5.3 to 5.5), we follow CHESS-
SQL (Talaei et al., 2024) and utilize the same Subsampled
Development Set (SDS), which comprises 10% of each
database from the BIRD development set. The SDS contains
147 samples, consisting of 81 simple, 54 moderate, and 12
challenging questions.

Metrics. Following prior work (Pourreza et al., 2025), we
use Execution Accuracy (EX) as the metric, defined as the
percentage of predicted SQL queries that generate execution
results identical to those of the ground-truth queries.

Hardware. All experiments are run on an Ubuntu 22.04.3
LTS server with 512GB of RAM and dual 40-core Intel(R)
Xeon(R) Platinum 8383C CPUs (@ 2.70GHz). Open-source
LLMs are deployed locally using 8 GPUs, each with 80GB
of memory and 312 TFLOPS with BF16 precision.

5.2. Main Results on BIRD and Spider Datasets

Settings. We employed three open-source models from the
Qwen2.5-Coder family - 7B, 14B, and 32B (Yang et al.,
2024) - as inference models for Alpha-SQL. The related
hyper-parameters were set as follows: For offline database
value retrieval, we set the editing similarity ϵedit as 0.3 and se-
mantic similarity ϵsemantic as 0.6. For the MCTS rollout pro-
cess, we set the number of rollouts to Nrollout = 24. During
node expansion, each action was sampled Nexpansion = 3
times with a sampling temperature of Texpansion = 0.8. In
the computation of self-supervised rewards, we set the SQL
sampling parameters with Nreward = 5 repetitions and a
temperature of Treward = 1.0. For the SQL Revision action
(A6), we set a maximum iteration limit of Nrevision = 10
for the multi-round correction process.

Performance on BIRD Dataset. As shown in Table 2,
we conducted a comprehensive comparison between Alpha-
SQL and current state-of-the-art approaches, categorizing
methods based on their zero-shot capabilities. Alpha-SQL,
leveraging the relatively lightweight Qwen2.5-Coder-7B
model, achieved 66.8% average accuracy, comparable to the

Alpha-SQL
(14B)Alpha-SQL

(7B)

Alpha-SQL
(32B)

CHASE-SQL
(Gemini-1.5-pro)

Xiyan-SQL
(32B)

RSL-SQL
(GPT-4o)

MCS-SQL
(GPT-4)

SuperSQL
(GPT-4)

DAIL-SQL
(GPT-4)

DeepSeek-V3

DeepSeek-R1

Gemini-1.5-pro

GPT-4o

QwQ-32B-Preview

Qwen2.5-Coder-7B

SFT-Codes
(7B)

SFT-Codes
(15B)

CHESS-SQL
(33B)

Figure 4. Performance vs. Model Size on the BIRD dev. For
GPT-4, GPT-4o, and Gemini-1.5-pro, we referenced the parameter
descriptions from (Abacha et al., 2024) for plotting.

performance of RSL-SQL (Cao et al., 2024), which relies
on the proprietary GPT-4o. Notably, this performance sur-
passes many methods that require data fine-tuning. Upon
scaling our inference model to 32B parameters, Alpha-SQL
demonstrated superior performance in the zero-shot sce-
nario, with 69.7% average accuracy. Even when compared
to methods with domain data fine-tuning, Alpha-SQL’s per-
formance is exceeded only by CHASE-SQL (Pourreza et al.,
2025), which requires fine-tuning the proprietary Gemini-
1.5-Flash model, and XiYan-SQL (Gao et al., 2024b), which
fine-tunes an unknown model. These results confirm Alpha-
SQL’s effectiveness as a plug-and-play framework that de-
livers competitive performance without fine-tuning.

Performance on Spider Dataset. We also evaluate Alpha-
SQL on the Spider development dataset. As shown in Ta-
ble 3, Alpha-SQL with Qwen2.5-Coder-14B outperforms
existing methods. Notably, it achieves a 2.1% improvement
over SFT CodeS-15B (Li et al., 2024b), which was specifi-
cally fine-tuned for the Spider dataset. This demonstrates
Alpha-SQL’s capability to achieve strong generalization per-
formance without dataset-specific fine-tuning.

Performance-Scale Trade-off Analysis. To explore the
performance potential of smaller open-source LLMs, we
conducted this experiment to demonstrate that Alpha-SQL
can unlock the full potential of smaller models while main-
taining cost efficiency. Figure 4 shows that Alpha-SQL sig-
nificantly outperforms larger models on the Pareto frontier,
enabling smaller models, such as the 7B and 14B versions,
to achieve accuracy comparable to or surpassing much larger
models, including GPT-4o-based approaches. This demon-
strates our framework’s ability to optimize Text-to-SQL
performance across varying model scales.
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Table 2. Execution Accuracy on BIRD Development Dataset.

Method Inference
Model

Selection
Model

Zero-shot
Setting

Accuracy (%)
Simple Moderate Challenging All

SFT CodeS (Li et al., 2024b) CodeS-7B - ✗ 64.6 46.9 40.3 57.0
SFT CodeS (Li et al., 2024b) CodeS-15B - ✗ 65.8 48.8 42.4 58.5

Distillery (Maamari et al., 2024) GPT-4o - ✗ - - - 67.2
CHESS-SQL (Talaei et al., 2024) Deepseek-Coder-33B GPT-4-Turbo ✗ - - - 65.0
CHESS-SQL (Talaei et al., 2024) Deepseek-Coder-33B LLaMA3-70B ✗ - - - 61.5

CHASE-SQL (Pourreza et al., 2025) Gemini-1.5-Pro Gemini-1.5-Flash ✗ - - - 73.0
XiYan-SQL (Gao et al., 2024b) ? ? ✗ - - - 73.3
XiYan-SQL (Gao et al., 2024b) Qwen2.5-Coder-32B Qwen2.5-Coder-32B ✗ - - - 67.0
DAIL-SQL (Gao et al., 2024a) GPT-4 SC Selection ✓ 63.0 45.6 43.1 55.9

SuperSQL (Li et al., 2024a) GPT-4 SC Selection ✓ 66.9 46.5 43.8 58.5
MCS-SQL (Lee et al., 2025) GPT-4 GPT-4 ✓ - - - 64.4
RSL-SQL (Cao et al., 2024) GPT-4o GPT-4o ✓ 74.4 57.1 53.8 67.2

Alpha-SQL (Ours) Qwen2.5-Coder-7B SC Selection ✓ 72.6 59.3 53.1 66.8
Alpha-SQL (Ours) Qwen2.5-Coder-14B SC Selection ✓ 74.6 61.0 55.9 68.7
Alpha-SQL (Ours) Qwen2.5-Coder-32B SC Selection ✓ 74.5 64.0 57.2 69.7

Table 3. Execution Accuracy on Spider Development Dataset.

Method Inference
Model

Selection
Model

Zero-shot
Setting

Accuracy (%)
Easy Medium Hard Extra Hard All

SFT CodeS (Li et al., 2024b) CodeS-7B - ✗ 94.8 91.0 75.3 66.9 85.4
SFT CodeS (Li et al., 2024b) CodeS-15B - ✗ 95.6 90.4 78.2 61.4 84.9
C3-SQL (Dong et al., 2023) GPT-3.5-Turbo SC Selection ✓ 92.7 85.2 77.6 62.0 82.0

DIN-SQL (Pourreza & Rafiei, 2023) GPT-4 - ✓ 92.3 87.4 76.4 62.7 82.8
DAIL-SQL (Gao et al., 2024a) GPT-4 SC Selection ✓ 91.5 90.1 75.3 62.7 83.6
ZeroNL2SQL (Fan et al., 2024) GPT-4 - ✓ - - - - 84.0
MAC-SQL (Wang et al., 2025) GPT-4 - ✓ - - - - 86.8

SuperSQL (Li et al., 2024a) GPT-4 SC Selection ✓ 94.4 91.3 83.3 68.7 87.0
Alpha-SQL (Ours) Qwen2.5-Coder-7B SC Selection ✓ 94.0 89.2 76.4 63.3 84.0
Alpha-SQL (Ours) Qwen2.5-Coder-14B SC Selection ✓ 94.0 91.0 79.9 72.3 87.0
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Figure 5. Accuracy vs. MCTS Rollouts.

5.3. Impact of MCTS Rollouts on Performance

The efficiency of MCTS in exploring large search spaces is
a key feature of Alpha-SQL. Based on Table 1, we calcu-
lated that there are over 3000 possible reasoning paths for
each text-to-SQL task. Remarkably, Alpha-SQL achieves
significant performance improvements with just 24 MCTS
rollouts, suggesting that our Alpha-SQL can efficiently ex-
plore significantly larger search spaces.

To further investigate this efficiency and understand how

the number of MCTS rollouts affects performance, we con-
ducted an in-depth analysis. We conducted experiments
on the SDS dataset using the Qwen2.5-Coder-7B model,
maintaining all hyper-parameters identical to Section 5.2
except for the number of rollouts (Nrollout). We report
both the upper bound accuracy and final accuracy. Similar
to CHASE-SQL (Pourreza et al., 2025), the upper bound
accuracy represents the percentage of samples where the
candidate SQL set contains the correct SQL query before
the final SQL selection. We observe a positive correla-
tion between the number of MCTS rollouts and both upper
bound and final accuracy metrics. This demonstrates Alpha-
SQL’s capability to enhance Text-to-SQL task performance
through more MCTS explorations.

5.4. Comparison with Baseline LLMs

In this section, we present an evaluation of the baseline
performance characteristics of various LLMs when applied
directly to the Text-to-SQL task on the SDS dataset. These
LLMs were categorized into two groups: general LLMs,
exemplified by models such as GPT-4o, and LLMs specifi-
cally optimized for reasoning tasks, such as DeepSeek-R1.
For a fair comparison, all baseline LLMs were prompted
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Table 4. Comparison with Baseline LLMs on the SDS dataset.
Model Accuracy (%)

Deepseek-V3 51.2
GPT-4o 53.7

Gemini-1.5-Pro 56.2
QwQ-32B-Preview 38.8

DeepSeek-R1 50.3
Gemini-2.0-Flash-Thinking-Exp 60.8

Qwen2.5-Coder-7B 47.6
+ Alpha-SQL (Ours) 64.6 (↑ 17.0)

Phi-4 43.5
+ Alpha-SQL (Ours) 60.0 (↑ 16.5)

Table 5. Ablation Study on the Action Space.
Action Space Accuracy (%)

A1, A2, A3, A4, A5, A6, A7 64.6
w/o A1 (Question Rephrasing) 63.9 (↓ 0.7)

w/o A2 (Schema Selection) 63.1 (↓ 1.5)
w/o A3 (Column Value Identification) 64.2 (↓ 0.4)

w/o A4 (Column Function Identification) 64.0 (↓ 0.6)
w/o A6 (SQL Revision) 62.8 (↓ 1.8)

using a standardized Text-to-SQL prompt, detailed in Ap-
pendix A.4. As shown in Table 4, our Alpha-SQL, utilizing
a model with only 7B parameters, surpasses all baseline
models in performance. Notably, Alpha-SQL outperforms
Gemini-2.0-Flash-Thinking-Exp, a sophisticated reasoning-
optimized model, despite using a weaker model. This shows
that the Text-to-SQL task requires targeted reasoning op-
timization, which is a strength of the Alpha-SQL frame-
work. Moreover, to validate Alpha-SQL’s plug-and-play
advantages, we conducted additional experiments using
Phi-4 (Abdin et al., 2024) and Qwen2.5-Coder-7B as infer-
ence models. Compared to directly prompting these LLMs,
Alpha-SQL achieved significant accuracy improvements of
17.0% and 16.5% for Qwen2.5-Coder-7B and Phi-4, respec-
tively. These results validate Alpha-SQL’s generalizability
and effectiveness across different inference models.

5.5. Ablation Study of Action Space

The purpose of this ablation study is to validate the effective-
ness of our proposed Text-to-SQL reasoning action space
and the LLM-as-Action-Model approach. To achieve this,
we conducted experiments on the SDS dataset, systemati-
cally removing individual actions from the original action
space while maintaining the parameter settings from Sec-
tion 5.2. Table 5 presents the results of these experiments.

Table 5 shows that removing any action from the original
action space negatively impacts performance. The SQL
Revision action demonstrates particular significance, as it
leverages database interaction to incorporate feedback into
the LLM for SQL correction, highlighting the importance
of database execution feedback for Text-to-SQL tasks.

6. Conclusion
In this paper, we proposed Alpha-SQL, a zero-shot Text-to-
SQL framework that frames SQL generation as a structured
search problem. By combining Monte Carlo Tree Search
with LLM-as-Action-Model, Alpha-SQL explores the SQL
query space efficiently without fine-tuning the LLMs. Ex-
periments show competitive performance, with 69.7% on
the BIRD development set. Ablation studies validate the
effectiveness of our reasoning actions, and performance
improves with more MCTS rollouts.
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Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, pp. 282–293. Springer, 2006.

Lee, D., Park, C., Kim, J., and Park, H. MCS-SQL: lever-
aging multiple prompts and multiple-choice selection for
text-to-sql generation. In COLING, pp. 337–353. Asso-
ciation for Computational Linguistics, 2025.

Li, B., Luo, Y., Chai, C., Li, G., and Tang, N. The dawn of
natural language to SQL: are we fully ready? [experiment,
analysis & benchmark ]. Proc. VLDB Endow., 17(11):
3318–3331, 2024a.

Li, H., Zhang, J., Li, C., and Chen, H. RESDSQL: decou-
pling schema linking and skeleton parsing for text-to-sql.
In AAAI, pp. 13067–13075. AAAI Press, 2023a.

Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J., Wei,
R., Pan, H., Li, C., and Chen, H. Codes: Towards building
open-source language models for text-to-sql. Proc. ACM
Manag. Data, 2(3):127, 2024b.

Li, J., Hui, B., Cheng, R., Qin, B., Ma, C., Huo, N., Huang,
F., Du, W., Si, L., and Li, Y. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-to-
sql parsing. In AAAI, pp. 13076–13084. AAAI Press,
2023b.

Li, J., Hui, B., Qu, G., Yang, J., Li, B., Li, B., Wang, B.,
Qin, B., Geng, R., Huo, N., Zhou, X., Ma, C., Li, G.,
Chang, K. C., Huang, F., Cheng, R., and Li, Y. Can LLM
already serve as A database interface? A big bench for
large-scale database grounded text-to-sqls. In NeurIPS,
2023c.

Lin, X., Qi, Y., Zhu, Y., Palpanas, T., Chai, C., Tang, N.,
and Luo, Y. Lead: Iterative data selection for efficient
llm instruction tuning, 2025. URL https://arxiv.
org/abs/2505.07437.

Liu, B., Li, X., Zhang, J., Wang, J., He, T., Hong, S., Liu, H.,
Zhang, S., Song, K., Zhu, K., Cheng, Y., Wang, S., Wang,
X., Luo, Y., Jin, H., Zhang, P., Liu, O., Chen, J., Zhang,
H., Yu, Z., Shi, H., Li, B., Wu, D., Teng, F., Jia, X., Xu,
J., Xiang, J., Lin, Y., Liu, T., Liu, T., Su, Y., Sun, H.,
Berseth, G., Nie, J., Foster, I., Ward, L. T., Wu, Q., Gu,
Y., Zhuge, M., Tang, X., Wang, H., You, J., Wang, C., Pei,
J., Yang, Q., Qi, X., and Wu, C. Advances and challenges
in foundation agents: From brain-inspired intelligence
to evolutionary, collaborative, and safe systems. CoRR,
abs/2504.01990, 2025a.

Liu, X., Shen, S., Li, B., Ma, P., Jiang, R., Luo, Y., Zhang,
Y., Fan, J., Li, G., and Tang, N. A survey of NL2SQL
with large language models: Where are we, and where
are we going? CoRR, abs/2408.05109, 2024.

Liu, X., Shen, S., Li, B., Tang, N., and Luo, Y. Nl2sql-bugs:
A benchmark for detecting semantic errors in NL2SQL
translation. CoRR, abs/2503.11984, 2025b.

Luo, T., Huang, C., Shen, L., Li, B., Shen, S., Zeng, W.,
Tang, N., and Luo, Y. nvbench 2.0: A benchmark for
natural language to visualization under ambiguity. CoRR,
abs/2503.12880, 2025.

Luo, Y., Qin, X., Tang, N., and Li, G. Deepeye: Towards au-
tomatic data visualization. In ICDE, pp. 101–112. IEEE
Computer Society, 2018a.

Luo, Y., Qin, X., Tang, N., Li, G., and Wang, X. Deepeye:
Creating good data visualizations by keyword search. In
SIGMOD Conference, pp. 1733–1736. ACM, 2018b.

Luo, Y., Tang, N., Li, G., Chai, C., Li, W., and Qin, X.
Synthesizing natural language to visualization (NL2VIS)
benchmarks from NL2SQL benchmarks. In SIGMOD
Conference, pp. 1235–1247. ACM, 2021.

Luo, Y., Qin, X., Chai, C., Tang, N., Li, G., and Li, W.
Steerable self-driving data visualization. IEEE Trans.
Knowl. Data Eng., 34(1):475–490, 2022a.

Luo, Y., Tang, N., Li, G., Tang, J., Chai, C., and Qin, X.
Natural language to visualization by neural machine trans-
lation. IEEE Trans. Vis. Comput. Graph., 28(1):217–226,
2022b.

10

https://arxiv.org/abs/2505.07437
https://arxiv.org/abs/2505.07437


Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search

Luo, Y., Zhou, Y., Tang, N., Li, G., Chai, C., and Shen, L.
Learned data-aware image representations of line charts
for similarity search. Proc. ACM Manag. Data, 1(1):
88:1–88:29, 2023.

Ma, P., Li, B., Jiang, R., Fan, J., Tang, N., and Luo, Y.
A plug-and-play natural language rewriter for natural
language to SQL. CoRR, abs/2412.17068, 2024.

Maamari, K., Abubaker, F., Jaroslawicz, D., and Mhedhbi,
A. The death of schema linking? text-to-sql in the age of
well-reasoned language models. CoRR, abs/2408.07702,
2024.

Pourreza, M. and Rafiei, D. DIN-SQL: decomposed in-
context learning of text-to-sql with self-correction. In
NeurIPS, 2023.

Pourreza, M., Li, H., Sun, R., Chung, Y., Talaei, S., Kakkar,
G. T., Gan, Y., Saberi, A., Ozcan, F., and Arik, S. Ö.
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A. Appendix
A.1. Alpha-SQL Algorithm

The Alpha-SQL algorithm, as outlined in Algorithm 1, operates in multiple phases: Selection, Expansion, Simulation, and
Backpropagation. Given a user query q and the corresponding database schema D, the algorithm starts by initializing an
empty search tree Ψ = (V,E) with a root node v0 representing the initial state (lines 3-4). The process then iterates over
Nrollout MCTS rollouts (line 6), where each rollout seeks to explore high-value reasoning paths in the search space.

In the Selection phase (lines 7-12), starting from the root node, Alpha-SQL recursively traverses the search tree until an
unexpanded node is reached. The next action a is selected based on the Upper Confidence Bound for Trees (UCT) formula,
which balances exploration and exploitation by considering both the estimated reward and the visit counts of actions (line
10). This process continues until a terminal node is found or all children of the node are expanded.

In the Expansion phase (lines 13-23), valid next actions Avalid are determined based on the current node’s type. The
algorithm generates new states by invoking our LLM-as-Action-Model to execute each action, creating new child nodes
in the search tree (lines 15-21). The expansion process introduces new reasoning paths, enriching the search space for
subsequent rollouts.

The Simulation phase (lines 24-30) performs rollouts by randomly selecting unexplored child nodes and executing the
corresponding actions. This phase continues until a terminal node is reached, at which point the final SQL query is extracted
from the trajectory.

Finally, the Backpropagation phase (lines 32-40) updates the values of nodes along the path from the terminal node back
to the root. The reward is computed by sampling multiple SQL queries and calculating their self-consistency scores based
on their execution results. The values of nodes N(u) and Q(u, au) are updated according to the reward r to guide future
searches.

At the end of the rollouts, the algorithm selects the SQL query with the highest self-consistency from the set of candidate
queries generated during the search, as indicated by line 43.

This procedure enables Alpha-SQL to efficiently explore the search space of SQL queries, balancing exploration with
accuracy and providing a scalable, fine-tuning-free solution to zero-shot Text-to-SQL tasks.
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Algorithm 1 Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search
1: Input: Question q, Database Schema D, LLM M , Number of rollouts Nrollout

2: Output: SQL query y
3: Initialize an empty search tree Ψ = (V,E) with root node v0
4: Initialize a root node v0 ∈ V with (q, D)
5: T ← ∅
6: for i = 1 to Nrollout do
7: // Selection Phase
8: v ← v0
9: while v is not terminal and v is fully expanded do

10: a← argmaxa∈A(v){Q(v, a)/N(v, a) + c
√

lnN(v)/N(v, a)}
11: v ← child of v reached by action a
12: end while
13: // Expansion Phase
14: if v is not terminal then
15: Avalid ← GetValidActions(v) from Table 1
16: for a ∈ Avalid do
17: for j = 1 to Nexpansion do
18: vnew ←M(q,D,Actions(v0, . . . , v), P rompt(a))
19: Add vnew as child of v in Ψ
20: end for
21: end for
22: v ← Random unexplored child of v
23: end if
24: // Simulation Phase
25: while v is not terminal do
26: Avalid ← GetValidActions(v)
27: Expand v with Avalid and ramdomly select action a
28: vnew ←M(q,D,Actions(v0, . . . , v), P rompt(a))
29: v ← vnext
30: end while
31: Extract final SQL y from v
32: // Backpropagation Phase
33: Sample Nreward SQL queries {y1, ..., yNreward

} with temperature Treward

34: r ← 1
Nreward

∑Nreward

i=1 1[Execute(y,D) = Execute(yi, D)]
35: τ ← the path from v0 to v
36: for each node u in τ do
37: N(u)← N(u) + 1
38: Q(u, au)← Q(u, au) + r where au is the action taken at u
39: N(u, au)← N(u, au) + 1
40: end for
41: T ← T ∪ {τ}
42: end for
43: return argmaxy∈Y {Self-consistency(y)} where Y are unique SQLs from T
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A.2. Prompt Template for Actions

In this section, we provided the prompt templates for the actions defined in Section 4.1.

Rephrase Question Action Prompt

You are an AI assistant to help me rephrase questions by splitting the question context into conditions. In your
rephrased question, remember to fully express the information in the original question.

Example 1:
Original Question: Name movie titles released in year 1945. Sort the listing by the descending order of movie
popularity.
Hint: released in the year 1945 refers to movie release year = 1945;
Rephrased Question: Given a list of conditions, please answer the question. Condition 1: Movies are released in the
year 1945. Condition 2: Movies are sorted by the descending order of movie popularity. Condition 3: Return the
movie titles. Question: What are the movie titles released in the year 1945, sorted by the descending order of movie
popularity?

Example 2:
Original Question: How many office supply orders were made by Cindy Stewart in the south superstore?
Hint: office supply refers to Category = ‘Office Supplies’
Rephrased Question: Given a list of conditions, please answer the question. Condition 1: Orders are made by Cindy
Stewart. Condition 2: Orders are office supplies, refer to Category = ‘Office Supplies’. Condition 3: Return the
number of orders. Question: How many office supply orders were made by Cindy Stewart in the south superstore?

Example 3:
Original Question: Tell the number of fights landed earlier on Miami Airport on 2018/8/12.
Hint: landed on refers to DEST; landed earlier refers to ARR DELAY < 0; Miami Airport refers to DEST = ‘MIA’;
on 2018/8/12 refers to FL DATE = ‘2018/8/12’;
Rephrased Question: Given a list of conditions, please answer the question. Condition 1: Flights landed on Miami
Airport on 2018/8/12, refer to DEST = ‘MIA’ and FL DATE = ‘2018/8/12’. Condition 2: Flights landed earlier,
refer to ARR DELAY < 0. Condition 3: Return the number of fights. Question: How many fights landed earlier on
Miami Airport on 2018/8/12?

Answer the following question:
Original Question: {QUESTION}
Hint: {HINT}
Rephrased Question:

Figure 6. Question Rephrasing Action Prompt.
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Schema Selection Action Prompt

You are an expert and very smart data analyst.

Your task is to examine the provided database schema, understand the posed question, and use the hint to pinpoint
the specific columns within tables that are essential for crafting a SQL query to answer the question.

The schema offers an in-depth description of the database’s architecture, detailing tables, columns, primary keys,
foreign keys, and any pertinent information regarding relationships or constraints. Special attention should be given
to the examples listed beside each column, as they directly hint at which columns are relevant to our query.

For key phrases mentioned in the question, we have provided the most similar values within the columns denoted by
“– Value Examples” in front of the corresponding column names. This is a critical hint to identify the columns that
will be used in the SQL query.

The hint aims to direct your focus towards the specific elements of the database schema that are crucial for answering
the question effectively.

Task: Based on the database schema, question, and hint provided, your task is to identify all and only the columns
that are essential for crafting a SQL query to answer the question. For each of the selected columns, explain why
exactly it is necessary for answering the question. Your reasoning should be concise and clear, demonstrating a
logical connection between the columns and the question asked.

Please respond with a JSON object structured as follows:
‘‘‘json
{ “chain of thought reasoning”: “Your reasoning for selecting the columns, be concise and clear.”, “table name1”:
[“column1”, “column2”, ...], “table name2”: [“column1”, “column2”, ...], ... }
‘‘‘
Make sure your response includes the table names as keys, each associated with a list of column names that are
necessary for writing a SQL query to answer the question. For each aspect of the question, provide a clear and
concise explanation of your reasoning behind selecting the columns. Take a deep breath and think logically. If you
do the task correctly, I will give you 1 million dollars.
Database Schema Overview: {SCHEMA CONTEXT}
Question: {QUESTION}
Hint: {HINT}
Only output a json (starting with ‘‘‘json and ending with ‘‘‘) as your response.

Figure 7. Schema Selection Action Prompt.
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Column Value Identification Action Prompt

You are an AI assistant to help me identify the potential column values (if needed to be used in the SQL query) that
are essential for answering the question.
Here is an example:
Database Schema:
CREATE TABLE generalinfo
(
id restaurant INTEGER not null primary key,
food type TEXT null, – Value Examples: ‘thai’ | Column Description: the food type
city TEXT null, – Column Description: the city where the restaurant is located in
);
CREATE TABLE location
(
id restaurant INTEGER not null primary key,
street name TEXT null, – Value Examples: ‘ave’, ‘san pablo ave’, ‘pablo ave’ | Column Description: the street
name of the restaurant
city TEXT null, – Column Description: the city where the restaurant is located in
foreign key (id restaurant) references generalinfo (id restaurant) on update cascade on delete cascade
);
Question:
How many Thai restaurants can be found in San Pablo Ave, Albany?
Hint:
Thai restaurant refers to food type = ‘thai’; San Pablo Ave Albany refers to street name = ‘san pablo ave’ AND
T1.city = ‘albany’
Answer:
Since the restaurants are located in Albany, based on the schema information and the hint, I need to use ‘loca-
tion’.‘street name’ = ‘san pablo ave’ AND ‘generalinfo’.‘city’ = ‘albany’.
**************************
Now, answer the real question, and you need to follow the answer style of the above examples (answer in two
sentences).
Database Schema: {SCHEMA CONTEXT}
Question: {QUESTION}
Hint: {HINT}
Answer:

Figure 8. Column Value Identification Action Prompt.
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Column Function Identification Action Prompt

You are an AI assistant to help me identify the potential column functions (if needed to be used in the SQL query)
that are essential for answering the question.
Here is an example:
Database Schema:
CREATE TABLE businesses
(
‘business id’ INTEGER NOT NULL,
‘name’ TEXT NOT NULL, – Column Description: the name of the eatery
PRIMARY KEY (‘business id’)
);
CREATE TABLE inspections
(
‘business id’ INTEGER NOT NULL, – Column Description: the unique id of the business
‘score’ INTEGER DEFAULT NULL, – Column Description: the inspection score
‘date’ TEXT NOT NULL, – Value Examples: ‘2014-01-24’
FOREIGN KEY (‘business id’) REFERENCES ‘businesses’ (‘business id’)
);
Question: What are the names of the businesses that passed with conditions in May 2012?
Hint: name of business refers to dba name; passed with conditions refers to results = ‘Pass w/ Conditions’; in May
2012 refers to inspection date like ‘2012-05%’
Answer: Since the businesses passed with conditions in May 2012, I should consider a date-related function to
filter the ‘inspections’.‘date’ column. I find that column is of type TEXT, so I can use the strftime(‘%Y-%m’,
‘inspections’.‘date’) = ‘2012-05’ to filter the date.
**************************
Now, answer the real question, and you need to follow the answer style of the above examples (answer in two
sentences).
Database Schema: {SCHEMA CONTEXT}
Question: {QUESTION}
Hint: {HINT}
Answer:

Figure 9. Column Function Identification Action Prompt.
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SQL Generation Action Prompt

You are an experienced database expert. Now you need to generate a SQL query given the database information, a
question and some additional information.
The database structure is defined by the following table schemas (comments after ‘–’ provide additional column
descriptions). Note that the “Value Examples” are actual values from the column. Some column might contain the
values that are directly related to the question. Use it to help you justify which columns to use.
Given the table schema information description and the ‘Question’. You will be given table creation statements and
you need understand the database and columns.
You will be using a way called “recursive divide-and-conquer approach to SQL query generation from natural
language”.
Here is a high level description of the steps.
1. **Divide (Decompose Sub-question with Pseudo SQL):** The complex natural language question is recursively
broken down into simpler sub-questions. Each sub-question targets a specific piece of information or logic required
for the final SQL query.
2. **Conquer (Real SQL for sub-questions):** For each sub-question (and the main question initially), a “pseudo-
SQL” fragment is formulated. This pseudo-SQL represents the intended SQL logic but might have placeholders for
answers to the decomposed sub-questions.
3. **Combine (Reassemble):** Once all sub-questions are resolved and their corresponding SQL fragments are
generated, the process reverses. The SQL fragments are recursively combined by replacing the placeholders in the
pseudo-SQL with the actual generated SQL from the lower levels.
4. **Final Output:** This bottom-up assembly culminates in the complete and correct SQL query that answers the
original complex question.
Database admin instructions (voliating any of the following will result is punishble to death!):
1. **SELECT Clause:**
- Only select columns mentioned in the user’s question.
- Avoid unnecessary columns or values.
2. **Aggregation (MAX/MIN):**
- Always perform JOINs before using MAX() or MIN().
3. **ORDER BY with Distinct Values:**
- Use ‘GROUP BY column’ before ‘ORDER BY column ASC|DESC’ to ensure distinct values.
4. **Handling NULLs:**
- If a column may contain NULL values, use ‘JOIN’ or ‘WHERE <column> IS NOT NULL’.
Repeating the question and hint, and generating the SQL with Recursive Divide-and-Conquer, and finally try to
simplify the SQL query using ‘INNER JOIN’ over nested ‘SELECT’ statements IF POSSIBLE.
Please respond with a JSON object structured as follows:
‘‘‘json
{ “chain of thought reasoning”: “Your detailed reasoning for the SQL query generation, with Recursive Divide-and-
Conquer approach.”,
“sql query”: “The final SQL query that answers the question.”
} ‘‘‘
**************************
Table creation statements: {SCHEMA CONTEXT}
**************************
Question: {QUESTION}
Hint: {HINT}
**************************
Only output a json (starting with ‘‘‘json and ending with ‘‘‘) as your response.

Figure 10. SQL Generation Action Prompt.
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SQL Revision Action Prompt

**Task Description:**
You are an SQL database expert tasked with correcting a SQL query. A previous attempt to run a query did not yield
the correct results, either due to errors in execution or because the result returned was empty or unexpected. Your
role is to analyze the error based on the provided database schema and the details of the failed execution, and then
provide a corrected version of the SQL query.
**Procedure:**
1. Review Database Schema:
- Examine the table creation statements to understand the database structure.
2. Analyze Query Requirements:
- Original Question: Consider what information the query is supposed to retrieve.
- Hint: Use the provided hints to understand the relationships and conditions relevant to the query.
- Executed SQL Query: Review the SQL query that was previously executed and led to an error or incorrect result.
- Execution Result: Analyze the outcome of the executed query to identify why it failed (e.g., syntax errors, incorrect
column references, logical mistakes).
3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it correctly fetches the requested data according to
the database schema and query requirements.

Based on the question, table schemas, the previous query, and the execution result, analyze the result following the
procedure, and try to fix the query. You cannot modify the database schema or the question, just output the corrected
query.
Please respond with a JSON object structured as follows:
‘‘‘json
{
“chain of thought reasoning”: “Your detailed reasoning for the SQL query revision.”,
“sql query”: “The final SQL query that answers the question.”,
}
‘‘‘
**************************
Table creation statements: {SCHEMA CONTEXT}
**************************
Question: {QUESTION}
Hint: {HINT}
**************************
Only output a json (starting with ‘‘‘json and ending with ‘‘‘) as your response.

Figure 11. SQL Revision Action Prompt.
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A.3. Prompt Template for Question Keywords Extraction

In this section we provided the prompt template for the question keywords extraction in Section 4.3.

Question Keywords Extraction Prompt

Objective: Analyze the given question and hint to identify and extract keywords, keyphrases, and named entities.
These elements are crucial for understanding the core components of the inquiry and the guidance provided. This
process involves recognizing and isolating significant terms and phrases that could be instrumental in formulating
searches or queries related to the posed question.

Instructions:
- Read the Question Carefully: Understand the primary focus and specific details of the question. Look for any
named entities (such as organizations, locations, etc.), technical terms, and other phrases that encapsulate important
aspects of the inquiry.
- Analyze the Hint: The hint is designed to direct attention toward certain elements relevant to answering the question.
Extract any keywords, phrases, or named entities that could provide further clarity or direction in formulating an
answer.
- List Keyphrases and Entities: Combine your findings from both the question and the hint into a single Python list.
This list should contain:
– Keywords: Single words that capture essential aspects of the question or hint.
– Keyphrases: Short phrases or named entities that represent specific concepts, locations, organizations, or other
significant details.

Ensure to maintain the original phrasing or terminology used in the question and hint.

Example 1:
Question: “What is the annual revenue of Acme Corp in the United States for 2022?”
Hint: “Focus on financial reports and U.S. market performance for the fiscal year 2022.”
[“annual revenue”, “Acme Corp”, “United States”, “2022”, “financial reports”, “U.S. market performance”, “fiscal
year”]

Example 2:
Question: “In the Winter and Summer Olympics of 1988, which game has the most number of competitors? Find
the difference of the number of competitors between the two games.”
Hint: “the most number of competitors refer to MAX(COUNT(person id)); SUBTRACT(COUNT(person id where
games name = ‘1988 Summer’), COUNT(person id where games name = ‘1988 Winter’));”
[“Winter Olympics”, “Summer Olympics”, “1988”, “1988 Summer”, “Summer”, “1988 Winter”, “Winter”, “number
of competitors”, “difference”, “MAX(COUNT(person id))”, “games name”, “person id”]

Example 3:
Question: “How many Men’s 200 Metres Freestyle events did Ian James Thorpe compete in?”
Hint: “Men’s 200 Metres Freestyle events refer to event name = ‘Swimming Men”s 200 metres Freestyle’; events
compete in refers to event id;”
[“Swimming Men’s 200 metres Freestyle”, “Ian James Thorpe”, “Ian”, “James”, “Thorpe”, “compete in”,
“event name”, “event id”]

Task: Given the following question and hint, identify and list all relevant keywords, keyphrases, and named entities.
Question: {QUESTION}
Hint: {HINT}
Please provide your findings as a Python list, capturing the essence of both the question and hint through the
identified terms and phrases. Only output the Python list, no explanations needed.

Figure 12. Question Keywords Extraction Prompt.
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A.4. Prompt Template for Baseline LLMs

In this section we provided the prompt template for the directly calling baseline LLMs in Section 5.4

Baseline Text-to-SQL Prompt

You are an experienced database expert. Now you need to generate a SQL query given the database information, a
question and some additional information.

The database structure is defined by the following table schemas (comments after ‘–’ provide additional column
descriptions). Note that the “Value Examples” are actual values from the column. Some column might contain the
values that are directly related to the question. Use it to help you justify which columns to use.

Given the table schema information description, the ‘Question’ and ‘Hint’, you need to generate a SQL query that
answers the question.
Please respond the final sql query in the end of response.
**************************
Table creation statements:
{SCHEMA CONTEXT}
**************************
Question:
{QUESTION}
Hint:
{HINT}
**************************
Output Format:
<think>
Your thinking process.
</think>
<sql>
The final SQL query.
</sql>

Figure 13. Baseline Text-to-SQL Prompt.
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