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Abstract

We present a three-year, state-level analysis of COVID-19 in Germany using a
simple SIR model coupled with Physics-Informed Neural Networks (PINNs),
trained on data from the Robert Koch Institute. For each of the 16 German federal
states, we use the PINN framework to estimate transmission and recovery rates
(β, α) and the time-dependent reproduction number Rt. Our results showcase
significant regional heterogeneity and an inverse relationship between vaccination
uptake and both β and peak Rt numbers. Furthermore, we observe that the inferred
progression of Rt aligns with the major phases of the pandemic, including the
Omicron peak, followed by stabilization at or below the epidemic threshold of
1.0 by mid-2022. These findings demonstrate the utility of PINNs for localized,
long-term epidemiological modeling and evaluating regional policy impacts.

1 Introduction

The COVID-19 pandemic exhibited significant regional heterogeneity in its progression and manage-
ment, as observed globally and within federal systems, such as Germany [1, 2, 3]. Understanding
these state-level dynamics is critical for evaluating public health responses and informing future
strategies. Such granular analyses are essential for tailoring public health policies and allocating
resources effectively, moving beyond a one-size-fits-all approach [4]. Epidemiological analysis often
relies on compartmental models, such as the Susceptible-Infectious-Recovered (SIR) framework [5],
which have been widely adapted for COVID-19 [6, 7, 8]. However, classical methods for parameter
estimation struggle with noisy observational data and capturing time-varying dynamics.

Physics-Informed Neural Networks (PINNs) [9] provide a robust framework for addressing these
challenges by directly embedding differential equations into the neural network’s loss function,
thereby enabling parameter estimation from sparse or noisy data, e.g., [10, 11]. Previous work has
applied PINNs to epidemiology, often focusing on more complex compartmental models [12, 13, 14]
or different geographical regions and timeframes [15, 16]. For instance, studies on Germany have
analyzed the nation as a whole or focused on the early stages of the pandemic [13, 14].

In contrast, we perform a high-resolution spatio-temporal analysis of the pandemic across all 16
German federal states over a 1,200-day period (March 2020 to June 2023). Using public data from
the Robert Koch Institute [17, 3], we employ a PINN-based approach to solve the inverse problem
for an SIR model. First, we estimate the state-specific transmission rate, β, and recovery rate, α.
Subsequently, we compute the time-dependent reproduction number, Rt, for each state, providing
granular insights into the evolving transmission dynamics. Our analysis reveals substantial regional
disparities. We find that variations in state-level vaccination rates correlate with both the estimated
transmission rates β and the observed peak reproduction numbers (see Apx. A.4.2), demonstrating
that local factors and interventions had a measurable impact on the pandemic’s trajectory.
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2 Methodology

We employ Physics-Informed Neural Networks (PINNs) [9] to solve the inverse problem of estimating
key parameters of compartmental models from observational data of the 16 German federal states.
Using this framework, we train neural networks to simultaneously fit observed infections and adhere
to the physical constraints imposed by the governing ordinary differential equations (ODEs) [12]. By
embedding the ODEs into the loss function, the unknown model parameters, such as transmission
and recovery rates, become trainable variables that are inferred directly during the optimization. We
include a formal introduction in Apx. A.1. We use the following epidemiological models:

First, standard SIR (Susceptible - Infected - Recovered) [5, 18, 19] for a population of N :

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI, (1)

where β is the transmission rate and α is the recovery rate.

Second, a time-rescaled form [16] with constant α, ts = (t−t0)/(tf−t0), and I(t) = c · Is(ts):
dIs
dts

= α(tf − t0)
(
Rt − 1

)
Is(ts), (2)

where Rt is the time-dependent reproduction number. This number is crucial because an outbreak is
expanding if Rt > 1 and declining if Rt < 1 [1, 16]. Next, we detail the training objectives.

2.1 Time-Independent Parameter Identification (α,β)

We identify global α and β rates by training a PINN to fit observational data and satisfy Eq. (1) [12].
The data fidelity loss (MSE over T days) is

Ldata =
1

T

T∑
t=1

(∥∥∥Ŝ(t) − S(t)
∥∥∥2 + ∥∥∥Î(t) − I(t)

∥∥∥2 + ∥∥∥R̂(t) −R(t)
∥∥2). (3)

Physics consistency is enforced by the residuals of Eq. (1):

Lphysics =
∥∥∥dŜ
dt

+ β̃
ŜÎ

N

∥∥∥2 + ∥∥∥dÎ
dt

− β̃
ŜÎ

N
+ α̃ Î

∥∥∥2 + ∥∥∥dR̂
dt

− α̃ Î
∥∥∥2. (4)

In Eq. (4), we reparameterize the rates via β̃ = tanh(β) and α̃ = tanh(α) to stabilize the inverse
problem [20]. The overall training objective is LSIR = Ldata + Lphysics.

2.2 Time-Dependent Rt Estimation

Following [16], we estimate Rt using the reduced model in Eq. (2). The PINN takes t (days) as an
input and predicts (Î(t),Rt), with data loss

Ldata =
1

T

T∑
t=1

∥∥∥Î(t) − I(t)
∥∥∥2, (5)

and physics loss using the residuals of Eq. (2):

Lphysics =
∥∥∥dÎ
dt

− α(tf − t0)
(
Rt − 1

)
Î
∥∥∥2. (6)

Training is split into two stages: first we minimize Eq. (5); then we minimize LrSIR = w0Ldata +
w1Lphysics (with loss weights w0and w1) to balance data fit and model conformity [16].

3 Data Collection and Experimental Setup

Our analysis utilizes public infection data from the Robert Koch Institute (RKI) [3, 17], spanning
1200 days from March 2020 to June 2023 across all 16 German federal states. Since explicit recovery
data is unavailable, we model a recovery queue to estimate the removed population. To validate our
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Figure 1: State-level results over 1,200 days (Mar 9, 2020–Jun 22, 2023). (a) Estimated recovery
rates α and transmission rates β per state from the SIR–PINN. We visualize mean and standard
deviation per state, alongside national means. (b) Time-varying reproduction number Rt for Germany
and selected states, with vaccine rollout and Alpha/Delta/Omicron peaks marked [24]. Full Rt plots
and correlation to vaccination percentages for all states are provided in the Apxs. A.4.1 to A.4.3.

PINN-based framework, we first reproduce results from a classical ODE solver on early pandemic
data [8], confirming the reliability of our approach before applying it to the full dataset (see Apx. A.2).

In our first analysis, we estimate the global transmission rate β and recovery rate α for each state. We
solve the inverse problem for the standard SIR model using a PINN composed of seven hidden layers
with 20 neurons each and hyperbolic tangent activations [21]. Following established practices [12],
the network is trained for 10,000 iterations with an Adam optimizer [22], treating β and α as trainable
parameters.

In our second analysis, we infer the time-dependent reproduction number Rt to capture evolving
transmission dynamics. Following [16], we perform a two-stage training process totaling 50,000
iterations with balanced loss weights to ensure convergence. For this task, the network architecture
uses ReLU activations [23], and we conduct the experiment using both a standard, fixed recovery rate
(α = 1/14) and the state-specific rates inferred in our first analysis.

Both experiments are repeated ten times to increase the robustness of our results. The full details on
data preprocessing, specific loss weights, and hyperparameters are provided in the Apx. A.3.

4 Results and Discussion

Our main contribution is a 1,200-day, state-level temporal analysis of COVID-19 in Germany using
the PINN framework. This analysis reveals persistent regional differences and long-term trends that
are obscured in national aggregates. We first analyze time-independent transmission and recovery
rates before examining the time-dependent reproduction number Rt. We include extended discussions
and visualizations in the Apxs. A.4.1 to A.4.3.

Time-Independent Parameter Identification Our time-independent analysis reveals significant
heterogeneity in the average transmission rate β and recovery rate α across states (see Fig. 1a).
States with lower vaccination rates, such as Thuringia (β = 0.127) and Saxony-Anhalt (β = 0.120),
exhibit the highest transmission, while states with higher uptake, e.g., Bremen (β = 0.083), show the
lowest. This relationship is quantified by a significant negative correlation between β and vaccination
percentages (r = −0.5741, p = 0.02). These findings reveal a broader geographical pattern, with
eastern states often showing higher transmission dynamics than most western and northern states.
Recovery rates α largely mirror this pattern, suggesting faster turnover where transmission was more
intense, while generally remaining near the 14-day recovery (α ≈ 0.0714) as noted by WHO [25].

Time-Dependent Reproduction number Rt To understand the temporal dynamics underlying
these averages, we estimated the time-dependent reproduction number Rt. The analysis reveals
variations in outbreak severity and persistence (see Table 1 and Fig. 1b). For instance, Thuringia,
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Table 1: Average number of days with Rt > 1, and the average peak Rt values for all German
states (MWP=Mecklenburg-Western Pomerania, NRW=North Rhine-Westphalia) and Germany, for
α = 1/14 and αexp (see Table 2 in Apx. A.4.1). The vaccination percentage provided by the German
Fed. Ministry for Health [26].

days with Rt > 1 peak Rt

State name Vaccinations [%] α = 1/14 αexp α = 1/14 αexp

Germany 76.4 312.0 301.5 1.643 1.705

Schleswig-Holstein 79.5 352.1 355.6 1.525 1.441
Hamburg 84.5 398.3 316.0 1.689 1.577
Lower Saxony 77.6 327.9 298.4 1.637 1.682
Bremen 88.3 326.1 402.9 1.508 1.525
NRW 79.5 280.1 316.8 1.954 1.789
Hesse 75.8 344.1 308.8 1.774 1.750
Rhineland-Palatinate 75.6 341.7 335.5 1.582 1.515
Baden-Württemberg 74.5 372.2 307.0 1.617 1.608
Bavaria 75.1 342.9 321.2 1.719 1.532
Saarland 82.4 388.1 338.9 1.495 1.547
Berlin 78.1 304.7 305.7 1.686 1.485
Brandenburg 68.1 380.2 376.6 1.795 1.466
MWP 74.7 399.8 327.9 1.645 1.375
Saxony 65.1 368.1 368.9 1.696 1.523
Saxony-Anhalt 74.1 345.8 335.9 1.706 1.424
Thuringia 70.3 373.7 387.2 1.959 1.429

which had the highest estimated β, also reached the highest peak Rt of 1.96. Reinforcing the
trend observed in our time-independent analysis, we find a negative correlation between peak Rt

and the state vaccination rates (r = −0.4455, p = 0.079). Although this trend does not meet
the 0.05 threshold for statistical significance, its directionality supports the conclusion that local
interventions had a measurable impact. The inferred Rt captures key pandemic phases, culminating
in a stabilization at or below the epidemic threshold of 1.0 by mid-2022 (see Apx. A.4.3).

5 Conclusions

We presented a 1200-day, state-level analysis of COVID-19 in Germany, using Physics-Informed
Neural Networks (PINNs) [9] to solve the inverse problem for SIR-based models [5, 16] from public
RKI data [3, 17]. Our analysis successfully inferred state-specific transmission rates β and recovery
rates α, as well as the time-dependent reproduction number Rt. The central finding is a significant
negative correlation between state-level vaccination rates and transmission rates, indicating a clear
and measurable link between public health interventions and pandemic dynamics. The temporal
analysis of Rt further contextualized these findings, capturing key pandemic phases, such as the
Omicron wave, before stabilizing below the epidemic threshold of 1.0. Our work demonstrates that
PINNs, when paired with simple, interpretable models, are a powerful tool for robust, long-term
post-hoc analysis of regional policy impacts.

Limitations Our choice of simpler SIR models prioritizes interpretability but does not explicitly
capture complex dynamics such as age structure, waning immunity, or mobility patterns. The analysis
is further constrained by the fidelity of public data, including potential under-ascertainment and
the need to approximate recovery information. This methodological focus, however, makes our
framework directly applicable to the most consistently reported data during the pandemic, daily
infection counts [3, 17].

Outlook Future work can build upon this framework by relaxing these assumptions while retaining
the state-level focus. Incorporating more complex compartmental models (e.g., SEIR, SAIRD,
or SVIHR) [7, 14, 12] or integrating covariates, such as mobility data and non-pharmaceutical
interventions, could provide more granular insights. Applying the PINN methodology to these more
complex models promises to enhance forecasting capabilities for future public health crises.
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A Appendix

A.1 Theoretical Foundations — PINNs for Inverse Problems

In inverse problems, the goal is to infer unknown system parameters (e.g., coefficients, bound-
ary/initial conditions in ODEs/PDEs) from partial or noisy observations of the system’s behavior [27].
Physics-Informed Neural Networks (PINNs) [9] address these by embedding the governing differen-
tial equations directly into the neural network’s training process.

A.1.1 Mathematical Formalization:

Consider a system described by differential equations over a spatial domain Ω and time t ∈ [0, T ]:

F(u(x, t),∇u(x, t),∇2u(x, t), ...|λ) = 0, in Ω× [0, T ], (7)

where u(x, t) is the variable of interest (e.g., number of infected people), F is a differential operator,
and λ are unknown parameters to be inferred. Given observations {(xi, ti, ui)} of the system, the
inverse problem is to estimate λ such that u(x, t) satisfies both the physical laws (Eq. (7)) and the
observed data.

PINNs approximate u with a neural network uθ(x, t) (where θ are the trainable parameters) and learn
λ by minimizing a composite loss function [9, 10].
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A.1.2 Loss Function:

The total loss function for an inverse problem combines data fidelity and physics consistency and
is defined as L(θ, λ) = Ldata(θ) + Lphysics(θ, λ). The data loss Ldata ensures that uθ matches
observations:

Ldata(θ) =
1

N

N∑
i=1

|uθ(xi, ti)− ui|2 . (8)

The physics loss Lphysics penalizes deviations from the governing differential equations (Eq. (7)):

Lphysics(θ, λ) =
1

M

M∑
j=1

∣∣F(uθ(x, t),∇uθ(x, t),∇2uθ(x, t), ...|λ)
∣∣2 . (9)

The unknown PDE parameters λ are treated as trainable variables alongside the neural network
weights θ, optimized by minimizing L(θ, λ). Additional balancing of the loss terms using scalar
hyperparameters is possible.

A.1.3 Compartmental Models for Epidemiology and Inverse Problem

Compartmental models are the foundation of mathematical epidemiology [18, 5, 19] to study the
spread of diseases. The SIR model [5] partitions a population of size N into three distinct compart-
ments:

• Susceptible (S) individuals at risk of infection.

• Infected (I) individuals capable of transmitting the disease.

• Removed (R) individuals recovered with immunity or deceased.

The evolution of these compartments over time is governed by the following system of ordinary
differential equations (ODEs):

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI, (10)

where β is the transmission rate and α is the recovery rate.

Real-world infectious diseases exhibit dynamic behavior due to changing intervention strategies,
population immunity, and viral mutations. A key metric to measure this is the effective reproduction
number Rt [7], quantifying the average secondary infections from one infected individual at time t:

Rt =
β(t)

α(t)
· S(t)

N
. (11)

Specifically, an outbreak is expanding if Rt > 1 and declining if Rt < 1 [1, 16].

To model time-varying dynamics, Millevoi et al. [16] reformulated SIR using a rescaled time-
dependent formulation, assuming a constant recovery rate α. Let ts be a normalized time variable
ts = (t−t0)/(tf−t0), for an interval t ∈ [t0, tf ]. Then the infected compartment I(t) is scaled by a
constant c as I(t) = c · Is(ts), where the dynamics of the scaled infected compartment Is are given
by:

dIs
dts

= α(tf − t0)(Rt − 1)Is(ts). (12)

A.2 Reproducing Pandemic Parameters using PINNs

In order to validate our method, we reproduced the results of a traditional method on real-world data.
Bärwolff et al. [8] employ the damped Gauss-Newton method to find β from a time series of data
points. Furthermore, they provide the time points, which they used to derive β for the time span
between February 13, 2020, and March 19, 2020, together with the corresponding βtrue = 0.22658.

Just like the original study, we set α = 0.07 for the experiment. Our model consists of 12 hidden
layers with 64 neurons each and hyperbolic tangent [21] activation layers. We trained using a
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Figure 2: Visualization of the real numbers of infectious individuals in Germany and the prediction
of the training with α = 0.07 for the time span between February 13, 2020, and March 19, 2020.

polynomial scheduler from PyTorch [28], the Adam optimizer [22], an initial learning rate of 1e−3,
and 15K iterations. The data loss is weighted by 1e1 in the total loss.

As the provided data consists only of infectious data, we generated the corresponding data for the
susceptible and removed compartments by utilizing Eq. (1). The population size is N = 70M
individuals, and the provided initial amount of infectious individuals is I0 = 15.

In Fig. 2, we visualize our results from the training, demonstrating that the model successfully fits the
predictions to the observed data. We repeated the experiment ten times, which resulted in a mean
of βPINN = 0.22822 and a standard deviation of σ2

PINN = 1.03367× 10−5. A comparison with the
provided value of βtrue = 0.22658 indicates that our method has a satisfying accuracy. Hence, we
will employ PINNs to investigate longer time frames and regional variations in our main study.

A.3 Experimental Setup Details

We use public Robert Koch Institute (RKI) infection data [3, 17], preprocessing raw infections [29]
per federal state and German death cases [30] separately. Lacking explicit recovery data, we model a
recovery queue to transition infected individuals to the removed group, aligning with typical recovery
periods noted by WHO [25]. We use state population sizes from 2020 [31], and the initial number of
infectious individuals is taken from the original cases recorded on March 9, 2020. Our analysis spans
March 9, 2020, to June 22, 2023 (1200 days), covering the most active phases of the COVID-19
pandemic [3, 17].

To estimate pandemic parameters for each German state, we employ Physics-Informed Neural
Networks (PINNs) to fit SIR models to observed case data, as detailed in Apx. A.1. Crucially,
before applying this framework to the extended RKI data, we validate its fundamental capabilities.
Thus, we first replicate an experiment from [8], where Germany’s early pandemic dynamics were
analyzed using a classical dampened Gauss-Newton method. Using this approach, they approximate
the transmission rate β as 0.22658, whereas our PINN-based approach yields a consistent result of
0.22822 on their data. This replication confirms that our PINN-based approach reproduces results
obtained by established PDE solvers, providing confidence in its application to more complex
scenarios. We include the full details of this validation in the supplementary material.

With our methodology validated, the core contribution of our work is the fine-grained, spatiotemporal
analysis of COVID-19 dynamics across all German federal states over a three-year period. Our focus
is thus not on comparative benchmarking with other solvers, which often operate on synthetic or
short-term data. Instead, we aim to demonstrate the practical utility of PINNs for extracting detailed
insights from extensive, real-world epidemiological data. To ensure the robustness of our findings,
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Table 2: Pandemic parameter means and standard deviations for Germany, and each German state
(MWP=Mecklenburg-Western Pomerania, NRW=North Rhine-Westphalia). Furthermore, we include
the vaccination percentage provided by the German Fed. Ministry for Health [26] and corresponding
population sizes [31].

State N [106] α β Vaccinations [%]

Germany 83.16 0.080 ±0.000 0.104 ±0.001 76.4

Schleswig-Holstein 2.90 0.077 ±0.000 0.097 ±0.000 79.5
Hamburg 1.84 0.084 ±0.000 0.108 ±0.001 84.5
Lower Saxony 7.99 0.074 ±0.001 0.097 ±0.001 77.6
Bremen 0.68 0.061 ±0.000 0.083 ±0.000 88.3
NRW 17.94 0.078 ±0.000 0.100 ±0.001 79.5
Hesse 6.29 0.066 ±0.001 0.086 ±0.001 75.8
Rhineland-Palatinate 4.08 0.079 ±0.001 0.102 ±0.001 75.6
Baden-Württemberg 11.07 0.086 ±0.000 0.113 ±0.001 74.5
Bavaria 13.10 0.080 ±0.001 0.109 ±0.002 75.1
Saarland 0.99 0.072 ±0.000 0.098 ±0.001 82.4
Berlin 3.67 0.090 ±0.001 0.112 ±0.001 78.1
Brandenburg 2.52 0.086 ±0.001 0.109 ±0.001 68.1
MWP 1.61 0.092 ±0.000 0.118 ±0.000 74.7
Saxony 4.07 0.081 ±0.001 0.109 ±0.001 65.1
Saxony-Anhalt 2.20 0.093 ±0.000 0.120 ±0.000 74.1
Thuringia 2.13 0.097 ±0.001 0.127 ±0.001 70.3

each experiment is repeated ten times per state. Further, we investigate the pandemic’s evolution
under two separate paradigms:

A.3.1 Time-Independent Parameter Identification:

First, we estimate the transmission (β) and recovery (α) rates for the entire pandemic by optimizing a
PINN to fit the SIR model and the observed infection data, as detailed in Sec. 2.1. Here α and β are
trainable variables initialized within the PINN training process.

We employ a PINN architecture comprising seven hidden layers (each with 20 neurons) and hyperbolic
tangent activations [21]. Adhering to hyperparameter settings from [12], the model is subsequently
trained for 10K iterations using a 0.001 learning rate with a polynomial scheduler [28]. The complete
training process is repeated ten times for each German state to obtain state-wise estimates of α and β.

A.3.2 Time-Dependent Reproduction Number (Rt) Estimation:

Following [16], we estimate the time-dependent reproduction number Rt, assuming a constant
recovery rate of α = 1/14 for normal conditions, as noted by WHO [25]. Additionally, we conduct
a second experiment using the state-wise αexp values determined in our first time-independent
experiment.

We use the same PINN architecture, employing ReLU activations [23]. To ensure the model effectively
learns the infection compartment, we first optimize only the data loss (Ldata) for 30K iterations. Next,
we train using the combined loss LrSIR for 20K iterations, initializing Rt from the time-independent
experiment results. In LrSIR, we find balancing Ldata and Lphysics to be crucial for ensuring convergence
given the different magnitudes of the loss terms. Specifically, we multiply the data loss by w0 = 102

and scale the physics term by w1 = 1× 10−6. For the federal states, we observe improvements when
increasing both weights to 103 and 4× 10−6 respectively, due to the smaller population sizes. As
before, each experiment is repeated ten times to ensure robustness.
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Figure 3: Higher vaccination coverage coincides with lower pandemic effects. (Left): The correlation
between the vaccination rate and the corresponding mean transmission rate β for each federal state.
(Right): The correlation between the vaccination rate and the peak Rt value for each state.

A.4 Additional Results

A.4.1 Time-Independent Parameter Estimates

Table 2 presents results for our first setup, showing the estimated recovery rate α and transmission
rate β for each German state, along with vaccination percentages as reported by the German Federal
Ministry for Health [26]. The results highlight significant regional variations in pandemic dynamics.

A.4.2 Correlation Analysis

Our analysis reveals a negative correlation between state-level vaccination rates and key transmission
metrics, as illustrated in Fig. 3. We computed a statistically significant Pearson correlation of
r = −0.5741 (p = 0.02) between the estimated transmission rate β and the vaccination percentage
for each state. A similar negative trend can be observed between the peak reproduction number Rt

and vaccination rates (r = −0.4455, p = 0.079), although this result was not statistically significant
at the 0.05 level. These regional differences suggest that local interventions had a measurable impact
on transmission dynamics, highlighting the value of localized analyses.

A.4.3 Additional Rt Visualizations

In this section, we present all results of our experiments for the estimation of the time-dependent
reproduction number Rt in Sec. 4. Specifically, we visualize the Rt trends in Figs. 4 to 6. We find
distinct regional variations in transmission intensity and pandemic duration across the German federal
states. Eastern states such as Saxony, Thuringia, and Saxony-Anhalt experienced prolonged periods
where Rt > 1, aligning with their high transmission rates and lower vaccination coverage. In contrast,
northern states like Bremen, Schleswig-Holstein, and Lower Saxony exhibited lower peak values and
shorter transmission durations, reflecting the effectiveness of their higher vaccination rates and public
health measures. Southern states, including Bavaria and Baden-Württemberg, saw strong waves
during Alpha and Delta but recovered faster post-Omicron, likely due to a combination of vaccine
uptake and healthcare capacity. Western states, particularly North Rhine-Westphalia and Hesse, had
moderate outbreaks but were able to manage transmission effectively, keeping Rt under control
for longer periods. Berlin displayed higher-than-expected peak values despite strong vaccination
efforts, likely influenced by its high population density and mobility patterns, whereas Brandenburg
exhibited prolonged transmission, suggesting spillover effects from Berlin. These findings emphasize
the importance of considering regional differences in pandemic response planning, as factors such
as mobility, healthcare infrastructure, and policy measures played a significant role in shaping the
trajectory of COVID-19 across Germany.
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Figure 4: All visualizations of the Rt value from Sec. 4. (part 1)
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Figure 5: All visualizations of the Rt value from Sec. 4. (part 2)
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Figure 6: All visualizations of the Rt value from Sec. 4. (part 3)
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