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Abstract

Despite the emergence of principled methods for domain adaptation under label1

shift (where only the class balance changes), the sensitivity of these methods to2

natural-seeming covariate shifts remains precariously underexplored. Meanwhile,3

popular deep domain adaptation heuristics, despite showing promise on benchmark4

datasets, tend to falter when faced with shifts in the class balance. Moreover, it’s5

difficult to assess the state of the field owing to inconsistencies among relevant6

papers in evaluation criteria, datasets, and baselines. In this paper, we introduce7

RLSBENCH, a large-scale benchmark for such relaxed label shift settings, consist-8

ing of 11 vision datasets spanning ą200 distribution shift pairs with different class9

proportions. We evaluate 12 popular domain adaptation methods, demonstrating a10

more widespread susceptibility to failure under extreme shifts in the class propor-11

tions than was previously known. We develop an effective meta-algorithm, compat-12

ible with most deep domain adaptation heuristics, that consists of the following13

two steps: (i) pseudo-balance the data at each epoch; and (ii) adjust the final classi-14

fier with (an estimate of) target label distribution. Furthermore, we discover that15

batch-norm adaption of a model trained on source with aforementioned corrections16

offers a strong baseline, largely missing from prior comparisons. We hope that17

these findings and the availability of RLSBENCH will encourage researchers to18

include rigorously evaluate proposed methods in relaxed label shift settings.19

1 Introduction20

Real-world deployments of machine learning models are typically characterized by distribution21

shift, where data encountered in production exhibits statistical differences from the available training22

data [52, 72, 34]. Because continually labeling data can be prohibitively expensive, researchers have23

focused on the unsupervised domain adaptation (DA) setting, where only labeled data sampled from24

the source distribution and unlabeled from the target distribution are available for training.25

Absent further assumptions, the DA problem is well known to be underspecified [6] and thus no26

method is universally applicable. Researchers have responded to these challenges in several ways.27

One approach is to investigate additional assumptions that render the problem well-posed. Popular28

examples include covariate shift and label shift, for which identification strategies and principled29

methods exist whenever the source and target distributions have overlapping support [63, 62, 25].30

Under label shift in particular, recent research has produced effective methods that are applicable in31

deep learning regimes and yield both consistent estimates of the target label marginal and principled32

ways to update the resulting classifier [38, 1, 3, 23]. However, these assumptions are typically, to33

some degree, violated in practice. Even for archetypal cases like shift in disease prevalence [38], the34

label shift assumption can be violated. For example, over the course of the COVID-19 epidemic,35

changes in disease positivity have been coupled with shifts in the age distribution of the infected and36

subtle mutations of the virus itself.37
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A complementary line of research focuses on constructing benchmark datasets for evaluating methods,38

in the hopes of finding heuristics that, for the kinds of problems that arise in practice, tend to incorpo-39

rate the unlabeled target data profitably. Examples of such benchmarks include OfficeHome [75], Do-40

mainnet [50]), WILDS [59]. However, most academic benchmarks exhibit little or no shift in the label41

distribution ppyq. Consequently, benchmark-driven research has produced a variety of heuristic meth-42

ods [21, 64, 76, 37] that despite yielding gains in benchmark performance tend to break when ppyq43

shifts. While this has previously been shown for domain-adversarial methods [80, 90], we show that44

this problem is more widespread than previously known. Several recent papers attempt to address shift45

in label distribution compounded by natural variations in ppx|yq [70, 69, 51]. However, the experimen-46

tal evaluations are hard to compare across papers owing to discrepancies in how shifts in ppyq are sim-47

ulated and the choice of evaluation metrics. Moreover, many methods violate the unsupervised con-48

tract by peeking at target validation performance during model selection and hyperparameter tuning.49

In this paper, we develop a test bed of relaxed label shift settings, where ppyq can shift arbitrarily50

and the class conditionals ppx|yq can shift in seemingly natural ways (following the popular DA51

benchmarks). Using RLSBENCH, we evaluate a collection of popular DA methods based on domain-52

invariant representation learning, self-training, and test-time adaptation methods across 11 multi-53

domain datasets. The different domains in each dataset present a different shift in ppx|yq. Since54

these datasets exhibit minor to no shift in label marginal, we simulate shift in target label marginal55

via stratified sampling with varying severity. Overall, we obtain 220 different source and target56

distribution shift pairs and train ą 10k models in our testbed.57

First, we observe that while popular DA methods often improve over a source only classifier absent58

shift in target label distribution, their performance tends to degrade, dropping below source-only59

classifiers under severe shifts in target label marginal. Next, we show that in these relaxed label shift60

settings, the performance of DA methods tends to improve when paired with a meta-algorithm with61

two simple corrections: (i) re-sampling the data to balance the source and pseudo-balance the target;62

(ii) re-weighting the final classifier using an estimate of target label marginal. Overall, we observe that63

popular DA methods (e.g. FixMatch and BN-adapt) when combined with corrections (i) and (ii) often64

improve over methods specifically proposed for relaxed label shift (e.g., IW-CDANN and SENTRY).65

2 RLSBENCH: A Benchmark for Relaxed Label Shift66

In the traditional label shift setting, one asssumes that ppx|yq does not change but that ppyq can. This67

paper focuses on the relaxed label shift setting. In particular, we assume that the label distribution68

can shift from source to target arbitrarily but that ppx|yq varies between source and target in some69

comparatively subtle way. We keep this definition mathematically imprecise as we lack a rigorous70

characterization of the sense in which those shifts addressed in popular DA benchmarks are natural.71

Here, given access to labeled source data and unlabeled target data, our goals are: (i) estimate the72

target label marginal ptpyq; and (ii) train a classifier f to maximize the performance on target domain.73

We now introduce RLSBENCH, a suite of datasets and domain adaptation algorithms that are at74

the core of our benchmark study. Motivated by correction methods for the (stricter) label shift75

setting [58, 38] and learning under imbalanced datasets [77, 11], we also present simple corrections76

that we incorporate in our benchmark to tackle a shift in target marginal.77

Datasets RLSBENCH builds on eleven open-source multi-domain datasets for image classification78

spanning applications in object classification, satellite imagery and medicine. Across our datasets, we79

obtain a total of 44 different source and target pairs. We relegate details about the datasets in App. F.80

Simulating a shift in target marginal The above datasets present minor to no shift in label marginal.81

Hence, we simulate such a shift by altering the target label marginal and keeping the source target82

distribution fixed (to the original source label distribution). Note that, unlike some previous studies,83

we do not alter the source label marginal because in practice, we may have an option to carefully curate84

the training distribution but might have little to no control over the test data. For each target dataset,85

we have the true labels which allow us to vary the target label distribution. In particular, we sample86

the target label marginal from a Dirichlet distribution with a parameter α P t0.5, 1, 3.0, 10u multiplier87

to the original target marginal. Specifically, ptpyq „ Dirpβq with βy “ α ¨ pt,0pyq ¨ k where pt,0pyq88

is the original target label marginal and k is the number of classes. The Dirichlet parameter α controls89

the severity of shift in target label marginal. Intuitively, as α decreases, the severity in shift increases.90

For completeness, we also include the target dataset with the original target label marginal (we denote91

this as NONE in the set of Dirichlet parameters, i.e., the limiting distribution as α Ñ 8). After92

simulating shift in the target label marginal, we obtain 220 pairs of different source and target datasets.93
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Domain Adaptation Methods With the current version of RLSBENCH, we implement the following94

algorithms (a more detailed description of each method is included in App. H): (i) Source only: As a95

baseline, we include model trained with empirical risk minimization with cross-entropy loss on the96

source domain. We also include adversarial robust models; (ii) Domain alignment methods: These97

methods employ domain-adversarial training aimed to learn invariant representations across different98

domains [21, 89, 70]; In particular, we include: DANN [21], CDAN [42], Importance-reweighted99

DANN (i.e., IWDAN) and CDAN (i.e., IWCDAN) [69]; (iii) Self-training methods: These methods100

pseudo-label unlabeled examples with the model’s own predictions and then train on them as if they101

were labeled examples [36, 81, 7]. We include the following algorithms: FixMatch [64], Noisy102

Student [81], SENTRY [51]; (iv) Test-time adaptation methods: These methods take a source trained103

model and adapt few parameters (e.g. batch norm parameters, batch norm statistics) on the unlabeled104

target data. We include the following methods: CORAL [66], BN-adapt [37, 61], TENT [76].105

2.1 Meta Algorithm to handle shifts in target class proportions106

Here we discuss two simple general-purpose corrections that we implement in our framework. First,107

note that, as the severity of shift in the target label marginal increases, the performance of DA methods108

can falter as the training is done over source and target datasets with different class proportions.109

Indeed, failure of domain adversarial training methods (one category of deep domain adaptation110

methods) has been theoretically and empirically shown in the literature [80, 90]. In our experiments,111

we show that a failure due to a shift in label distribution is not limited to domain adversarial training112

methods, but is common with all the popular DA methods (Sec. 3).113

Re-sampling To handle label imbalance in standard supervised learning, re-sampling the data to114

balance the class marginal is a known successful strategy [13, 9, 11]. In relaxed label shift, we seek115

to handle the imbalance in the target data (with respect to the source label marginal), where we do116

not have access to true labels. We adopt an alternative strategy of leveraging pseudolabels for target117

data to perform pseudo class-balanced re-sampling [91, 77]. For relaxed label shift problems, Prabhu118

et al. [51] employed this technique with their SENTRY objective. However, they did not explore re-119

sampling based correction for existing DA techniques. Since this technique can be used in conjunction120

with any DA methods, we employ this re-sampling technique with existing DA methods and find that121

re-sampling benefits all DA methods, often improving over SENTRY in our testbed (Sec. 3).122

Re-weighting With re-sampling, we can hope to train the classifier f on a mixture of balanced123

source and balanced target datasets in an ideal case. However, this still leaves open the problem124

of adapting the classifier f to the original target label distribution which is not available. If we125

can estimate the target label marginal, we can adapt the classifier f with a simple re-weighting126

correction [38, 1]. To estimate the target label marginal, we turn to techniques developed under the127

stricter label shift assumption (recall, the setting where ppx|yq remains domain invariant). This also128

allows us to empirically evaluate efficacy of label shift estimation methods when we begin violating129

the conditions required for consistency of these techniques. We provide precise details about label130

shift estimation methods in App. G. Since these methods leverage off-the-shelf classifiers, classifiers131

obtained with any deep DA methods can be used in conjunction with these estimation methods.132

Summary Overall, Algorithm 1 discusses how to incorporate the re-sampling and re-weighting133

correction with existing DA techniques. Algorithm A can be any DA methods and we can use any of134

the label shift estimation methods to estimate the target label marginal in Step 7. In an ideal scenario,135

we expect DA methods to adapt classifier f to ppx|yq shift and our meta-algorithm to adapt f to shift136

in ppyq. We emphasize that in our work, we do not claim to propose these corrections. But, to the137

best of our knowledge, our work is the first to combine these two corrections together in relaxed label138

shift scenarios and perform extensive experiments across diverse datasets.139

3 Main Results140

For a fair comparison, we re-implemented all the algorithms with consistent design choices. For141

our main experiments, we perform model selection with source validation performance. Other142

implementation choices are described in App. E. We present aggregated results in Table 1. In143

Table 2, we include results with Re-Sampling (RS) and Re-Weighting (RW) corrections. Results with144

individual methods and shifts in App. N. Based on running the entire suite, we distill our findings145

into the following takeaways:146

Popular deep DA methods fail without any correction. While DA methods typically improve over147

a source only classifier for cases when shift in target label marginal is absent or low, performance148

of these methods (except Noisy Student) drops below the performance of a source only classifier149
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when the shift in target label marginal is severe (i.e., when α “ 0.5 in Table 1). With RS and RW150

correction, we can avoid this failure mode (and rather observe improvements in Table 2).151

Re-sampling to pseudobalance target often helps all DA methods. When the shift in target label152

marginal is absent or small (i.e., α P tNONE, 10.0u in Table 2), we observe no (significant) differences153

in performance with re-sampling. However, as the shift severity in increases (i.e., α P t3.0, 1.0, 0.5u154

in Table 2), we observe that re-sampling typically improves all DA methods in our testbed.155

Effect of re-weighting the classifier depends on the nature of shift. We observe that in certain156

scenarios of real-world shift in ppx|yq (e.g., subpopulation shift in BREEDs datasets, camelyon shifts,157

and replication study in CIFAR-10), re-weighting the classifier with a target label marginal estimate158

helps in cases when there is shift in target label marginal and does no harm in cases without any shift159

(ref. to Table 2 for aggregated results and ref. to App. N for individual results). However, in other160

datasets (e.g., domainnet or officehome where shift is going from real world images to sketches/art),161

we obtain mixed results. When the shift in target label marginal is absent or low, re-weighting with162

target label marginal estimate can slightly hurt (i.e., α P tNONE, 10.0u in Table 2). On the other hand,163

when the target label marginal shift is large, re-weighting with an estimate of target label marginal164

can significantly improve performance of all methods (i.e., α P t3.0, 1.0, 0.5u in Table 2). Note that165

in all the cases, RW with true target marginal consistently helps (ref. to individual results in App. N).166

Improvement over source only classifier with DA methods but no method consistently performs167

the best. First, we observe that our source only numbers are better than previously published168

results. Similar to previous studies [26], this can be attributed to improved design choices (e.g.169

data augmentation, hyperparameters). While no method consistently does the best across datasets,170

FixMatch with RS and RW provides the highest overall improvement over a source only model.171

Batch Norm adaptation is a simple and strong baseline. For models with batch norm parameters,172

BN-adapt with RS and RW is a computationally efficient and strong baseline. We observe that173

while the performance of BN-adapt can drop substantially when target label marginal shifts (i.e.,174

α P t1.0, 0.5u in Table 2), RS and RW correction improves the performance often improving BN-175

adapt over all other DA methods when the shift in target marginal is extreme (i.e., α “ 0.5 in Table 2).176

Early stopping criterion matters. We observe a consistent « 2% accuracy difference with all177

methods, highlighting the importance of better early stopping criteria (oracle results in App. L).178

Deep domain adaptation methods improve label marginal estimation. Recall that we experiment179

with target marginal estimation methods that leverage off-the-shelf classifiers to obtain an estimate.180

We observe that estimation methods leveraging DA methods tend to perform better than using source181

only classifiers (RLLS in Table 3 and others in App. M). As one might expect, better estimation yields182

greater improvements when applying RW correction, favoring DA methods over the source-only183

classifier (Table 2). Moreover, we observe a trade-off in the performance of the baseline estimator (i.e.184

binning target pseudolabels) and RLLS (or MLLS) with severity of target marginal shift. When the185

shift in target label marginal is low (i.e. α P tNONE, 10.0, 3.0u), baseline estimate performs better186

than RLLS whereas as the shift gets severe (i.e. α P t1.0, 0.5u) RLLS improves over baseline.187

Comparison with other methods proposed for relaxed label shift. We note that, with consistent188

experimental design across different methods, existing DA methods with RS and RW correction can189

often improve over previous methods aimed to tackle relaxed label shift (i.e., IW-CDAN, IW-DAN and190

SENTRY). While the importance weighting correction (i.e., IW-CDAN and IW-DAN) improves over191

CDANN and DANN respectively, RS and RW corrections outweight those improvements (Table 1192

and Table 2). Similarly, except on Visda dataset, we observe that FixMatch even without RS and193

RW correction tends to do better than SENTRY. On Visda dataset, SENTRY significantly improves194

over other DA methods (Table 1). However, with RS and RW correction, we observe that FixMatch195

improves over SENTRY even on Visda (Table 2). We discuss SENTRY results more in App. J.196

4 Conclusion197

Our work is the first large-scale study investigating methods under the relaxed label shift scenario.198

Relative to works operating strictly under the label shift assumption, RLSBENCH provides an199

opportunity for sensitivity analysis, allowing researchers to measure the robustness of their methods200

under various sorts of perturbations to the class-conditional distributions. Relative to the benchmark-201

driven deep domain adaptation literature, our work provides a comprehensive and standardized202

suite for evaluating under shifts in label distributions, bringing these benchmarks one step closer to203

exhibiting the sort of diversity that we should expect to encounter when deploying models in the wild.204
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Reproducibility Statement205

Our code with all the results will be released on GitHub with the camera ready submission. We imple-206

ment our LSBENCH library in PyTorch [48] and provide an infrastructure to run all the experiments to207

generate corresponding results. We have stored all models and logged all hyperparameters and seeds208

to facilitate reproducibility. In our appendices, we provide additional details on datasets and experi-209

ments. In App. F, we describe dataset information and in App. I, we describe hyperparameter details.210
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Appendix442

A Preliminaries and Prior Work443

We first setup the notation and formally define the problem setup. Let X be the input space444

and Y “ t1, 2, . . . , ku the output space. Let Ps,Pt : X ˆ Y Ñ r0, 1s be the source and tar-445

get distributions and let ps and pt denote the corresponding probability density (or mass) func-446

tions. Unlike the standard supervised setting, in unsupervised DA, we possess labeled source447

data tpx1, y1q, px2, y2q, . . . , pxn, ynqu and unlabeled target data txn`1, xn`2, . . . , xn`mu. With448

f : X Ñ ∆k´1, we denote a predictor function which predicts py “ argmaxy fypxq on an input x.449

For a vector v, we use vy to access the element at index y.450

In the traditional label shift setting, one asssumes that ppx|yq does not change but that ppyq can. Under451

label shift, two challenges arise: (i) estimate the target label marginal ptpyq; and (ii) train a classifier452

f to maximize the performance on target domain. This paper focuses on the relaxed label shift453

setting. In particular, we assume that the label distribution can shift from source to target arbitrarily454

but that ppx|yq varies between source and target in some comparatively subtle way. We keep this455

definition mathematically imprecise because we lack a rigorous characterization of the sense in which456

those shifts addressed in popular DA benchmarks are natural. While prior work addressing relaxed457

label shift has primarily focused on classifier performance, we also separately evaluate methods for458

estimating the target label distribution. This can be beneficial for two reasons. First, it can shed459

more light into how improving the estimates of target class proportion improves target performance.460

Second, understanding how the class proportions are changing can be of an independent interest.461

A.1 Prior Work462

Unsupervised domain adaption In our work, we focus on unsupervised DA where the goal is463

to adapt a predictor from a source distribution with labeled data to a target distribution from which464

we only observe unlabeled examples. Two popular settings for which DA is well-posed include (i)465

covariate shift [86, 84, 17, 16, 25] where ppxq can change from source to target but ppy|xq remains466

invariant; and (ii) label shift [58, 38, 3, 1, 23, 85] where the label marginal ppyq can change but ppx|yq467

is shared across source and target. Principled methods with strong theoretical guarantees exists for468

adaptation under these settings when target distribution’s support is a subset of the source support.469

Ben-David et al. [6, 5], Mansour et al. [45], Zhao et al. [90], Wu et al. [80] present theoretical analysis470

when the assumptions of contained support is violated. More recently, a massive literature has471

emerged exploring a benchmark-driven heuristic approach [40, 41, 65, 67, 89, 88, 21, 64]. However,472

rigorous evaluation of popular DA methods is typically restricted to these carefully curated benchmark473

datasets where their is minor to no shift in label marginal from source to target.474

Relaxed Label Shift Exploring the problem of shift in label marginal from source to target with475

natural variations in ppx|yq, a few papers highlighted theoretical and empirical failures of DA methods476

based on domain-adversarial neural network training [83, 80, 90]. Subsequently, several papers477

attempted to handle these problems in domain-adversarial training [68, 51, 39, 70, 44]. However,478

these methods often lack comparisons with other prominent DA methods and are evaluated under479

different datasets and model selection criteria. To this end, we perform a large scale rigorous480

comparison of prominent representative DA methods in a standardized evaluation framework.481

Domain generalization In domain generalization, the model is given access to data from multiple482

different domains and the goal is to generalize to a previously unseen domain at test time [8, 47].483

For a survey of different algorithms for domain generalization, we refer the reader to Gulrajani and484

Lopez-Paz [26]. A crucial distinction here is that unlike the domain generalization setting, in DA485

problems, we have access to unlabeled examples from the test domain.486

Distinction from previous distribution shift benchmark studies Previous studies evaluating487

robustness under distribution shift predominantly focuses on transfer learning and domain general-488

ization settings Wenzel et al. [78], Gulrajani and Lopez-Paz [26], Djolonga et al. [20], Wiles et al.489

[79], Koh et al. [34]. Taori et al. [71], Hendrycks et al. [30] studies the impact of robustness interven-490

tions (e.g. data augmentation techniques, adversarial training) on target (out of distribution) perfor-491

mance. Notably, Sagawa et al. [59] focused on evaluating DA methods on WILDS-2.0, an extended492

WILDS benchmark for DA setting. Our work is complementary to these studies, as we present the493

first extensive study of DA methods under shift in ppyq and natural variations in ppx|yq.494
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B Future Work495

In the future, we hope to extend RLSBENCH to cover natural language processing applications;496

tabular domains; and datasets from real applications in consequential domains such as healthcare and497

self-driving, where both shifts in label prevalences and perturbations in class conditional distributions498

can be expected across locations and over time. We also hope to incorporate self-supervised methods499

that learn representations by training on a union of unlabeled data from source and target via proxy500

tasks like reconstruction [24, 28] and contrastive learning [12, 14]. While re-weighting predictions501

using estimates of the target label distribution yields significant gains, the remaining gap between502

our results and oracle performance should motivate future work geared towards improved estimators.503

Also, we observe that the success of target label marginal estimation techniques depends on the504

nature of the shifts in ppx|yq. Mathematically characterizing the behavior of label shift estimation505

techniques when the label shift assumption is violated would be an important contribution.506

C Main Results507

Dataset Source
(w aug)

Source
(adv)

BN-
adapt TENT DANN IW-

DAN CDAN IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

CIFAR-10 90.70 59.36 86.65 86.76 87.00 86.98 86.85 86.83 91.20 92.15 88.65
CIFAR-100 70.65 26.20 71.49 71.46 77.88 78.51 77.34 77.60 72.02 71.86 68.33
FMoW 60.11 49.51 56.77 58.02 57.79 57.09 57.36 57.16 60.36 60.63 49.62
Camelyon 75.21 81.27 86.64 87.33 81.17 82.21 84.41 85.17 87.79 85.99 87.39
Domainnet 52.88 48.93 53.42 54.08 51.83 52.04 54.00 54.14 57.92 54.36 50.48
Entity13 81.50 76.71 79.50 79.57 78.43 78.93 78.51 78.71 80.19 81.24 72.01
Entity30 69.82 60.92 68.45 68.49 65.78 66.07 64.75 64.62 71.51 69.75 57.00
Living17 74.50 49.27 71.56 71.17 68.52 71.98 70.24 69.91 75.10 74.62 54.32
Nonliving26 61.48 54.17 60.26 60.31 59.28 59.93 56.22 58.66 62.20 61.87 41.50
Officehome 64.59 59.08 65.67 65.57 66.51 66.59 66.48 66.32 64.77 66.75 58.51
Visda 59.76 55.74 67.18 68.43 68.21 67.94 71.04 70.63 73.50 61.10 77.21

Avg 69.20 56.47 69.78 70.11 69.31 69.84 69.75 69.98 72.41 70.94 64.09

Dirichlet
Shift

Source
(w aug)

Source
(adv)

BN-
adapt TENT DANN IW-

DAN CDAN IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

8 (NONE) 68.87 56.50 70.92 71.45 70.34 70.40 70.89 71.25 73.58 70.80 68.58
10.0 69.69 57.02 71.47 71.76 70.83 71.13 70.97 70.86 73.73 70.68 66.93
3.0 69.60 57.56 70.56 71.34 70.29 70.93 70.89 70.85 73.89 70.81 65.00
1.0 68.87 56.82 69.98 69.99 69.52 69.98 69.70 70.53 72.76 72.07 63.06
0.5 68.97 54.44 65.98 65.99 65.57 66.77 66.28 66.39 68.10 70.33 56.90

Avg 69.20 56.47 69.78 70.11 69.31 69.84 69.75 69.98 72.41 70.94 64.09

Table 1: Results with different DA methods with source validation performance as early stopping
criterion. (Top) Aggregated across target label marginal shifts and (Bottom) aggregated across
datasets and grouped by shift severity in label marginal. Smaller the Dirichlet shift parameter, more
severe is the shift in target class proportion. While no single DA method performs consistently across
different datasets, FixMatch seems to provide highest aggregate improvement over a source only
classifier in our testbed. Moreover, shifts with α “ t10, 3.0, 1.0u have little to no impact on different
DA methods whereas performance of all DA methods degrade when α “ 0.5 falling below the
performance of a source only classifier (except for Noisy Student). Parallel results with our meta
algorithm included in Table 2. More detailed results with all methods on individual datasets in App. N.
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Dataset
Source BN-adapt CDANN FixMatch

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

CIFAR-10 90.7 91.3 86.7 89.8 90.7 91.8 86.9 88.1 87.1 88.2 91.2 92.4 92.1 92.7
CIFAR-100 70.6 69.2 71.5 71.6 71.9 71.6 77.3 78.2 77.2 77.8 72.0 71.3 72.2 71.7
FMoW 60.1 60.9 56.8 57.5 57.1 57.2 57.4 57.2 56.1 56.2 60.4 60.8 57.5 58.8
Camelyon 75.2 74.3 86.6 88.1 88.8 88.1 84.4 84.5 87.6 88.1 87.8 88.5 87.6 87.8
Domainnet 52.9 50.6 53.4 53.3 53.6 53.3 54.0 53.7 54.8 54.1 57.9 56.7 58.4 57.0
Entity13 81.5 82.4 79.5 80.7 81.0 81.9 78.5 80.2 77.3 78.8 80.2 81.6 82.3 83.3
Entity30 69.8 70.9 68.5 70.0 69.3 70.9 64.7 66.2 66.6 68.6 71.5 72.7 69.5 71.6
Living17 74.5 74.2 71.6 72.0 71.1 72.9 70.2 71.9 71.2 72.5 75.1 75.8 75.8 76.9
Nonliving26 61.5 62.8 60.3 62.1 61.9 62.4 56.2 58.0 58.7 60.0 62.2 61.9 62.9 63.4
Officehome 64.6 63.3 65.7 65.5 65.9 64.7 66.5 66.6 65.7 64.2 64.8 62.4 64.6 61.4
Visda 59.8 58.0 67.2 68.7 67.8 67.8 71.0 71.1 74.3 74.3 73.5 74.2 77.3 77.7

Avg 69.2 68.9 69.8 70.9 70.8 71.2 69.7 70.5 70.6 71.2 72.4 72.6 72.7 72.9

Dirichlet
Shift

Source BN-adapt CDANN FixMatch

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

8 (NONE) 68.9 67.2 70.9 70.1 70.7 69.6 70.9 70.3 71.0 70.3 73.6 72.5 73.1 72.0
10.0 69.7 67.9 71.5 70.6 71.5 70.3 71.0 70.5 71.0 70.6 73.7 72.4 74.3 73.3
3.0 69.6 68.2 70.6 70.1 70.9 70.1 70.9 70.4 71.4 71.0 73.9 73.1 74.0 73.1
1.0 68.9 69.8 70.0 72.5 71.7 72.8 69.7 71.5 71.1 72.5 72.8 74.0 73.1 73.9
0.5 69.0 71.5 66.0 70.9 69.5 72.9 66.3 69.8 68.6 71.5 68.1 70.8 69.1 72.3

Avg 69.2 68.9 69.8 70.9 70.8 71.2 69.7 70.5 70.6 71.2 72.4 72.6 72.7 72.9

Table 2: Results with BN-adapt, CDANN, and FixMatch with re-sampling (RS) and re-weighting (RW)
correction (with RLLS estimate) with source validation performance as early stopping criterion. (Top)
Aggregated across target label marginal shifts and (Bottom) aggregated across datasets and grouped by
shift severity in label marginal. Smaller the Dirichlet shift parameter, more severe is the shift in target
class marginal. We boldface best correction result within each algorithm. RS and RW seem to help
for all datasets and they both together significantly improve aggregate performance over no correction
for all DA methods. While re-sampling consistently helps across different shifts, re-weighting hurts
slightly when shift severity is small. However, for severe shifts in target label marginal (α P t1.0, 0.5u)
re-weighting significantly improves performance. Parallel results with other methods in App. K.

Shift
Source BN-adapt TENT DANN CDANN FixMatch NoisyStudent
None None IS None RS None RS None RS None RS None RS

NONE 0.27 0.20 0.22 0.22 0.24 0.22 0.22 0.21 0.21 0.20 0.20 0.27 0.28
10.0 0.30 0.23 0.26 0.24 0.24 0.24 0.25 0.25 0.24 0.23 0.22 0.30 0.30
3.0 0.33 0.29 0.29 0.28 0.29 0.28 0.28 0.28 0.28 0.27 0.25 0.33 0.33
1.0 0.42 0.38 0.37 0.37 0.37 0.38 0.38 0.39 0.36 0.35 0.35 0.37 0.38
0.5 0.44 0.47 0.42 0.47 0.42 0.48 0.48 0.46 0.42 0.45 0.43 0.40 0.40

Avg 0.35 0.31 0.31 0.32 0.31 0.32 0.32 0.32 0.30 0.30 0.29 0.34 0.34

Table 3: Target marginal estimation ℓ1 error with RLLS across different DA methods aggregated
grouped by shift severity in target label marginal. Across all shift severities, RLLS with classifiers
obtained with DA methods improves over RLLS with a source only classifier. Results with other
estimation methods and across individual datasets in App. M.
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D RLSbench Meta Algorithm508

Algorithm 1 Meta algorithm to handle shift in class proportions

input Source training and validation data: pXS , YSq and pX 1
S , Y

1
Sq, unlabeled target training and

validation data: XT and X 1
T , classifier f , and DA algorithm A

1: rXS , rYS Ð SampleClassBalancedpXS , YSq Ź Balance source data
2: for t “ 1 to T do
3: pYT Ð argmaxy fypXT q

4: rXT Ð SampleClassBalancedpXT , pYT q Ź Pseudo-balance target data

5: Run an epoch of A to update f on balanced source data t rXS , rYSu and target samples t rXT u

6: end for
7: Estimate target marginal pptpyq Ð EstimateLabelMarginalpf,X 1

S , Y
1
S , X

1
T q

8: f 1
j Ð

pptpy “ jq ¨ fj
ř

k pptpy “ kq ¨ fk
for all j P Y

Ź Re-weight predictor with estimated label marginal

output Target label marginal pptpyq and classifier f 1

E Design choices in RLSbench509

For a fair evaluation and comparison across different datasets and domain adaptation algorithms, we510

re-implemented all the algorithms with consistent design choices whenever applicable. We also make511

several additional implementation choices, described below. We defer the additional details to App. I.512

Model selection criteria and hyperparameter choices Given that we lack validation i.i.d data from513

the target distribution, model selection in DA problems can not follow the standard workflow used in514

supervised training. Prior works often omit details on how to choose hyperparameters leaving open a515

possibility of choosing hyperparameters using the test set which can provide a false and unreliable516

sense of improvement. Moreover, inconsistent hyperparameter selection strategies can complicate517

fair evaluations misassociating the improvements to the algorithm under study.518

In our work, we use source hold-out performance to pick the best hyperparameters. First, for ℓ2519

regularization and learning rate, we perform a sweep over random hyperparameters to maximize the520

performance of source only model on the hold-out source data. Then for each dataset, we keep these521

hyperparameters fixed across DA algorithms. For DA methods specific hyperparameters, we use the522

same hyperparameters across all the methods incorporating the suggestions made in corresponding523

papers. Within a run, we use hold out performance on source to pick the early stopping point. In524

appendices, we report oracle performance with choosing the early stopping point with target accuracy.525

Evaluation criteria To evaluate the target label marginal estimation, we report ℓ1 error between the526

estimated label distribution and true target label distribution. To evaluate the classifier performance527

on target data, we report performance of the (adapted) classifier on a hold-out partition of target data.528

Architectural and pretraining details We experiment with different architectures (e.g.,529

DenseNet121, Resenet18, Resnet50, ViT/B-16) across different datasets. We also experiment with530

CLIP-pretrained, Imagenet-pretrained, and randomly-initialized models. Given a dataset, for all ex-531

periments, we use the same architecture across different DA algorithms.532

Data augmentation Data augmentation is a standard ingredient to train image classification models533

which can help approximate some of the variations between domains. Unless stated otherwise, we534

train all the methods using the standard strong augmentation technique: random horizontal flips,535

random crops of pre-defined size, augmentation with Cutout [19], and RandAugment [18]. To536

understand help with data augmentations alone in our setting, we also experiment with source only537

models trained without any data-augmentation.538

F Dataset Details539

In this section, we provide additional details about the datasets used in our benchmark study.540
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Dataset Domains

CIFAR10

CIFAR100

Camelyon

Entity13

Entity30

Living17

Nonliving26

FMoW

Officehome

Domainnet

Visda

Cifar10v1  Cifar10v2  

Hospital 1-3  Hospital 4  Hospital 5 

Years 2002-’13 Year 2013-’16  Year 2016-’18

Product RealWorld ClipArt Art

Real ClipArt Sketch Painting

Rendering Real -1 Real - 2

v1 v1 (disjoint sub.) v2 v2 (disjoin sub.)

v1 v1 (disjoint sub.) v2 v2 (disjoin sub.)

v1 v1 (disjoint sub.) v2 v2 (disjoin sub.)

v1 v1 (disjoint sub.) v2 v2 (disjoin sub.)

Cifar10C-Frost  Cifar10C-Pixelate Cifar10C-Saturate

Cifar100C-M. blur  Cifar100C-Contrast Cifar100C-SpatterCifar100v1  Cifar100C-Fog

Figure 1: Examples from all the domains in each dataset.
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• CIFAR10 We use the original CIFAR10 dataset [35] as the source dataset. For target domains,541

we consider (i) synthetic shifts (CIFAR10-C) due to common corruptions [29]; and (ii) natural542

distribution shift, i.e., CIFAR10v2 [54, 73] due to differences in data collection strategy. We543

randomly sample 3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1,544

CIFAR10v2, CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate545

(severity 5)).546

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source dataset. For547

target domains we consider synthetic shifts (CIFAR100-C) due to common corruptions. We sample548

4 CIFAR100-C datasets, overall obtaining 5 domains (i.e., CIFAR100, CIFAR100C-Fog (severity549

4), CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4), CIFAR100C-spatter550

(severity 2) ).551

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs [34,552

15] from WILDS benchmark, which contains satellite images taken in different geographical regions553

and at different times. We use the original train as source and OOD val and OOD test splits as target554

domains as they are collected over different time-period. Overall, we obtain 3 different domains.555

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from the wilds bench-556

mark [4]. We use the default train as source and OOD val and OOD test splits as target domains as557

they are collected across different hospitals. Overall, we obtain 3 different domains.558

• BREEDs We also considerBREEDs benchmark [60] in our setup to assess robustness to sub-559

population shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes to560

be the subpopulations and defines a classification task on superclasses. We consider distribution561

shift due to subpopulation shift which is induced by directly making the subpopulations present562

in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets Entity-13,563

Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in the564

hierarchy. We also consider natural shifts due to differences in the data collection process of Ima-565

geNet [57], e.g, ImageNetv2 [55] and a combination of both. Overall, for each of the 4 BREEDs566

datasets (i.e., Entity-13, Entity-30, Living-17, and Non-living-26), we obtain four different do-567

mains. We refer to them as follows: BREEDsv1 sub-population 1 (sampled from ImageNetv1),568

BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2 sub-population 1 (sampled569

from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each BREEDs570

dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.571

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset [75].572

We use the product domain as source and the other domains as target.573

• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset [50].574

We use real domain as the source and the other domains as target.575

• Visda We use three domains (train, val and test) from the Visda dataset [49]. While ‘train’ domain576

contains synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images.577

To avoid confusing, the domain names with their roles as splits, we rename them as ‘synthetic’,578

‘Real-1’ and ‘Real-2’. We use the synthetic (original train set) as the source domain and use the579

other domains as target.580

Throughout the paper, we represent each multi-domain dataset with the name highlighted in the581

boldface above. Across these datasets, we obtain a total of 44 different source and target pairs. We582

also show example images in Fig. 1.583

We provide scripts to setup these datasets with single command in our code. To investigate the584

performance of different methods under the stricter label shift setting, we also include a hold-out585

partition of source domain in the set of target domains. For these distribution shift pairs where source586

and target domains are i.i.d. partitions, we obtain the stricter label shift problem. We summarize the587

information about source and target domains in a table:588

Train-test splits We partition each source and target dataset into 80% and 20% i.i.d. splits. We589

use 80% splits for training and 20% splits for evaluation (or validation). We throw away labels for590

the 80% target split and only use labels in the 20% target split for final evaluation. The rationale591

behind splitting the target data is to use a completely unseen batch of data for evaluation. This592

avoids evaluating on examples where a model potentially could have overfit. over-fitting to unlabeled593

examples for evaluation. In practice, if the aim is to make predictions on all the target data (i.e.,594

transduction), we can simply use the (full) target set for training and evaluation.595
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Dataset Source Target

CIFAR10 CIFAR10v1 CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),
CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100
CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),
CIFAR100C-spatter (severity 2)

Camelyon Camelyon
(Hospital 1–3) Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13
Entity13

(ImageNetv1
sub-population 1)

Entity13 (ImageNetv1 sub-population 1),
Entity13 (ImageNetv1 sub-population 2),
Entity13 (ImageNetv2 sub-population 1),
Entity13 (ImageNetv2 sub-population 2)

Entity30
Entity30

(ImageNetv1
sub-population 1)

Entity30 (ImageNetv1 sub-population 1),
Entity30 (ImageNetv1 sub-population 2),
Entity30 (ImageNetv2 sub-population 1),
Entity30 (ImageNetv2 sub-population 2)

Living17
Living17

(ImageNetv1
sub-population 1)

Living17 (ImageNetv1 sub-population 1),
Living17 (ImageNetv1 sub-population 2),
Living17 (ImageNetv2 sub-population 1),
Living17 (ImageNetv2 sub-population 2)

Nonliving26
Nonliving26
(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),
Nonliving26 (ImageNetv1 sub-population 2),
Nonliving26 (ImageNetv2 sub-population 1),
Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda
Synthetic

(originally referred
to as train)

Synthetic, Real-1 (originally referred to as val),
Real-2 (originally referred to as test)

Table 4: Details of the datasets considered in our RLSBENCH.

G Methods to estimate target marginal under the stricter label shift596

assumption597

In this section, we describe the methods proposed to estimate the target label marginal under the598

stricter label shift assumption. Recall that under the label shift assumption, pspyq can differ from599

ptpyq but the class conditional stays the same, i.e., ptpx|yq “ pspx|yq. We focus our discussion on600

recent methods that leverage off-the-shelf classifier. These approaches provide Op1{
?
nq convergence601

rates under the label shift condition with mild assumptions on the classifier [38, 3, 23]. For simplicity,602

we assume we possess labeled source data tpx1, y1q, px2, y2q, . . . , pxn, ynqu and unlabeled target603

data txn`1, xn`2, . . . , xn`mu.604

While the relaxed label shift scenario violates the conditions required for consistency of label shift605

estimation techniques, we nonetheless employ these techniques and empirically evaluate efficacy of606

these methods in our testbed. In particular, to estimate the target label marginal, we experiment with:607

(i) RLLS [3]; (ii) MLLS [1]; and (iii) baseline estimator that simply averages the prediction of a608

classifier f on unlabeled target data.609

RLLS First, we discuss Regularized Learning under Label Shift (RLLS) [3] (a variant of Black610

Box Shift Estimation (BBSE, Lipton et al. [38])): moment-matching based estimators that leverage611

(possibly biased, uncalibrated, or inaccurate) predictions to estimate the shift. RLLS solves the612
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following optimization problem to estimate the importance weights wtpyq “
ptpyq

pspyq
as:613

pwRLLS
t “ argmin

wPW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pCfw ´ pµf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
` λRLLS ||w ´ 1||2 . (1)

where W “ tw P Rd|
ř

y wpyqpspyq “ 1 and @y P Y wpyq ą 0u. pCf is empirical confusion
matrix of the classifier f on source data and rµf is the empirical average of predictions of the classifier
f on unlabeled target data. With labeled source data data, the empirical confusion matrix can be
computed as:

r pCf si,j “
1

n

n
ÿ

k“1

fipxkq ¨ I ryk “ js .

To estimate target label marginal, we can multiple the estimated importance weights with the source614

label marginal (we can estimate source label marginal simply from labeled source data).615

In our relaxed label shift problem, we use validation source data to compute the confusion matrix and616

use hold portion of target unlabeled data to compute µf . Unless specified otherwise, we use RLLS to617

estimate the target label marginal throughout the paper. We choose λRLLS as suggested in the original618

paper [3].619

MLLS Next, we discuss Maximum Likelihood Label Shift (MLLS) [58, 1]: an Expectation620

Maximization (EM) algorithm that maximize the likelihood of observed unlabeled target data to621

estimate target label marginal assuming access to a classifier that outputs the source calibrated622

probabilities. In particular, MLLS uses the following objective:623

pwMLLS
t “ argmin

wPW

1

m

ÿ

i“1

logpwT fpxi`nqq , (2)

where f is the classifier trained on source and W is the same constrained set defined above. We can624

again estimate the target label marginal by simply multiplying the estimated importance weights with625

the source label marginal.626

Baseline estimator Given a classifier f , we can estimate the target label marginal as simply the627

average of the classifier output on unlabeled target data, i.e.,628

ppbaseline
t “

1

m

ÿ

i“1

fpxi`nq . (3)

Note that all of the methods discussed before leverage an off-the-shelf classifier f . Hence, we629

experiment with classifiers obtained with various deep domain adaptation heuristics to estimate the630

target label marginal.631

Having obtained an estimate of target label marginal, we can simply re-weight the classifier with ppt632

as f 1
j “

pptpy “ jq ¨ fj
ř

k pptpy “ kq ¨ fk
for all j P Y . Note that, if we train f on a non-uniform source class-balance633

(and without re-balancing as in Step 1 of Algorithm 1), then we can re-weight the classifier with634

importance-weights pwt as f 1
j “

pwtpy “ jq ¨ fj
ř

k pwtpy “ kq ¨ fk
for all j P Y .635

H Deep Domain Adapation methods636

With the current version of RLSBENCH, we implement the following algorithms:637

Source only As a baseline, we include model trained with empirical risk minimization [74] with638

cross-entropy loss on the source domain. We include source only models trained with and without639

augmentations. We also include adversarial robust models trained on source data with augmentations640

(Source (adv)). In particular, we use models adversarially trained against ℓ2-perturbations.641

Domain alignment methods These methods emplopy domain-adversarial training schemes aimed to642

learn invariant representations across different domains [21, 89, 70]. For our experiments, we include643

the following five representative methods: Domain Adversarial Neural Networks (DANN [21]),644
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Conditional Domain Adversarial Neural Networks (CDAN [42], Importance-reweighted DANN (i.e.,645

IWDAN) and CDAN (i.e., IWCDAN) proposed in Tachet des Combes et al. [69]).646

Self-training methods These methods “pseudo-label” unlabeled examples with the model’s own647

predictions and then train on them as if they were labeled examples. These methods often also use648

consistency regularization, which encourages the model to make consistent predictions on augmented649

views of unlabeled examples [36, 81, 7]. We include the following three algorithms: FixMatch [64],650

Noisy Student [81], Selective Entropy Optimization via Committee Consistency (SENTRY [51]).651

Test-time adaptation methods take a source trained model and adapt few parameters (e.g. batch652

norm parameters, batch norm statistics) on the unlabeled target data with an aim to improve target653

performance. We include the following methods in our experimental suite: CORAL [66] or Domain654

Adjusted Regression (DARE [56]), BatchNorm adaptation (BN-adapt [37, 61]), Test entropy mini-655

mization (TENT [76]).656

We now discuss each method in more detail and how it combines with our meta-algorithm to handle657

shift in class proportion.658

H.1 Source only training659

As a baseline, we consider empirical risk minimization on the labeled source data. Since this simply660

ignores the unlabeled target data, we call this as source only training. As mentioned in the main661

paper, we perform source only training with and without data augmentations. Formally, we minimize662

the following ERM loss:663

Lsource onlypfq “
1

n

n
ÿ

i“1

ℓpfpT pxiq, yiqq , (4)

where T is the stochastic data augmentation operation and ℓ is a loss function. Throughout the paper,664

we use cross-entropy loss minimization. Unless specified otherwise, we use strong augmentations as665

the data augmentation technique.666

As mentioned in the main paper, we do not include re-sampling results with a source only model as it667

is trained only on source data and we observed no differences with just balancing the source data (as668

for most datasets source is already balanced) in our experiments. After obtaining a classifier f , we669

can first estimate the target label marginal and then adjust the classifier f with post-hoc re-weighting670

with importance ratios wtpyq “ pptpyq{ppspyq.671

Adversarial training of a source only model Along with standard training of a source only model672

with data augmentation, we experiment with adversarially robust models [43]. To train adversarially673

robust models, we replace the standard ERM objective with a robust risk minimization objective:674

Lsource only (adv)pfq “
1

n

n
ÿ

i“1

ℓpRpT pxiq, yiq, yiq , (5)

where Rp¨q performs the adversarial augmentation. In our paper, we use targeted Projected Gradient675

Descent (PGD) attacks with ℓ2 perturbation model.676

H.2 Domain-adversarial training methods677

Domain-adversarial trianing methods seek to learn feature representations that are invariant across678

domains. These methods aimed at practical problems with non-overlapping support and are moti-679

vated by theoretical results showing that the gap between in- and out-of-distribution performance680

depends on some measure of divergence between the source and target distributions [5, 21]. While681

simultaneously minimizing the source error, these methods align the representations between source682

and target distribution. To perform alignment, these methods penalize divergence between feature683

representations across domains, encouraging the model to produce feature representations that are684

similar across domain.685

Before describing these methods, we first define some notation. Consider a model f “ g ˝ h, where686

h : X Ñ Rd is the featurizer that maps the inputs to some d dimensional feature space, and the head687

g : Rd Ñ ∆k´1 maps the features to the prediction space. Following Sagawa et al. [59], with all of688

our domain invariant methods, we use strong augmentations with source and target data.689
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DANN DANN was proposed in Ganin et al. [21]. DANN approximates the divergence between690

feature representations of source and target domain by leveraging a domain discriminator classifier.691

Domain discriminator fd aims to discriminate between source and target domains. Given a batch692

of inputs from source and target, this deep network fd classifies whether the examples are from the693

source data or target data. In particular, the following loss function is used:694

Ldomain disc.pfdq “
1

n

n
ÿ

i“1

ℓpfdphpT pxiqqq, 0q `
1

n

n`m
ÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (6)

where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target examples. Over-695

all, the following loss function is used to optimize models with DANN:696

LDANNph, g, fdq “ Lsource onlypg ˝ hq ´ λLdomain disc.pfdq . (7)

LDANNph, g, fdq is maximized with respect to the domain discriminator classifier and LDANNph, g, fdq697

minimized with respect to the underlying featurize and the source classifier. This is achieved by698

gradient reversal layer in practice. To train, three networks, we use three different learning rate ηf , ηg,699

and ηfd . We discuss these hyperparameter details in App. I. We adapted our DANN implementation700

from Sagawa et al. [59] and Transfer learning library [33].701

CDANN Conditional Domain adversarial neural network is a variant of DANN [42]. Here the702

domain discriminator is conditioned on the classifier g’s prediction. In particular, instead of training703

the domain discriminator on the representation output of h, these methods operate on the outer704

product between the feature presentation hpxq at an input x and the classifier’s probabilistic prediction705

f “ g ˝ hpxq (i.e., hpxq b fpxq). Thus instead of training the domain discriminator classifier fd on706

the d dimensional input space, they train it on d ˆ k dimensional space. In particular, the following707

loss function is used:708

LCDAN domain disc.pfd, g, hq “
1

n

n
ÿ

i“1

ℓpfdpf bhpT pxiqqq, 0q `
1

n

n`m
ÿ

i“n`1

ℓpfdpf bhpT pxiqqq, 1q , (8)

where tx1, x2, . . . , xnu are n source examples and txn`1, . . . , xm`nu are m target examples. The709

overall loss is the same as DANN where Ldomain disc.pfdq is replaced with LCDAN domain disc.pfd, g, hq.710

We adapted our implementation for CDANN from Transfer learning library [33].711

To adapt DANN and CDANN to our meta algorithm, at each epoch we can perform re-balancing of712

source and target data as in Step 1 and 4 of Algorithm 1. After obtaining the classifier f , we can use713

this classifier to first obtain an estimate of the target label marginal and then perform re-weighting714

adjustment with the obtained estimate.715

IW-DANN and IW-CDANN Tachet et al. [68] proposed training with importance re-weighting716

correction with DANN and CDANN objectives to accommodate for the shift in the target label717

proportion. In particular, at every epoch of training they first estimate the importance ratio pwt (with718

BBSE on training source and training target data) and then re-weight the domain discriminator719

objective and ERM objective. In particular, the domain discriminator loss for IW-DANN can be720

written as:721

L pw
domain disc.pfdq “

1

n

n
ÿ

i“1

pwpyiqℓpfdphpT pxiqqq, 0q `
1

n

n`m
ÿ

i“n`1

ℓpfdphpT pxiqqq, 1q , (9)

where we multiply the source loss with importance weights. Similarly, we can re-write the source722

only training objective with importance re-weighting as follows:723

L pw
source onlypfq “

1

n

n
ÿ

i“1

pwpyiqℓpfpT pxiq, yiqq . (10)

Overall, the following objective is used to optimize models with IW-DANN:724

LIW-DANNph, g, fdq “ L pw
source onlypg ˝ hq ´ λL pw

domain disc.pfdq , (11)
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where the importance weights are updated after every epoch with classifier obtained in previous step.725

Similarly, with using importance re-weights with the CDANN objective, we obtain IW-CDANN726

objective.727

In population, IW-CDANN and IW-DANN correction matches the correction with our meta-algorithm728

for DANN and CDANN. However, the behavior this importance re-weighting correction can be729

different from our meta-algorithm for over-parameterized models with finite data [10]. Recent730

empirical and theoretical findings have highlighted that importance re-weighting have minor to no731

effect on overparameterized models when trained for several epochs [10, 82]. On the other hand,732

with finite samples, re-sampling (when class labels are available) has shown different and promising733

empirical behavior [2, 32]. This may highlight the differences in the behavior of IW-CDANN (or734

IW-DANN) with our meta algorithm on CDANN (or DANN).735

We refer to the implementation provided by the authors [68].736

H.3 Self-training methods737

Self-training methods leverage unlabeled data by ‘pseudo-labeling’ unlabeled examples with the738

classifier’s own predictions and training on them as if they were labeled examples. Recent self-739

training methods also often make use of consistency regularization, for example, encouraging the740

model to make similar predictions on augmented versions of unlabeled example. In our work, we741

experiment with the following methods:742

FixMatch Sohn et al. [64] proposed FixMatch as a variant of the simpler Pseudo-label method [36].743

This algorithm dynamically generates psuedolabels and overfits on them in each batch. FixMatch744

employs consistency regularization on the unlabeled data. In particular, while pseudolabels are745

generated on a weakly augmented view of the unlabeled examples, the loss is computed with respect746

to predictions on a strongly augmented view. The intuition behind such an update is encourage747

a model to make predictions on weakly augmented data consistent with the strongly augmented748

example. Moreover, FixMatch only overfits to the assigned labeled with weak-augmentation if the749

confidence of the prediction with strong augmentation is greater than some threshold τ .750

Refer to Tweak as the weak-augmentation and Tstrong as the strong-augmentation function. Then,751

FixMatch uses the following loss function:752

LFixMatchpfq “
1

n

n
ÿ

i“1

ℓpfpTstrongpxiq, yiqq

`
λ

m

m`n
ÿ

i“n`1

ℓpfpTstrongpxiq, ryiqq ¨ I
„

max
y

fypTstrongpxiqq ě τ

ȷ

,

where ryi “ argmaxy fypTweakpxiqq. We adapted our implementation from Sagawa et al. [59] which753

matches the implementation of Sohn et al. [64] except for one detail. While Sohn et al. [64] augments754

labeled examples with weak augmentation, Sagawa et al. [59] proposed to strongly augment the755

labeled source examples.756

NoisyStudent Xie et al. [81] proposed a different variant of Pseudo-labeling. Unlike FixMatch,757

Noisy Student generates pseudolabels, fixes them, and then trains the model until convergence before758

generating new pseudolabels. The first set of pseudolabels are obtained with training an initial teacher759

model only on the source labeled data. Then in each iteration, a randomly initialized models fits760

to the labeled source data and pseudolabeled target data with pseudolabels assigned the converged761

model in the previous iteration. Noisy student objective can be summarized as:762

LNoisyStudentpf
N q “

1

n

n
ÿ

i“1

ℓpfN pTstrongpxiq, yiqq `
1

m

m`n
ÿ

i“n`1

ℓpfN pTstrongpxiq, ryiqq ,

where ryi “ argmaxy f
N´1
y pTweakpxiqq is computed with the classifier obtained at N ´ 1 step. Note763

that the randomly initialized model at each iteration uses a dropout of p “ 0.5 in the penultimate764

layer. We adapted our implementation of NoisyStudent to Sagawa et al. [59]. To initialize the initial765

teacher model, we use the source-only model trained with strong augmentations without dropout.766
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SENTRY Prabhu et al. [51] proposed a different variant of pseudolabeling method. This method767

is aimed to tackle DA under relaxed label shift scenario. a SENTRY incorporates a target instance768

based on its predictive consistency under a committee of strong image transformations. In particular,769

SENTRY makes N strong augmentations of an unlabeled target example and makes a prediction770

on those. If the majority of the committee matches the prediction on the sample example with771

weak-augmentation then entropy is minimized on that example, otherwise the entropy is maximized.772

Moreover, the authors employ an ’information-entropy’ objective aimed to match the prediction at773

every example with the estimated target label marginal. Overall the SENTRY objective is defined as774

follows:775

LSENTRYpfq “
1

n

n
ÿ

i“1

ℓpfpTstrongpxiq, yiqq `
1

m

m`n
ÿ

i“n`1

k
ÿ

j“1

fkpy “ j|xiq logprptpy “ jqq

` λunsup
1

m

m`n
ÿ

i“n`1

k
ÿ

j“1

´fkpy “ j|xiq logpfkpy “ j|xiqq ¨ p2lpxq ´ 1q ,

where lpxq P t0, 1u is majority vote output of the committee consistency. For more details, we776

refer the reader to Prabhu et al. [51]. Additionally, at each training epoch, SENTRY balances the777

source data and pseudo-balances the target data. We adapted our implementation with the official778

implementation in Prabhu et al. [51] with minor differences.779

H.4 Test-time training methods780

These take a already trained source model and adapt few parameters (e.g. batch norm parameters,781

batch norm statistics) on the unlabeled target data with an aim to improve target performance. These782

methods are computationally cheaper than other DA methods in suite as they adapt a classifier on-the-783

fly. We include the following methods in our experimental suite:784

DARE Sun et al. [66] proposed CORAL to adapt a model trained on source to target by whitening785

the feature representations. In particular, say pΣs is the empirical covariance of the target data786

representations and Σs is the empirical covariance of the source data representations, CORAL adjusts787

a linear layer g on target by re-training the final layer on the outputs: Σ1{2
t Σ

´1{2
s hpxq. DARE [56]788

simplified the procedure and showed that this is equivalent to training a linear head h on Σ
´1{2
s hpxq789

and whitening target data representations with Σ
´1{2
t hpxq before input to the classifier. We choose to790

implement the latter procedure as it is cheap to train a single classifier in multi-domain datasets.791

BN-adapt Li et al. [37] proposed batch norm adaptation. More recently, Schneider et al. [61]792

showed gains with BN-adapt on common corruptions benchmark. Batch norm adaptation is applicable793

for deep models with batch norm parameters. With this method we simply adapt the Batchnorm794

statistics, in particular, mean and std of each batch norm layer.795

TENT Wang et al. [76] proposed optimizing batch norm parameters to minimize entropy of the796

predictor on the unlabeled target data. In our implementation of TENT, we perform BN-adapt before797

learning batch norm parameters.798

With our meta algorithm, before adapting the source only classifier with test time adaptation methods,799

we use it to perform the re-sampling correction. After obtaining the adapted classifier, we estimate800

target label marginal and use it to adjust the classifier with re-weighting.801

I Hyperparameter and Architecture Details802

I.1 Architecture and Pretraining Details803

For all datasets, we used the same architecture across different algorithms:804

• CIFAR-10: Resnet-18 [27] pretrained on Imagenet805

• CIFAR-100: Resnet-18 [27] pretrained on Imagenet806
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• Camelyon: Densenet-121 [31] not pretrained on Imagenet as per the suggestion made in [34]807

• FMoW: Densenet-121 [31] pretrained on Imagenet808

• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 [27] not pretrained on809

Imagenet as per the suggestion in [60]. The main rationale is to avoid pre-training on the810

superset dataset where we are simulating sub-population shift.811

• Officehome: Resnet-50 [27] pretrained on Imagenet812

• Domainnet: Resnet-50 [27] pretrained on Imagenet813

• Visda: Resnet-50 [27] pretrained on Imagenet814

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation [22]. For Resnet815

on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar.816

For all the architectures, whenever applicable, we add antialiasing [87]. We use the official library817

released with the paper.818

For imagenet-pretrained models with standard architectures, we use the publicly available models819

here: https://pytorch.org/vision/stable/models.html. For imagenet-pretrained models820

on the reduced input size images (e.g. CIFAR-10), we train a model on Imagenet on reduced input821

size from scratch. We include the model with our publicly available repository.822

In our work, we also experiment with CLIP pre-training [53]. In particular, we experiment with VIT-823

B16 model. We include clip results in App. N.824

I.2 Hyperparameters825

First, we tune learning rate and ℓ2 regularization parameter by fixing batch size for each dataset that826

correspond to maximum we can fit to 15GB GPU memory. We set the number of epochs for training827

as per the suggestions of the authors of respective benchmarks. Note that we define the number of828

epochs as a full pass over the labeled training source data. We summarize learning rate, batch size,829

number of epochs, and ℓ2 regularization parameter used in our study in Table 5.830

Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.001 (chosen from t0.0001, 0.001,1e-5u) 0.0001 (chosen from t0.0, 0.001, 0.01, 0.0001u)

CIFAR100 50 200 0.001 (chosen from t0.0001, 0.001,1e-5u) 0.0001 (chosen from t0.0, 0.001, 0.01, 0.0001u)

Camelyon 10 96 0.003 (chosen from t0.003, 0.03, 0.0003u) 0.01 (chosen from t0.0, 0.1, 0.001, 0.01u)

FMoW 30 64 0.0001 (chosen from t0.0001, 0.001,1e-5u) 0.0 (chosen from t0.0, 0.001, 0.01, 0.0001u)

Entity13 40 256 0.2 (chosen from t0.1, 0.5, 0.2, 0.01u) 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u)

Entity30 40 256 0.2 (chosen from t0.1, 0.5, 0.2, 0.01u) 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u)

Living17 40 256 0.2 (chosen from t0.1, 0.5, 0.2, 0.01u) 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u)

Nonliving26 40 256 0.2 (chosen from t0.1, 0.5, 0.2, 0.01u) 5e-5 (chosen from t5e-5, 5e-4, 1e-4, 1e-5u)

Officehome 50 96 0.0001 (chosen from t0.0001, 0.001,1e-5u) 0.0001 (chosen from t0.0005, 0.001, 0.0001u)

DomainNet 15 96 0.0001 (chosen from t0.0001, 0.001,1e-5u) 0.0001 (chosen from t0.0005, 0.001, 0.0001u)

Visda 10 96 0.0001 (chosen from t0.0001, 0.001,1e-5u) 0.0005 (chosen from t0.0005, 0.001, 0.0001u)

Table 5: Details of the learning rate and batch size considered in our RLSBENCH

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial831

methods (DANN and CDANN), we refer to the suggestions made in Transfer Learning Library [33].832

We tabulate hyperparameters for each algorithm next:833

• DANN, CDANN, IW-CDANN and IW-DANN As per Transfer Learning Library sug-834

gestion, we use a learning rate multiplier of 0.1 for the featurizer. We default to a penalty835

weight of 1.0 for all datasets with pre-trained initialization. For BREEDs and camelyon, we836

default to a penalty weight of 0.1 as we do not use a pre-trained architecture.837

• FixMatch We use the lambda is 1.0 and use threshold tau as 0.1.838

• NoisyStudent We repeat the procedure for 2 iterations and use a drop level of p “ 0.5.839

• SENTRY We use λsrc “ 1.0, λent “ 1.0, and λunsup “ 0.1. We use a committee of size 3.840
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I.3 Compute Infrastructure841

Our experiments were performed across a combination of Nvidia T4, A6000, P100 and V100 GPUs.842

Overall, to run the entire RLSBENCH suite on a T4 GPU machine with 8 CPU cores we would843

approximately need 70k GPU hours of compute.844

I.4 Data Augmentation845

In our experiments, we leverage data augmentation techniques that encourage robustness to some846

variations between domains.847

For weak augmentation, we leverage random horizontal flips and random crops of pre-defined size.848

For strong augmentation, we apply the following transformations sequentially: random horizontal849

flips, random crops of pre-defined size, augmentation with Cutout [19], and RandAugment [18]. For850

the exact implementation of RandAugment, we directly use the implementation of Sohn et al. [64].851

The pool of operations includes: autocontrast, brightness, color jitter, contrast, equalize, posterize,852

rotation, sharpness, horizontal and vertical shearing, solarize, and horizontal and vertical translations.853

We apply N = 2 random operations for all experiments.854

J Comparison with SENTRY on officehome dataset with different855

hyperparameters856

On the Officehome dataset, we observe a slight discrepancy between SENTRY results with our857

runs and numbers originally reported in the paper [51]. We observe significant improvements with858

FixMatch over SENTRY. However, in the original paper, SENTRY outperformed FixMatch on859

Officehome. We find that this discrepancy is due to differences in batch size used in original work860

versus in our runs (which we kept same for all the algorithms). In this section, we report SENTRY861

results with the updated batch size. With the new batch size, we reconcile SENTRY results but also862

observe a significant improvement in FixMatch results.863

We note that for the main experiments on Officehome dataset, we used a batch size of 96 for all864

methods including SENTRY. However, SENTRY reported results with a batch size of 16 in their865

work. Hence, we re-run the SENTRY algorithm with a batch size of 16. To investigate the impact of866

the decreased batch size, we make a comparison with FixMatch (the best algorithm on Officehome in867

our runs) by re-running it with the decreased batch size.868

In Table 6 we report results on individual shift pairs in officehome. We observe that SENTRY869

improves over FixMatch for the default minor shift in the label distribution in the officehome dataset.870

However, as the shift severity increases we observe that SENTRY performance degrades. Overall,871

we observe that RS-FixMatch performs similar or superior to SENTRY on 3 out of 4 shift pairs in872

officehome.873

More generally, across our runs, we also observed model training with SENTRY to be unstable.874

Investigating further, we observe that the maximization objective to enforce consistency cause875

instabilities. This behavior is specifically prevalent for experiments where we don’t use initiale the876

underlying model with pre-trained weights (for example, in BREEDs datasets).877
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Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 92.5 95.2 98.0 100.0 100.0 97.1
RS-FixMatch 92.5 96.4 98.0 100.0 100.0 97.4
SENTRY 93.0 94.0 98.0 83.3 87.5 91.2

(a) Product to Product (in-distribution)

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 71.4 71.5 70.7 73.1 75.5 72.4
RS-FixMatch 74.7 74.0 72.1 73.1 70.4 72.9
SENTRY 78.1 78.0 75.1 71.7 65.3 73.6

(b) Product to Real

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 41.5 44.0 44.2 48.4 39.4 43.5
RS-FixMatch 45.5 44.8 43.6 50.0 37.4 44.2
SENTRY 45.8 46.5 41.4 40.3 27.3 40.3

(c) Product to ClipArt

Algorithm Alpha = None Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5 Avg

FixMatch 54.4 51.3 54.7 57.3 55.9 54.7
RS-FixMatch 57.2 53.6 55.9 57.3 58.8 56.6
SENTRY 63.7 62.0 62.1 65.3 55.9 61.8

(d) Product to Art

Table 6: Officehome results with batch size 16 instead of 96 used throughout our experiments.
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K Results with RW and RS for DANN, TENT and Noisy-Student878

Dataset
TENT DANN NoisyStudent

None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

cifar10 86.8 89.9 90.7 91.8 87.0 88.2 85.6 85.5 92.2 92.3 92.2 92.3
cifar100 71.5 71.6 71.9 71.6 77.9 79.4 76.6 77.5 71.9 71.0 71.9 71.0
fmow 58.0 58.2 57.8 57.8 57.8 57.9 56.8 56.6 60.6 61.1 61.0 60.6
camelyon 87.3 88.5 89.4 90.4 81.2 80.9 80.4 79.8 86.0 86.0 86.4 86.4
domainnet 54.1 54.2 54.4 54.2 51.8 51.8 53.5 53.2 54.4 52.4 54.3 51.9
entity13 79.6 80.8 81.0 81.9 78.4 79.5 78.6 79.8 81.2 82.1 81.6 82.8
entity30 68.5 70.1 69.3 70.9 65.8 66.9 65.4 66.9 69.7 70.0 69.4 70.7
living17 71.2 71.9 71.1 72.9 68.5 71.3 70.5 71.5 74.6 74.3 71.0 75.9
nonliving26 60.3 62.1 61.9 62.4 59.3 60.7 56.7 56.5 61.9 62.3 62.7 63.3
officehome 65.6 65.8 65.8 64.9 66.5 66.6 67.7 66.7 66.7 64.7 66.8 64.6
visda 68.4 69.9 68.7 68.8 68.2 68.3 71.9 72.1 61.1 59.7 61.2 59.5

Avg 70.1 71.2 71.1 71.6 69.3 70.2 69.4 69.7 70.9 70.5 70.8 70.8

Table 7: Results with TENT, DANN, and NoisyStudent with re-sampling and re-weighting correction
with source validation performance as early stopping criterion aggregated across target label
marginal shifts. Re-sampling and Re-weighting seem to help for all datasets and they both together
improve aggregate performance over no correction for all DA methods.

Dataset
TENT DANN NoisyStudent

None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

8pNONEq 71.5 70.3 71.4 69.9 70.3 69.6 70.2 69.4 70.8 69.4 70.7 69.0
10.0 71.8 70.7 72.1 70.8 70.8 70.2 70.3 69.6 70.7 69.4 71.1 69.6
3.0 71.3 70.6 71.5 70.4 70.3 70.4 71.0 70.3 70.8 69.6 70.7 69.7
1.0 70.0 72.0 71.3 72.5 69.5 71.1 69.8 70.8 72.1 72.2 71.6 72.4
0.5 66.0 70.6 69.2 72.8 65.6 69.5 65.7 68.2 70.3 72.1 69.8 73.4

Avg 70.1 70.8 71.1 71.3 69.3 70.2 69.4 69.7 70.9 70.5 70.8 70.8

Table 8: Results with TENT, DANN, NoisyStudent with re-sampling and re-weighting correction with
source validation performance as early stopping criterion grouped by shift severity. Re-sampling
performs similar or helps across different shifts whereas re-weighting hurts slightly when shift
severity is small. However, for severe shifts in target label marginal (α P t1.0, 0.5u) re-weighting
significantly improves performance.
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L Results with Oracle Early Stopping Criterion879

In this section, we report results with oracle early stopping criterion. We observe differences in880

performance when using target performance versus source hold-out performance for model selection.881

This highlights a more nuanced behavior than the accuracy-on-the-line phenomena [46, 55]. We hope882

to study this contrasting behavior in more detail in future work.883

L.1 Results with target validation performance for all methods WITHOUT re-sampling and884

re-weighting correction885

Dataset
Source
(w aug)

Source
(adv)

BN-
adapt TENT DANN IW-

DAN CDAN IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

cifar10 91.02 59.36 87.11 87.12 87.47 87.50 87.45 87.49 91.62 92.43 89.18
cifar100 71.38 26.20 72.04 72.05 78.84 79.37 78.30 78.35 72.58 72.46 69.05
fmow 60.89 49.51 57.52 58.73 58.75 58.69 58.56 58.46 61.42 62.27 49.97
camelyon 87.26 81.27 89.93 89.30 83.61 83.72 88.95 88.33 90.02 87.84 89.32
domainnet 53.35 48.93 53.77 54.41 53.52 53.59 54.91 54.86 58.20 55.01 51.03
entity13 81.86 76.71 80.22 80.28 80.01 80.24 80.28 79.71 82.62 82.52 73.47
entity30 70.72 60.92 69.75 69.80 66.98 67.65 66.76 67.38 72.95 70.70 58.61
living17 78.56 49.27 76.94 76.75 77.23 75.12 75.54 75.33 78.80 77.41 61.05
nonliving26 65.24 54.17 63.93 63.95 61.87 62.90 60.51 61.08 66.69 65.50 45.86
officehome 66.23 59.08 66.79 66.78 69.00 69.29 69.31 69.33 66.47 68.75 60.48
visda 63.97 55.74 68.52 69.58 73.42 73.82 76.50 76.96 78.21 62.64 80.16

Avg 71.86 56.47 71.50 71.70 71.88 71.99 72.46 72.48 74.51 72.50 66.20

Table 9: Results with different DA methods with target validation performance as early stopping
criterion aggregated across target label marginal shifts.

Shift
Source
(w aug)

Source
(adv)

BN-
adapt TENT DANN IW-

DAN CDAN IW-
CDAN

Fix-
Match

Noisy-
Student

Sentry

100.0 70.43 56.50 71.84 72.16 71.12 71.25 71.62 71.85 74.61 71.57 69.16
10.0 71.24 57.02 72.37 72.75 71.60 71.98 72.60 72.36 75.01 71.81 67.87
3.0 71.37 57.56 72.19 72.48 71.94 72.13 72.57 72.46 75.49 72.50 66.65
1.0 73.19 56.82 72.44 72.46 72.96 72.89 73.21 73.85 75.19 73.73 66.05
0.5 73.09 54.44 68.67 68.67 71.79 71.70 72.29 71.87 72.24 72.91 61.25

Avg 71.86 56.47 71.50 71.70 71.88 71.99 72.46 72.48 74.51 72.50 66.20

Table 10: Results with different DA methods with target validation performance as early stopping
criterion aggregated across datasets and grouped by shift severity in target label marginal.
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L.2 Results with target validation performance for all methods WITH re-sampling and886

re-weighting correction887

Dataset
Source BN-adapt CDANN FixMatch

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

cifar10 91.0 91.7 87.1 90.4 91.3 92.3 87.4 88.5 87.7 88.6 91.6 92.7 92.4 93.0
cifar100 71.4 70.0 72.0 72.2 72.6 72.4 78.3 79.1 77.8 78.7 72.6 71.9 72.6 72.3
fmow 60.9 61.5 57.5 58.6 58.1 58.6 58.6 58.6 56.9 57.2 61.4 62.4 58.3 60.2
camelyon 87.3 88.5 89.9 90.9 91.6 90.4 88.9 89.5 89.1 89.5 90.0 90.8 90.4 91.6
domainnet 53.4 50.9 53.8 53.8 54.3 54.0 54.9 54.9 55.3 55.0 58.2 57.0 58.6 57.4
entity13 81.9 82.6 80.2 81.4 81.7 82.9 80.3 81.5 78.8 79.9 82.6 84.0 83.6 84.6
entity30 70.7 72.2 69.8 71.5 70.7 72.0 66.8 68.9 68.0 70.2 73.0 74.2 72.2 73.8
living17 78.6 77.8 76.9 76.5 79.3 77.3 75.5 76.6 75.4 76.2 78.8 81.5 81.0 81.0
nonliving26 65.2 66.7 63.9 65.5 65.8 65.7 60.5 62.2 60.4 61.7 66.7 68.5 67.2 68.1
officehome 66.2 65.0 66.8 66.9 67.1 66.6 69.3 69.3 69.1 69.1 66.5 63.7 66.2 63.2
visda 64.0 61.8 68.5 70.3 69.9 70.2 76.5 76.9 78.0 78.4 78.2 79.0 80.7 81.1

Avg 71.9 71.7 71.5 72.6 72.9 72.9 72.5 73.3 72.4 73.1 74.5 75.1 74.9 75.1

Table 11: Results with BN-adapt, CDANN, and FixMatch with re-sampling and re-weighting
correction with target validation performance as early stopping criterion aggregated across target
label marginal shifts.

Shift
Source BN-adapt CDANN FixMatch

None RW None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

NONE 70.4 68.9 71.8 71.1 71.7 70.6 71.6 71.1 71.6 70.9 74.6 73.6 74.4 73.4
10.0 71.2 69.7 72.4 71.8 72.4 71.5 72.6 71.8 72.3 71.8 75.0 73.9 75.2 74.2
3.0 71.4 70.1 72.2 71.8 72.7 71.6 72.6 72.1 72.8 72.4 75.5 74.8 75.3 74.4
1.0 73.2 73.6 72.4 74.3 74.1 74.8 73.2 74.9 73.4 75.2 75.2 76.3 76.0 76.8
0.5 73.1 76.2 68.7 73.8 73.8 76.1 72.3 76.4 71.8 75.3 72.2 76.8 73.4 76.7

Avg 71.9 71.7 71.5 72.6 72.9 72.9 72.5 73.3 72.4 73.1 74.5 75.1 74.9 75.1

Table 12: Results with BN-adapt, CDANN, and FixMatch with re-sampling and re-weighting
correction with target validation performance as early stopping criterion grouped by shift severity.
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Dataset
TENT DANN NoisyStudent

None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

cifar10 87.1 90.4 91.3 92.3 87.5 88.6 86.0 85.9 92.4 92.6 92.4 92.6
cifar100 72.0 72.2 72.6 72.4 78.8 80.0 77.7 78.5 72.5 71.6 72.4 71.5
fmow 58.7 58.5 59.0 57.8 58.8 59.1 57.3 57.6 62.3 62.6 62.1 62.0
camelyon 89.3 91.2 92.2 91.3 83.6 83.7 83.1 82.8 87.8 88.1 88.3 88.3
domainnet 54.4 53.8 55.0 54.2 53.5 53.6 54.9 54.5 55.0 52.8 54.8 52.5
entity13 80.3 81.5 81.8 82.9 80.0 81.0 79.7 80.7 82.5 83.3 82.6 83.6
entity30 69.8 71.5 70.7 72.0 67.0 68.5 67.5 69.8 70.7 72.1 71.2 72.5
living17 76.7 76.3 79.3 77.3 77.2 77.1 76.4 77.0 77.4 80.0 79.5 79.2
nonliving26 63.9 65.5 65.8 65.7 61.9 63.0 60.4 61.8 65.5 66.1 65.7 65.1
officehome 66.8 65.8 67.2 65.7 69.0 69.0 69.7 69.1 68.8 66.2 68.7 66.2
visda 69.6 70.9 70.7 70.5 73.4 74.3 75.5 76.1 62.6 61.2 62.5 60.7

Avg 71.7 72.5 73.2 72.9 71.9 72.5 71.7 72.2 72.5 72.4 72.7 72.2

Table 13: Results with TENT, DANN, and NoisyStudent with re-sampling and re-weighting correction
with target validation performance as early stopping criterion aggregated across target label marginal
shifts.

Dataset
TENT DANN NoisyStudent

None RW RS RS+
RW None RW RS RS+

RW None RW RS RS+
RW

NONE 72.2 71.0 72.2 70.8 71.1 70.4 70.8 70.0 71.6 70.1 71.7 69.9
10.0 72.8 71.8 72.9 71.7 71.6 71.3 71.7 70.8 71.8 70.5 72.2 70.6
3.0 72.5 71.8 73.0 71.7 71.9 71.7 72.2 71.5 72.5 70.9 72.4 71.0
1.0 72.5 74.2 74.1 74.6 73.0 73.9 72.4 73.7 73.7 74.2 73.7 73.9
0.5 68.7 73.8 74.0 75.8 71.8 75.4 71.2 74.7 72.9 76.4 73.7 75.6

Avg 71.7 72.5 73.2 72.9 71.9 72.5 71.7 72.2 72.5 72.4 72.7 72.2

Table 14: Results with TENT, DANN, NoisyStudent with re-sampling and re-weighting correction
with target validation performance as early stopping criterion grouped by shift severity.

29



M Target Marginal Estimation888

Shift
Source BN-adapt TENT DANN CDANN FixMatch NoisyStudent
None None IS None IS None IS None IS None IS None IS

cifar10 0.08 0.11 0.07 0.11 0.07 0.10 0.13 0.11 0.10 0.07 0.05 0.05 0.05
cifar100 0.33 0.29 0.28 0.29 0.29 0.22 0.23 0.22 0.23 0.29 0.28 0.32 0.32
fmow 0.33 0.37 0.39 0.45 0.46 0.39 0.40 0.42 0.43 0.32 0.37 0.33 0.33
camelyon 0.39 0.20 0.23 0.16 0.19 0.27 0.31 0.19 0.10 0.13 0.18 0.19 0.19
domainnet 0.68 0.56 0.57 0.55 0.56 0.60 0.56 0.59 0.57 0.52 0.51 0.68 0.68
entity13 0.12 0.15 0.13 0.15 0.13 0.14 0.13 0.14 0.14 0.15 0.13 0.13 0.13
entity30 0.28 0.28 0.27 0.28 0.27 0.31 0.31 0.31 0.29 0.27 0.28 0.27 0.28
living17 0.33 0.34 0.33 0.34 0.33 0.38 0.34 0.37 0.35 0.34 0.31 0.35 0.36
nonliving26 0.40 0.41 0.40 0.41 0.40 0.38 0.43 0.44 0.40 0.43 0.41 0.38 0.40
officehome 0.48 0.44 0.45 0.44 0.45 0.44 0.43 0.45 0.45 0.48 0.47 0.49 0.49
visda 0.58 0.37 0.40 0.36 0.39 0.38 0.33 0.36 0.29 0.35 0.26 0.60 0.59

Avg 0.36 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.31 0.30 0.30 0.35 0.35

Table 15: Target marginal estimation ℓ1 error with RLLS across different DA methods aggregated
across different target label marginal shifts for different datasets.

Shift
Source BN-adapt TENT DANN CDANN FixMatch NoisyStudent
None None IS None IS None IS None IS None IS None IS

NONE 0.21 0.15 0.16 0.16 0.17 0.17 0.17 0.17 0.16 0.16 0.15 0.22 0.22
10.0 0.25 0.19 0.20 0.20 0.20 0.20 0.20 0.21 0.20 0.19 0.18 0.25 0.24
3.0 0.30 0.27 0.27 0.27 0.26 0.26 0.25 0.25 0.25 0.24 0.23 0.28 0.28
1.0 0.43 0.43 0.40 0.43 0.40 0.40 0.40 0.40 0.38 0.39 0.38 0.38 0.38
0.5 0.52 0.60 0.51 0.59 0.51 0.55 0.55 0.53 0.49 0.54 0.51 0.46 0.46

Avg 0.34 0.33 0.31 0.33 0.31 0.32 0.32 0.31 0.29 0.30 0.29 0.32 0.32

Table 16: Target marginal estimation ℓ1 error with binning target psuedolabels across different DA
methods aggregated grouped by shift severity in target label marginal.

Shift
Source BN-adapt TENT DANN CDANN FixMatch NoisyStudent
None None IS None IS None IS None IS None IS None IS

100.0 0.37 0.28 0.30 0.28 0.29 0.23 0.23 0.22 0.21 0.28 0.27 0.30 0.30
10.0 0.39 0.31 0.33 0.31 0.32 0.26 0.26 0.26 0.24 0.29 0.29 0.32 0.32
3.0 0.42 0.36 0.37 0.35 0.36 0.29 0.29 0.30 0.28 0.32 0.31 0.35 0.35
1.0 0.44 0.39 0.38 0.40 0.38 0.36 0.35 0.35 0.32 0.37 0.37 0.37 0.37
0.5 0.41 0.41 0.36 0.42 0.36 0.41 0.42 0.36 0.35 0.40 0.39 0.38 0.36

Avg 0.40 0.35 0.35 0.35 0.34 0.31 0.31 0.28 0.28 0.34 0.33 0.35 0.34

Table 17: Target marginal estimation ℓ1 error with MLLS across different DA methods aggregated
grouped by shift severity in target label marginal.
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N Results on each dataset with source validation performance as early889

stopping criterion890

In this section, we present results across all datasets. Different rows show different algorithm and891

tNone,RLLS,Trueu denote the re-weighting estimate used. ‘None’ implies no re-weighting of the892

classifier. Since IW-CDAN and IW-DAN already incorporate an estimate of target label marginal893

in their training procedure, we do not adjust the obtained classifier further with our re-weighting894

correction.895

Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 87.6 87.3 87.6 87.2 86.9 87.5 87.3 87.2 88.0 88.1 90.4 91.1 91.0 93.6 94.0
Source (w aug) 89.9 89.7 89.9 90.0 89.5 89.8 90.1 90.0 90.4 90.6 92.4 92.7 92.9 95.0 95.3
Source (adv) 59.8 33.2 59.8 61.8 34.8 55.1 64.2 38.1 54.0 56.1 42.2 67.4 54.9 51.9 68.7
Source (clip) 89.3 88.5 89.3 89.1 88.4 89.5 89.1 88.7 90.0 89.2 88.9 90.0 88.8 88.9 91.5
DARE 85.0 84.9 85.0 83.1 83.4 83.4 80.5 80.9 81.2 72.4 73.1 74.4 61.1 62.8 70.7
BN-adapt 90.4 90.2 90.4 89.3 89.5 89.7 87.9 89.5 89.9 85.4 89.8 91.1 80.3 89.9 93.1
RS-BN-adapt 90.5 90.3 90.5 90.3 90.2 90.6 90.5 90.5 91.1 91.1 92.8 93.0 91.2 95.4 96.0
TENT 90.7 90.4 90.7 89.4 89.6 89.9 87.9 89.5 89.8 85.6 90.1 91.3 80.1 90.1 93.1
RS-TENT 90.5 90.4 90.5 90.3 90.2 90.6 90.4 90.4 91.0 91.1 92.8 93.0 91.2 95.4 95.9
DANN 86.6 86.0 86.6 86.3 86.0 86.6 86.0 86.2 86.6 86.0 89.5 90.3 90.0 93.3 93.8
IW-DANN 86.6 86.4 86.2 85.9 89.8
RS-DANN 85.1 83.2 85.1 84.7 83.0 84.6 84.3 83.1 84.3 85.2 87.0 88.2 88.9 91.4 91.7
CDANN 86.5 86.0 86.5 86.0 85.6 86.3 85.8 85.7 86.4 85.8 89.7 90.5 90.0 93.3 93.6
IW-CDANN 86.5 86.0 85.8 85.9 90.0
RS-CDANN 86.6 86.0 86.6 86.4 85.8 86.6 85.7 85.5 86.4 86.6 90.2 90.5 90.3 93.3 93.7
FixMatch 91.0 90.9 91.0 91.2 91.2 91.3 91.3 91.4 91.8 91.1 93.4 93.5 91.3 95.1 95.8
RS-FixMatch 91.4 91.2 91.4 91.6 91.4 91.6 91.5 91.8 91.9 92.0 93.4 93.6 94.2 95.7 95.9
NoisyStudent 91.0 90.8 91.0 91.1 90.5 90.8 91.1 91.0 91.2 92.6 93.8 93.9 95.0 95.6 95.7
RS-NoisyStudent 91.0 90.8 91.0 91.1 90.5 90.8 91.1 91.0 91.2 92.6 93.8 93.9 95.0 95.6 95.7
SENTRY 88.6 88.3 88.6 88.4 88.4 88.7 88.4 88.6 88.9 88.8 91.3 91.9 89.1 93.9 94.4

Table 18: CIFAR10 results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 64.1 58.0 64.1 65.6 59.1 65.3 64.7 58.1 66.0 64.4 62.1 72.6 66.6 69.3 79.2
Source (w aug) 70.2 66.7 70.2 71.5 67.3 71.8 70.2 65.7 72.3 69.8 70.2 77.2 71.5 76.2 82.4
Source (adv) 26.1 18.6 26.1 26.2 19.5 27.3 25.5 19.2 28.6 25.0 19.7 34.8 28.2 28.5 43.0
Source (clip) 83.0 82.6 83.0 84.2 83.8 84.4 84.4 84.1 85.0 83.9 86.1 88.0 85.2 87.1 91.6
DARE 64.1 63.9 64.1 63.4 63.2 63.7 59.0 58.1 59.4 46.5 46.5 53.6 37.4 38.6 58.3
BN-adapt 71.6 69.4 71.6 72.9 69.8 73.0 71.0 67.9 73.2 70.5 73.1 78.4 71.6 78.1 82.4
RS-BN-adapt 71.5 69.2 71.5 72.6 69.7 72.9 71.3 68.1 73.1 71.1 72.8 78.1 72.9 78.3 82.5
TENT 71.4 69.4 71.4 72.6 69.8 73.0 71.0 68.0 73.0 70.4 72.9 77.9 71.9 78.0 82.5
RS-TENT 71.5 69.2 71.5 72.4 69.5 72.7 71.3 68.2 73.0 71.4 72.7 78.1 73.0 78.3 82.5
DANN 78.3 77.8 78.3 78.7 78.5 79.0 77.9 77.4 79.0 75.7 79.9 82.0 78.7 83.4 86.1
IW-DANN 78.3 79.0 77.7 77.4 80.0
RS-DANN 78.3 77.7 78.3 78.3 77.4 78.4 76.8 76.2 78.2 75.4 78.5 81.1 74.3 77.8 81.8
CDANN 77.9 77.3 77.9 77.9 77.6 78.3 75.9 75.6 77.0 75.7 78.2 80.5 79.4 82.3 86.4
IW-CDANN 77.7 77.6 76.4 77.1 79.3
RS-CDANN 77.4 76.9 77.4 78.0 77.4 78.1 77.0 76.3 77.8 76.4 78.4 81.1 77.2 80.2 85.2
FixMatch 72.1 69.5 72.1 72.1 69.2 72.5 70.7 67.8 72.8 71.1 71.9 77.6 74.1 77.9 81.4
RS-FixMatch 71.9 69.6 71.9 72.6 70.2 73.3 71.1 68.4 73.0 71.6 73.1 78.1 73.6 77.1 81.6
NoisyStudent 71.3 68.4 71.3 71.7 68.8 72.3 70.4 66.9 71.3 72.1 72.8 77.0 73.9 78.0 80.8
RS-NoisyStudent 71.3 68.3 71.3 71.6 68.9 72.3 70.3 66.7 71.0 72.4 73.0 77.2 73.8 78.0 80.9
SENTRY 67.6 64.0 67.6 68.3 64.7 68.9 67.3 63.0 69.2 68.9 70.0 74.9 69.6 73.0 78.6

Table 19: CIFAR100 results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 81.8 81.8 81.9 82.2 82.3 82.3 82.4 82.6 82.6 79.6 81.7 85.0 79.8 81.4 84.0
Source (w aug) 78.0 77.1 78.0 79.4 78.7 79.3 80.5 80.0 80.5 68.6 67.4 74.3 69.5 68.4 74.0
Source (adv) 82.8 82.1 82.8 83.4 82.8 83.2 84.0 83.5 83.8 77.8 79.0 85.2 78.3 79.2 84.2
Source (clip) 96.1 96.1 96.1 96.3 96.3 96.3 96.5 96.4 96.4 94.8 95.3 95.5 94.9 95.3 95.5
DARE 79.0 79.0 79.1 79.5 79.5 79.5 79.7 79.8 79.9 73.9 74.2 76.9 74.4 74.8 76.9
BN-adapt 89.5 88.7 89.4 89.0 88.6 89.2 85.8 85.2 86.5 84.3 90.1 88.7 84.6 87.8 89.1
RS-BN-adapt 88.6 87.3 88.6 88.8 88.2 89.1 87.6 87.0 88.3 89.0 90.3 92.1 90.0 87.6 92.4
TENT 92.3 92.1 92.3 90.3 90.4 90.5 91.0 90.9 91.3 81.9 85.6 85.0 81.1 83.4 84.5
RS-TENT 92.0 90.4 92.0 92.7 92.7 92.9 90.9 90.9 91.2 85.1 90.3 89.6 86.6 87.6 89.7
DANN 83.0 82.7 83.1 84.2 83.9 84.2 85.2 85.1 85.3 75.2 74.6 79.0 78.2 78.3 80.7
IW-DANN 84.1 84.2 85.9 78.7 78.1
RS-DANN 84.1 83.7 84.1 83.7 82.9 83.5 86.5 86.2 86.5 71.6 70.8 75.0 75.9 75.7 78.4
CDANN 87.3 87.1 87.3 87.3 87.0 87.4 87.0 87.0 87.1 80.7 81.4 86.8 79.7 79.8 83.3
IW-CDANN 87.2 85.3 85.5 81.6 86.1
RS-CDANN 88.1 87.8 88.1 83.2 83.2 83.3 85.8 85.8 86.0 88.7 90.5 91.3 92.2 93.3 93.4
FixMatch 91.3 91.3 91.3 92.7 92.5 92.5 93.6 93.8 93.7 79.9 82.1 83.8 81.5 82.7 84.0
RS-FixMatch 88.6 87.8 88.6 93.7 93.5 93.6 94.2 94.2 94.2 81.5 82.9 84.2 80.1 80.6 82.8
NoisyStudent 88.4 88.1 88.4 85.9 84.9 85.9 88.2 87.9 88.3 83.0 83.7 86.1 84.4 85.4 86.8
RS-NoisyStudent 87.7 87.1 87.7 85.7 84.7 85.6 88.6 88.2 88.8 84.9 85.9 87.6 85.3 86.1 87.5
SENTRY 90.7 90.4 90.7 91.5 91.2 91.4 90.6 90.7 90.7 80.7 81.9 82.4 83.5 84.9 85.0

Table 20: Camelyon results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 73.4 73.1 73.4 74.3 74.2 74.7 76.8 77.5 78.4 80.0 81.1 83.8 78.6 80.3 83.8
Source (w aug) 78.2 78.3 78.2 80.2 79.9 80.1 82.3 82.5 83.1 85.3 86.3 87.1 81.5 85.0 86.1
Source (adv) 73.2 71.5 73.2 75.5 74.5 75.5 78.3 76.6 78.2 79.7 80.8 83.2 76.9 81.8 83.4
Source (clip) 88.8 88.9 88.8 89.8 90.1 90.1 90.3 90.5 90.6 92.4 92.7 94.4 91.5 92.4 94.1
DARE 73.9 74.0 73.9 73.5 73.5 73.9 72.4 72.1 72.7 63.9 64.3 72.8 55.5 57.2 64.7
BN-adapt 77.9 77.8 77.9 79.8 79.7 79.7 81.3 81.7 82.4 82.4 84.4 85.9 76.1 80.0 83.2
RS-BN-adapt 77.5 77.4 77.5 79.8 79.6 79.6 82.0 82.4 82.5 84.9 86.1 86.7 80.6 84.0 86.3
TENT 77.9 77.8 77.9 79.9 79.7 79.8 81.4 81.8 82.5 82.5 84.5 86.0 76.2 80.1 83.2
RS-TENT 77.5 77.5 77.5 79.9 79.6 79.7 82.1 82.4 82.5 84.9 86.1 86.7 80.6 84.0 86.3
DANN 75.7 75.3 75.7 77.4 77.5 77.9 79.1 80.2 80.6 80.7 83.4 84.7 79.3 80.9 82.1
IW-DANN 76.0 77.5 79.8 83.5 77.9
RS-DANN 75.5 75.3 75.5 77.1 77.8 77.9 79.8 80.5 80.5 82.9 85.1 85.7 77.9 80.4 81.9
CDANN 76.2 75.9 76.2 77.5 77.8 78.8 78.7 79.7 80.5 82.4 86.0 87.2 77.7 81.6 83.3
IW-CDANN 75.4 77.2 78.5 83.3 79.2
RS-CDANN 74.1 73.6 74.1 77.8 78.3 78.2 79.7 80.1 80.7 81.4 85.1 86.3 73.8 77.1 78.8
FixMatch 79.8 79.9 79.8 80.4 80.4 80.9 81.9 82.4 82.9 82.2 85.5 88.2 76.6 79.6 81.2
RS-FixMatch 80.5 80.4 80.5 81.0 81.4 81.6 82.6 83.1 83.8 87.5 88.1 89.2 79.9 83.5 85.4
NoisyStudent 78.9 78.5 78.9 78.4 78.5 78.8 80.9 81.5 81.8 85.2 86.5 88.2 82.8 85.7 88.0
RS-NoisyStudent 79.0 78.8 79.0 80.7 80.9 80.8 80.3 81.2 81.9 84.7 87.8 89.0 83.2 85.2 86.6
SENTRY 76.6 76.4 76.6 76.3 74.8 76.8 69.9 67.7 70.6 80.7 82.0 83.3 56.5 57.6 60.9

Table 21: Entity13 results aggregated across different distribution shift pairs

34



Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 63.5 63.1 63.5 62.9 63.4 63.6 63.4 64.6 65.1 64.4 67.9 74.7 56.0 63.5 78.4
Source (w aug) 70.2 69.8 70.2 71.2 70.5 70.9 70.6 70.1 71.4 72.4 73.8 75.7 64.8 70.5 81.3
Source (adv) 61.2 59.7 61.2 61.6 60.8 62.9 62.3 61.5 65.2 64.3 66.5 70.3 55.3 59.3 77.0
Source (clip) 85.3 85.0 85.3 85.8 85.3 85.8 85.4 85.4 85.9 85.8 87.9 89.2 81.3 83.5 89.2
DARE 66.7 66.4 66.7 65.3 65.7 65.2 62.2 62.4 63.4 50.8 50.4 57.5 27.3 28.4 53.6
BN-adapt 69.9 69.6 69.9 70.2 70.0 70.6 69.4 70.0 71.0 71.2 73.1 74.7 61.6 67.5 80.0
RS-BN-adapt 70.0 69.6 70.0 70.8 70.7 71.3 69.7 70.8 71.8 72.1 73.8 75.3 63.9 69.8 80.8
TENT 69.9 69.7 69.9 70.3 70.0 70.6 69.4 70.0 71.0 71.2 73.1 74.7 61.7 67.5 80.0
RS-TENT 70.1 69.7 70.1 70.8 70.5 71.5 69.8 70.8 71.9 72.1 73.8 75.3 63.9 69.8 80.8
DANN 67.3 67.0 67.3 67.5 67.1 67.5 66.2 66.6 68.8 66.9 68.6 75.3 61.0 65.4 80.3
IW-DANN 66.1 66.3 67.1 70.6 60.2
RS-DANN 66.5 66.5 66.5 67.8 67.7 68.7 67.0 66.4 68.8 70.2 71.9 77.1 55.3 62.2 79.4
CDANN 65.8 66.1 65.8 66.8 65.9 66.6 66.8 66.1 68.9 69.0 70.9 74.9 55.4 61.6 76.8
IW-CDANN 67.8 66.2 65.7 70.0 53.4
RS-CDANN 66.0 66.1 66.0 68.4 68.2 67.4 67.5 69.1 70.2 69.7 72.4 76.9 61.5 66.9 78.1
FixMatch 72.3 71.6 72.3 72.9 73.2 73.5 73.9 74.1 74.4 74.4 76.1 78.3 64.0 68.5 78.5
RS-FixMatch 73.4 72.7 73.4 72.2 71.5 71.9 71.3 72.4 73.6 70.4 72.9 77.5 60.4 68.4 79.4
NoisyStudent 70.5 69.4 70.5 70.0 69.8 70.5 71.7 71.0 72.2 72.9 74.2 76.7 63.6 65.8 76.0
RS-NoisyStudent 70.3 70.2 70.3 71.6 71.4 71.5 71.4 71.2 71.3 72.7 74.3 77.7 60.9 66.5 81.2
SENTRY 64.4 62.5 64.4 64.8 63.8 64.4 62.3 61.4 63.2 54.1 55.2 60.4 39.3 41.6 71.4

Table 22: Entity30 results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 66.3 65.4 66.3 68.9 68.8 68.9 69.8 69.8 72.3 66.0 68.9 76.9 64.8 66.9 88.6
Source (w aug) 72.8 71.6 72.8 75.8 74.2 75.9 76.1 74.0 75.5 71.5 72.5 81.1 76.3 78.9 86.5
Source (adv) 51.7 45.3 51.7 52.5 47.7 55.1 50.8 48.1 57.3 50.6 50.0 66.3 40.8 57.8 80.8
Source (clip) 90.0 89.9 90.0 92.9 92.8 93.0 93.9 93.9 94.2 91.9 92.0 94.7 96.4 97.6 98.0
DARE 66.6 66.2 66.6 66.2 66.2 66.3 59.8 58.9 61.3 43.8 44.2 57.0 29.1 31.4 54.8
BN-adapt 73.4 72.7 73.4 75.4 74.0 75.5 74.2 73.4 74.0 69.3 70.7 79.5 65.6 69.5 85.0
RS-BN-adapt 72.4 72.0 72.4 75.2 73.8 75.4 74.5 74.6 73.9 70.7 72.2 80.6 62.8 72.1 86.3
TENT 72.2 71.8 72.2 74.4 73.7 74.6 74.3 73.5 74.0 69.4 70.9 79.5 65.6 69.3 85.0
RS-TENT 72.4 72.0 72.4 75.2 73.8 75.4 74.5 74.6 73.9 70.7 72.2 80.6 62.8 72.1 86.3
DANN 69.7 68.2 69.7 72.1 71.4 73.1 73.1 73.3 74.8 72.8 73.7 79.9 54.8 70.1 85.5
IW-DANN 68.6 74.4 72.9 72.2 71.9
RS-DANN 68.7 67.9 68.7 70.0 70.0 70.3 72.3 71.4 71.8 74.6 77.8 81.8 66.9 70.6 84.7
CDANN 68.5 68.0 68.5 70.2 70.1 71.1 72.7 71.5 75.2 72.3 73.4 77.3 67.4 76.5 91.7
IW-CDANN 70.7 71.5 76.2 70.2 61.0
RS-CDANN 71.6 70.5 71.6 73.6 72.9 73.8 71.4 69.4 74.1 72.0 72.7 83.4 67.5 76.8 85.1
FixMatch 76.2 76.3 76.2 77.0 76.3 77.8 78.2 78.2 80.5 78.1 79.1 87.0 66.0 69.3 84.9
RS-FixMatch 74.2 74.2 74.2 78.4 78.3 79.0 78.2 78.2 79.5 80.2 83.2 86.2 67.9 70.6 86.3
NoisyStudent 70.5 71.4 70.5 77.1 76.4 77.3 76.5 74.3 75.9 77.4 75.4 83.4 71.5 73.8 87.4
RS-NoisyStudent 73.0 71.6 73.0 77.3 77.1 77.3 75.2 76.1 77.6 70.5 75.2 87.9 58.9 79.2 87.2
SENTRY 65.5 64.4 65.5 65.4 62.6 65.6 48.9 49.0 48.1 48.3 48.8 63.2 43.5 40.4 75.9

Table 23: Living17 results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 54.1 54.0 54.1 53.2 52.5 52.7 54.3 53.6 54.7 62.5 62.8 67.2 49.5 51.6 65.5
Source (w aug) 62.7 61.9 62.7 62.6 61.7 62.2 60.9 60.3 63.7 62.3 65.9 71.5 59.0 64.1 72.4
Source (adv) 55.8 53.2 55.8 54.0 50.2 55.1 56.2 53.0 56.7 58.4 61.2 66.7 46.5 51.7 61.2
Source (clip) 82.4 82.5 82.4 84.4 84.4 84.5 86.6 85.9 88.4 83.3 81.9 88.6 85.7 86.3 91.6
DARE 55.8 55.3 55.8 57.2 57.6 57.2 51.7 52.7 54.6 41.9 42.2 60.9 19.4 20.6 44.4
BN-adapt 62.4 62.1 62.4 62.0 61.2 61.9 60.0 59.8 63.2 61.0 65.1 71.0 55.9 62.2 71.4
RS-BN-adapt 62.5 62.1 62.5 62.7 61.3 62.4 60.3 59.7 63.2 63.2 65.7 69.8 60.7 63.0 72.1
TENT 62.6 62.3 62.6 62.0 61.2 61.9 60.0 59.8 63.2 61.0 65.1 71.0 55.9 62.2 71.4
RS-TENT 62.5 62.2 62.5 62.7 61.4 62.4 60.3 59.8 63.2 63.2 65.7 69.8 60.7 63.0 72.1
DANN 59.6 59.0 59.5 59.2 57.2 58.4 55.6 57.6 57.8 62.4 64.3 70.3 59.7 65.4 74.2
IW-DANN 59.6 61.2 60.3 62.3 56.4
RS-DANN 57.9 57.5 57.9 56.1 55.5 56.2 58.6 57.8 58.2 57.3 57.6 69.8 53.6 54.4 73.9
CDANN 58.0 57.2 58.0 57.4 57.0 58.1 59.4 58.8 61.6 55.8 60.2 67.6 50.6 56.9 70.7
IW-CDANN 59.6 57.5 57.8 61.8 56.6
RS-CDANN 59.9 58.4 59.9 57.5 58.0 57.6 59.4 61.4 60.9 59.9 59.7 68.7 56.9 62.6 74.2
FixMatch 66.2 65.4 66.2 64.8 62.9 66.4 62.4 63.6 66.1 64.9 64.1 75.7 52.7 53.3 81.3
RS-FixMatch 64.6 62.8 64.6 67.5 66.9 67.5 64.7 64.0 64.1 61.3 61.8 72.0 56.2 61.3 73.9
NoisyStudent 64.2 63.1 64.1 61.8 63.0 62.7 60.0 59.4 61.9 66.4 67.0 72.3 57.1 59.1 75.5
RS-NoisyStudent 62.1 61.9 62.1 63.2 61.3 63.4 59.9 60.7 62.6 65.9 67.6 74.8 62.2 64.8 75.8
SENTRY 55.9 54.1 55.9 41.2 35.5 42.5 46.4 42.1 48.5 39.5 38.7 49.0 24.5 24.4 58.7

Table 24: Nonliving26 results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 56.4 55.7 56.5 57.7 57.2 57.8 57.6 58.2 58.7 59.7 62.1 64.1 55.7 59.1 61.9
Source (w aug) 59.7 57.9 59.8 60.5 58.9 60.9 60.1 59.9 62.1 61.7 64.5 67.9 58.6 63.3 67.5
Source (adv) 48.4 44.0 48.6 49.3 45.2 49.8 49.7 45.7 51.4 51.5 50.2 57.9 48.7 50.6 57.0
Source (clip) 64.0 63.2 64.1 65.1 64.2 65.4 65.3 65.3 66.9 66.3 68.2 71.6 61.8 66.4 69.9
DARE 53.9 53.6 54.0 54.0 54.1 54.4 51.7 51.5 52.6 45.7 46.7 52.1 41.5 41.8 50.3
BN-adapt 57.1 55.7 57.3 57.6 56.3 58.0 56.9 56.1 58.8 58.5 60.7 64.8 53.7 58.7 62.9
RS-BN-adapt 56.8 55.5 57.0 57.2 55.3 57.7 56.7 55.5 58.5 60.0 60.9 65.2 55.0 59.0 64.0
TENT 57.2 54.5 57.4 58.7 57.5 59.0 58.9 57.7 60.4 59.6 61.0 64.4 55.8 60.2 63.9
RS-TENT 58.0 55.0 58.1 59.1 57.7 59.6 57.6 56.0 59.2 59.5 61.3 64.6 55.0 59.0 63.7
DANN 57.2 55.8 57.3 59.1 57.7 59.1 57.8 56.8 59.2 59.5 60.2 64.6 55.3 59.3 63.0
IW-DANN 57.1 58.7 58.1 56.3 55.2
RS-DANN 56.6 55.1 56.8 57.2 55.6 57.6 57.2 56.5 58.9 59.2 59.4 63.0 53.9 57.9 60.9
CDANN 57.3 55.9 57.4 58.3 56.7 58.5 58.2 56.7 59.8 58.2 59.0 63.8 54.9 57.5 62.4
IW-CDANN 57.2 58.1 57.9 59.3 53.3
RS-CDANN 56.3 55.4 56.5 57.3 56.6 57.7 56.2 54.8 58.0 56.3 57.5 61.3 54.6 56.8 60.6
FixMatch 59.6 58.3 59.6 60.8 59.3 60.9 61.3 60.4 62.5 62.0 63.6 66.6 58.1 62.2 65.5
RS-FixMatch 57.6 56.2 57.5 58.3 57.5 58.7 57.8 57.0 59.3 59.0 59.2 64.4 54.7 59.0 63.2
NoisyStudent 61.5 60.3 61.5 62.1 60.5 62.1 60.5 60.3 61.7 61.8 62.5 66.0 57.2 61.5 64.9
RS-NoisyStudent 61.2 59.7 61.1 61.7 60.0 61.8 61.3 60.6 62.3 61.2 62.0 66.4 59.5 63.3 66.3
SENTRY 51.4 46.0 51.3 51.7 47.4 52.0 50.0 45.5 51.7 50.0 46.6 55.9 45.0 44.1 55.6

Table 25: FMoW results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 49.4 45.1 51.0 49.4 45.5 51.8 49.0 45.7 52.5 50.1 47.7 56.5 48.6 48.4 59.0
Source (w aug) 53.0 49.2 54.6 53.0 49.6 55.2 52.5 49.7 56.1 53.1 51.6 60.4 52.8 52.8 61.9
Source (adv) 48.7 43.5 50.5 48.8 43.6 51.2 48.6 44.2 52.3 49.5 46.8 56.0 49.0 47.3 58.4
Source (clip) 70.8 68.8 72.2 71.4 69.4 73.6 71.2 69.5 73.9 71.4 70.9 76.3 71.7 72.0 79.1
DARE 51.5 51.1 53.0 50.4 49.9 52.6 48.3 48.0 52.2 45.8 45.7 53.8 38.3 39.3 51.5
BN-adapt 53.7 52.7 55.6 53.6 52.5 56.6 53.3 52.7 57.4 54.4 54.2 61.4 52.2 54.7 62.5
RS-BN-adapt 54.1 52.7 55.9 53.9 52.9 56.6 53.2 52.6 57.2 54.5 54.1 62.1 52.4 54.5 62.6
TENT 55.3 54.4 57.0 54.2 53.3 57.2 54.0 53.5 58.2 54.5 54.6 61.5 52.4 55.2 62.8
RS-TENT 55.8 55.1 57.6 54.7 53.7 57.3 53.9 53.2 58.1 54.6 54.2 61.9 52.9 55.0 63.0
DANN 53.8 53.1 55.8 53.5 53.0 56.7 52.1 51.6 56.3 52.4 52.2 59.4 47.3 49.3 59.6
IW-DANN 54.2 53.7 52.7 51.3 48.4
RS-DANN 55.1 54.3 56.4 54.9 54.3 57.2 54.1 53.4 56.9 52.2 52.2 59.0 51.0 52.0 60.1
CDANN 55.7 54.8 57.1 54.6 53.5 57.2 54.1 53.1 57.2 53.4 53.0 60.4 52.2 54.2 60.5
IW-CDANN 55.9 55.0 54.4 53.8 51.6
RS-CDANN 56.2 55.3 57.5 55.5 54.4 57.8 54.7 53.9 57.7 54.1 53.8 60.7 53.4 54.0 62.0
FixMatch 57.6 55.7 59.0 57.6 55.8 59.6 57.6 55.8 60.0 58.4 57.4 63.1 58.4 58.8 63.8
RS-FixMatch 58.6 56.6 59.1 58.0 56.2 59.4 57.7 56.0 59.5 59.1 58.3 63.2 58.6 58.8 64.4
NoisyStudent 54.9 52.0 56.1 53.7 50.8 55.8 53.5 51.1 56.2 54.1 52.8 60.2 55.5 55.2 63.1
RS-NoisyStudent 54.6 51.3 55.8 53.5 50.6 55.3 53.6 50.7 56.3 54.9 52.9 60.4 54.9 54.9 62.7
SENTRY 57.3 56.0 57.4 49.0 45.2 50.1 51.6 49.0 53.6 48.3 46.0 53.7 46.3 44.9 53.7

Table 26: DomainNet results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 62.6 58.5 62.7 63.7 60.3 64.3 65.0 61.1 65.8 66.4 67.2 73.1 62.0 63.0 73.4
Source (w aug) 62.2 59.2 62.0 63.3 59.7 64.5 64.5 62.4 66.5 66.5 68.9 72.1 66.4 66.4 73.4
Source (adv) 56.5 50.9 56.3 58.5 52.6 59.6 59.5 55.5 60.7 60.7 61.3 70.5 60.1 54.5 72.1
Source (clip) 79.8 77.3 80.2 79.2 77.5 79.9 78.9 77.5 80.2 79.4 78.7 83.9 78.5 79.3 88.0
DARE 59.4 59.2 60.6 56.5 56.4 59.2 53.1 52.4 58.1 39.6 37.9 56.7 32.6 32.9 59.7
BN-adapt 62.8 61.3 64.9 65.0 64.1 66.4 66.4 64.8 69.1 67.0 69.2 75.5 67.2 68.2 76.2
RS-BN-adapt 63.2 60.9 64.1 65.3 62.8 66.0 66.9 63.3 68.7 67.6 68.7 74.3 66.7 67.7 76.2
TENT 62.8 61.6 64.8 65.1 63.7 66.0 66.0 65.3 68.8 67.3 69.2 74.9 66.7 68.9 75.4
RS-TENT 63.2 61.0 64.1 65.1 62.9 66.2 66.9 63.4 68.8 67.3 69.4 74.3 66.7 67.9 76.2
DANN 66.6 65.1 67.5 67.2 65.6 67.8 67.7 67.7 69.4 68.3 70.2 77.2 62.9 64.7 75.2
IW-DANN 66.9 67.6 67.7 67.7 63.1
RS-DANN 67.5 65.3 68.0 67.1 65.4 68.0 67.6 65.0 69.4 70.7 70.1 76.6 65.4 67.4 75.4
CDANN 66.3 65.0 66.9 66.5 65.8 67.7 66.9 65.6 68.7 68.7 70.8 77.9 63.9 65.7 75.5
IW-CDANN 66.3 66.6 66.7 68.6 63.4
RS-CDANN 65.2 63.5 65.9 66.9 65.1 66.8 67.6 65.1 67.0 65.7 66.3 75.1 63.2 61.0 75.2
FixMatch 62.5 57.9 62.5 64.1 58.7 63.9 65.9 60.9 65.1 65.2 66.9 72.9 66.2 67.4 75.9
RS-FixMatch 62.9 57.1 61.5 63.4 57.8 62.9 65.3 58.3 64.8 68.9 66.4 72.7 62.4 63.4 72.1
NoisyStudent 65.0 61.3 65.2 65.6 63.1 66.4 67.0 65.5 68.1 69.9 68.0 75.6 66.3 65.6 76.7
RS-NoisyStudent 65.3 62.0 64.9 65.4 62.8 66.1 67.3 65.3 67.6 70.4 68.4 75.8 65.8 65.8 76.2
SENTRY 58.1 53.1 57.9 58.4 52.7 59.6 59.8 55.4 61.1 62.1 61.3 68.8 54.1 53.8 68.0

Table 27: Officehome results aggregated across different distribution shift pairs
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Alpha = NONE Alpha = 10.0 Alpha = 3.0 Alpha = 1.0 Alpha = 0.5
Algorithm None RLLS True None RLLS True None RLLS True None RLLS True None RLLS True

Source (w/o aug) 64.0 60.4 63.7 62.8 59.6 63.6 61.7 58.9 63.9 57.5 56.2 62.4 65.8 67.6 75.8
Source (w aug) 60.8 57.9 60.6 59.2 56.5 59.8 57.7 55.3 59.2 55.7 54.1 58.0 65.4 66.3 73.3
Source (adv) 57.3 54.2 57.0 55.6 52.7 56.0 54.0 51.3 55.0 51.6 49.8 53.9 60.1 59.7 70.0
Source (clip) 75.5 73.2 75.5 74.8 72.8 75.7 74.2 72.5 76.1 73.1 72.7 76.7 78.2 79.6 82.1
DARE 63.3 63.2 63.7 61.7 61.7 62.7 60.3 60.4 62.0 57.4 57.8 60.7 52.0 54.9 63.5
BN-adapt 71.5 71.3 72.3 71.4 71.4 73.2 69.9 70.1 73.0 65.9 67.3 73.3 57.1 63.2 74.5
RS-BN-adapt 70.1 68.8 70.4 69.3 68.5 70.6 67.6 67.0 69.8 64.1 63.5 68.2 67.8 71.0 76.8
TENT 73.6 73.6 74.5 72.5 72.5 74.2 70.9 71.3 74.0 66.6 67.4 73.4 58.5 64.5 74.7
RS-TENT 71.7 70.7 72.0 70.7 70.2 71.9 68.4 68.0 70.7 64.4 63.9 68.3 68.2 71.3 76.9
DANN 76.0 75.9 76.3 73.8 73.9 74.4 72.4 72.6 73.6 64.9 65.0 66.8 54.0 54.3 60.3
IW-DANN 77.0 73.5 71.7 64.0 53.6
RS-DANN 77.5 77.4 77.6 76.8 76.8 77.3 77.0 77.3 78.3 68.9 68.8 70.8 59.3 60.2 66.5
CDANN 80.3 80.3 80.4 78.1 78.2 78.4 74.4 74.5 75.1 64.6 64.4 65.8 57.8 58.1 60.2
IW-CDANN 79.4 78.5 74.5 64.4 56.4
RS-CDANN 79.7 79.6 79.7 76.7 76.6 76.9 79.8 79.9 80.4 71.4 71.0 72.4 64.1 64.4 66.4
FixMatch 80.7 80.7 81.4 77.5 77.3 78.7 75.9 75.8 78.5 73.1 73.6 78.8 60.3 63.5 71.9
RS-FixMatch 80.8 80.7 81.2 80.7 80.5 81.4 79.7 79.6 82.0 72.9 72.7 77.7 72.3 74.9 79.9
NoisyStudent 62.6 59.8 62.6 60.1 57.7 60.8 59.0 56.9 60.3 57.5 57.0 58.8 66.3 67.2 72.4
RS-NoisyStudent 62.3 59.7 62.4 60.6 58.0 61.1 58.4 56.2 60.0 57.1 56.1 58.1 67.8 68.6 73.9
SENTRY 78.3 77.9 78.6 81.3 81.0 81.9 79.8 79.0 81.4 72.2 72.7 73.9 74.5 76.8 80.8

Table 28: Visda results aggregated across different distribution shift pairs
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