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Abstract
Despite their remarkable success and deploy-
ment across diverse workflows, language mod-
els sometimes produce untruthful responses.
Our limited understanding of how truthfulness
is mechanistically encoded within these mod-
els jeopardizes their reliability and safety. In
this paper, we propose a method for identifying
representations of truthfulness at the neuron
level. We show that language models contain
truth neurons, which encode truthfulness in
a subject-agnostic manner. Experiments con-
ducted across models of varying scales validate
the existence of truth neurons, confirming that
the encoding of truthfulness at the neuron level
is a property shared by many language models.
The distribution patterns of truth neurons over
layers align with prior findings on the geome-
try of truthfulness. Selectively suppressing the
activations of truth neurons found through the
TruthfulQA dataset degrades performance both
on TruthfulQA and on other benchmarks, show-
ing that the truthfulness mechanisms are not
tied to a specific dataset. Our results offer novel
insights into the mechanisms underlying truth-
fulness in language models and highlight po-
tential directions toward improving their trust-
worthiness and reliability. The code of the
paper can be found at https://github.com/
Acatsama0871/TruthNeurons.

1 Introduction

Language models have demonstrated remarkable
text-generation capabilities across various tasks
(Jiang et al., 2024; Li et al., 2024; Zhang et al.,
2023), but they struggle to consistently produce
correct outputs in certain question-answering sce-
narios (Huang et al., 2025, 2024b). The struggle
arises partly because language models lack suffi-
cient relevant knowledge about specific questions
in their pretrained data (Chang et al., 2024). More-
over, language models may generate incorrect an-
swers despite recognizing the incorrectness of the
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responses (Zheng et al., 2023). For instance, prior
research has shown that language models aligned
with human feedback tend to accommodate users’
incorrect responses, even when the models initially
identify these responses as false (Wei et al., 2024a).
Although the correctness of language models can
be substantially improved through self-consistency
checking (Manakul et al., 2023), post-training (Ton-
moy et al., 2024), and optimizing decode strategies
(Chuang et al., 2024; Chen et al., 2024), it is still
unknown whether there exists a truth mechanism,
a special mechanism within language models that
drives the generation of accurate answers.

Research on mechanistic interpretability has
begun to probe representations of truthfulness
through analyses of hidden states: Orgad et al.
(2024) applied linear probes to reveal meaning-
ful patterns of truth-related encoding. Marks and
Tegmark (2023) identified specific tokens and lay-
ers involved in truthfulness and demonstrated a
linear encoding of truth and falsehood using prin-
cipal component analysis (PCA). Ferrando et al.
(2024) used sparse autoencoders (SAEs) to iden-
tify the features related to entity awareness and
hallucination.

Despite these advancements, neuron-level mech-
anisms of truthfulness remain unknown. The neu-
ron is a fundamental level of analysis in both the hu-
man brain and Transformer-based neural networks.
For example, specific neurons in the human brain
(e.g., those in the dorsolateral and ventrolateral pre-
frontal cortex) selectively activate when performing
certain cognitive operations, such as evaluating the
truthfulness of particular events (Jamali et al., 2021;
Quiroga et al., 2008; Hubbard et al., 2008; Jenk-
ins et al., 2016). Analogous to these observations
in the human brain, the transformer-based models
that underlie language models also exhibit func-
tional specialization. Transformers are believed to
activate distinct regions selectively, facilitating in-
teractions necessary for informed decision-making,
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Figure 1: Overview of our method that detects the truth neurons.

such as true-or-false judgments (Kumar et al., 2024;
Wei et al., 2024b; Kan et al., 2022; Sun et al., 2024;
Kim et al., 2023). At the neuron level, recent re-
search has also observed the knowledge storage
and retrieval mechanisms to varying extents (Dai
et al., 2021; Niu et al., 2024), but as we will show,
the mechanisms to process truth differ from those
of the knowledge entities. Truth mechanisms are
not localized to specific entities (even datasets),
whereas the knowledge storage is localized to each
data entry.

Here, we develop a method informed by neu-
roscience and interpretability research to detect
truth neurons, specialized truth-processing struc-
tures within language models. Our method starts
with an axiomatic attribution (Sundararajan et al.,
2017), using integrated gradients to measure neu-
ron attribution scores for truthful vs. untruthful
responses. We identify candidate neurons posi-
tively contributing to truthfulness and negatively
correlated with untruthfulness. We then apply a
systematic filtering procedure to select a small sub-
set of neurons causally linked to truthfulness rep-
resentations. Upon suppressing these identified
truth neurons, we observe a statistically significant
reduction in accuracy on the TruthfulQA bench-
mark (Lin et al., 2021). Further analysis reveals
that this reduction is not biased toward any spe-
cific category, suggesting that these neurons en-
code a general, category-agnostic representation
of truthfulness. Additionally, we demonstrate that
the influence of the truth neurons generalizes effec-
tively to other truthfulness benchmarks. As we will
show in our experiments, identifying and analyzing
truthfulness mechanisms at neuronal granularity
reveals insights that deepen our understanding of
truthfulness representations in Transformer-based
language models.

In summary, our work makes the following con-
tributions:

• We propose a novel method to identify truth neu-
rons. By analyzing neuron attributions, we suc-
cessfully isolate a small subset of neurons whose
activations have a statistically significant impact
on the model’s ability to discern truthfulness
(Section 2).

• Through carefully designed experiments, we
demonstrate that the identified neurons encode
general, example-agnostic representations of
truthfulness, and that their influence generalizes
effectively to other out-of-distribution truthful-
ness benchmarks (Section 3.2 & Section 3.3).

• Finally, we investigate the distribution patterns
of these identified truth neurons across model
layers, observing a consistent pattern that aligns
closely with existing findings (Section 3.4).

We believe our results offer insights into im-
proving the trustworthiness and safe deployment of
language models, highlighting promising future di-
rections for enhancing model alignment with truth-
fulness.

2 Methodology

In this section, we propose an integrated gradient-
based approach (Sundararajan et al., 2017) to sys-
tematically identify and isolate neurons causally
associated with a model’s ability to discern the
truthfulness of factual statements. Within Trans-
former architectures, feed-forward (MLP) layers
have been characterized as key-value memory struc-
tures closely tied to factual knowledge recall (Geva
et al., 2021); attention heads have similarly been
linked to truthfulness representations (Li et al.,
2023). Therefore, we extend neuron attribution



analyses to encompass both MLP and attention
modules across all intermediate layers.

2.1 Preliminaries

As our goal is to identify neurons correlated with
the model’s truthfulness behavior, integrated gradi-
ent is a suitable tool, as it satisfies desirable axioms
and effectively quantifies each neuron’s contribu-
tion to model behavior. Following the setup of
Sundararajan et al. (2017). Let X ∈ Rn be the
input tensor of the neural network, X ′ ∈ Rn be
the baseline input tensor required by the method,
and f : Rn → R denote the function representing
the neural network. Additionally, define ni

i,l as the
intermediate neuron activation output at layer l and
index i, with nb

i,l representing the corresponding
activation when the baseline input is applied. The
integrated gradient method computes neuron attri-
bution as a path integral along the straight-line path
γ(α) from X ′ to X , where α represents the incre-
mental interpolation parameter indicating progress
along the path:

γ(α) = nb
i,l + α(ni

i,l − nb
i,l), α ∈ [0, 1] (3)

Attr(ni,l | f(X)) :=

∫ 1

0

∂f(γ(α))

∂γ(α)
dα (4)

=

∫ 1

0

∂f(γ(α))

∂γ(α)

dγ(α)

dα
dα (5)

=
(
ni
i,l − nb

i,l

)∫ 1

0

∂f
(
nb
i,l + α

(
ni
i,l − nb

i,l

))
∂ni,l

dα (6)

Intuitively, integrated gradient attribution quan-
tifies a neuron’s contribution to the final predic-
tion by measuring how the predicted probability
changes as the neuron’s activation is gradually
shifted from its baseline value toward its activa-
tion in the actual input. In the computation, the
integral is approximated by a Riemann sum, and
the approximation precision is controlled by the
step parameter m.

2.2 Identifying Truth Neurons

Notation. For each question q, the dataset pro-
vides one correct answer t and one incorrect an-
swer f , with the incorrect answer closely matching
the length and format of the correct answer when-
ever possible. We construct the input prompt T by
appending these two answers after the question in
randomized order, labeling them as options A and B.
Additionally, an instruction i explicitly prompts the

model to select the option that correctly answers
the question. We can then denote a dataset D with
N questions as:

D = {T (k)}Nk=1 = {⟨q, t, f, i⟩(k)}Nk=1, (7)

where k indexes the dataset D.
Accounting for upper and lower cases. Let M
denote the language model’s output probability dis-
tribution. We observed that language models fre-
quently interchange the uppercase and lowercase
forms of output labels. To cover both cases, we
define the prediction probability f as the sum of
both the uppercase probability and the lowercase
probability. For example, when the correct answer
is labeled A, the probability for the correct response
is:

f(T | t) = M(ŷ = A | T ) +M(ŷ = a | T ). (8)

Similarly, the probability for the incorrect re-
sponse labeled B is:

f(T | f) = M(ŷ = B | T ) +M(ŷ = b | T ). (9)

This definition applies analogously when the cor-
rect answer is labeled B and the incorrect answer
A. Note that for both the correct and the incorrect
answers, we query the probabilities from the same
distribution (i.e., the same prompt T ), avoiding the
lexical biases.
Deconfounding untruthfulness. For a given neu-
ron ni,l at the ith position and the lth layer, ap-
plying integrated gradients to the input with re-
spect to the correct and incorrect responses yields
Attrt(ni,l | f(T | t)) and Attrf (ni,l | f(T | f)),
the two corresponding attribution scores.

We denote by AttrAvg
t and AttrAvg

f the average
truthful and untruthful attribution scores computed
over N examples, respectively. We further define
the attribution difference for a single example as
D(ni,l) in Eq 1, and the average attribution differ-
ence across all examples in the dataset as D̄(ni,l)
in Eq 2.

Empirically, the signs of the truthful attribution
scores Attrt(ni,l | f(T | t)) and the untruthful
attribution scores Attrf (ni,l | f(T | f)) can be
categorized into four distinct scenarios, which con-
sequently determine the signs of D(ni,l):

[1] Both positive: The neuron positively con-
tributes to both correct and incorrect re-
sponses; the overall attribution difference de-



D(ni,l) = Attrt(ni,l | f(T | t))− Attrf (ni,l | f(T | f)) (1)

D̄(ni,l) =
1

N

N∑
j=1

(Attrt(ni,l | f(T | t))− Attrf (ni,l | f(T | f))) = AttrAvg
t − AttrAvg

f (2)

Figure 2: Examples of attribution score computation. The left side shows example attribution scores for truthful and
untruthful responses, and the right side shows the resulting attribution differences. Colors correspond to the four
scenarios discussed above. In case [1], competing attributions result in a positive difference, indicating a positive
correlation with truthfulness, while case [4] illustrates the opposite situation. Case [2] indicates a clear bias toward
untruthfulness, whereas case [3] shows a strong bias toward truthfulness.

pends on the relative magnitudes of these con-
tributions.

[2] Truthful negative, untruthful positive: The
neuron predominantly supports untruthful re-
sponses, negatively contributing to truthful-
ness and positively correlating with untruth-
fulness. This combination results in a nega-
tive attribution difference, indicating it is not
a truth neuron.

[3] Truthful positive, untruthful negative: The
neuron supports truthfulness, positively con-
tributing to truthful responses and negatively
correlating with untruthful responses. This
combination yields a large positive attribution
difference, clearly indicating a truth neuron.

[4] Both negative: The neuron negatively con-
tributes to both responses; the attribution dif-
ference depends on the strength of each nega-
tive contribution.

We illustrate each case example in Figure 2.
Hypothesis testing against randomness. To test
whether a neuron consistently encodes truthfulness-
related information, we conducted a Student’s t-test
for D̄(ni,l) against 0. The null and alternative hy-
potheses are defined below. If truthfulness-related
information is successfully encoded, the null hy-
pothesis will be rejected, and the alternative hy-
pothesis will be accepted; otherwise, the reverse

will hold.

H0 : D̄(ni,l) ≈ AttrAvg
t − AttrAvg

f + ϵ = 0,

Ha : D̄(ni,l) > 0.
(10)

where ϵ is assumed to resemble random noise
due to averaging over diverse inputs varying in
semantics and syntax, likely activating different
neurons. We applied the Bonferroni correction to
the t-tests to mitigate the inflation of Type I errors
caused by the multiple comparisons problem.

2.3 Systematic Filtering for Dataset and
Attributions

To more accurately and efficiently identify the truth
neurons of interest, we applied additional filtering
steps to both the dataset and the neuron activations.
Manipulation check. We conducted a manipula-
tion check to ensure we were probing neurons that
accurately reflect the truthfulness of the language
model. Specifically, we retained only those exam-
ples for which the model can answer correctly. If
the model fails to correctly distinguish between
truthful and untruthful responses, it indicates a lack
of the necessary knowledge regarding truthfulness.
Consequently, any neuron-level probing in such
cases would not yield meaningful insights into the
underlying mechanism of truthfulness.
Systematic filtering. To efficiently identify a can-
didate set of truth neurons, we follow a refining ap-
proach similar to that described in Dai et al. (2021).



Specifically, we consider only those neurons whose
attribution differences D(ni,l) are notably salient
across the examples. The filtering process involves
two main steps. First, for each example and each
layer type, we identify the maximum neuron activa-
tions across all layers and retain only those whose
activations exceed an adaptive threshold set at t%
of this maximum activation. Second, after iden-
tifying the most salient neurons per example for
each layer type, we further require that neurons
consistently remain among the most salient across
at least p% of examples—referred to as the share
threshold. This ensures that the selected neurons re-
liably represent truthfulness that generalizes across
examples rather than being tied to specific input
features or triggered by sporadic activations.
Adjustment to avoid double-dipping. Threshold-
based neuron identification methods may suffer
from non-independence errors due to the reuse
of the same dataset for both neuron selection and
subsequent statistical analyses, a problem known
as “double-dipping” or circular analysis in statis-
tics (Kriegeskorte et al., 2009). To avoid double-
dipping, we adopted a strategy recommended by
Vul et al. (2009): we split the dataset into two
halves, using the first half to select the neurons
and the second half to conduct statistical tests. In
this way, the selection and statistical analysis pro-
cedures are separate.

3 Experiments and Results

To verify the existence of truth neurons and deter-
mine whether they faithfully represent truthfulness,
we propose the following three research questions
(RQs):

• RQ1: Do truth neurons exist across language
models?

• RQ2: Do truth neurons identified using Truth-
fulQA generalize beyond that dataset?

• RQ3: What is the distribution pattern over layers
for truth neurons within language models?

3.1 Experiment Setup

We conduct experiments using six state-of-the-
art open-source models across various parameter
scales to demonstrate the generalizability and ro-
bustness of our method. Specifically, we include
Llama-3.2-3B-Instruct (Grattafiori and etal, 2024)
and Qwen-2.5-3B-Instruct (Qwen et al., 2025) as
representatives of small-scale models; Llama-3.1-

8B-Instruct and OLMo-2-7B-Instruct (OLMo et al.,
2025) as medium-scale models; and Mistral-Nemo-
Instruct (team, 2024) and OLMo-2-13B-Instruct
as examples of relatively large-scale models. To
ensure fairness, we employ a consistent, standard-
ized instruction prompt across all models for truth
neuron identification, detailed in Figure 6. The
integrated gradient method is approximated using
m = 20 interpolation steps, and the share thresh-
old is set to p = 40%. Since attribution scales vary
across models, the adaptive threshold (t%) requires
manual tuning. We observed that excessively high
thresholds filter out too many neurons, resulting in
minimal or negligible performance impacts upon
suppression. Conversely, thresholds set too low
include numerous neurons that may be unrelated
to truthfulness, whose suppression significantly im-
pairs the model’s instruction-following abilities and
hinders accurate evaluation. The criteria guiding
threshold selection and specific hyperparameter val-
ues for each model are provided in Section A.2. We
used the binary-choice TruthfulQA dataset to iden-
tify the truthfulness representations. The TriviaQA
and MMLU datasets are used to verify the gener-
alization effect of the truth neurons. The dataset
details are outlined in Appendix A.1 The experi-
ments are conducted with 4xNVIDIA H100 and
1xNVIDIA H200.

3.2 Existence

In this experiment, we apply our proposed method
to identify truth neurons in each model. Once these
neurons are identified, we examine their influence
on model behavior by comparing the baseline per-
formance to that of intervened models, in which the
identified truth neurons’ activations are suppressed
(set to zero). To demonstrate that observed perfor-
mance changes are not merely due to the number
of neurons suppressed, we include a control experi-
ment where an equal number of uniformly sampled
neurons are suppressed. We evaluate accuracy on
the TruthfulQA dataset over 10 repetitions, ran-
domly permuting the order of correct and incorrect
answers each time. The evaluation results are re-
ported in Table 1. Additionally, to quantitatively
measure the impact and the strength of suppress-
ing the truth neurons, Figure 3 demonstrates the
average correct answer’s probability change after
suppressing the neurons defined as:

fpre(T | t)− fpost(T | t)
fpre(T | t)

. (11)



In response to RQ1, we find that truth neu-
rons can indeed be identified in language mod-
els. Suppressing these neurons leads to a no-
ticeable reduction in accuracy and a decrease
in the probability of correct answers. Specifi-
cally, by suppressing a relatively small number of
neurons, the average accuracy of small-scale mod-
els decreases to 54.25%, representing a degrada-
tion of 10.49%. Similarly, the average accuracy
of medium- and large-scale models declines to
46.35% and 49.70%, respectively, corresponding to
accuracy reductions of 17.90% and 17.13%. These
performance reductions are statistically significant
(p < 0.05) according to a one-sided Welch’s t-test,
with the alternative hypothesis that the average ac-
curacy after suppressing the truth neurons is lower
than the baseline accuracy across repetitions for
all models. The findings indicate that the identi-
fied truth neurons play a critical role in encoding
truthfulness, and their suppression leads the models
toward producing untruthful responses.

Figure 3: Average change in the probability of correct
answers before and after suppressing the truth neurons,
computed as defined in Eq 11, averaged over 10 repeti-
tions for each model. Values are reported as percentages
(%).

Furthermore, as illustrated in Figure 3, suppress-
ing truth neurons significantly affects the models’
predicted probabilities for correct answers, with an
average probability reduction of 22.10%. Addition-
ally, we observe from Figure 3 that suppression
effects are consistently similar among models from
the same family, reflected by comparable magni-
tudes of probability reduction. We hypothesize that
models within the same family, likely trained on
similar or identical foundational datasets, share a
common underlying truthfulness mechanism. Thus,
the formation of truth neurons may be closely re-

lated to the distributional properties of their training
data.

The identified truth neurons represent gen-
eral aspects of truthfulness, and the suppression
effects are not tied to particular categories in the
TruthfulQA dataset. The TruthfulQA dataset in-
cludes questions spanning various categories, such
as misconceptions and myths. Figure 4 shows the
proportion of questions within each category for
which the probability of selecting the correct an-
swer decreases after suppressing the identified truth
neurons. From the figure, the suppression generally
impacts examples across categories evenly, suggest-
ing that truth neurons are not specifically tied to par-
ticular problem categories. Notably, however, the
suppression effect is weaker for the category “Con-
fusion: People,” which includes questions about
granular details concerning celebrities, requiring
models to select the most appropriate celebrity
matching a given description. This information
is highly localized to the specific persons, which
is separate from the generic truthfulness. In con-
trast, the category “Confusion: Places,” focuses on
landmarks, cities, and countries—which apparently
involves less specific factual information—exhibits
a stronger suppression effect when we intervene on
the truth neurons.

3.3 Generalization Beyond Truthful QA
In this experiment, we aim to verify whether
the truth neurons identified using the TruthfulQA
dataset generalize beyond that specific dataset, re-
flecting a broader, dataset-agnostic representation
of truthfulness. Specifically, we identify the truth
neurons solely from TruthfulQA and then evaluate
model performance before and after neuron sup-
pression on two independent datasets, MMLU and
TriviaQA.

In response to RQ2, we find that the identi-
fied truth neurons generalize their influence to
out-of-distribution datasets, further strengthen-
ing our claim that these neurons encode general
truthfulness. (Table 3) Except for the performance
of Qwen-2.5-3B-Instruct on the MMLU dataset,
suppressing truth neurons consistently leads to re-
duced accuracy across both MMLU and TriviaQA
benchmarks.

3.4 Pattern of Truth Neurons over Layers
After identifying the truth neurons, an interesting
question arises concerning their distribution pat-
terns within language models and whether a uni-



Model Baseline Suppressed Random Neurons Suppressed Truthful Neurons

Acc. (%) Acc. (%) Acc. (%) # of Neurons

Qwen2.5-3B-Instruct 65.67 ± 0.67 65.91 ± 1.08 58.59 ± 0.68* 35
Llama-3.2-3B-Instruct 55.55 ± 0.76 55.47 ± 1.49 49.90 ± 1.00* 114
OLMo-2-1124-7B-Instruct 50.76 ± 0.91 51.42 ± 0.96 49.38 ± 1.12* 655
Llama-3.1-8B-Instruct 62.15 ± 0.94 62.10 ± 1.15 43.31 ± 0.88* 37
Mistral-Nemo-Instruct-2407 (12B) 58.06 ± 0.99 58.46 ± 1.08 50.04 ± 1.25* 181
OLMo-2-1124-13B-Instruct 61.89 ± 0.63 61.85 ± 0.71 49.35 ± 1.16* 75

Table 1: Number of truth neurons identified under the specified hyperparameter setup, along with accuracy (Acc.)
comparisons among the baseline, random-neuron suppression, and truth-neuron suppression conditions. Bold values
marked with * indicate statistically significant accuracy reductions (p < 0.05) from the baseline to the truth-neuron
suppression condition across 10 repetitions. Accuracy is reported in percentage (%).

Figure 4: Proportion of questions within each category for which the probability of selecting the correct answer
decreases after suppressing the identified truth neurons. Values are averaged over 10 repetitions and reported as
percentages (%). Categories with fewer than 15 questions are not shown.

versal pattern exists (RQ3). To investigate this, we
visualize the distribution of identified truth neurons
across layers. Figure 5 illustrates the proportion
of truth neurons identified within each layer, with
darker colors indicating a higher concentration of
neurons. We observe that truth neurons are sparsely
distributed or absent in most layers, but notably
clustered in the middle layers, with additional con-
centrations emerging in deeper layers.

In response to RQ3, we find a consistent pat-
tern in which identified truth neurons predomi-
nantly cluster in middle layers, with secondary
concentrations in later layers (Figure 5). This
distribution aligns closely with previous findings
(Marks and Tegmark, 2023; Li et al., 2023; Orgad
et al., 2024), suggesting that truthfulness-related
mechanisms primarily appear in the middle to later
stages of language models.

4 Related Work

4.1 Neuron Basis Interpretability Methods

Language models (Vaswani et al., 2017; Devlin
et al., 2019; Brown et al., 2020) have achieved
promising advancements in text generation, under-
standing, and complex reasoning, enabling diverse
applications across multiple domains (Wu et al.,
2023; Huang et al., 2024a; Singhal et al., 2022).
However, the underlying mechanisms of language
models remain a focus of research (Zhang et al.,
2024). Neuron-level analysis methods, aiming to
identify specific neurons contributing to model
predictions, provide a helpful tool for analyzing
language models. Geva et al. (2021) proved that
multi-layer perceptron layers serve as key-value
memories storing knowledge. Building upon these
findings, Dai et al. (2021) introduces a method to
identify “knowledge neurons” linked to specific



Model Baseline Truthful Neurons Suppressed

Trivia QA MMLU Trivia QA MMLU

Qwen2.5-3B-Instruct 63.51 62.10 62.90 62.70
Llama-3.2-3B-Instruct 58.60 51.87 55.16 44.54
OLMo-2-1124-7B-Instruct 60.07 50.81 59.46 28.13
Llama-3.1-8B-Instruct 70.15 61.29 62.41 53.85
Mistral-Nemo-Instruct-2407 (12B) 63.39 45.21 52.09 44.73
OLMo-2-1124-13B-Instruct 59.09 58.68 49.88 55.73

Table 3: Comparison of model performance on TriviaQA and MMLU before and after suppressing truthful neurons.
Results are reported as accuracy percentages (%).

Figure 5: Distribution of identified truth neurons across layers for different language models. Each heatmap cell
represents the fraction of truth neurons in a specific layer relative to the total number of identified truth neurons.
Darker colors indicating a higher concentration of neurons.

facts, demonstrating that manipulating neuron acti-
vations enables targeted factual edits without need-
ing model fine-tuning. Niu et al. (2024) and Yu and
Ananiadou (2024) thoroughly analyze the knowl-
edge neuron hypothesis, showing that the concept
of “knowledge neurons” may be an oversimpli-
fication, as linguistic features can also be edited
similarly. Recently, Zhao et al. (2025) employed
neuron-level analysis to identify safety-related neu-
rons. Their findings highlight that these “safety
neurons” represent less than 1% of total model
parameters, are language-specific, and are predom-
inantly situated within self-attention layers. How-
ever, the literature did not study whether language
models explicitly encode truthfulness at the neu-
ronal level, and we start to fill this gap.

4.2 Truthfulness

Language models’ output does not always out-
put true text (Chuang et al., 2024; Park et al.,
2024). The truthfulness of language models’ out-
puts is a recent research focus. Several standard
Question-Answer datasets are designed to measure
the truthfulness of language models (Joshi et al.,

2017; Lin et al., 2021; Hendrycks et al., 2021;
Marks and Tegmark, 2023). Building upon these
datasets, Contrast-Consistent Search (CCS) has
advanced the modeling of truth within language
models (Burns et al., 2024). Inference-Time Inter-
vention (ITI) has revealed the multi-dimensional
truthfulness within LLMs using supervised sam-
ples (Li et al., 2023). Recently, a batch of work
was all trained probes for classifying truthfulness
based on the model’s internal activations (Azaria
and Mitchell, 2023; Li et al., 2023; Burns et al.,
2024; Rimsky et al., 2024; Bürger et al., 2024).
These findings suggest the existence of a “truth di-
rection” in language models, a direction within the
activation space of some layer, along which true
and false statements separate. However, the exist-
ing work doesn’t further discuss in depth which
part of the neurons contributes to the truthfulness.

5 Conclusion

In this paper, we proposed a method for identify-
ing representations of truthfulness at the neuronal
level, introducing the concept of truth neurons. Our
experiments demonstrate that these truth neurons



broadly encode truthfulness.

6 Limitations

While our results demonstrate that our method
can identify general representations of truthfulness
at the neuron level, certain limitations should be
acknowledged. First, we do not claim that our
approach exhaustively identifies all truth neurons
within a given model; rather, our goal is primarily
to demonstrate their existence. Due to the inher-
ent polysemantic nature of neurons and the man-
ual configuration of thresholds, the identified set
may represent only a subset of the total truth neu-
rons. Second, our analysis currently focuses on
binary and multiple-choice tasks defined by ex-
isting benchmarks. Extending this investigation
to truthfulness representations in text generation
tasks—although potentially more costly to evaluate
and verify—constitutes an important and promis-
ing direction for future research.
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A Appendix

A.1 Dataset Details

TruthfulQA: To identify truthfulness representa-
tions at the neuronal level, we use the TruthfulQA
dataset introduced by Lin et al. (2021). The dataset
contains 790 adversarially constructed questions
covering a diverse set of truthfulness categories and
is specifically designed to evaluate the capability
of language models to generate truthful responses.

Initially, the TruthfulQA dataset employed a
multiple-choice evaluation format, requiring mod-
els to select correct statements among several true
or false alternatives. However, as highlighted by
Turner and Kurzeja (2025), the quality of these
multiple-choice answers is limited; notably, a sim-
ple decision tree that completely ignores the ques-
tions can theoretically achieve an accuracy of
79.6%. Consequently, our analysis adopts the im-
proved binary choice evaluation format proposed
by Evans et al. (2025), in which the model is pre-
sented with a single correct and a single incorrect
answer in random order. The evaluation prompt we
used is detailed in Figure 6
TriviaQA and MMLU: To verify whether neurons
identified using TruthfulQA generalize as faithful

https://arxiv.org/abs/2212.13138
https://arxiv.org/abs/2212.13138
https://turntrout.com/original-truthfulqa-weaknesses
https://turntrout.com/original-truthfulqa-weaknesses
https://arxiv.org/abs/2308.03958
https://arxiv.org/abs/2308.03958
https://arxiv.org/abs/2303.17564


Prompt used for TruthfulQA Evaluation

{
"role": "system",
"content": "You are a helpful assistant that
can help to answer the questions from the
user truthfully"
},
{
"role": "user",
content: Given the following question,
which answer is correct regarding the ques-
tion? Each answer is associated with index
A and B. Please reply with only the exact in-
dex of the correct answer without any other
words.
Question: {question}
Answer A: {answer_a}
Answer B: {answer_b}
}

Figure 6: Prompt template used for TruthfulQA eval-
uation. The correct answer and incorrect answer are
placed in Answer A and Answer B position randomly.

representations of truthfulness, we evaluate per-
formance on two additional datasets employed to
measure the truthfulness (Li et al., 2023; Yang et al.,
2024; Bayat et al., 2024): TriviaQA (Joshi et al.,
2017) and MMLU (Hendrycks et al., 2021). Trivi-
aQA is a question-answering dataset spanning di-
verse topics, while MMLU is a benchmark assess-
ing a language model’s factual knowledge across 57
subjects. For MMLU, we follow the standard eval-
uation procedure. For TriviaQA, we specifically
utilize the verified subset cross-checked by human
annotators and convert the subset to binary-choice
format as suggested by Li et al. (2023). Follow-
ing the method described in Li et al. (2023), we
prompt GPT-4.1 (gpt-4.1-2025-04-14) to generate
an adversarial answer for each TriviaQA question,
ensuring the answers are "plausible, tempting to
choose, but factually incorrect." The resulting eval-
uation is framed as a binary-choice task, where
the model’s choice is determined by comparing
the probabilities assigned to each answer option.
The prompt template used to generate adversarial
answers is provided in Figure 7. The evaluation
prompts for TriviaQA and MMLU are presented in
Figure 8 and Figure 9, respectively.

Prompt used to Generate Adversarial An-
swers

Given this trivia question and its correct
answer, generate a plausible but FALSE
answer.
The false answer should sound convincing
but be definitively incorrect.

Question: {question}
Correct Answer: {correct_answer}

Generate a false answer that:

1. Is clearly different from the correct an-
swer.

2. Sounds plausible and related to the
topic.

3. Would be tempting to choose.

4. Is definitively incorrect.

False answer:

Figure 7: Prompt template used to generate adversarial
answers for TriviaQA questions.

Prompt used for TriviaQA Evaluation

{
"role": "system",
"content": "You are a helpful assistant.
Given the following question, which answer
is correct regarding the question? Each
answer is associated with index A and B.
Please reply with only the exact index of the
correct answer without any other words.",
},
{
"role": "user",
"content": "Question: {cur_question}
Answer A:{answer_a}
Answer B: {answer_b}"
}

Figure 8: Prompt template used for TriviaQA evaluation.
The correct answer and incorrect answer are placed in
Answer A and Answer B position randomly.



Prompt used for MMLU Evaluation

{
"role": "system",
"content": "You are a helpful assistant.
You should only output ’A’, ’B’, ’C’, or ’D’
as one character index for the correct an-
swer. Do not output any other characters or
symbols."
},
{
"role": "user",
content: {question}
}

Figure 9: Prompt template used for MMLU evaluation.

A.2 Adaptive Thresholds
Since attribution scales vary across models, the
adaptive threshold (t%) need be manually config-
ured. To address this, we initially set the thresh-
old to t = 20% and iteratively adjusted it until
we achieved a noticeable performance difference
while preserving the model’s ability to follow in-
structions.

Model Adaptive Threshold (%)

Qwen2.5-3B-Instruct 1
Llama-3.2-3B-Instruct 20
OLMo-2-1124-7B-Instruct 10
Llama-3.1-8B-Instruct 25
Mistral-Nemo-Instruct-2407 (12B) 17
OLMo-2-1124-13B-Instruct 20

Table 4: Adaptive Threshold Parameter for Each Model
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