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ABSTRACT

Reinforcement learning (RL) with large language models shows promise in com-
plex reasoning. However, its progress is hindered by the lack of large-scale train-
ing data that is sufficiently challenging, contamination-free and verifiable. To this
end, we introduce DeepMath-103K, a large-scale mathematical dataset designed
with high difficulty (primarily levels 5-9), rigorous decontamination against nu-
merous benchmarks, and verifiable answers for rule-based RL reward. It further
includes three distinct R1 solutions adaptable for diverse training paradigms such
as supervised fine-tuning (SFT). Spanning a wide range of mathematical topics,
DeepMath-103K fosters the development of generalizable and advancing reason-
ing. Notably, models trained on DeepMath-103K achieve leading results on chal-
lenging mathematical benchmarks and demonstrate generalization beyond math
such as biology, physics and chemistry, underscoring its broad efficacy.
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Figure 1: (a) DeepMath-103K is challenging compared to existing datasets. (b) Results of DeepMath
series models under zero RL and RL setting using DeepMath-103K.
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1 INTRODUCTION

Reinforcement learning (RL) with large language models (LLMs) has demonstrated significant po-
tential in complex mathematical reasoning (Guo et al., 2025; Hu et al., 2025; Zeng et al., 2025a;
Liu et al., 2025). Despite this promise, the effective advancement of RL is constrained by existing
training data. While numerous datasets are available, they fall short in several key aspects crucial for
training advanced reasoning models: (1) insufficient difficulty (Figure 1a) to push the boundaries of
current models (Dang & Ngo, 2025; Yu et al., 2025; Luo et al., 2025; Face, 2025; Hu et al., 2025),
(2) contamination with standard benchmarks (appendix B), (3) a lack of verifiable answers essen-
tial for RL with verifiable rewards (RLVR) (Guo et al., 2025; Cobbe et al., 2021; Hendrycks et al.,
2021b; Yu et al., 2024), or (4) an inadequate combination of these critical aspects at scale. Further-
more, many of existing datasets represent the recombination and filtration of common sources (such
as AIME (MAA, a)) which contain already well-formatted data, thus lacking a substantial influx of
novel and diverse problems from more varied but less structured sources (Dang & Ngo, 2025; Yu
et al., 2025; Luo et al., 2025; Face, 2025; Hu et al., 2025).

To bridge this gap, we introduce DeepMath-103K, a large-scale mathematical dataset tailored for
advancing reasoning via RLVR. DeepMath-103K distinguishes itself through several key features.

• Challenging Problems: DeepMath-103K features a high concentration of challenging mathe-
matical problems, with a difficulty distribution skewed towards higher levels (ě 5) compared to
existing open resources (Figure 1a).

• Rigorous Decontamination: To ensure trustworthy evaluation, DeepMath-103K underwent a
rigorous decontamination process against a comprehensive suite of benchmarks.

• Verifiable Answers and Diverse Solutions: To enable rule-based reward functions in RLVR,
every problem in DeepMath-103K includes a verifiable final answer that has been validated for
easy extraction and verification via rules. Each problem is further enriched with three distinct
R1 solutions (Guo et al., 2025), supporting diverse training paradigms such as SFT.

Beyond these core features, DeepMath-103K also differentiates itself in its raw data acquisition.
The prevalent trend in existing open datasets often recombines readily available and well-formatted
problems from common sources such as AIME (MAA, a). This approach does not create new
problems, but re-collect existing ones, which leads to significant overlaps among different datasets.
Recognizing the potential limitations and eventual exhaustion of common resources, DeepMath-
103K draws its content from more diverse but less structured sources, notably including discussions
from Math StackExchange1. The raw content from these sources is informal discourse and lacking
a standard format. After a rigorous curation pipeline that transformed these discussions into a well-
structured QA format, DeepMath-103K is characterized by its unique problem variety and diversity
compared to existing datasets.

Consequently, models trained on DeepMath-103K achieve leading results (Figure 1b):

• Zero RL Training: Starting from the Qwen-2.5-(Math)-7B (Team, 2024), DeepMath-Zero-
(Math)-7B shows pass@1 improvements of +12.7 (+23.0) on AIME24 and +12.1 (+19.1) on
AIME25, surpassing other baselines.

• RL Training: Initialized from instruction-tuned models, DeepMath variants also show substan-
tial gains. DeepMath-1.5B, starting from R1-Distill-Qwen-1.5B (Guo et al., 2025), achieves
pass@1 accuracy improvements of +7.9 on AIME24 and +6.0 AIME25. DeepMath-Omn-1.5B,
built upon OpenMath-Nemotron-1.5B (Moshkov et al., 2025), reaches pass@1 accuracies of
64.0 on AIME24 and 57.3 on AIME25, surpassing o1-mini (63.6 on AIME24) and low effort
o3-mini (60.0 on AIME24).

• Generalizable Reasoning beyond Math: DeepMath series models also generalizes their rea-
soning abilities to broader domains, achieving best GPQA-Diamond (Rein et al., 2024) scores
on biology, physics, and chemistry compared to the baselines.

These results underscore the value of DeepMath-103K as a resource for developing advanced rea-
soning models with broad applicability. The remainder of this paper is organized as follows:

1https://math.stackexchange.com
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• § 2 presents an overview of DeepMath-103K, including its format, difficulty distribution, and
topic covered;

• § 3 details the data curation pipeline to construct DeepMath-103K, encompassing source analy-
sis, decontamination, difficulty filtering, and robust answer verification

• § 4 trains, evaluates and analyzes DeepMath series models that trained on DeepMath-103K.

To foster future research, we have released the DeepMath-103K dataset, along with the code and
model weights, hoping to enable further exploration of advanced reasoning techniques and the de-
velopment of robust and generalizable machine intelligence.

2 OVERVIEW OF DEEPMATH-103K

Question: Calculate the line integral , 

over the ellipse , where the vector fields 

are given by: . Determine 

the value of the integral, considering that the vector 
field is undefined at the point  inside the ellipse.

∮
C

P dx + Q dy
x2
25 + y2

36 = 1
P = −y

(x − 1)2 + y2 , Q = x − 1
(x − 1)2 + y2

(0,1)

Final Answer: 2π

Topic: Mathematics -> Calculus -> Integral Calculus -> 
Techniques of Integration -> Multi-variable

Difficulty: 8

R1 Solution 1: Okay, so I need to calculate the line 
integral … Hmm, the problem also mentions that 
… Thus, the value of the line integral is: 2π

R1 Solution 2: Okay, so I need to calculate the line 
integral …. Hmm, first things first, let me recall 
what line integrals are about … Thus, the value of 
the line integral is: 2π

R1 Solution3: Okay, so I need to calculate the line 
integral … So, first, maybe I should visualize the 
ellipse … Thus, the value of the line integral is: 2π

Figure 2: A data sample from DeepMath-103K.

Each data sample in DeepMath-103K is intentionally structured to be comprehensive, supporting a
variety of downstream applications in mathematical reasoning research. As illustrated in Figure 2, a
single sample includes the following components:

• Question: The mathematical problem statement.
• Final Answer: A verifiable final answer, crucial for rule-based reward functions in RLVR.
• Difficulty: A numerical difficulty score, which facilitates techniques like difficulty-aware training

(e.g., curriculum learning) or adaptive compute allocation based on problem complexity (Wang
et al., 2025b; Chen et al., 2024).

• Topic: A hierarchical topic classification for the problem, enabling topic-specific analysis.
• R1 Solutions: Three distinct reasoning paths generated by the DeepSeek-R1 model (Guo et al.,

2025), suitable for diverse training paradigms such as SFT.

DeepMath-103K possesses several key characteristics that make it particularly suitable for advanc-
ing mathematical reasoning research:

Higher Difficulty DeepMath-103K includes mathematical problems spanning difficulty levels 3
through 9. The core of the dataset consists of 95K challenging problems (levels 5-9) specifically
curated for this research. To ensure broader difficulty coverage, this is augmented with an addi-
tional 8K problems (levels 3-5) sourced from SimpleRL (Zeng et al., 2025b). For comparison, we
analyzed and labeled the difficulty levels of several existing datasets commonly used for RLVR
training in math domain: Open-RS (Dang & Ngo, 2025), DAPO-17K (Yu et al., 2025), DSR-
Preview (Luo et al., 2025), SITLL-3-RL (Chen et al., 2025), ORZ-129K (Hu et al., 2025), and
Open-R1 (Face, 2025). Figure 1a illustrates the difficulty distributions across these datasets. As
depicted, DeepMath-103K exhibits a significantly more challenging problem distribution, contain-
ing a substantially higher proportion of problems at difficulty level 5 and above compared to the
other benchmark datasets. This focus on higher difficulty is intended to push the reasoning limits of
current models.
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Figure 3: Contamination rates of common mathematical and STEM benchmarks detected in the raw
data sources before decontamination.

Rigorous Data Decontamination DeepMath-103K was constructed exclusively using the training
splits of existing open resources, with careful avoidance of any known test set materials. However,
our preliminary analysis revealed that these source data exhibits alarmingly high levels of contam-
ination with problems from commonly used evaluation benchmarks. As illustrated in Figure 3, the
contamination rates (defined as the percentage of benchmark test samples found within our raw data
pool) are notably high: reaching 90% for AIME24 and AMC23, 76.6% for MATH500, 35.7% for
Minerva Math, and 33.6% for OlympiadBench. Recognizing that these benchmarks are frequently
employed for model evaluation, DeepMath-103K underwent a rigorous decontamination procedure.
This process systematically identified and removed problems that overlap with these standard eval-
uation sets, ensuring the integrity and reliability of future benchmark results obtained using models
trained on DeepMath-103K.
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Figure 4: Hierarchical breakdown of covered
mathematical topics in DeepMath-103K.

Broad Topical Diversity Complementing its
high difficulty and data integrity, a key charac-
teristic of DeepMath-103K is its extensive top-
ical diversity spanning the mathematical land-
scape. We categorized each problem using
a hierarchical topic structure, following the
methodology from Gao et al. (2024). As illus-
trated in Figure 4, this classification reveals that
DeepMath-103K draws problems from a mul-
titude of core mathematical areas. Its scope
ranges from fundamental topics such as Preal-
gebra and Plane Geometry to sophisticated do-
mains like Abstract Algebra (including Group
Theory and Field Theory) and advanced Calcu-
lus (covering Differential Equations and Appli-
cations of Integrals, among others). This broad
and deep topical foundation ensures that mod-
els trained on DeepMath-103K are exposed to
a rich variety of mathematical concepts and
problem-solving paradigms, thereby fostering
the development of more robust and widely
generalizable reasoning skills.

Data Novelty and Uniqueness As mentioned in § 1, DeepMath-103K sources mostly from math
forum, rather than common resources frequently adopted by other datasets. To evaluate the data
novelty and uniqueness of DeepMath-103K, we performed the following analysis for all the datasets:

1. We first embedded all the samples using paraphrase-multilingual-MiniLM-L12-v2.

2. Samples with an embedding similarity greater than 0.98 were considered as the same samples.
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Viewing each dataset as a set of embeddings, Figure 5 presents the number of unique elements
in each set and the corresponding set sizes. DeepMath-103K contains 82.81K problems that are
not found in others. This stark contrast highlights the data novelty and uniqueness of DeepMath-
103K. We also plot their embedding distribution after t-SNE in Figure 6. ORZ-129K (Hu et al.,
2025), Open-R1 (Face, 2025), SITLL-3-RL (Chen et al., 2025), DSR-Preview (Luo et al., 2025),
and DAPO-17K (Yu et al., 2025), though curated independently, show very similar embedding dis-
tribution, while DeepMath-103K exhibits a distinctly different pattern. This observation supports
our claim that existing datasets overlap with each other because of using common data sources and
further demonstrate the data novelty and uniqueness of DeepMath-103K.

DeepMath-103K

Open-R1

STILL-3-RL

DSR-Preview

DAPO-17K

ORZ-129K

Count
0K 35K 70K 105K 140K

125.04K

8.03K

29.25K

59.76K

50.32K

20.21K

4.28K

9.37K

11.07K

28.3K

43.66K

82.81K

# Unique Problems
# Non-Unique Problems

Figure 5: Unique and non-unique problem counts in DeepMath-103K compared to other datasets.

(a) DeepMath-103K (b) ORZ-129K (c) Open-R1

(d) STILL-3-RL (e) DSR-Preview (f) DAPO-17K

Figure 6: Embedding distributions of different datasets after t-SNE.

3 CONSTRUCTION OF DEEPMATH-103K

This section details the meticulous data curation process used to construct DeepMath-103K, illus-
trated in Figure 7. The process comprises four primary stages:

1. Source Analysis and Collection: Identifying and collecting mathematically challenging
problems by analyzing the difficulty distributions of existing open data sources.

2. Data Decontamination: Rigorously decontaminating the collected data to remove poten-
tial overlaps with standard evaluation benchmarks, ensuring evaluation integrity.
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Figure 7: The data curation pipeline for DeepMath-103K. Starting with an initial pool of 2,869K
raw questions, successive stages of data decontamination, difficulty filtering (retaining levels ě5),
and answer verifiability filtering yield 95K problems. These are then combined with 8K problems
from SimpleRL (Zeng et al., 2025b) to form the final DeepMath-103K dataset.

3. Difficulty Filtering: Filtering the decontaminated problems based on difficulty, retaining
only those assessed at level 5 or higher to focus on challenging content.

4. Answer Verification: Ensuring each curated problem possesses a verifiable final answer,
consistently validated across multiple solution paths generated by DeepSeek-R1.

Overall, this curation pipeline ensures that DeepMath-103K is largely free from benchmark con-
tamination and concentrates on challenging mathematical problems suitable for advanced reasoning
model training.
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Figure 8: Difficulty distributions of
various open mathematical datasets
considered as potential sources.

Stage 1: Source Analysis and Collection. To iden-
tify data sources rich in challenging problems, we be-
gan by analyzing the landscape of existing open math-
ematical reasoning datasets designed for SFT. These
datasets utilize diverse collection methods. For instance,
datasets such as MetaMathQA (Yu et al., 2024), dart-math-
hard (Tong et al., 2024), and OpenMathInstruct-2 (Tosh-
niwal et al., 2024a) primarily focus on augmenting prob-
lems and solutions derived from established datasets like
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b). In contrast, datasets like NuminaMath-CoT (LI
et al., 2024), MMIQC (Liu et al., 2024), and WebInstruct-
Sub (Yue et al., 2024) source content more broadly from
the web, gathering materials such as exercises and discus-
sions from online platforms (e.g., Math Stack Exchange).
We follow Gao et al. (2024) to estimate the difficulty distri-
butions of these potential source datasets, as shown in Fig-
ure 8, which reveals distinct patterns: datasets derived
from GSM8K and MATH (MetaMathQA, dart-math-hard,
OpenMathInstruct-2), along with NuminaMath-CoT, ex-
hibited distributions heavily skewed towards lower difficulty levels (levels 1-5). Conversely, datasets
sourced more broadly from web content, specifically MMIQC and WebInstructSub, displayed sig-
nificantly flatter distributions with a larger proportion of problems in the mid-to-high difficulty range
(levels 5-9). Based on this finding, we selected Math StackExchange subsets from MMIQC and We-
bInstructSub as our primary data sources due to their higher concentration of challenging problems.
We also included NuminaMath-CoT to enhance the topical diversity of the initial collection. After
applying basic filtering, this selection process yielded a raw pool of 2,869K questions.

Stage 2: Data Decontamination. As indicated by the high contamination rates observed in com-
mon benchmarks (Figure 3), a rigorous data decontamination process was crucial for ensuring
the integrity of DeepMath-103K. We performed decontamination against a comprehensive suite of
mathematics and STEM benchmarks, including MATH (Hendrycks et al., 2021b), AIME (MAA,
a), AMC (MAA, b), Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024),
Omni-MATH (Gao et al., 2024), MathOdyssey (Fang et al., 2024), GAOKAO (Zhong et al., 2023),
JEEBench (Arora et al., 2023), MMLU-STEM (Hendrycks et al., 2021a), CMATH (Wei et al., 2023),
OlympicArena (Huang et al., 2024), GSM8K (Cobbe et al., 2021), and GPQA (Rein et al., 2024).
We adopted the decontamination method proposed by Toshniwal et al. (2024a):
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Table 1: Examples of contamination detected between the raw data pool and benchmarks using
semantic comparison. Colors highlight conceptual or textual similarities.

Raw Question Benchmark Question
Using only 3 paise, 5 paise, and 9 paise coins,
what is the largest amount that cannot be paid in
exact change?

In the state of Coinland, coins have values 6,10,
and 15 cents. Suppose x is the value in cents of
the most expensive item in Coinland that cannot
be purchased using these coins with exact change.
What is the sum of the digits of x?

1. For each candidate question in our raw dataset, we employed embedding similarity search (using
paraphrase-multilingual-MiniLM-L12-v2 (Reimers & Gurevych, 2019)) to identify the top-k
(k “ 5) most similar examples from the aggregated test sets of all targeted benchmarks.

2. Each candidate question was then compared against its top-k retrieved benchmark examples
using an LLM-Judge (Llama-3.3-70B-Instruct (Grattafiori et al., 2024)) to determine if they
constituted identical questions or paraphrases. If any of these comparisons indicated a potential
paraphrase or duplicate, the candidate question was discarded.

Table 1 illustrates the effectiveness of semantic decontamination compared to simple lexical match-
ing. This approach aims to identify not only exact duplicates but also near-duplicates and para-
phrased questions that might otherwise overlap with evaluation sets.

Stage 3: Difficulty Filtering. Zeng et al. (2025a) highlights the importance of aligning RL train-
ing data difficulty with the target model’s reasoning capabilities, noting that powerful models benefit
significantly from exposure to challenging problems. Building on this insight, our curation process
for DeepMath-103K focuses on selecting problems that represent a significant reasoning challenge.
To quantify difficulty, we adopted the approach detailed in Gao et al. (2024). We assigned a difficulty
level to each decontaminated problem by prompting GPT-4o based on the annotation guidelines pro-
vided by the AoPS. To ensure a robust estimate, we queried GPT-4o six times for each problem and
averaged the resulting ratings to determine its final difficulty level. We validated the consistency be-
tween GPT-4o’s evaluation and human evaluation in Appendix D. Subsequently, we applied a strict
filtering criterion, retaining only those problems with an estimated difficulty level of 5 or higher.

Stage 4: Answer Verification. The availability of verifiable final answers is crucial for enabling
rule-based reward in RLVR, which helps mitigate reward hacking and has been instrumental in
training successful reasoning models like DeepSeek-R1 (Guo et al., 2025). However, reliably con-
structing such answers presents two primary challenges:

1. Some open-ended questions inherently lack a easily verifiable final answer.

2. Certain answers are excessively complex (e.g., lengthy expressions or intricate notation), making
them challenging or even infeasible for automated rule-based verification.

To address these issues, we implemented a rigorous two-stage verification process:

1. Question Filtering and Formatting: We used GPT-4o to process the raw questions. Problem
types inherently unsuitable for verification were discarded. Questions phrased conversationally
were rewritten into a standardized format seeking a single numerical or symbolic answer.

2. Answer Verification via Consistency Check: For questions successfully passing the above
step, we generated three distinct solution paths using DeepSeek-R1. A rule-based verifier then
extracted the final answer from each of these generated solutions, as well as from the origi-
nal source solution (when available). We enforced strict consistency: only problems where all
extracted final answers were identical were retained in the final dataset.

Question standardization and answer consistency checking ensures that every problem included in
DeepMath-103K possesses a final answer that is robustly verifiable using automated rules.

4 DEEPMATH SERIES MODELS

This section presents a comprehensive evaluation of the mathematical and general reasoning capa-
bilities of our DeepMath series of models, which were trained on DeepMath-103K.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Math reasoning performance. “DeepMath” denotes models trained on DeepMath-103K.

Model MATH AMC Olympiad Minerva AIME AIME Poly
500 23 Bench Math 24 25 Math

Zero RL from Base Model
Qwen-2.5-7B (Team, 2024) 54.8 35.3 27.8 16.2 7.7 5.4 28.1
ë Open-Reasoner-Zero-7B (Hu et al., 2025) 81.8 58.9 47.9 38.4 15.6 14.4 40.7
ë Qwen-2.5-7B-SRL-Zoo (Zeng et al., 2025a) 77.0 55.8 41.0 41.2 15.6 8.7 33.1
ë DeepMath-Zero-7B (Ours) 85.5 64.7 51.0 45.3 20.4 17.5 42.7

Qwen-2.5-Math-7B (Team, 2024) 46.9 31.9 15.8 15.5 11.2 4.4 22.7
ë Qwen-2.5-Math-7B-SRL-Zoo (Hu et al., 2025) 75.8 59.7 37.4 29.9 24.0 10.2 36.0
ë Oat-Zero-7B (Liu et al., 2025) 80.0 66.7 43.4 40.8 32.7 11.7 40.8
ë Eurus-2-7B-PRIME (Cui et al., 2025) 80.2 64.7 44.9 42.1 19.0 12.7 38.9
ë DeepMath-Zero-Math-7B (Ours) 86.9 74.7 52.3 49.5 34.2 23.5 46.6

Qwen-3-8B-Base (Team, 2025) 60.3 42.5 33.1 27.2 11.2 7.9 30.0
ë DeepMath-Zero-Qwen3-8B (Ours) 93.2 86.2 66.3 53.4 44.6 33.5 52.3

RL from Instruct Models
R1-Distill-Qwen-1.5B (Guo et al., 2025) 84.7 72.0 53.1 36.6 29.4 24.8 39.9
ë DeepScaleR-1.5B-Preview (Luo et al., 2025) 89.4 80.3 60.9 42.2 42.3 29.6 46.8
ë Still-3-1.5B-Preview (Chen et al., 2025) 86.6 75.8 55.7 38.7 30.8 24.6 43.1
ë DeepMath-1.5B (Ours) 89.9 82.3 61.8 42.5 37.3 30.8 46.6

OpenMath-Nemotron-1.5B (Moshkov et al., 2025) 91.8 90.5 70.3 26.3 61.3 50.6 56.8
ë DeepMath-Omn-1.5B (Ours) 93.2 94.2 73.4 28.3 64.0 57.3 58.7

Training Paradigms We employed two distinct RL training paradigms:

• Zero RL: This paradigm involves training LLMs from their base (non-instruction-tuned) version
using RL (Guo et al., 2025). We used group relative policy optimization (GRPO) (Shao et al.,
2024) with fixes from Yu et al. (2025), and trained Qwen-2.5-(Math)-7B with a rule-based reward
(+1 for correct final answer, -1 otherwise). Detailed settings are available in Appendix C.

• RL: We also performed RL on instruction-tuned models that already possessing math reason-
ing ability. We explored this using R1-Distill-Qwen-1.5B (Guo et al., 2025) and OpenMath-
Nemotron-1.5B (Moshkov et al., 2025).

Evaluation Following Zeng et al. (2025a;b), we assessed the mathematical performance of our
models on: MATH-500 (Hendrycks et al., 2021b), AMC 2023 (MAA, b), OlympiadBench (He
et al., 2024), Minerva Math (Lewkowycz et al., 2022), AIME 2024-2025 (MAA, a), and the En-
glish subset of PolyMath (Wang et al., 2025a). To investigate the generalization of reasoning abili-
ties beyond mathematics, we used the GPQA-Diamond benchmark, which covers biology, physics
and chemistry (Rein et al., 2024). For all evaluations, we adopted pass@1 accuracy (averaged
over 16 samples) as the metric, and fixed the decoding parameters to temperature=0.6, top p=0.95,
and max tokens=32K. To ensure a fair comparison and eliminate variance caused by the evaluation
script, we re-evaluated the performance of all baseline models under our evaluation settings.

4.1 MATHEMATICAL REASONING RESULTS

The results presented in Table 2 collectively demonstrate the effectiveness of DeepMath-103K as a
valuable resource for advancing the state-of-the-art in mathematical reasoning:

Zero RL Training on Base Model DeepMath-Zero-7B and DeepMath-Zero-Math-7B, trained
from the base Qwen-2.5-7B and Qwen-2.5-Math-7B models, demonstrate significant performance
gains and surpass all baselines on evaluated benchmarks. These results highlight the effectiveness
of DeepMath-103K in enabling the training of powerful reasoners from scratch.

RL Training on Instruction-tuned Models Fine-tuning instruction-tuned models with RLVR
on DeepMath-103K also yields notable performance enhancements. DeepMath-1.5B, initialized
from R1-Distill-Qwen-1.5B, achieves strong performance, particularly on AMC23 (82.3%) and
OlympiadBench (61.8%). Similarly, DeepMath-Omn-1.5B, starting from OpenMath-Nemotron-
1.5B, attains strongest results among 1.5B-scale models on all evaluated benchmarks. The consis-
tent improvements observed across different instruction-tuned baselines further validate the utility
of DeepMath-103K in boosting strong models.
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4.2 GENERALIZABLE REASONING BEYOND MATHEMATICS

Table 3: Performance on the GPQA-Diamond.

Model Biol. Phys. Chem. Overall

Zero RL from Base Model
Qwen-2.5-7B 33.6 27.8 21.4 25.3
ë Open-Reasoner-Zero-7B 50.3 47.8 26.7 38.1
ë Qwen-2.5-7B-SimpleRL-Zoo 31.9 37.9 22.6 30.2
ë DeepMath-Zero-7B (Ours) 57.2 53.0 28.2 41.7

Qwen-2.5-Math-7B 32.2 26.0 21.1 24.3
ë Qwen-2.5-Math-7B-SRL-Zoo 40.1 31.2 22.9 28.2
ë Oat-Zero-7B 49.0 36.8 22.0 31.0
ë Eurus-2-7B-PRIME 44.1 37.4 24.1 31.8
ë DeepMath-Zero-Math-7B (Ours) 47.4 56.3 26.0 41.2

RL from Instruct Models
R1-Distill-Qwen-1.5B 13.5 36.2 4.4 19.1
ë DeepScaleR-1.5B-Preview 15.5 46.8 9.1 26.1
ë Still-3-1.5B-Preview 16.8 38.4 5.2 20.7
ë DeepMath-1.5B (Ours) 18.1 47.6 12.2 28.2

OpenMath-Nemotron-1.5B 12.8 23.5 18.9 20.3
ë DeepMath-Omn-1.5B (Ours) 17.1 28.4 21.5 24.1

Table 3 presents the performance of Deep-
Math models on GPQA-Diamond (Rein et al.,
2024), which covers biology, physics, and
chemistry. DeepMath models achieve supe-
rior performance compared to other baselines,
demonstrating a remarkable capacity to gen-
eralize their reasoning abilities acquired from
math to broader domains. We attribute this
generalization to the data diversity and rigor-
ous curation. By sourcing less structured but
more diverse data like Math StackExchange,
DeepMath-103K yields a dataset with unique
and diverse problems. Furthermore, the rigor-
ous curation pipeline ensures both the challenge
and the integrity of the data. This exposure to a
wider variety of problem scenarios and reason-
ing styles likely equips our models with more
robust and transferable reasoning skills.

4.3 ANALYSIS OF ZERO RL USING DEEPMATH-103K
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Figure 9: Training dynamics and response length of DeepMath-Zero-7B. (a) Rollout response
length. (b) Cognitive behaviors. (c) Average response length on evaluated benchmarks.

Figure 9 analyzes the zero RL training. Specifically, Figure 9a illustrates the trend of response length
throughout the training process, while Figure 9b tracks the emergence of four cognitive behaviors
in Gandhi et al. (2025). The increasing trends in both response length and the manifestation of
cognitive behaviors suggest a reproduction of the “aha moment” phenomenon observed in R1 (Guo
et al., 2025). Furthermore, Figure 9c shows the average response lengths of different models on
the evaluated benchmarks. The notably longer response lengths exhibited by DeepMath-Zero-7B
suggest that more challenging problems can elicit deeper reasoning processes from the model.

5 CONCLUSION

In this work, we introduce DeepMath-103K, a large-scale mathematical dataset specifically designed
to advance the reasoning capabilities of LLMs through RLVR. DeepMath-103K distinguishes itself
through its high concentration of challenging problems, rigorous decontamination against a wide
range of benchmarks, and the inclusion of verifiable final answers and multiple diverse solutions
for each problem. Our data curation pipeline leverages the richness of less structured mathematical
forums, resulting in a dataset with significant novelty and diversity compared to existing resources.
Our experiments demonstrate the substantial impact of DeepMath-103K. Models trained on this
dataset, the DeepMath series, achieve strong results on many mathematical benchmarks and ex-
hibit remarkable generalization to domains beyond mathematics. By releasing the DeepMath-103K
dataset, along with our code and model weights, we aim to provide a robust platform for the com-
munity to further explore and push the boundaries of advanced reasoning.
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6 ETHICS STATEMENT

We, the authors of this work, confirm that we have read and adhered to the ICLR Code of Ethics.
Our work focuses on the development of a large-scale mathematical dataset, DeepMath-103K, to
advance reasoning in AI. We have taken great care in its construction, including a rigorous de-
contamination process, to ensure fair and trustworthy benchmark evaluations. The dataset and our
associated training code will be made publicly available to promote open research and reproducibil-
ity.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the DeepMath-103K dataset, along with
all associated training code, scripts, and model weights, publicly available. Further details on our
experimental setup, including hyperparameters and implementation specifics, are provided in Ap-
pendix C, enabling other researchers to fully reproduce and build upon our results.
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A RELATED WORK

Datasets for advancing mathematical reasoning of LLM falls into three main lines corresponding
to the three stages of LLM post-training: continue pre-training (CPT), SFT and RL. CPT aims to
inject fundamental mathematical knowledge into LLMs with representative works like OpenWeb-
Math (Paster et al., 2023), MathPile (Wang et al., 2024), InfiMM-Web-Math (Han et al., 2024), Fine-
Math (Allal et al., 2025), and MegaMath (Zhou et al., 2025). SFT has been a foundational approach,
utilizing datasets like MATH (Hendrycks et al., 2021b) and GSM8K (Cobbe et al., 2021) which pro-
vide problems with step-by-step solutions to teach models reasoning patterns. Subsequent efforts
have focused on creating larger, harder and more diverse SFT datasets, such as MetaMathQA (Yu
et al., 2024), OpenMathInstruct (Toshniwal et al., 2024b;a), NuminaMath-CoT (LI et al., 2024),
MMIQC (Liu et al., 2024), dart-math-hard (Tong et al., 2024), and OpenMathReasoning (Moshkov
et al., 2025). Recent progress in RLVR catalyzes datasets with verifiable reward, such as Open-
R1 (Face, 2025), ORZ-129K (Hu et al., 2025), DSR-Preview (Luo et al., 2025), DAPO-17K (Yu
et al., 2025), and BigMath (Albalak et al., 2025). DeepMath-103K distinguishes itself by a unique
blend of high difficulty, rigorous decontamination, and verifiable answers.

B CONTAMINATION ANALYSIS OF EXISTING DATASETS
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Figure 10: Number of contaminated samples
in various datasets when compared against the
MATH500 benchmark.

We performed a contamination analysis of
several existing datasets, including ORZ-
129K (Hu et al., 2025), DSR-Preview (Luo
et al., 2025), DAPO-17K (Yu et al., 2025),
Open-RS (Bansal et al., 2025), Open-R1 (Face,
2025), and DeepMath-103K. Our analysis fo-
cused on detecting potential contamination
from the MATH500 (Hendrycks et al., 2021b),
a commonly used benchmark. We employed
a string-based comparison method, specifically
identifying cases where the normalized in-
del similarity between a problem in the ana-
lyzed dataset and a problem in MATH500 ex-
ceeded 90%. This approach is notably more
lenient than the rigorous semantic decontam-
ination procedure used in the construction of
DeepMath-103K (§ 3). However, the numbers
of contaminated samples shown in Figure 10 re-
veal that most of the analyzed datasets exhibit
some degree of contamination, with the exception of DeepMath-103K.

C TRAINING DETAILS

We use verl as the training framework2. Configurations are listed in Table 4.

Table 4: Configurations for training DeepMath series models.

Config DeepMath-Zero-7B DeepMath-Zero-Math-7B DeepMath-1.5B DeepMath-Omn-1.5B

lr 1e-6 1e-6 1e-6 1e-6
kl coef 0.0 0.0 1e-3 1e-3
max prompt length 2K 1K 2K 2K
max response length 10K 3K 24K 24K
train batch size 512 512 128 128
ppo mini batch size 32 32 64 64
clip ratio low 0.20 0.20 0.20 0.20
clip ratio high 0.28 0.28 0.27 0.27
temperature 1.0 1.0 0.6 0.6
rollout.n 16 16 16 18
overlong buffer.len 2K 512 4K 4K
total training steps 500 500 1800 700

2https://github.com/volcengine/verl
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Table 5: Examples of geometry problems retained by the difficulty filtering process (level ě 5).

Difficulty Problem
5 Four random points are placed in the plane, with each point’s horizontal and vertical coor-

dinates uniformly distributed on the interval p0, 1q. What is the expected largest size of a
subset of these points that can form the vertices of a convex polygon?

6 A square has one side lying on the line y “ 2x ´ 17 and two other vertices on the parabola
y “ x2. Determine the minimum possible area of the square.”

7 Determine the sequence spk, nq, which represents the number of sides of the intersection
of a unit-radius regular polygon Pk with k sides and a rotating unit-radius regular polygon
Pn with n ě k sides, as the angle of rotation θ varies from 0 to 2π. Provide the sequence
spk, nq for all n ě k.

8 Consider a convex n-gon A1A2 ¨ ¨ ¨An inscribed in a unit circle. Determine the maximum
value of the sum of the squares of all its sides and diagonals

9 Determine the maximal cardinality of a collection C of projective planes on ω such that no
two distinct members of C are isomorphic. A set L Ď PpXq is a projective plane on X ‰ H

if: 1. For any distinct x, y P X , there is a unique l P L such that x, y P l. 2. For any distinct
l,m P L, |l X m| “ 1. 3. There exist four distinct elements of X such that no member of
L contains more than two of these four elements. Two projective planes L and M on X are
isomorphic if there is a bijection φ : X Ñ X such that l P L if and only if φplq P M .
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Figure 11: Correlation between model and human
labeled difficulties.

As mentioned in § 3, our difficulty assess-
ment follows the methodology from Omni-
MATH (Gao et al., 2024), which relies on
an automated, model-based evaluation. While
the reliability of this approach was rigorously
validated in Gao et al. (2024), we further
verified the consistency between model and
human judgment in Figure 11, which com-
pares GPT-4o difficulty ratings with the estab-
lished human-annotated difficulty levels from
the MATH dataset (Hendrycks et al., 2021b)
and shows a strong positive correlation. Table 5
also illustrates how increasing difficulty levels
often correlate with greater conceptual depth
and reasoning complexity, successfully captur-
ing the inherent challenge of the problems.

E LLM USAGE STATEMENT

In the preparation of this manuscript, we uti-
lized LLMs as an assistive tool. The primary applications of LLMs were to help polish the writing
and enhance the clarity of the text, as well as to aid in various data processing tasks. The core
research ideas, experimental design, and final analyses were conceived and executed by the human
authors.
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