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ABSTRACT

The recent advancement of large foundation models (FMs) has increased the
demand for fine-tuning these models on large-scale and cross-domain datasets.
To address this, federated fine-tuning has emerged as a solution, allowing models
to be fine-tuned on distributed datasets across multiple devices while ensuring
data privacy. However, the substantial parameter size of FMs and the multi-
round communication required by traditional federated fine-tuning algorithms
result in prohibitively high communication costs, challenging the practicality of
federated fine-tuning. In this paper, we are the first to reveal, both theoretically
and empirically, that the traditional multi-round aggregation algorithms may not
be necessary for federated fine-tuning large FMs. Our experiments reveal that
a single round of communication (i.e., one-shot federated fine-tuning) yields a
global model performance comparable to that achieved through multiple rounds
of communication. Through rigorous mathematical and empirical analyses, we
demonstrate that large FMs, due to their extensive parameter sizes and pre-training
on general tasks, achieve significantly lower training loss in one-shot federated
fine-tuning compared to smaller models. Our extensive experiments show that
one-shot federated fine-tuning not only reduces communication costs but also
enables asynchronous aggregation, enhances privacy, and maintains performance
consistency with multi-round federated fine-tuning for models larger than 1 billion
parameters, on text generation and text-to-image generation tasks. Our findings
have the potential to revolutionize federated fine-tuning in practice, enhancing
efficiency, reducing costs, and expanding accessibility for large-scale models. This
breakthrough paves the way for broader adoption and application of federated
fine-tuning across various domains.

1 INTRODUCTION

Cutting-edge foundation models (FMs) demonstrate remarkable versatility across various domains.
Notably, large language models (LLMs) like GPT-4 (Achiam et al., 2023), Gemma (Team et al., 2024),
and Llama (Touvron et al., 2023b) excel in tasks such as translation, question answering (QA), chat
assistant, and math. Similarly, stable diffusion models can generate diverse images based on textual
descriptions. Achieving such versatility requires fine-tuning these FMs on cross-domain datasets.
However, this process faces significant challenges in real-world scenarios due to the valuable datasets
residing on devices owned by organizations or individuals, raising privacy concerns. To address
these privacy issues, researchers have proposed using federated learning (FL) (Zhang et al., 2021)
for distributed fine-tuning of FMs, a process known as federated fine-tuning. Federated fine-tuning
allows distributed clients to collaboratively fine-tune a global FM on specific tasks without disclosing
their private data.

Traditional FL requires multiple communication rounds between clients and the server to ensure
the global model convergence (McMahan et al., 2017). However, the substantial parameter size
of FMs (typically in billions) results in significant communication overhead. Many devices lack
the capability to repeatedly communicate model parameters of this scale. While previous works
adopt parameter-efficient fine-tuning (PEFT) methods such as low-rank adaptation (LoRA) (Hu et al.,
2021) to reduce the number of trainable and communicated parameters, the high communication
requirements of federated fine-tuning remain a practical limitation.
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Figure 1: The distinct performances of one-shot federated learning between small models and large
FMs. The horizontal axis represents multi-round FL accuracy, while the vertical axis represents one-
shot FL accuracy. The ResNet-18 and LSTM are trained and tested on CIFAR-10 and Shakespeare
respectively. Other models are fine-tuned on Wizard dataset and tested on ARC Easy. The closer the
points are to the dashed line means the accuracy of one-shot and multi-round FL are closer in the
corresponding model.

Unexpectedly, our recent experiments have discovered an emergent capability of FMs that could
fundamentally shift the approach to federated fine-tuning. We find that with sufficient local fine-tuning
epochs, a single communication round is all it needs to effectively fine-tune FMs, which is called
one-shot federated fine-tuning (Guha et al., 2019). Figure 1 highlights the performance comparisons
between one-shot FL and traditional multi-round FL, maintaining the same total number of local
steps. While one-shot FL underperforms multi-round FL for smaller models (e.g., ResNet-18 and
LSTM), it achieves comparable performance for larger FMs (e.g., GPT-2, Llama, etc). This unique
discovery challenges the conventional belief that multiple communication rounds are essential for
federated fine-tuning. Instead, we demonstrate that FMs can achieve convergence with just a single
aggregation of well-fine-tuned local models. This paper explores this innovative finding, providing
theoretical analysis and compelling empirical evidence to validate the effectiveness of one-shot FL
for fine-tuning FMs.

The introduction of one-shot federated fine-tuning brings transformative benefits. First, it dramat-
ically reduces communication costs. One-Shot FL slashes communication overhead by a factor
of 1

T , where T represents the number of communication rounds in traditional federated fine-tuning.
This reduction is a game-changer for devices with limited bandwidth. Second, one-shot FL enables
seamless asynchronous training. This flexibility removes the bottleneck of server waiting times,
ensuring uninterrupted training regardless of client connectivity or resource limitations. The process
becomes far more robust and efficient. Third, one-shot FL offers enhanced security against prevalent
client-side federated learning attacks. Attacks like client-side model inversion and gradient inversion,
which depend on multiple global model updates, are rendered ineffective. This significantly bolsters
the integrity of the training process.

Our key contributions are listed as follows:

• Novel Discovery: To the best of our knowledge, we are the first to discover that one
communication round is sufficient for federated fine-tuning large FMs.

• Theoretical Analysis: We theoretically demonstrate the relationship between the global
difference of one-shot federated fine-tuning and model smoothness, fine-tuning model
update, number of fine-tuning rounds, and the second norm of original model parameters.
Our analysis, backed by experiments, suggests that the lower difference between one-shot
and multi-round federated fine-tuning of larger FMs is related to the inherent smoothness of
FMs and the smaller parameter updates during fine-tuning.

• Experimental Validation: We conduct extensive experiments on six FMs and three tasks,
demonstrating that one-shot federated fine-tuning achieves performance comparable to
multi-round federated fine-tuning, particularly for models with over 1 billion parameters.
Experimental results also surprisingly show that LoRA outperforms full fine-tuning in the
context of one-shot federated fine-tuning.
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2 PRELIMINARY

Federated Learning Paradigm of Small Models. In FL, the primary objective is to optimize a
global objective function F (w), which is weighted average of the local objective functions from m
clients (Wang et al., 2020b):

F (w) =

m∑
i=1

piFi(w) (1)

where w represents the model parameters and pi is the scaling factor for averaging. To protect the
data privacy of each client, the server cannot access the local dataset. Thus, the local objective
function Fi(w) remains unknown to the server. FedAvg (McMahan et al., 2017) algorithm provides
a distributed training algorithm to facilitate privacy-conscious training. It allows multiple clients to
train the model on their local datasets and aggregates locally trained models on the server at the end
of each communication round. In t-th communication round, the global model update rule of FedAvg
is:

w(t+1,0) −w(t,0) = α(t)
m∑
i=1

pi∆
(t)
i , t ∈ [0, T − 1] (2)

where w(t,0) is the model weights in t-th communication round and 0-th local step, which represents
the global model in t-th round. T is the total number of communication rounds, α(t) is the global
learning rate, and ∆

(t)
i is the local model update in t-th round. ∆(t)

i is the accumulative model update
of k local stochastic gradient descent (SGD) steps:

∆
(t)
i =

k∑
j=1

β
(t,j)
i gi(w

(t,j)
i ) (3)

where gi(w
(t,j)
i ) is the stochastic gradient over a local mini-batch and β

(t,j)
i is the local learning rate.

Note that j here represents a mini-batch, and k is the total number of mini-batches per client.

Local datasets in FL are typically heterogeneous, leading to differences in local objectives. Therefore,
FL usually converges more slowly than centralized machine learning. This slow convergence
necessitates a large number of global communication rounds and local steps to achieve satisfactory
performance. For example, experiment results in (Reddi et al., 2020) show that the ResNet-18 model
requires more than 2000 and 4000 communication rounds to converge on CIFAR-10 (Krizhevsky
et al., 2009) and CIFAR-100 respectively. Even for simple natural language processing tasks such
as Shakespeare, an RNN model needs more than 50 rounds to converge. The requirement for
multi-round communication rounds introduces several significant drawbacks. First, clients must
frequently exchange model parameters with the server, which can be prohibitively expensive in
certain constrained scenarios or on devices with limited resources. Second, repeated invocation of
computational resources for training increases the overall computational overhead. Additionally,
the multi-round communication approach leads to excessive energy consumption, synchronization
difficulties, and challenges in maintaining privacy protection. Thus, optimizing FL algorithms to
minimize the number of communication rounds is an essential research direction in FL.

Federated Fine-Tuning Foundation Models. Foundation models (FMs) (Zhou et al., 2023) refer to
pre-trained deep learning models with a vast number of parameters, typically in the order of billions.
These FMs are trained on broad data at scale and are adaptable to a wide range of downstream
tasks when fine-tuned on domain-specific datasets (Bommasani et al., 2021). Since domain-specific
datasets are often distributed across multiple devices, FL offers an important paradigm for fine-tuning
FMs while preserving data privacy.

Federated fine-tuning also adopts the same FedAvg algorithm in Eq. 1 and Eq. 2 to aggregate the
local model updates. The key difference lies in the model parameter size. The parameter size of
large FMs is usually hundreds of times greater than that of small models, resulting in a significant
increase in the computation resources and communication overhead required for federated fine-tuning.
Given the network communication capabilities of commonly used devices, performing multi-round
synchronized communication of large model parameters between servers and clients is virtually
impossible. Although parameter-efficient fine-tuning algorithms like LoRA (Hu et al., 2021) have
been adopted, the communication overhead remains excessively high, hindering practical application.
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One-Shot Federated Learning. To reduce communication overhead in FL, recent works have
focused on one-shot FL (Jhunjhunwala et al., 2024; Guha et al., 2019; Gong et al., 2021; Li et al.,
2020; Zhou et al., 2020; Yang et al., 2024), which uses a single communication round to obtain the
global model. These algorithms often employ knowledge distillation or neuron-matching methods
to optimize the global model. However, these approaches require additional data or computation.
Knowledge distillation often necessitates auxiliary public datasets or external generative models,
and neuron matching requires additional computation on both clients and the server. Despite these
additional resource requirements, the performance of one-shot FL has historically been inferior to
standard multi-round FL. For instance, experiments in (Jhunjhunwala et al., 2024) show that one-shot
FL achieves only 50% accuracy on the CIFAR-10 dataset, which is 20% lower than the accuracy
achieved with 5-round FL.

However, our recent experiments have uncovered greater potential for one-shot FL in federated fine-
tuning large FMs. As shown in Figure 1, one-shot FL for large models does not show a significant
performance gap compared to multi-round FL, which is commonly observed with smaller models. In
fact, when the total number of local steps is the same, the performance of large models fine-tuned
by one-shot FL is comparable to that of multi-round FL. Additionally, in fine-tuning larger models
such as Llama-13b, one-shot FL even performed slightly better than multi-round FL. These results,
along with the experiment results in Section 4, suggest that traditional multi-round FL algorithms like
FedAvg may no longer be necessary for federated fine-tuning large FMs. Large FMs can effectively
learn downstream tasks from distributed clients with just a single communication round, opening up
new possibilities for federated fine-tuning applications.

Although we have observed consistently good performance with one-shot federated fine-tuning,
the reasons for the divergent results between one-shot FL in fine-tuning large models and training
small models remain unexplored. In the next section, we will delve into this phenomenon through
theoretical analysis.

3 THEORETICAL ANALYSIS OF ONE-SHOT FEDERATED FINE-TUNING

For a multi-round FL algorithm, if the total number of communication rounds is T and the number of
local SGD steps for each round is k, according to Eq. 2 the global model parameters after FL satisfy:

w(T,0) −w(0,0) =

T−1∑
t=0

α(t)
m∑
i=1

pi∆
(t)
i , (4)

where ∆
(t)
i is defined by Eq. 3. For a specific client i, the accumulated local model update ∆i is:

∆i =

T−1∑
t=0

∆
(t)
i =

T−1∑
t=0

k∑
j=1

β
(t,j)
i gi(w

(t,j)
i ), (5)

In contrast, for one-shot FL with T = 1 , the accumulated local model update is:

∆i =

Tk∑
j=1

β
(0,j)
i gi(w

(0,j)
i ), (6)

Note that one-shot FL doesn’t mean that we only train the model for one epoch. We set the number of
steps per client to Tk since we are trying to match the total number of epochs with the multi-round FL.
The reason why the one-shot FL performs differently from the multi-round FL lies in the difference
between the local model updates in Eq. 5 and Eq. 6. In Eq. 5, after the t-th communication round,
the local training starts from the updated global model parameter w(t,0) sent by the server, which is
aggregated from all the local model updates in t-th round and contains richer local knowledge. On the
contrary, in one-shot FL (Eq. 6), even with the same total local steps, clients can only continuously
train the local models without global information. The poor performance of one-shot FL is due to the
gradients calculated on the local models being less accurate than those calculated on the aggregated
global model. This can be expressed in mathematical form:

εi =

Tk∑
j=k+1

β
(0,j)
i [(gi(w

(0,j)
i )− gi(w

(t,j−kt)
i )], where t = ⌈ j

k
⌉ (7)
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where ⌈·⌉ means ceiling. εi is the accumulated local update difference between one-shot FL and
multi-round FL. Since the global model is aggregated by local models, the global model update
difference εi is the aggregation of local differences. Its L2 norm can then be bounded by the sum of
local differences with triangle inequality, which is:

∥ε∥ ≤
m∑
i=1

∥εi∥, (8)

The global difference can be further simplified by the following assumptions.

Assumption 1 (Model Smoothness). The objective function of the pre-trained large FM is Lipschitz
smooth with an L value, that is ∥∇Fi(wx)−∇Fi(wy)∥ ≤ L∥wx −wy∥, L > 0, where ∇Fi(·) is
the model gradient.

Assumption 2 (Bounded Model Updates). The model updates during FL are much smaller than the
initial model parameters, that is, ∥w(t,j) −w(0,0)∥ ≤ τ∥w(0,0)∥, 0 < τ < 1.

Theorem 1 (The one-shot global difference is related to L, τ , epoch numbers Tk, and number of
clients m). Under Assumptions 1 and 2, ignoring the learning rates, the difference between one-shot
FL and multi-round FL can be bounded as follows:

∥ε∥ ≤ Γ∥w(0,0)∥, where Γ = LτTkm (9)

This equation indicates that with lower values of L, τ , T , k, and m, the model update of one-shot
FL will be closer to that of multi-round FL. Since our experiments have shown that LLMs exhibit
significant advantages over small models in one-shot learning, we conduct experiments on the factors
in Equation 9 to provide a detailed explanation of this phenomenon.

Foundation Models are Extremely Smooth (LFM ≪ 1). In Equation 9, the factor L represents
the smoothness of the model, with smaller L implying a smoother model. We argue that pre-trained
large FMs are much smoother than small models and thus have much smaller L values. Large
FMs are pre-trained on large-scale datasets to obtain general capabilities. During this pre-training
process, the parameters of FMs are optimized from the ridges to the basins in the loss landscape.
Additionally, as observed in a previous work (Ainsworth et al., 2022), wider models have more
flattened basins in the loss landscapes. With these pieces of prior knowledge, we hold the contention
that the loss landscape in large FM fine-tuning is much flatter and smoother than that in training
small models from scratch, resulting in much smaller L values. To verify this argument, we estimate
L by L =

∥∇Fi(wx)−∇Fi(wy)∥
∥wx−wy∥ . We randomly sample a mini-batch of data in the training datasets and

compute the gradient on w(0,0) and w(T,k) to get ∇Fi(w
(0,0)) and ∇Fi(w

(T,k)). Then we visualize

the value of ∥∇Fi(w
(0,0))−∇Fi(w

(T,k))∥
∥w(0,0)−w(T,k)∥ in Figure 2(a). According to Figure 2(a), FMs (i.e., models to

the right of the red dash line) have much smaller L values than small models, which is consistent
with our conjecture.

Foundation Models Have Much Smaller Model Updates in Fine-Tuning (τFM ≪ 1). Another
crucial distinction in our analysis lies in the different tasks in FL: fine-tuning and training from
scratch. Since the fine-tuning task updates the model parameters to adapt to downstream tasks
without compromising its performance on the general task, it will only slightly update the model
parameters. Therefore, we argue that the model parameter updates in the fine-tuning process are
much smaller than the pre-trained model parameters, i.e., ∥w(t,j)−w(0,0)∥ ≪ ∥w(0,0)∥. In this case,
the federated fine-tuning task would have a very small τ in Equation 9. To verify this, we conduct
experiments to estimate the τ values by ∥w(T,k)−w(0,0)∥

∥w(0,0)∥ , where w(T,k) represents the model update
after the entire fine-tuning process on the training datasets. We visualize the estimated τ values of
different models in Figure 2(b), which illustrates that the τ values in FMs are much smaller than
those in small models.

Large Foundation Models Require Less Fine-Tuning Steps (TkFM ≪ Tksmall). Different from
training a small model from scratch, fine-tuning a large model typically doesn’t require a large number
of total training steps to ensure convergence. This is mainly because the pre-trained models will be
overfitting on the fine-tuning data with too many epochs, which will destroy the model’s ability on
the general tasks. As a result, the Tk values of large FMs are also smaller than those in small models.
Table. 1 displays the T and k numbers adopted by our experiments.
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Figure 2: Experiment results on L, τ , and ∥w(0,0)∥ in different models. We use the CIFAR-10
dataset to compute the gradient on ResNet18 (He et al., 2016). We use the WizardLM dataset (Xu
et al., 2023) to compute the gradient on the language models. Models to the left of the red dashed
line are small models, while those to the right are foundation models (FMs). The figures indicate
that large FMs have significantly smaller L and τ values compared to small models. Additionally,
∥w(0,0)∥ does not increase proportionally with the model size. In conclusion, without considering
other unrelated influencing factors, the value of Γ∥w(0,0)∥ decreases as the model size increases.

Table 1: Tk settings in experiments. T is the number of global communication rounds. k is the total
number of local SGD steps, which is computed by (dataset length × epoch number / batch size).

ResNet-18 BERT GPT-2 TinyLlama Gemma-2b Llama-7b Gemma-7b Llama-13b

T 50 50 5 3 3 3 3 3

k 7812 3906 5625 3750 1875 1875 1875 1875

Tk 390600 195300 28125 11250 5625 5625 5625 5625

We also visualize ∥w(0,0)∥ in Figure 2(c). Although the ∥w(0,0)∥ value of the small model is relatively
small, it does not exhibit a clear trend positively correlated with model size (e.g., TinyLlama has a
similar ∥w(0,0)∥ value with BERT, but has 10 times more parameters than BERT, Gemma-2b has
much larger ∥w(0,0)∥ value than Llama-13b).

lo
g𝜺

Figure 3: The estimated log ∥ε∥ in dif-
ferent models calculated by log ∥ε∥ =
log(LτTk∥w(0,0)∥).

Conclusion: Large Foundation Models Have Smaller
Global Model Update Difference ε. Based on the
discussion before regarding the L, τ , Tk, and ∥w(0,0)∥
values of the model with various sizes, we conclude
that large FMs have smaller L, τ , and Tk values, while
∥w(0,0)∥ is not strongly related to the model size. We
ignore the client number m and visualize the ∥ε∥ =
Γ∥w(0,0)∥ values of different models in Figure 3. The
results in Figure 3 clearly demonstrate that large FMs
(GPT-2 and all models to its right) have significantly
lower ∥ε∥ values than the small models, with larger FMs
having lower values. According to Eq. 9, smaller ∥ε∥
means a smaller difference between one-shot and multi-
round FL. Consequently, FMs have much better one-shot
FL performance than small models.

In summary, the reasons why large FMs have smaller
differences in one-shot federated fine-tuning are due to three main factors. Fisrt, the pre-trained FMs
have extremely smooth loss landscapes in fine-tuning, i.e., LFM ≪ 1. Second, the fine-tuning
model updates are particularly small compared to the pre-trained parameters, i.e., τFM ≪ 1.
Third, FM fine-tuning requires far fewer epochs than training small models from scratch, i.e.,
TkFM ≪ Tksmall. These three factors lead to much smaller error ε in the one-shot federated
fine-tuning of FMs.
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Table 2: Performance of one-shot federated fine-tuning in Q&A tasks. The rows with star (*) are the
results of one-shot federated fine-tuning.

Tasks Methods TinyLlama Gemma-2b Llama-7b Llama-13b
MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

MMLU

LoRA 25.08 25.07 24.98 38.43 37.75 37.69 36.16 35.07 35.37 47.22 46.83 46.82
LoRA* 25.01 25.04 25.03 38.24 36.55 35.14 35.86 35.91 34.84 48.40 47.93 47.43
Full FT 27.30 24.84 25.46 42.02 34.60 28.36 45.61 30.52 28.81 50.24 42.12 32.91

Full FT* 26.39 24.87 24.99 40.93 33.86 28.71 44.20 33.97 29.05 48.30 39.62 29.76

ARC

LoRA 35.49 37.28 36.69 43.09 43.26 42.06 50.43 50.94 51.19 55.72 55.72 55.63
LoRA* 36.86 36.77 36.26 40.61 42.49 42.15 50.85 51.88 52.13 56.40 58.11 56.74
Full FT 32.76 37.03 33.02 41.04 45.48 37.46 43.26 40.24 37.15 42.41 47.57 42.75

Full FT* 33.19 36.26 33.87 39.85 45.92 34.47 41.72 43.52 37.03 44.62 45.05 40.21

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Models and Datasets. To demonstrate the performance of FMs of different sizes on one-shot
federated fine-tuning, we selected multiple models ranging in parameter size from 1b to 13b for
experiments. The language models we experimented with range in parameter size from smallest to
largest as follows: TinyLlama (1.1b) (Zhang et al., 2024b), Gemma-2b (Team et al., 2024), Llama-7b,
and Llama-13b (Touvron et al., 2023a). We use the MMLU (Hendrycks et al., 2020) training dataset
and Wizard (Luo et al., 2023) dataset to federated fine-tune these models. For evaluation, we leverage
MMLU and ARC Challenge (Clark et al., 2018) in Eval-Harness (Gao et al., 2023) to evaluate the
model ability of QA tasks, and the GPT-4 evaluation in MT-bench (Zheng et al., 2023) for the chat
assistant task.

Federated Fine-Tuning Settings. For federated fine-tuning on a single MMLU or Wizard dataset,
we randomly split the dataset into 10 clients. We also have a strongly non-iid setting, which assigns
the MMLU dataset to 10 clients and the Wizard dataset to another 10 clients, and lets the 20 clients
fine-tune the FM. For the baseline, we use a multi-round FedAvg algorithm on both LoRA and full
fine-tuning. For our one-shot federated fine-tuning, we only perform a single communication round.
To ensure fairness, we keep the total number of local steps the same between multi-round and one-shot
federated fine-tuning. e.g., , if the setting in multi-round federated fine-tuning is 3 communication
rounds, 1 local epoch in each round, the setting in one-shot should be 1 communication round, 3 local
epochs in that round.

4.2 MAIN RESULTS

One-Shot Federated Fine-Tuning in QA Tasks. We first evaluate the performance of one-shot
federated fine-tuning in QA tasks and display the results in Table 2. The columns with titles MMLU,
Wizard, and M-W represent the model fine-tuned by MMLU, Wizard, and the mixture of MMLU and
Wizard datasets respectively. The rows with the title MMLU and ARC represent the model accuracy
evaluated by the MMLU test set and ARC Challenge. The Methods columns mean the fine-tuning is
performed by LoRA or full fine-tuning, while the rows with a star (*) represent one-shot federated
fine-tuning. According to Table 2, the performance of one-shot federated fine-tuning is generally
comparable to that of multi-round federated fine-tuning. In some settings, one-shot fine-tuning even
achieves higher accuracy. For example, the Llama-13b model one-shot fine-tuned by LoRA on the
Wizard dataset achieves 47.93% accuracy on MMLU and 58.11% on ARC Challenge, which is
higher than the 46.83% and 55.72% accuracy of multi-round fine-tuning. In full fine-tuning, multi-
round fine-tuning performs better in some settings. For instance, the Llama-13b model multi-round
full fine-tuned on the Wizard dataset outperforms one-shot fine-tuning on both MMLU and ARC
Challenge. These observations align with our previous theoretical analysis. Full fine-tuning involves
greater parameter updates compared to LoRA, resulting in a larger τ value, and thus a larger ε
value. Consequently, the performance of one-shot full fine-tuning may sometimes be inferior to
LoRA fine-tuning. However, this does not affect our overall conclusion: for large FMs, one-shot
federated fine-tuning can effectively replace multi-round federated fine-tuning. One-shot fine-
tuning provides comparable performance to multi-round fine-tuning while significantly reducing
communication costs.
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Models Methods MMLU Wizard M-W AVG. Base

TinyLlama

LoRA 3.59 3.44 3.65 3.56

3.47LoRA* 3.33 3.45 3.74 3.51
Full FT 2.02 3.76 2.97 2.92

Full FT* 1.91 4.21 2.38 2.83

Gemma-2b

LoRA 3.36 3.48 3.46 3.43

3.60LoRA* 3.23 3.77 3.66 3.55
Full FT 2.16 4.36 2.75 3.09

Full FT* 1.92 4.27 2.50 2.90

Llama-7b

LoRA 3.01 3.27 2.99 3.09

2.86LoRA* 2.69 3.90 3.54 3.38
Full FT 1.85 4.18 2.31 2.78

Full FT* 1.56 4.79 2.21 2.85

Llama-13b

LoRA 2.58 2.68 2.86 2.71

2.69LoRA* 3.02 4.27 3.26 3.52
Full FT 2.43 4.63 3.05 3.37

Full FT* 1.81 4.74 2.62 3.06

Table 3: Performance of one-shot federated fine-tuning on
chat assistant tasks. Wizard has better performance than
MMLU on MT-bench. We use AVG. column to show the
averaging performance of specific methods.

One-Shot                 Multi-Round

0.3389

0.3026

0.3517

0.3441

0.3174

0.3349

0.3592

0.3345

Figure 4: "A photo of a dog in a
bucket" generated by LoRA fine-tuned
stable diffusion models.

One-Shot Federated Fine-Tuning in Chat Assistant Tasks. We evaluate the performance of FMs
in chat assistant tasks, where models generate answers to several questions and are scored by GPT-4.
The score from MT-bench is the average score across all questions. Table 3 shows the scores of multi-
round and one-shot federated fine-tuned models. The averaging scores of three fine-tuning datasets
indicate that larger FMs perform better in one-shot federated fine-tuning. Specifically, multi-round
fine-tuning outperforms one-shot fine-tuning in both LoRA and full fine-tuning on the Tinyllama
model, which is the smallest model in our experiments. On the contrary, for larger models, such as
Gemma-7b and Llama-13b, one-shot fine-tuning performs better than multi-round fine-tuning. This
observation aligns with our previous theoretical analysis that larger models have smaller differences
between one-shot and multi-round FL. The superior performance of one-shot fine-tuning in larger
models might be attributed to the less number of local epochs per round, which leads to a slower
local learning rate decay. The chat assistant’s capabilities may benefit from this smoother learning
rate decay process.

One-Shot Federated Fine-Tuning in Text-To-Image Generation Tasks. In addition to testing
LLMs, we also evaluated the effectiveness of one-shot federated fine-tuning in the text-to-image
generation tasks. We use LoRA to fine-tune a stable-diffusion-v1-5 (Rombach et al., 2022) model
on the Dreambooth (Ruiz et al., 2023) dataset with 5 distributed clients. In the multi-round setting,
we have 5 global rounds, with 5 local epochs in each round. In the one-shot setting, we have 1
global round and 25 local epochs in that round. After fine-tuning, we evaluated the models using
the CLIP (Hessel et al., 2021) score with ViT-B-32 (Dosovitskiy et al., 2020) to assess the quality
of generated images based on specific prompts. Figure 4 shows the images generated with the
prompt "A photo of a dog in a bucket" The right column displays the result of multi-round federated
fine-tuning, while the left column shows the result from the one-shot setting. The numbers to the
right of the images represent the CLIP scores. The qualities of the images generated by both methods
are essentially the same. The average CLIP score in the one-shot setting is 0.3343, while the score in
the multi-round setting is 0.3345. These results indicate that the effectiveness of one-shot federated
fine-tuning extends to fine-tuning stable diffusion models.

5 DISCUSSION

One-Shot Federated Fine-Tuning Saves Communication Cost. In FL, the server needs to send
the model parameters to all the selected clients and receive the model updates from the clients in each
communication round. Thus, the total number of communicated parameters in multi-round should be
2mTS, where S is the model size. In one-shot federated fine-tuning, the server and the clients only
perform one-round communication, so the number of communicated parameters is only 2mS. This
reduction in communication overhead is significant, especially in the federated fine-tuning of large
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FMs. For instance, the Llama-13b model has approximately 50GB parameters, i.e., S = 50GB. In
our experiments, the 3-round federated fine-tuning on Llama-13b needs to communicate 3000GB data
between the server and the clients, which may be unaffordable in scenarios with tight communication
budgets. However, one-shot federated fine-tuning reduces this amount to 1000GB. This substantial
reduction in communication makes federated fine-tuning of large FMs more practical and affordable
in real-life scenarios.

Number of Aggregated Local Models
M

T-
B

en
ch

 S
co

re

Score of the Global Model 
in Synchronous FL

Figure 5: The MT-bench score of the global model
merged by a varied number of clients.

One-Shot Federated Fine-Tuning Supports
Asynchronous Global Aggregation. In tradi-
tional multi-round FL, clients need to train local
models synchronously. The server can only per-
form the aggregation and send the new global
model to clients after receiving all local model
updates. This requirement poses challenges for
federated learning applications. For example,
if local computation resources are occupied by
other tasks or if the connection between the
server and clients is unstable, the training pro-
cess will be halted. One-shot federated fine-
tuning effectively addresses this problem. The
server can update the global model with local
updates as soon as they are received, allowing
for real-time model updates. Therefore, even if
some clients fail to send model updates promptly
due to various reasons, the global model on the
server can still be updated by most clients, resulting in a usable global model. To further illustrate
this point, we sequentially aggregated local model updates from client 1 to client 10 in one-shot
federated fine-tuning of Llama-7b on the Wizard dataset. We tested the global model’s performance
on the MT-bench as we aggregated updates from 1, 2, 3, ..., and up to 10 clients. The results are
displayed in Figure 5. The model score increases as more clients contribute their local updates to the
global model, indicating that each individual local model update provides an immediate improvement
in global model performance. The red dash line represents the model score in the synchronous FL
setting, which is equal to the score of aggregating ten clients in asynchronous FL.

One-Shot Federated Fine-Tuning Naturally Mitigates Client-Side Privacy Threatens. In a
traditional FL algorithm, clients repeatedly receive new global model parameters each round, which
could lead to client-side privacy issues. Malicious clients can exploit model inversion (Fredrikson
et al., 2015; Zhang et al., 2020) and gradient inversion attacks (Huang et al., 2021) to recover private
training samples or user inputs from other clients (Wei et al., 2023). These attacks heavily rely on
access to the global model parameters and certain data distribution information. However, in one-shot
FL, the server can choose not to send back global parameters to the clients and only provide an API
of the fine-tuned model. By doing this, it can eliminate the possibility of client-side privacy attacks.

6 CONCLUSION

In this paper, we tackle the critical issue of high communication costs that limit the practical
application of federated fine-tuning. Through a series of experiments, we demonstrate that multi-
round communication is not necessary for fine-tuning FMs, as one-shot federated fine-tuning achieves
comparable performance. We then provide a theoretical analysis to explain why one-shot federated
fine-tuning is effective for large FMs and validate our findings with empirical evidence. Our extensive
experiments show that one-shot federated fine-tuning performs on par with multi-round federated fine-
tuning across 5 different models and 3 diverse tasks. This method significantly reduces communication
overhead, making federated fine-tuning more feasible and efficient, especially for large-scale models.
Moreover, one-shot federated fine-tuning supports asynchronous local updates and enhances security
by minimizing data exposure during the training process. These findings make it possible to harness
the power of large FMs in environments with limited communication resources, thereby broadening
the accessibility and utility of advanced AI technologies.
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A RELATED WORK

One-Shot Federated Learning. One-shot federated learning refers to learning the parameters of the
global model in a single round of communication between clients and the server (Guha et al., 2019).
There are two main strategies for optimizing one-shot FL, neuron matching and knowledge distillation.
Neuron matching is based on the permutation symmetry of neural networks (Ainsworth et al., 2022),
which means that client model parameters can be aligned according to a common ordering and then
be averaged. Previous works use algorithms such as the Fisher information matrix (Jhunjhunwala
et al., 2024) and permutation matrix (Wang et al., 2020a) to match the local model parameters. The
knowledge distillation methods aim at distilling knowledge from well-trained local models through
public data (Gong et al., 2021; Li et al., 2020; Heinbaugh et al., 2022). Some works also use distilled
data to transfer knowledge between clients and the server (Zhou et al., 2020). Recent works adopt
generative models to help generate substitute data for the local dataset on the server (Yang et al.,
2024; Zhang et al., 2022).

Federated Fine-Tuning. Federated fine-tuning (Orescanin et al., 2021; Cheng et al., 2021) aims to
fine-tune FMs by cross-domain on-device datasets while preserving data privacy. Recent works use
PEFT methods such as LoRA (Hu et al., 2021) in federated fine-tuning (Zhang et al., 2024a) to save
communication and computation costs. Federated fine-tuning also faces similar research problems as
FL. Current works have discussed the non-IID problem (Cho et al., 2024) and personalized federated
fine-tuning (Wagner et al., 2024).
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Figure 6: The MT-bench score of global model in 1-5 global rounds.

B ADDITIONAL EXPERIMENTAL SETUPS

Computer Resources. We used a 256GB AMD EPYC 7763 64-Core Processor on Linux v4.18.0
to run the experiments. For LoRA fine-tuning on all the models and full fine-tuning on all the models
except Llama-13b, we used 4 NVIDIA RTX A6000 GPUs. For Llama-13b full fine-tuning, we use 8
NVIDIA A100 GPUs.

Hyperparameter Settings. For LoRA fine-tuning across all the models and datasets, we set the
local LoRA rank to 16, the local learning rate to 3e-4, and the batch size to 64. For full fine-tuning,
we reduced the learning rate to 3e-5 and set the learning rate to 8. For multi-round settings, the
numbers of global communication rounds and local epochs in each round in different models and
datasets are listed in Table 4. The one-shot setting satisfies T = 1 and k equals Tk in the multi-round
setting. The number of rounds and epochs we selected can ensure convergence and avoid overfitting.
We show a simple example in Appendix C to demonstrate this point.

Table 4: Global rounds and local epochs settings in multi-round experiments.

Models TinyLlama Gemma-2b Llama-7b Llama-13b
MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

T 3 3 3 3 3 3 3 3 3 3 3 3
k 1 2 1 1 2 1 2 1 1 1 1 1

C ADDITIONAL EXPERIMENTAL RESULTS

Zero-Shot Results. We test the zero-shot performance of models used in Table 2 for reference. The
results are displayed in Table 5

Standalone Results of Local Models. To further demonstrate the effectiveness of federated fine-
tuning, we performed the standalone experiment to compare the performance of the global model and
the local model only trained on local datasets. We did the experiments on the llama-7b model and
Wizard dataset and displayed the results in Table 6. The results show that the accuracy of most local
models is slightly lower than that of the global model, with some local models outperforming the
global model. This is reasonable in the context of the federated fine-tuning task because the models
have already been pre-trained. Therefore, even though clients have less training data, the performance
of local models does not differ significantly from the global model.

More Global Round Settings. We also tested the model performance when we had more and
fewer global rounds in a multi-round setting. We evaluated the global model in 1, 2, 3, 4, and 5
global rounds when fine-tuning the Llama-7b model on Wizard dataset. The results are shown in
Figure 6. In the first round, the MT-bench score increases from the 2.86 in base model to around 3.80.
Then, it slightly increases towards 3.90 in the 3rd round and begins to decrease afterward. A similar
phenomenon can be seen in other datasets and models that the model performance will increase in
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Table 5: Zero-Shot results of models on MMLU and ARC Challenge.

Tasks TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU 24.90 34.63 34.44 46.23
ARC 35.41 40.25 45.65 51.79

Table 6: Standalone results of 3-epochs federated fine-tuning on Llama-7b with Wizard dataset. The
numeric header columns indicate the ARC Challenge accuracy of the local models only fine-tuned on
their local dataset for 3 epochs.

One-Shot 0 1 2 3 4 5 6 7 8 9

51.88 50.79 51.02 50.05 50.43 52.33 51.22 51.28 52.30 51.21 51.11

the initial 2-4 rounds and then gradually decline due to overfitting. Thus, we use 3 global rounds in
all of the multi-round experiments.

D PROOF OF THEOREM 1

According to Eq. 7 and Eq. 8, ignoring the learning rates, the difference of the global model can be
bounded by:

ε ≤
m∑
i=1

Tk∑
j=k+1

[(gi(w
(0,j)
i )− gi(w

(t,j−kt)
i )], (10)

Considering Assumption 1, we have:

ε ≤
Tk∑

j=k+1

Lm∥(w(0,j)
i −w

(t,j−kt)
i ∥, (11)

According to Assumption 2, we can deduce:

ε ≤
Tk∑

j=k+1

Lτm∥w(0,0)∥, (12)

Thus we have:

ε ≤ LτTkm∥w(0,0)∥, (13)

which is Theorem 1.

E LIMITATION

This work has two main limitations. (1) The paper is limited in federated fine-tuning tasks since we
lack the computation resources to conduct federated pre-training experiments. (2) Since common
stable diffusion models do not vary significantly in parameter size, this work does not observe the
performance of different-sized stable diffusion models in one-shot federated fine-tuning. The impact
of model parameter size on one-shot federated fine-tuning in text-to-image generation tasks still
needs to be explored.
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