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Abstract

Time-series forecasting is crucial across various
domains, including finance, healthcare, and en-
ergy. Transformer models, originally developed
for natural language processing, have demon-
strated significant potential in addressing chal-
lenges associated with time-series data. These
models utilize different tokenization strategies,
point-wise, patch-wise, and variate-wise, to rep-
resent time-series data, each resulting in different
scope of attention maps. Despite the emergence
of sophisticated architectures, simpler transform-
ers consistently outperform their more com-
plex counterparts in widely used benchmarks.
This study examines why point-wise transform-
ers are generally less effective, why intra- and
inter-variate attention mechanisms yield similar
outcomes, and which architectural components
drive the success of simpler models. By ana-
lyzing mutual information and evaluating models
on synthetic datasets, we demonstrate that intra-
variate dependencies are the primary contribu-
tors to prediction performance on benchmarks,
while inter-variate dependencies have a minor
impact. Additionally, techniques such as Z-score
normalization and skip connections are also cru-
cial. However, these results are largely influ-
enced by the self-dependent and stationary nature
of benchmark datasets. By validating our find-
ings on real-world healthcare data, we provide
insights for designing more effective transform-
ers for practical applications.
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1. Introduction
Time-series forecasting plays a crucial role in numerous
critical applications, from finance and healthcare to en-
ergy and transportation. Accurate predictions of future val-
ues based on historical data are indispensable for informed
decision-making and strategic planning across these do-
mains. Building on their success in natural language pro-
cessing, transformer models (Vaswani et al., 2017) have
rapidly gained attention from researchers in time-series
forecasting. Compared to RNN-based models (Hochreiter
& Schmidhuber, 1996; Rangapuram et al., 2018; Salinas
et al., 2020), transformers are capable of capturing long-
range dependencies and efficiently processing large-scale
datasets, making them a promising solution for addressing
common challenges in time series data.

Based on how tokens are represented in the attention
mechanism, transformer-based models for time series can
be categorized into three types: point-wise, patch-wise,
and variate-wise (Wang et al., 2024b). In point-wise ap-
proaches, the embedding of each token is derived from the
values of all variates at a specific time step. Patch-wise
methods, on the other hand, represent small segments of
the time series as tokens, with each token’s embedding gen-
erated from a segment of a single variate over a fixed time
window. variate-wise approaches take a more global per-
spective by treating the entire time series of a variate as a
single token. A visualization of these three token types for
time series data is shown in Figure 1.

Recent research on transformers for time series forecast-
ing has explored various tokenization strategies, with many
models incorporating hybrid token scopes to enhance per-
formance. However, point-wise transformers are generally
less competitive than patch-wise and variate-wise ones. In-
terestingly, some transformers with simpler token scopes
and attention mechanisms, such as iTransformer (Liu et al.,
2023) and PatchTST (Nie et al., 2023), perform excep-
tionally well on standard time series forecasting bench-
marks (Wang et al., 2024b). Notably, iTransformer is a
variate-wise transformer with inter-variate attention, where
attention is computed across different variates. In contrast,
PatchTST is a patch-wise transformer with intra-variate at-
tention, focusing on interactions between patches from the
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Figure 1: Demonstration of different token representations in time-series transformers. A point-wise token is formed by all
variate values at one time step; a patch-wise token is formed by a segment or patch of a single variate in one time window;
a variate-wise token is the entire time series of a single variate.

same variate. Despite these fundamental differences, both
models often achieve similar performance in benchmark.

This study seeks to address the following key questions:

1. Why point-wise transformers generally less competi-
tive in time series forecasting?

2. Why do transformers with intra-variate attention and
those with inter-variate attention perform similarly?

3. Why do transformers with basic attention mechanisms
excel in time series forecasting?

4. Which components in the basic transformer’s archi-
tecture contribute most to the success in time series
forecasting?

To achieve this goal, we conducted a comprehensive anal-
ysis of selected representative transformers for time se-
ries forecasting (Table 1). To ensure a unified compari-
son across models with varying architectures and attention
mechanisms, we introduce new metrics that estimate the
mutual information within and between variates based on a
model’s input and output, capturing both intra-variate and
inter-variate information flows in a model-agnostic manner.
Beyond standard benchmark datasets from the literature,
we also designed a set of synthetic datasets with controlled
intra- and inter-variate dependencies to systematically as-
sess transformer performance across different conditions.

Our findings provide valuable insights for understanding
how transformers work in time series forecasting:

1. We demonstrate that transformers with superior perfor-
mance excel at capturing intra-variate patterns, while inter-
variate patterns play a much smaller role in model predic-
tions, even in transformers equipped with inter-variate at-
tention mechanisms. This can be attributed to the fact that,
in the majority of time series forecasting benchmarks, each
variate is largely self-dependent. These findings provide
valuable insights into questions 1 and 2.

2. The basic transformer encoder is capable of capturing
the intra-variate dependencies when using patch-wise and

variate-wise tokens due to the self-attention mechanism.
The skip-connection in encoder layers plays an crucial role
for learning intra-variate patterns. A variate-independent
decoder also helps the model to focus on the intra-variate
dependencies. These findings address the question 3 and 4.

3. A key factor that contributes to the success of models
like iTransformer and PatchTST is not the model’s archi-
tecture itself, but rather the use of Z-score normalization
and denormalization for the model’s input and output. This
technique is particularly effective when the variates are sta-
tionary throughout the combined duration of the observa-
tion and prediction periods. However, it may degrade a
model’s forecasting performance when this assumption is
violated.

These findings also help explain certain phenomena ob-
served in the literature. (Tan et al., 2024) found that pre-
trained large language models are not particularly useful
for time series forecasting, as understanding a variate’s
broader context is not essential for capturing intra-variate
patterns. However, this conclusion is based on commonly
used benchmarks and may not hold for fundamentally dif-
ferent datasets, such as event time series. Additionally,
(Zeng et al., 2023) suggested that linear models can outper-
form certain transformers on time series forecasting bench-
marks, which is because point-wise transformers struggle
to effectively capture intra-variate patterns.

Moreover, the findings of this study offer complementary
perspectives to several prior works. For instance, Zhao &
Shen (2024) introduced a plugin method to identify and
exploit locally stationary lead-lag relationships between
variates to improve forecasting performance. While our
findings show that many transformers primarily focus on
intra-variate patterns, their work demonstrates that explic-
itly modeling inter-variate dependencies can be beneficial.
Another relevant work, Reversible Instance Normalization
(RevIN) (Kim et al., 2021), proposed a method similar to Z-
score normalization to address distributional shifts in time
series data. While we also examined Z-score normaliza-
tion in this study, a key difference is that RevIN incorpo-
rates learnable parameters within its normalization process,
whereas the Z-score normalization in our study is the stan-
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dard, non-learnable version. Notably, we observed that Z-
score normalization degraded model performance on syn-
thetic datasets which are non-stationary, an outcome that
contrasts with observations in RevIN.

2. Related work
We selected a set of time series transformers in our analy-
sis, which are representative of the different token scopes
and attention mechanisms used for time series forecasting.
These models are summarized in Table 1 and more details
are provided below:

1). Transformer (Vaswani et al., 2017) – The standard
transformer architecture with point-wise tokens.

2.) Autoformer (Wu et al., 2021) – Autoformer introduces
autocorrelation attention to capture long-range dependen-
cies in time series. It decomposes the time series into trend
and seasonal components using a moving average method,
as in traditional time series models (Box et al., 2015). Ad-
ditionally, a point-wise projection is added to each encoder
layer to capture inter-variate dependencies. Since autocor-
relation attention is computed over the entire time series,
we consider Autoformer as a hybrid model that incorpo-
rates variate-wise and point-wise tokens.

3). FEDformer (Zhou et al., 2022) – FEDformer introduces
frequency-enhanced attention to capture periodic patterns
in time series data. Building on trend and seasonal de-
composition, it adds frequency decomposition for seasonal
components. The architecture of FEDformer closely re-
sembles Autoformer, also incorporating a point-wise pro-
jection in its encoder layers.

4). Crossformer (Zhang & Yan, 2023) – Crossformer intro-
duces a Two-Stage Attention mechanism to capture both
intra- and inter-variate dependencies. It employs hierarchi-
cal patch-wise tokens for learning cross-time (intra-variate)
and cross-dimension (inter-variate) attention efficiently.

5). PatchTST (Nie et al., 2023) – PatchTST uses a vanilla
transformer encoder architecture but with patch-wise to-
kens. It segments the time series along the time axis into
patches and applies attention to these patches for each
variate. The model is incapable of capturing inter-variate
patterns, as its decoder, a linear projection layer, is also
variate-independent.

6). iTransformer (Liu et al., 2023) – iTransformer uses the
same encoder architecture as the vanilla transformer but
with variate-wise tokens. It treats the entire time series of a
variate as a single token, thereby learning inter-variate at-
tention through the multi-head self-attention mechanism.
It’s decoder is variate-independent linear projection, the
same as PatchTST.

7). TimeXer (Wang et al., 2024a) – TimeXer combines the
ideas of PatchTST and iTransformer to enhance its abil-
ity of capturing both intra- and inter-variate dependencies.
It learns intra-variate attention via patch-wise tokens and
inter-variate attention through variate-wise tokens. The
output of its encoder layers is a concatenation of the out-
puts from both attention mechanisms. It’s decoder is the
same as PatchTST and iTransformer.

Some other point-wise approaches, such as Reformer (Ki-
taev et al., 2020), Pyraformer (Liu et al., 2022), and In-
former (Zhou et al., 2021), were not included in our exper-
iments. This is because they are generally perform worse
and their architectures are less representative. Temporal
Fusion Transformer (TFT) (Lim et al., 2021), however,
is a hybrid model that incorporates variable selection and
LSTM-based encoders prior to applying attention. As a re-
sult, its token representations are less explicit and not as
directly comparable to the models we selected. Addition-
ally, Tan et al. (2024) introduces PAttn, a patch-wise model
similar to PatchTST in both token scope and architecture.
Therefore, we consider PatchTST a representative model
for PAttn. Furthermore, this study focuses on lightweight
transformers for time series forecasting and does not in-
clude pretrained large language models.

Traditional statistical models such as ARIMA (AutoRe-
gressive Integrated Moving Average) (Box & Pierce,
1970), were not considered in this study as we are focusing
on transformer-based models. However, such methods can
be useful for analyzing the properties of single variates and
provide certain interpretability to time series forecasting.

Additionally, Qiu et al. (2024) introduced new benchmarks
for time series forecasting, primarily focusing on intra-
variate perspectives, which differ significantly from the
scope of the synthetic datasets in our study.

3. Method
Standard metrics for time series forecasting, such as mean
squared error (MSE) and mean absolute error (MAE), are
insufficient for evaluating a model’s ability to learn intra-
and inter-variate patterns. To overcome this limitation, we
propose new metrics that estimate the mutual information
(Cover, 1999) between a model’s input and output, captur-
ing intra- and inter-variate information flows in a model-
agnostic way. These metrics facilitate comparisons across
models with different architectures.

Notations: Let x = {x1,x2, . . . ,xM} be a multivariate
time series data sample, where xi = {xi,1, xi,2, . . . , xi,T }
is the i-th variate with T time steps. The goal of time series
forecasting is to predict the future values of each variate in
x based on the historical values. We denote the predicted
values as x̂i = {x̂i,T+1, x̂i,T+2, . . . , x̂i,T+k}. In addition,
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Table 1: Selected transformer-based models for time series forecasting in our analysis. Some models are hybrid that
combines multiple token scopes in the model architecture. We consider Autoformer and FEDformer as hybrid with point-
wise tokens because they both include point-wise projection in their encoders. Z-norm indicates whether the model uses
Z-score normalization and denormalization for the input and output.

Point-wise Patch-wise Variate-wise Inter-variate
attention Z-norm Variate-independent

decoder

Transformer (Vaswani et al., 2017) ✓ ✓

Autoformer (Wu et al., 2021) ✓ ✓ ✓

FEDformer (Zhou et al., 2022) ✓ ✓ ✓

Crossformer (Zhang & Yan, 2023) ✓ ✓

PatchTST (Nie et al., 2023) ✓ ✓ ✓

iTransformer (Liu et al., 2023) ✓ ✓ ✓ ✓

TimeXer (Wang et al., 2024a) ✓ ✓ ✓ ✓ ✓

x/i = {xj |∀j ̸= i} represents the data sample excluding
the i-th variate.

To quantify the dependency of the model’s prediction for
the j-th variate (x̂j) on the i-th variate (xi), we estimate
the mutual information between them, conditioned on x/i:

I(x̂j ;xi|x/i) = H(x̂j |x/i)−H(x̂j |xi,x/i) (1)

Since the model’s output is deterministic given a complete
input, the conditional entropy H(x̂j |xi,x/i) = 0. Hence:

I(x̂j ;xi|x/i) = H(x̂j |x/i) ∝
K∑

k=1

logσij,k, (2)

Here k is the k-th time step of x̂j and we assume x̂j |x/i ∼
N (µij ,σ

2
ijI), I is the identity matrix. σ2

ij estimates the
extent to which changes in the prediction of variate j are
caused by changes in variate i. Mathematically, σ2

ij is the
variance of the predictions of variate j conditioned on in-
puts x where all variates are held fixed except for variate
i. It is straightforward to see that the mutual information
I(x̂j ;xi|x/i) can be evaluated by σij the standard devia-
tion of x̂j |x/i. Therefore, we define a mutual information
score as below:

σ̄ij =
1

N

N∑
n=1

1

K

K∑
k=1

σ
(n)
ij,k, ∀i, j ∈ {1, 2, . . . ,M} (3)

Where N is the number of samples, K is the predicted se-
quence length. Unlike Pearson’s correlation, it is more ver-
satile as it captures both linear and non-linear relationships.

To estimate the conditional variance, the variation of vari-
ate i is introduced through N different samples by aug-
menting original samples in the dataset. Specifically, each
original sample is augmented into N = 5 versions, dif-
fering only in the value of variate i: one instance is set to

zero, one retains the original value, and the remaining in-
stances are generated by adding Gaussian noise of varying
strengths to the original value.

When j = i, we call σ̄ii as the intra-variate mutual infor-
mation score (Intra MI), and when j ̸= i, we call σ̄ij as
the inter-variate mutual information score (Inter MI). For a
time series with more than two variates, we define two met-
rics for evaluating inter-variate mutual information across
all variates:

(i) Average Inter MI (Avg Inter MI): The average of all
inter-variate mutual information scores.

1

M(M − 1)

M∑
i=1

M∑
j=1,j ̸=i

σ̄ij

(ii) Maximum Inter MI (Max Inter MI): The maximum
inter-variate mutual information score.

max
i,j

σ̄ij , ∀i, j ∈ {1, 2, . . . ,M}, i ̸= j

We propose Max Inter MI as a measure of the mutual in-
formation captured by a model between the most strongly
interacting variates. This metric helps assess whether a
model is effectively learning inter-variate dependencies,
particularly in cases where the number of variates is large
and only a few exhibit strong interactions. For instance,
in Figure 4, Crossformer achieves the highest Max Inter
MI on the Traffic dataset (which has 862 variates), while
its average Avg Inter MI remains lower than that of most
other models.

4. Experiments
We conducted a series experiments to analyze the behav-
ior of selected transformers on both real-world and syn-
thetic datasets. The experiments were implemented using
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the Time Series Library (Wang et al., 2024b). To ensure
consistency, we employed a unified configuration across all
prediction lengths within a given dataset for each model.
As a result, the reported performance may differ from that
presented in the original papers for these models. The hy-
perparameters of all models on benchmarks are provided in
the Appendix. All the experimental results in this work are
averaged over 3 runs with different random seeds. Standard
deviation of the results are provided in the Appendix too.

4.1. Datasets

(a) Independent variates. (b) Dependent variates.

Figure 2: Demonstration of synthetic datasets with inde-
pendent and dependent variates.

We included the following datasets in our experiments, as
they are among the most commonly used benchmarks in
the literature: Weather, Electricity, Traffic, and ETT (com-
prising four subsets). More details of these datasets are
provided in Table 1 in the Appendix.

Additionally, we designed a set of synthetic datasets with
controlled intra- and inter-variate dependencies to evalu-
ate the performance of different transformers under various
conditions. Each synthetic dataset consists of two variates
and is generated as hourly time series over a one-year pe-
riod. Based on the relationship between the variates, we
classify these datasets into two categories: independent and
dependent (Figure 2).

For the independent variates, we generated them indepen-
dently with the following process:

(1) We begin by generating a trend component charac-
terized by a specified autocorrelation strength parameter
(γ ∈ [0, 1]). Within the initial time window, the trend fol-
lows a linear pattern, either increasing or decreasing. A
random noise ϵ sampled from a normal distribution was
added to the trend component. The formulation is as be-
low and the time lag was fixed at k = 24 in all synthetic
datasets:

at+1 = γ

t∑
τ=t−k

ωτaτ + (1− γ)ϵa, (4)

(2) Next, We generated two seasonal components for each
variate, defined by specified amplitudes and frequencies.
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(d) γ = 0.5, α = 0.8

Figure 3: Visualization of synthetic data with different con-
figurations of γ and α. Figures 3a and 3b show indepen-
dent variates with high and low autocorrelation, while Fig-
ures 3c and 3d depict dependent variates with high and low
autocorrelation.

Each seasonal component was represented as a sine wave.
The final time series was generated by adding the trend and
seasonal components.

For the dependent variates, we initially generated two in-
dependent variates using the above process. An additional
step was then applied to introduce a specified dependency
parameter (α ∈ [0, 1]) between the variates. This parame-
ter controls the strength of the dependency: when α = 0,
the variates were generated independently, with no depen-
dency between them.

b̂t+1 = α

t∑
τ=t−k

ω̂τaτ + (1− α)bt+1. (5)

In our experiments, we selected γ ∈ {0.5, 0.95} to rep-
resent low and high levels of autocorrelation, respectively,
and α ∈ {0, 0.2, 0.4, 0.8} to capture varying degrees of
dependency between variates. Figure 3 illustrates the syn-
thetic signals generated with different levels of γ and α.

4.2. Results

In this section, we present and analyze the results of our ex-
periments, organized around the research questions posed
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Figure 4: Performance comparison of selected transformer-based models on commonly used benchmark datasets.

Figure 5: Forecasting performance of selected transformer-based models on synthetic datasets with varying degrees of
dependency between and within variates.

in this study.

1. Why point-wise transformers are generally less com-
petitive in time series forecasting? And why transform-
ers with intra-variate attention and those with inter-
variate attention often achieve similar performance?

We begin by comparing the performance of selected

transformer-based models on widely used benchmark
datasets (Figure 4). The full results of all benchmarks
datasets are provided in Figure 1 of the Appendix. These
results indicate that transformers employing point-wise to-
kens are generally less effective at capturing patterns within
a single variate, as evidenced by their lower Intra MI
scores. In contrast, these models are more sensitive to inter-
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Table 2: Correlation between MAE and mutual information scores across various datasets. Additionally, the table includes
the average correlation between different variates within each dataset (denoted as Avg Var Corr).

ETTh1 ETTh2 ETTm1 ETTm2 Weather Traffic Electricity
Synthetic (γ = 0.95) Synthetic (γ = 0.5)

α = 0 α = 0.2 α = 0.4 α = 0.8 α = 0 α = 0.2 α = 0.4 α = 0.8

Avg Var Corr 0.222 0.325 0.224 0.324 0.296 0.564 0.489 0.017 0.034 0.061 0.048 0.016 0.012 0.019 0.031

MAE - Intra -0.875 -0.935 -0.794 -0.781 -0.715 -0.87 -0.739 -0.742 -0.515 -0.6 0.089 0.8 0.792 0.725 0.695

MAE - Avg Inter 0.616 0.725 0.477 0.656 0.376 0.266 0.596 0.681 0.728 0.788 0.292 0.457 0.457 0.54 0.12

MAE - Max Inter 0.64 0.784 0.544 0.802 0.32 0.11 0.347 0.681 0.728 0.788 0.292 0.457 0.457 0.54 0.12

variate influences, leading to higher Avg Inter MI and Max
Inter MI scores. However, despite these higher Inter MI
scores, they do not significantly improve the forecasting
performance. This suggests that the limited performance
of point-wise transformers is primarily due to their inabil-
ity to effectively capture intra-variate patterns. Addition-
ally, these results indicate that the benchmark datasets are
largely self-dependent, with variates showing minor inter-
variate dependencies.

To validate this hypothesis, we conducted experiments on
synthetic datasets with varying levels of intra- and inter-
variate dependencies. The results in Table 2 reveal a strong
negative correlation between MAE and Intra MI scores on
benchmark datasets, as well as on synthetic datasets with
high autocorrelation (γ = 0.95) and low inter-variate de-
pendencies (α ≤ 0.4). In contrast, on synthetic datasets
with low autocorrelation (γ = 0.5), the results show a pos-
itive correlation between MAE and Intra MI scores. MSE
follows the same pattern as MAE, so it is omitted here for
brevity. Accordingly, transformers that perform exception-
ally well on benchmark datasets are less effective on syn-
thetic datasets characterized by high inter-variate depen-
dencies (α = 0.8) or low autocorrelation (γ = 0.5). As
illustrated in Figure 5, Crossformer outperforms PatchTST,
iTransformer, and TimeXer in these scenarios. These find-
ings suggest that the performance of transformers in
those benchmarks of time series forecasting is heavily
influenced by the strength of intra-variate patterns. As
a result, point-wise transformers are less competitive
due to their limited ability to capture such patterns.

We also observe that, despite having inter-variate attention
mechanisms, iTransformer and TimeXer generally exhibit
lower Inter MI scores compared to other models (Figure 4).
This suggests that inter-variate patterns have a limited
impact on forecasting benchmarks, offering insight into
the second research question: Why do transformers with
inter-variate attention often perform similarly to those with
intra-variate attention? The reason is that both primarily
focus on capturing intra-variate patterns.

Furthermore, the average correlation between variates
within each dataset (Avg Var Corr) is not a reliable indi-
cator of the dependency strength between variates. This is

evident in the synthetic datasets, where the correlation be-
tween variates remains close to zero and is unaffected by
the dependency strength parameter α. This also explains
why datasets with higher variate correlation do not neces-
sarily exhibit stronger inter-variate dependencies.

Z - Norm

Z - DeNorm Z - DeNorm

Linear
projection

Linear
projection

Attention

Z - Norm

Encoder layer

Decoder 

Skip
connection

Skip
connection

Figure 6: Demonstration of iTransformer architecture.

2. Why do transformers with basic attention mecha-
nisms excel in time series forecasting? Which compo-
nents in the basic transformer’s architecture contribute
most to the success in time series forecasting?

Given the importance of intra-variate patterns in time se-
ries forecasting, we hypothesize that the key components of
a transformer’s architecture are those that most effectively
enhance its ability to capture intra-variate dependencies. To
validate this hypothesis, we conducted an ablation study on
the iTransformer (Liu et al., 2023) model, which includes
the vanilla transformer encoder and a variant-independent
linear decoder (Figure 6). PatchTST (Nie et al., 2023)
has a similar architecture to iTransformer, but its atten-
tion mechanism operates within each variate rather than
across all variates, forcing it to focus entirely on capturing
intra-variate patterns. In our experiments, we modified the
model by removing the skip connections in the encoder lay-
ers and/or replacing the variate-independent decoder with
a variate-dependent one. Specifically, for the benchmark
datasets, we added a 2D convolutional layer before the
variate-independent linear projection in the decoder. While
for the synthetic datasets, we added a flattened linear layer.
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Table 3: Ablation study on the iTransformer model architecture. “w/o SC” refers to the model without skip connections
in the encoder layers, “VD-De” denotes the use of a variate-dependent decoder, “w/o SC & VD-De” indicates both mod-
ifications applied, and “Original” represents the unmodified iTransformer model. The results are averaged over different
prediction length, best results are highlighted in red.

Metric iTransformer Weather ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic
Synthetic (γ=0.95) Synthetic (γ=0.5)

α = 0 α = 0.2 α = 0.4 α = 0.8 α = 0 α = 0.2 α = 0.4 α = 0.8

MAE

w/o SC 0.295 0.472 0.420 0.421 0.340 0.320 0.591 0.443 0.436 0.434 0.455 0.789 0.789 0.798 0.764

VD-De 0.282 0.462 0.417 0.413 0.338 0.268 0.29 0.419 0.428 0.430 0.461 0.788 0.788 0.795 0.761

w/o SC & VD-De 0.287 0.502 0.423 0.424 0.342 0.363 0.631 0.419 0.428 0.430 0.449 0.788 0.789 0.799 0.763

Original 0.280 0.452 0.407 0.412 0.335 0.266 0.283 0.418 0.428 0.430 0.456 0.789 0.789 0.797 0.765

MSE

w/o SC 0.275 0.493 0.397 0.426 0.297 0.229 1.017 0.315 0.298 0.297 0.326 0.969 0.978 0.995 0.918

VD-De 0.257 0.473 0.397 0.411 0.293 0.173 0.425 0.276 0.286 0.291 0.336 0.969 0.973 0.987 0.912

w/o SC & VD-De 0.263 0.536 0.401 0.429 0.299 0.283 1.121 0.275 0.285 0.290 0.318 0.969 0.977 0.995 0.916

Original 0.26 0.46 0.383 0.409 0.291 0.175 0.422 0.274 0.286 0.290 0.330 0.970 0.978 0.993 0.921

These changes were introduced to enable interactions be-
tween variates in the decoder.

The results in Table 3, show that removing skip connec-
tions notably degrades the model’s performance across all
benchmark datasets, with particularly significant degrada-
tion on Electricity (MAE increases from 0.266 to 0.320)
and Traffic (MAE increases from 0.283 to 0.591). How-
ever, on the synthetic datasets, this degradation becomes
negligible while the self-dependency becomes less (i.e. the
autocorrelation γ becomes lower, or the inter-variate de-
pendency α becomes higher). This observation suggests
that skip connections are crucial for capturing intra-
variate dependencies but may limit the model’s abil-
ity to capture inter-variate patterns. On the other hand,
replacing the variate-independent decoder with a variate-
dependent one has minor impact on performance for bench-
mark datasets. However, it improves performance on syn-
thetic datasets with high inter-variate dependencies (α =
0.8) under low autocorrelation (γ = 0.5). This indi-
cates that the variate-dependent decoder enhances the
model’s capacity to capture inter-variate interactions,
especially in scenarios with strong inter-variate depen-
dencies. A more advanced decoder design could poten-
tially further enhance performance on datasets with strong
inter-variate dependencies, which we leave as a direction
for future work.

Additionally, we observed that applying Z-score normal-
ization and denormalization to the model’s input and
output significantly improves performance on benchmark
datasets. To evaluate this, we tested four models, Cross-
former, PatchTST, iTransformer, and TimeXer, with and
without Z-score normalization/denormalization across all
datasets. Point-wise models were excluded from this test
because the normalization is incompatible with their archi-
tecture, which will be applied along the time dimension
instead of the variate dimension. As shown in Table 4,

Z-score normalization has the opposite effect on synthetic
datasets compared to benchmark datasets. This suggests
that the benchmark datasets are largely stationary, making
it unreliable to evaluate models solely based on their per-
formance on these datasets. Such comparisons may not ac-
curately reflect their ability to handle non-stationary data.
Therefore, the use of such normalization techniques should
be assessed on a case-by-case basis, depending on the spe-
cific characteristics of the dataset.

5. Real-world Applications
Our experiments revealed that the performance of trans-
formers in time series forecasting benchmarks rely heav-
ily on their ability to capture intra-variate patterns. We
also found that current benchmark datasets are largely self-
dependent and stationary, with minor inter-variate depen-
dencies. As a result, models that excel on these datasets are
less effective on synthetic datasets with strong inter-variate
dependencies or low autocorrelation.

In real-world applications, time series data often exhibit
more complicated patterns with varying degrees of inter-
variate dependencies and autocorrelation. To validate our
findings, we examined two real-world healthcare datasets,
MINDER and TIHM (Palermo et al., 2023), which contain
location-activity data from PLwD (People Living with De-
mentia). Understanding and forecasting behavioral pattern
changes in dementia patients is crucial. However, these
datasets differ significantly from both benchmarking and
synthetic datasets, creating challenges for state-of-the-art
time series forecasting models.

Table 5 shows the correlation between the forecasting met-
ric MAE and mutual information scores on the MINDER
and TIHM datasets across all selected models. Despite the
two datasets having similar variates, their properties dif-
fer significantly, likely because the data was collected from
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Table 4: The effect of Z-normalization on the performance of various models across benchmark and synthetic datasets.
Results are averaged over different prediction lengths, with the best results highlighted in red. The blue bold font in the
”Z-Norm” column indicates the original model implementation.

Metric Model Z-Norm Weather ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic
Synthetic (γ = 0.95) Synthetic (γ = 0.5)

α = 0 α = 0.2 α = 0.4 α = 0.8 α = 0 α = 0.2 α = 0.4 α = 0.8

MAE

Crossformer
w/ 0.271 0.447 0.424 0.401 0.330 0.264 0.288 0.424 0.433 0.434 0.452 0.787 0.788 0.797 0.765

w/o 0.311 0.536 0.997 0.546 0.803 0.283 0.291 0.419 0.427 0.427 0.427 0.779 0.784 0.791 0.749

PatchTST
w/ 0.279 0.447 0.409 0.402 0.331 0.297 0.309 0.422 0.431 0.433 0.453 0.790 0.790 0.797 0.772

w/o 0.3 0.483 0.520 0.434 0.405 0.299 0.316 0.417 0.424 0.425 0.428 0.783 0.785 0.791 0.756

iTransformer
w/ 0.28 0.452 0.407 0.412 0.335 0.266 0.282 0.418 0.428 0.430 0.456 0.789 0.789 0.797 0.765

w/o 0.299 0.495 0.668 0.457 0.573 0.282 0.315 0.414 0.423 0.423 0.429 0.781 0.784 0.792 0.751

TimeXer
w/ 0.272 0.448 0.404 0.398 0.323 0.269 0.288 0.421 0.431 0.433 0.455 0.788 0.788 0.796 0.764

w/o 0.311 0.493 0.891 0.473 0.715 0.286 0.326 0.416 0.425 0.426 0.429 0.780 0.783 0.789 0.750

MSE

Crossformer
w/ 0.241 0.456 0.407 0.394 0.286 0.171 0.471 0.281 0.292 0.296 0.321 0.966 0.976 0.992 0.922

w/o 0.256 0.572 1.742 0.571 1.715 0.189 0.566 0.275 0.285 0.288 0.288 0.946 0.961 0.977 0.883

PatchTST
w/ 0.256 0.453 0.386 0.388 0.286 0.208 0.482 0.280 0.291 0.294 0.322 0.973 0.981 0.992 0.940

w/o 0.246 0.489 0.600 0.423 0.379 0.204 0.595 0.273 0.281 0.284 0.289 0.953 0.967 0.978 0.899

iTransformer
w/ 0.260 0.460 0.383 0.409 0.291 0.175 0.422 0.274 0.286 0.290 0.330 0.970 0.978 0.993 0.921

w/o 0.250 0.508 0.842 0.450 0.653 0.182 0.571 0.268 0.279 0.282 0.292 0.950 0.964 0.978 0.888

TimeXer
w/ 0.242 0.455 0.379 0.384 0.276 0.170 0.470 0.279 0.291 0.295 0.327 0.968 0.975 0.989 0.921

w/o 0.257 0.496 1.555 0.467 1.156 0.187 0.604 0.272 0.282 0.285 0.291 0.948 0.961 0.972 0.885

Table 5: Correlation between MAE and mutual information
scores on real-world health care datasets.

Avg Var Corr MAE - Intra MAE - Avg Inter MAE - Max Inter

MINDER 0.185 -0.358 0.882 0.873

TIHM 0.321 -0.703 -0.11 -0.05

Table 6: Forecasting performance of iTransformer variants
on TIHM and MINDER datasets.

MAE MSE

iTransformer Original VD-De Original VD-De

MINDER 0.419 0.431 0.721 0.726

TIHM 0.623 0.610 0.835 0.807

different participants. Based on these correlations, we hy-
pothesized that models with a stronger capacity for captur-
ing inter-variate dependencies would perform better on the
TIHM dataset. The results in Table 6 support this hypoth-
esis, showing that incorporating a variate-dependent de-
coder enhances the iTransformer model’s performance on
the THIM dataset but negatively impacts its performance
on the MINDER dataset. These findings suggest that a sin-
gle, universal model architecture may not be suitable for all
datasets or applications, as different datasets exhibit dis-
tinct dependency structures and require tailored modeling
approaches.

Moreover, the results in Table 7 show that Z-normalization
has opposing effects on MAE and MSE for the TIHM

dataset, with MSE deteriorating while MAE improving.
This effect likely arises because normalization alters the
scale and distribution of the input data, which may disrupt
the model’s ability to capture larger errors while making
it more effective in reducing absolute errors. These find-
ings highlight the importance of carefully selecting evalu-
ation metrics based on application requirements, as differ-
ent metrics may prioritize different aspects of forecasting
performance, leading to varying interpretations of model
effectiveness.

Table 7: Z-normalization shows opposing effects on MAE
and MSE for TIHM dataset.

Model Crossformer PatchTST iTransformer TimeXer

Z-Norm w/ w/o w/ w/o w/ w/o w/ w/o

MAE 0.739 0.748 0.612 0.614 0.622 0.634 0.61 0.614
TIHM

MSE 1.038 1.011 0.829 0.82 0.835 0.834 0.817 0.8

Future research should explore adaptive evaluation tech-
niques and dynamic modeling of intra- and inter-variate
dependencies. Expanding benchmarks with diverse, non-
stationary datasets will further enhance model generaliz-
ability in real-world applications.
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A. Appendix
A.1. Details of the datasets

We provide key attributes of all datasets employed
in this study in Table 1. The datasets include
seven benchmark datasets (ETTh1, ETTh2, ETTm1,
ETTm2, Weather, Traffic, and Electricity), eight synthetic
dataset, and two real-world healthcare datasets (TIHM
and MINDER). The benchmark datasets are publicly
available on GitHub (https://github.com/thuml/
Time-Series-Library/tree/main). The health-
care dataset TIHM is available on Zenodo (https://

doi.org/10.5281/zenodo.7622128). The MIN-
DER dataset is not publicly available due to privacy proto-
cols and has a format and variates similar to those of the
TIHM dataset.

A.1.1. REAL-WORLD HEALTHCARE DATASETS

TIMH dataset The TIHM dataset consists of five inter-
connected tables, Activity, Sleep, Physiology, Labels, and
Demographics, capturing various aspects of remote health-
care monitoring. Each table includes timestamps and par-
ticipant UUIDs for cross-referencing and synchronization.
The dataset includes 56 participants, all over 50 years old
with a verified diagnosis of dementia or mild cognitive im-
pairment, who provided informed consent. Each partici-
pant had a caregiver or study partner, and individuals with
severe psychiatric conditions or terminal illnesses were ex-
cluded. The study recorded an average of 50 days of data
per participant.

For this study, we selected the participant with the longest
recording, spanning three months from April 1, 2019, to
June 30, 2019. We focused on the Activity table, which
tracks in-home movement using motion and door sensors.
Specifically, the dataset used in this study includes activ-
ity records from eight locations: back door, bathroom, bed-
room, fridge door, front door, hallway, kitchen, and lounge.
The data was aggregated on an hourly basis by summing
the activity counts for each location.

MINDER dataset The MINDER dataset, an ongoing
project, collects in-home data from 117 participants over
the age of 50, all with a clinical diagnosis of dementia or
mild cognitive impairment (MCI). Each participant had re-
ceived either past or ongoing psychiatric treatment. For
this study, we selected the participant with the longest
recording, spanning two years from December 1, 2022,
to November 30, 2024. The MINDER dataset is similar
in format to TIHM, and we also focused exclusively on
the Activity table. Specifically, the dataset for this work
includes activity records from eight locations: WC, bath-
room, bedroom, hallway, front door, kitchen, and lounge.

A.2. Full results of all selected models on benchmark
datasets and synthetic datasets

Figure 1 shows evaluations of all selected models on all
benchmark datasets using MAE, Intra MI, Avg Inter MI,
and Max Inter MI scores. The hyperparameters of different
models on benchmark datasets are given in Table 8 - 11.

Table 2 shows evaluations of variants of iTransformer
model on all benchmark datasets using MAE, Intra MI,
Avg Inter MI, and Max Inter MI scores. Table 3 gives the
same evaluation on synthetic datasets. Tables 4 to 7 pro-
vide MAE and MSE of selected models on benchmark and
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Table 1: Key attributes of the datasets: Dim represents the number of variates, Dataset Size indicates the total time points
across (Train, Validation, Test) splits, Prediction Length specifies the number of future time points to predict (with four
settings per dataset), and Frequency denotes the sampling interval of the time points.

Dataset Dim Prediction Length Dataset Size Frequency Information

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Synthetic (8 subsets) 2 {96, 192, 336, 720} (6132, 876, 1752) Hourly Synthetic

TIHM 8 {48, 96, 192} (1496, 427, 213) Hourly Healthcare

MINDER 8 {48, 96, 192} (12281, 3508, 1754) Hourly Healthcare

synthetic datasets for the Z-normalization ablation study.
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Table 2: Results of variants of iTranformer model on benchmark datasets. “w/o SC” refers to the model without skip
connections in the encoder layers, “VD-De” denotes the use of a variate-dependent decoder, “w/o SC & VD-De” indicates
both modifications applied, and “Original” represents the unmodified iTransformer model.

Dataset
Pred

length

MAE MSE

w/o SC VD-De w/o SC & VD-De Original w/o SC VD-De w/o SC & VD-De Original

Weather

96 0.235 ± 0.001 0.218 ± 0.0 0.226 ± 0.002 0.214 ± 0.001 0.193 ± 0.001 0.174 ± 0.0 0.181 ± 0.001 0.175 ± 0.001

192 0.277 ± 0.001 0.259 ± 0.001 0.265 ± 0.003 0.257 ± 0.001 0.245 ± 0.001 0.222 ± 0.001 0.229 ± 0.003 0.224 ± 0.001

336 0.311 ± 0.001 0.3 ± 0.001 0.303 ± 0.0 0.299 ± 0.001 0.294 ± 0.001 0.278 ± 0.001 0.283 ± 0.001 0.281 ± 0.001

720 0.357 ± 0.001 0.351 ± 0.002 0.352 ± 0.001 0.35 ± 0.0 0.369 ± 0.001 0.355 ± 0.001 0.358 ± 0.002 0.36 ± 0.001

ETTh1

96 0.433 ± 0.0 0.427 ± 0.004 0.467 ± 0.015 0.409 ± 0.0 0.429 ± 0.001 0.412 ± 0.006 0.478 ± 0.025 0.394 ± 0.001

192 0.461 ± 0.001 0.453 ± 0.002 0.493 ± 0.014 0.44 ± 0.001 0.481 ± 0.002 0.461 ± 0.003 0.528 ± 0.027 0.447 ± 0.001

336 0.482 ± 0.001 0.471 ± 0.003 0.513 ± 0.009 0.464 ± 0.001 0.524 ± 0.001 0.5 ± 0.003 0.565 ± 0.014 0.49 ± 0.001

720 0.51 ± 0.002 0.499 ± 0.002 0.536 ± 0.002 0.497 ± 0.001 0.539 ± 0.005 0.52 ± 0.004 0.575 ± 0.005 0.511 ± 0.002

ETTh2

96 0.366 ± 0.001 0.361 ± 0.003 0.371 ± 0.002 0.35 ± 0.001 0.317 ± 0.001 0.312 ± 0.005 0.321 ± 0.003 0.3 ± 0.001

192 0.412 ± 0.001 0.410 ± 0.002 0.416 ± 0.002 0.399 ± 0.0 0.397 ± 0.001 0.396 ± 0.003 0.401 ± 0.003 0.379 ± 0.0

336 0.445 ± 0.002 0.444 ± 0.003 0.447 ± 0.002 0.433 ± 0.001 0.437 ± 0.003 0.441 ± 0.006 0.44 ± 0.004 0.423 ± 0.002

720 0.455 ± 0.001 0.452 ± 0.002 0.457 ± 0.002 0.447 ± 0.001 0.438 ± 0.001 0.437 ± 0.004 0.441 ± 0.004 0.43 ± 0.003

ETTm1

96 0.392 ± 0.006 0.379 ± 0.001 0.391 ± 0.002 0.378 ± 0.001 0.37 ± 0.008 0.345 ± 0.001 0.365 ± 0.004 0.345 ± 0.003

192 0.406 ± 0.009 0.397 ± 0.001 0.409 ± 0.003 0.395 ± 0.0 0.402 ± 0.012 0.384 ± 0.001 0.402 ± 0.005 0.383 ± 0.001

336 0.426 ± 0.004 0.42 ± 0.0 0.43 ± 0.001 0.418 ± 0.0 0.434 ± 0.005 0.424 ± 0.0 0.439 ± 0.004 0.418 ± 0.002

720 0.46 ± 0.005 0.457 ± 0.001 0.467 ± 0.003 0.457 ± 0.002 0.497 ± 0.007 0.492 ± 0.004 0.509 ± 0.006 0.49 ± 0.003

ETTm2

96 0.279 ± 0.002 0.275 ± 0.0 0.282 ± 0.001 0.271 ± 0.0 0.193 ± 0.001 0.188 ± 0.001 0.196 ± 0.002 0.185 ± 0.001

192 0.317 ± 0.002 0.315 ± 0.001 0.318 ± 0.001 0.311 ± 0.001 0.256 ± 0.001 0.253 ± 0.002 0.258 ± 0.001 0.25 ± 0.001

336 0.356 ± 0.003 0.353 ± 0.002 0.356 ± 0.001 0.352 ± 0.001 0.32 ± 0.005 0.316 ± 0.002 0.321 ± 0.002 0.316 ± 0.001

720 0.410 ± 0.001 0.408 ± 0.002 0.41 ± 0.002 0.406 ± 0.001 0.418 ± 0.001 0.415 ± 0.003 0.42 ± 0.002 0.412 ± 0.002

Electricity

96 0.287 ± 0.004 0.240 ± 0.0 0.35 ± 0.0 0.24 ± 0.0 0.189 ± 0.005 0.144 ± 0.0 0.269 ± 0.0 0.148 ± 0.0

192 0.306 ± 0.004 0.259 ± 0.0 0.454 ± 0.001 0.256 ± 0.0 0.211 ± 0.005 0.165 ± 0.0 0.271 ± 0.001 0.165 ± 0.0

336 0.325 ± 0.003 0.274 ± 0.003 0.362 ± 0.001 0.27 ± 0.001 0.232 ± 0.004 0.177 ± 0.002 0.280 ± 0.001 0.178 ± 0.001

720 0.360 ± 0.006 0.3 ± 0.001 0.384 ± 0.002 0.299 ± 0.001 0.283 ± 0.01 0.206 ± 0.001 0.311 ± 0.002 0.21 ± 0.001

Traffic

96 0.663 ± 0.005 0.276 ± 0.001 0.799 ± 0.005 0.268 ± 0.0 1.123 ± 0.016 0.396 ± 0.001 1.406 ± 0.002 0.392 ± 0.001

192 0.559 ± 0.004 0.284 ± 0.001 0.567 ± 0.006 0.278 ± 0.001 0.945 ± 0.008 0.415 ± 0.002 1.016 ± 0.004 0.413 ± 0.002

336 0.572 ± 0.006 0.291 ± 0.002 0.581 ± 0.003 0.284 ± 0.0 1.004 ± 0.01 0.427 ± 0.001 1.029 ± 0.001 0.426 ± 0.0

720 0.569 ± 0.008 0.307 ± 0.001 0.571 ± 0.004 0.3 ± 0.001 0.996 ± 0.007 0.461 ± 0.001 1.03 ± 0.001 0.458 ± 0.001
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Figure 1: Performance comparison of selected transformer-based models on commonly used benchmark datasets.
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Table 3: Results of variants of iTranformer model on synthetic datasets. “w/o SC” refers to the model without skip
connections in the encoder layers, “VD-De” denotes the use of a variate-dependent decoder, “w/o SC & VD-De” indicates
both modifications applied, and “Original” represents the unmodified iTransformer model.

Dataset
Pred

length

MAE MSE

w/o SC VD-De w/o SC & VD-De Original w/o SC VD-De w/o SC & VD-De Original

Synthetic

γ = 0.95

α = 0

96 0.509 ± 0.071 0.422 ± 0.0 0.42 ± 0.0 0.42 ± 0.0 0.426 ± 0.12 0.28 ± 0.0 0.278 ± 0.0 0.277 ± 0.0

192 0.421 ± 0.001 0.419 ± 0.0 0.419 ± 0.0 0.418 ± 0.0 0.279 ± 0.001 0.277 ± 0.0 0.275 ± 0.0 0.275 ± 0.0

336 0.420 ± 0.0 0.418 ± 0.0 0.418 ± 0.0 0.417 ± 0.0 0.277 ± 0.0 0.274 ± 0.0 0.274 ± 0.0 0.273 ± 0.001

720 0.421 ± 0.0 0.418 ± 0.0 0.419 ± 0.0 0.418 ± 0.0 0.277 ± 0.0 0.273 ± 0.0 0.273 ± 0.0 0.272 ± 0.001

Synthetic

γ = 0.95

α = 0.2

96 0.452 ± 0.002 0.43 ± 0.004 0.429 ± 0.0 0.43 ± 0.0 0.322 ± 0.004 0.289 ± 0.0 0.287 ± 0.0 0.288 ± 0.0

192 0.431 ± 0.0 0.426 ± 0.0 0.426 ± 0.0 0.426 ± 0.0 0.289 ± 0.0 0.283 ± 0.0 0.283 ± 0.0 0.283 ± 0.001

336 0.43 ± 0.0 0.426 ± 0.0 0.426 ± 0.0 0.426 ± 0.001 0.29 ± 0.0 0.284 ± 0.0 0.284 ± 0.0 0.284 ± 0.001

720 0.432 ± 0.0 0.428 ± 0.0 0.429 ± 0.0 0.429 ± 0.0 0.292 ± 0.0 0.287 ± 0.0 0.287 ± 0.0 0.287 ± 0.0

Synthetic

γ = 0.95

α = 0.4

96 0.436 ± 0.001 0.432 ± 0.001 0.431 ± 0.0 0.43 ± 0.0 0.299 ± 0.001 0.292 ± 0.001 0.29 ± 0.0 0.29 ± 0.001

192 0.435 ± 0.0 0.432 ± 0.0 0.429 ± 0.0 0.43 ± 0.001 0.296 ± 0.0 0.292 ± 0.0 0.289 ± 0.0 0.29 ± 0.001

336 0.432 ± 0.0 0.427 ± 0.0 0.428 ± 0.0 0.428 ± 0.001 0.295 ± 0.0 0.287 ± 0.0 0.289 ± 0.0 0.289± 0.001

720 0.435 ± 0.001 0.429 ± 0.0 0.432 ± 0.0 0.43 ± 0.0 0.299 ± 0.001 0.29 ± 0.0 0.293 ± 0.0 0.292 ± 0.0

Synthetic

γ = 0.95

α = 0.8

96 0.444 ± 0.001 0.447 ± 0.002 0.435 ± 0.0 0.448 ± 0.001 0.308 ± 0.001 0.312 ± 0.003 0.297 ± 0.0 0.317 ± 0.002

192 0.451 ± 0.0 0.456 ± 0.002 0.445 ± 0.0 0.452 ± 0.001 0.322 ± 0.001 0.33 ± 0.003 0.314 ± 0.0 0.325 ± 0.002

336 0.454 ± 0.001 0.462 ± 0.005 0.45 ± 0.001 0.455 ± 0.003 0.326 ± 0.001 0.337 ± 0.008 0.319 ± 0.001 0.328 ± 0.004

720 0.469 ± 0.001 0.48 ± 0.002 0.466 ± 0.001 0.469 ± 0.002 0.348 ± 0.001 0.366 ± 0.004 0.343 ± 0.001 0.348 ± 0.003

Synthetic

γ = 0.5

α = 0

96 0.791 ± 0.0 0.789 ± 0.001 0.79 ± 0.0 0.792 ± 0.0 0.975 ± 0.0 0.972 ± 0.001 0.973 ± 0.0 0.977 ± 0.0

192 0.79 ± 0.001 0.79 ± 0.0 0.79 ± 0.0 0.79 ± 0.0 0.973 ± 0.0 0.974 ± 0.001 0.973 ± 0.0 0.973 ± 0.0

336 0.788 ± 0.001 0.788 ± 0.001 0.788 ± 0.0 0.788 ± 0.0 0.968 ± 0.0 0.968 ± 0.001 0.968 ± 0.0 0.967 ± 0.0

720 0.786 ± 0.0 0.784 ± 0.001 0.785 ± 0.0 0.786 ± 0.001 0.963 ± 0.001 0.96 ± 0.001 0.961 ± 0.0 0.964 ± 0.001

Synthetic

γ = 0.5

α = 0.2

96 0.786 ± 0.0 0.786 ± 0.0 0.787 ± 0.0 0.787 ± 0.0 0.975 ± 0.0 0.972 ± 0.001 0.975 ± 0.0 0.976 ± 0.0

192 0.788 ± 0.0 0.787 ± 0.0 0.788 ± 0.0 0.788 ± 0.0 0.977 ± 0.0 0.971 ± 0.0 0.977 ± 0.0 0.977 ± 0.0

336 0.789 ± 0.0 0.788 ± 0.0 0.789 ± 0.0 0.789 ± 0.001 0.977 ± 0.0 0.972 ± 0.001 0.977 ± 0.0 0.977 ± 0.001

720 0.791 ± 0.001 0.791 ± 0.001 0.791 ± 0.0 0.791 ± 0.0 0.981 ± 0.002 0.979 ± 0.002 0.981 ± 0.0 0.981 ± 0.0

Synthetic

γ = 0.5

α = 0.4

96 0.802 ± 0.0 0.798 ± 0.001 0.802 ± 0.0 0.8 ± 0.0 1.003 ± 0.001 0.994 ± 0.003 1.004 ± 0.0 0.999 ± 0.001

192 0.799 ± 0.0 0.794 ± 0.0 0.799 ± 0.0 0.798 ± 0.0 0.999 ± 0.001 0.986 ± 0.001 0.998 ± 0.0 0.996 ± 0.0

336 0.798 ± 0.0 0.795 ± 0.001 0.798 ± 0.0 0.797 ± 0.0 0.994± 0.0 0.986 ± 0.002 0.994 ± 0.0 0.993 ± 0.0

720 0.795 ± 0.001 0.794 ± 0.001 0.795 ± 0.0 0.795 ± 0.0 0.986 ± 0.001 0.984 ± 0.001 0.985 ± 0.0 0.985 ± 0.0

Synthetic

γ = 0.5

α = 0.8

96 0.761 ± 0.0 0.757 ± 0.001 0.76 ± 0.001 0.761 ± 0.0 0.91 ± 0.001 0.9 ± 0.001 0.908 ± 0.003 0.911 ± 0.001

192 0.758 ± 0.0 0.755 ± 0.001 0.757 ± 0.001 0.759 ± 0.001 0.905 ± 0.001 0.898 ± 0.001 0.904 ± 0.002 0.907 ± 0.0

336 0.765 ± 0.001 0.762 ± 0.001 0.763 ± 0.001 0.766 ± 0.001 0.921 ± 0.003 0.915 ± 0.002 0.918 ± 0.002 0.925 ± 0.004

720 0.771 ± 0.001 0.771 ± 0.003 0.771 ± 0.001 0.772 ± 0.001 0.936 ± 0.003 0.935 ± 0.007 0.936 ± 0.002 0.939 ± 0.002
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Table 4: The effect of Z-normalization on MAE of various models across benchmark datasets.

Metric Model Z-Norm
Pred

length
Weather ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic

MAE

Crossformer

w/

96 0.201 ± 0.002 0.403 ± 0.002 0.361 ± 0.003 0.357 ± 0.001 0.256 ± 0.0 0.232 ± 0.002 0.262 ± 0.006

192 0.247 ± 0.001 0.432 ± 0.003 0.409 ± 0.004 0.385 ± 0.001 0.308 ± 0.003 0.251 ± 0.0 0.273 ± 0.003

336 0.292 ± 0.001 0.45 ± 0.003 0.459 ± 0.011 0.410 ± 0.003 0.349 ± 0.003 0.269 ± 0.002 0.294 ± 0.003

720 0.345 ± 0.002 0.502 ± 0.007 0.467 ± 0.002 0.452 ± 0.001 0.408 ± 0.001 0.303 ± 0.005 0.321 ± 0.009

w/o

96 0.226 ± 0.01 0.423 ± 0.012 0.592 ± 0.048 0.409 ± 0.024 0.392 ± 0.03 0.248 ± 0.001 0.27 ± 0.008

192 0.277 ± 0.007 0.459 ± 0.022 0.897 ± 0.203 0.505 ± 0.046 0.575 ± 0.024 0.269 ± 0.011 0.284 ± 0.004

336 0.328 ± 0.006 0.568 ± 0.047 1.04 ± 0.114 0.609 ± 0.025 0.766 ± 0.226 0.289 ± 0.007 0.299 ± 0.005

720 0.412 ± 0.013 0.695 ± 0.006 1.458 ± 0.216 0.66 ± 0.048 1.481 ± 0.065 0.327 ± 0.003 0.311 ± 0.01

PatchTST

w/

96 0.215 ± 0.001 0.399 ± 0.0 0.345 ± 0.004 0.368 ± 0.007 0.261 ± 0.001 0.276 ± 0.001 0.298 ± 0.0

192 0.257 ± 0.0 0.431 ± 0.001 0.399 ± 0.002 0.387 ± 0.004 0.307 ± 0.003 0.283 ± 0.0 0.303 ± 0.001

336 0.297 ± 0.0 0.460 ± 0.004 0.438 ± 0.004 0.409 ± 0.001 0.349 ± 0.001 0.298 ± 0.001 0.308 ± 0.001

720 0.346 ± 0.0 0.5 ± 0.002 0.456 ± 0.003 0.443 ± 0.001 0.405 ± 0.004 0.331 ± 0.0 0.326 ± 0.001

w/o

96 0.234 ± 0.002 0.417 ± 0.003 0.392 ± 0.034 0.399 ± 0.004 0.305 ± 0.005 0.28 ± 0.001 0.306 ± 0.001

192 0.273 ± 0.003 0.451 ± 0.012 0.472 ± 0.012 0.417 ± 0.004 0.391 ± 0.056 0.286 ± 0.001 0.308 ± 0.0

336 0.316 ± 0.009 0.498 ± 0.009 0.52 ± 0.019 0.443 ± 0.007 0.424 ± 0.012 0.3 ± 0.001 0.315 ± 0.001

720 0.378 ± 0.013 0.569 ± 0.015 0.698 ± 0.032 0.478 ± 0.003 0.5 ± 0.008 0.332 ± 0.001 0.334 ± 0.001

iTransformer

w

96 0.214 ± 0.001 0.409 ± 0.0 0.35 ± 0.001 0.378 ± 0.001 0.271 ± 0.0 0.24 ± 0.0 0.268 ± 0.0

192 0.257 ± 001 0.440 ± 0.001 0.399 ± 0.0 0.395 ± 0.0 0.311 ± 0.001 0.256 ± 0.0 0.278 ± 0.001

336 0.299 ± 0.001 0.464 ± 0.001 0.433 ± 0.001 0.418 ± 0.0 0.352 ± 0.001 0.27 ± 0.001 0.284 ± 0.0

720 0.35 ± 0.0 0.497 ± 0.001 0.447 ± 0.001 0.457 ± 0.002 0.406 ± 0.001 0.299 ± 0.001 0.3 ± 0.001

w/o

96 0.226 ± 0.001 0.433 ± 0.002 0.492 ± 0.022 0.409 ± 0.004 0.331 ± 0.011 0.252 ± 0.001 0.306 ± 0.002

192 0.279 ± 0.01 0.469 ± 0.001 0.664 ± 0.036 0.437 ± 0.004 0.461 ± 0.031 0.266 ± 0.001 0.305 ± 0.004

336 0.32 ± 0.002 0.512 ± 0.004 0.713 ± 0.039 0.471 ± 0.007 0.613 ± 0.056 0.288 ± 0.0 0.315 ± 0.008

720 0.37 ± 0.004 0.565 ± 0.003 0.801 ± 0.027 0.509 ± 0.009 0.886 ± 0.041 0.322 ± 0.006 0.334 ± 0.005

TimeXer

w/

96 0.206 ± 0.0 0.404 ± 0.001 0.34 ± 0.002 0.36 ± 0.002 0.255 ± 0.001 0.243 ± 0.002 0.274 ± 0.001

192 0.249 ± 0.001 0.439 ± 0.002 0.394 ± 0.006 0.385 ± 0.001 0.301 ± 0.0 0.256 ± 0.001 0.283 ± 0.0

336 0.291 ± 0.001 0.462 ± 0.01 0.433 ± 0.005 0.407 ± 0.0 0.34 ± 0.003 0.274 ± 0.002 0.289 ± 0.001

720 0.343 ± 0.001 0.487 ± 0.018 0.447 ± 0.003 0.441 ± 0.001 0.397 ± 0.002 0.303 ± 0.005 0.308 ± 0.001

w/o

96 0.232 ± 0.002 0.438 ± 0.005 0.756 ± 0.078 0.420 ± 0.003 0.412 ± 0.013 0.252 ± 0.002 0.32 ± 0.003

192 0.277 ± 0.002 0.479 ± 0.019 0.864 ± 0.027 0.445 ± 0.009 0.548 ± 0.066 0.27 ± 0.003 0.321 ± 0.003

336 0.334 ± 0.007 0.489 ± 0.009 0.906 ± 0.016 0.499 ± 0.011 0.683 ± 0.082 0.293 ± 0.001 0.322 ± 0.002

720 0.399 ± 0.002 0.569 ± 0.007 1.036 ± 0.054 0.528 ± 0.012 1.219 ± 0.067 0.33 ± 0.004 0.343 ± 0.004
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Table 5: The effect of Z-normalization on MSE of various models across benchmark datasets.

Metric Model Z-Norm
Pred

length
Weather ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic

MSE

Crossformer

w/

96 0.154 ± 0.003 0.391 ± 0.002 0.315 ± 0.006 0.317 ± 0.001 0.171 ± 0.001 0.137 ± 0.002 0.421 ± 0.004

192 0.203 ± 0.001 0.44 ± 0.001 0.396 ± 0.006 0.367 ± 0.0 0.248 ± 0.002 0.158 ± 0.001 0.44 ± 0.006

336 0.265 ± 0.002 0.472 ± 0.002 0.456 ± 0.014 0.410 ± 0.006 0.312 ± 0.005 0.175 ± 0.002 0.477 ± 0.007

720 0.343 ± 0.003 0.519 ± 0.009 0.46 ± 0.003 0.482 ± 0.005 0.413 ± 0.002 0.214 ± 0.006 0.546 ± 0.011

w/o

96 0.151 ± 0.005 0.398 ± 0.009 0.715 ± 0.132 0.373 ± 0.025 0.328 ± 0.063 0.147 ± 0.001 0.522 ± 0.021

192 0.203 ± 0.002 0.454 ± 0.02 1.435 ± 0.414 0.486 ± 0.063 0.655 ± 0.071 0.169 ± 0.007 0.55 ± 0.009

336 0.262 ± 0.005 0.621 ± 0.077 1.82 ± 0.344 0.677 ± 0.045 1.203 ± 0.665 0.197 ± 0.009 0.588 ± 0.027

720 0.407 ± 0.027 0.815 ± 0.023 2.996 ± 0.758 0.747 ± 0.086 4.675 ± 0.497 0.241 ± 0.003 0.604 ± 0.007

PatchTST

w/

96 0.173 ± 0.001 0.380 ± 0.001 0.292 ± 0.005 0.329 ± 0.012 0.178 ± 0.001 0.184 ± 0.0 0.459 ± 0.001

192 0.221 ± 0.001 0.431 ± 0.002 0.382 ± 0.007 0.366 ± 0.005 0.246 ± 0.002 0.191 ± 0.0 0.468 ± 0.001

336 0.276 ± 0.0 0.482 ± 0.013 0.428 ± 0.005 0.397 ± 0.001 0.311 ± 0.001 0.207 ± 0.0 0.483 ± 0.001

720 0.353 ± 0.0 0.519 ± 0.002 0.442 ± 0.006 0.457 ± 0.001 0.41 ± 0.007 0.249 ± 0.001 0.517 ± 0.002

w/o

96 0.169 ± 0.001 0.396 ± 0.004 0.364 ± 0.052 0.369 ± 0.002 0.215 ± 0.01 0.184 ± 0.001 0.569 ± 0.001

192 0.21 ± 0.001 0.446 ± 0.01 0.488 ± 0.016 0.399 ± 0.005 0.344 ± 0.072 0.19 ± 0.001 0.581 ± 0.0

336 0.262 ± 0.005 0.51 ± 0.004 0.574 ± 0.045 0.435 ± 0.009 0.412 ± 0.023 0.203 ± 0.001 0.597 ± 0.001

720 0.342 ± 0.01 0.6 ± 0.023 0.972 ± 0.104 0.489 ± 0.004 0.545 ± 0.021 0.241 ± 0.001 0.632 ± 0.001

iTransformer

w/

96 0.175 ± 0.001 0.394 ± 0.001 0.3 ± 0.001 0.345 ± 0.003 0.185 ± 0.001 0.148 ± 0.0 0.43 ± 0.003

192 0.224 ± 0.001 0.447 ± 0.001 0.379 ± 0.0 0.383 ± 0.001 0.25 ± 0.001 0.165 ± 0.0 0.452 ± 0.003

336 0.281 ± 0.001 0.490 ± 0.001 0.423 ± 0.002 0.418 ± 0.002 0.316 ± 0.001 0.178 ± 0.001 0.473 ± 0.001

720 0.36 ± 0.001 0.511 ± 0.002 0.43 ± 0.003 0.49 ± 0.003 0.412 ± 0.002 0.21 ± 0.001 0.523 ± 0.005

w/o

96 0.166 ± 0.001 0.418 ± 0.001 0.497 ± 0.028 0.374 ± 0.005 0.241 ± 0.011 0.153 ± 0.0 0.54 ± 0.002

192 0.217 ± 0.006 0.476 ± 0.002 0.806 ± 0.045 0.420 ± 0.005 0.401 ± 0.041 0.169 ± 0.001 0.553 ± 0.006

336 0.274 ± 0.004 0.542 ± 0.011 0.939 ± 0.078 0.469 ± 0.009 0.695 ± 0.127 0.185 ± 0.001 0.58 ± 0.016

720 0.344 ± 0.005 0.596 ± 0.003 1.124 ± 0.061 0.537 ± 0.01 1.273 ± 0.125 0.221 ± 0.006 0.612 ± 0.004

TimeXer

w/

96 0.158 ± 0.0 0.385 ± 0.002 0.288 ± 0.003 0.324 ± 0.003 0.17 ± 0.0 0.141 ± 0.001 0.43 ± 0.003

192 0.206 ± 0.001 0.435 ± 0.003 0.373 ± 0.011 0.364 ± 0.001 0.239 ± 0.001 0.158 ± 0.0 0.452 ± 0.003

336 0.263 ± 0.001 0.492 ± 0.013 0.421 ± 0.005 0.396 ± 0.001 0.299 ± 0.003 0.176 ± 0.002 0.473 ± 0.001

720 0.342 ± 0.001 0.506 ± 0.03 0.433 ± 0.003 0.453 ± 0.002 0.397 ± 0.003 0.207 ± 0.007 0.523 ± 0.005

w/o

96 0.163 ± 0.002 0.41 ± 0.004 1.132 ± 0.152 0.390 ± 0.006 0.370 ± 0.027 0.15 ± 0.001 0.573 ± 0.003

192 0.211 ± 0.001 0.473 ± 0.019 1.559 ± 0.089 0.425 ± 0.015 0.639 ± 0.141 0.17 ± 0.002 0.595 ± 0.006

336 0.274 ± 0.004 0.504 ± 0.009 1.618 ± 0.084 0.502 ± 0.014 0.999 ± 0.213 0.194 ± 0.002 0.604 ± 0.004

720 0.379 ± 0.006 0.598 ± 0.014 1.912 ± 0.14 0.551 ± 0.018 2.616 ± 0.208 0.235 ± 0.004 0.643 ± 0.006
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Table 6: The effect of Z-normalization on MAE of various models across synthetic datasets.

Metric Model Z-Norm
Pred

length

Synthetic (γ = 0.95) Synthetic (γ = 0.5)

α = 0 α = 0.2 α = 0.4 α = 0.8 α = 0 α = 0.2 α = 0.4 α = 0.8

MAE

Crossformer

w/

96 0.424 ± 0.0 0.434 ± 0.0 0.434 ± 0.0 0.436 ± 0.0 0.789 ± 0.0 0.787 ± 0.0 0.801 ± 0.0 0.762 ± 0.001

192 0.423 ± 0.0 0.431 ± 0.0 0.433 ± 0.0 0.449 ± 0.0 0.789 ± 0.0 0.788 ± 0.0 0.798 ± 0.0 0.759 ± 0.0

336 0.423 ± 0.0 0.431 ± 0.0 0.432 ± 0.0 0.451 ± 0.001 0.786 ± 0.0 0.789 ± 0.0 0.797 ± 0.0 0.767 ± 0.002

720 0.425 ± 0.0 0.435 ± 0.0 0.435 ± 0.0 0.472 ± 0.004 0.783 ± 0.0 0.79 ± 0.0 0.794 ± 0.0 0.772 ± 0.001

w/o

96 0.419 ± 0.0 0.427 ± 0.0 0.427 ± 0.0 0.421 ± 0.0 0.782 ± 0.0 0.784 ± 0.0 0.794 ± 0.0 0.748 ± 0.001

192 0.418 ± 0.0 0.426 ± 0.0 0.427 ± 0.0 0.427 ± 0.0 0.781 ± 0.0 0.783 ± 0.0 0.792 ± 0.0 0.752 ± 0.0

336 0.418 ± 0.001 0.426 ± 0.0 0.426 ± 0.001 0.428 ± 0.0 0.778 ± 0.0 0.782 ± 0.0 0.791 ± 0.0 0.749 ± 0.0

720 0.42 ± 0.0 0.428 ± 0.0 0.429 ± 0.0 0.433 ± 0.0 0.774 ± 0.0 0.785 ± 0.0 0.787 ± 0.0 0.747 ± 0.0

PatchTST

w/

96 0.424 ± 0.0 0.433 ± 0.0 0.433 ± 0.0 0.438 ± 0.0 0.794 ± 0.0 0.789 ± 0.0 0.8 ± 0.0 0.769 ± 0.001

192 0.422 ± 0.0 0.43 ± 0.0 0.433 ± 0.0 0.452 ± 0.0 0.793 ± 0.0 0.791 ± 0.0 0.797 ± 0.0 0.763 ± 0.0

336 0.421 ± 0.0 0.43 ± 0.0 0.431 ± 0.0 0.452 ± 0.0 0.789 ± 0.0 0.79 ± 0.0 0.797 ± 0.0 0.775 ± 0.006

720 0.421 ± 0.0 0.432 ± 0.0 0.434 ± 0.0 0.47 ± 0.0 0.786 ± 0.001 0.791 ± 0.0 0.794 ± 0.0 0.782 ± 0.008

w/o

96 0.418 ± 0.0 0.425 ± 0.0 0.424 ± 0.0 0.422 ± 0.0 0.787 ± 0.0 0.787 ± 0.0 0.794 ± 0.0 0.757 ± 0.001

192 0.416 ± 0.0 0.424 ± 0.0 0.425 ± 0.0 0.426 ± 0.0 0.784 ± 0.0 0.785 ± 0.0 0.793 ± 0.0 0.756 ± 0.0

336 0.416 ± 0.0 0.424 ± 0.0 0.424 ± 0.0 0.429 ± 0.0 0.782 ± 0.001 0.783 ± 0.0 0.791 ± 0.0 0.756 ± 0.0

720 0.416 ± 0.0 0.425 ± 0.0 0.427 ± 0.0 0.434 ± 0.0 0.777 ± 0.0 0.786 ± 0.0 0.788 ± 0.0 0.753 ± 0.001

iTransformer

w

96 0.42 ± 0.0 0.43 ± 0.0 0.43 ± 0.0 0.448 ± 0.001 0.792 ± 0.0 0.787 ± 0.0 0.8 ± 0.0 0.761 ± 0.0

192 0.418 ± 0.0 0.426 ± 0.0 0.43 ± 0.001 0.452 ± 0.001 0.79 ± 0.0 0.788 ± 0.0 0.798 ± 0.0 0.759 ± 0.0

336 0.417 ± 0.001 0.426 ± 0.001 0.428 ± 0.001 0.455 ± 0.003 0.788 ± 0.0 0.789 ± 0.0 0.797 ± 0.0 0.766 ± 0.001

720 0.418 ± 0.0 0.429 ± 0.0 0.43 ± 0.0 0.469 ± 0.002 0.786 ± 0.001 0.791 ± 0.0 0.795 ± 0.0 0.772 ± 0.001

w/o

96 0.415 ± 0.0 0.425 ± 0.0 0.423 ± 0.0 0.429 ± 0.004 0.785 ± 0.0 0.785 ± 0.0 0.794 ± 0.0 0.752 ± 0.0

192 0.413 ± 0.0 0.422 ± 0.0 0.424 ± 0.0 0.432 ± 0.001 0.783 ± 0.0 0.783 ± 0.0 0.793 ± 0.0 0.752 ± 0.0

336 0.413 ± 0.001 0.422 ± 0.001 0.422 ± 0.0 0.429 ± 0.001 0.781 ± 0.0 0.782 ± 0.0 0.791 ± 0.0 0.75 ± 0.001

720 0.413 ± 0.0 0.423 ± 0.0 0.424 ± 0.0 0.427 ± 0.0 0.776 ± 0.0 0.786 ± 0.0 0.788 ± 0.0 0.749 ± 0.0

TimeXer

w/

96 0.423 ± 0.0 0.433 ± 0.0 0.433 ± 0.0 0.442 ± 0.001 0.79 ± 0.0 0.786 ± 0.0 0.798 ± 0.0 0.76 ± 0.001

192 0.421 ± 0.0 0.43 ± 0.0 0.434 ± 0.0 0.452 ± 0.0 0.79 ± 0.0 0.788 ± 0.0 0.796 ± 0.0 0.759 ± 0.002

336 0.42 ± 0.0 0.43 ± 0.0 0.432 ± 0.0 0.455 ± 0.0 0.788 ± 0.0 0.788 ± 0.0 0.795 ± 0.0 0.766 ± 0.001

720 0.42 ± 0.0 0.432 ± 0.0 0.435 ± 0.0 0.471 ± 0.002 0.785 ± 0.0 0.79 ± 0.0 0.793 ± 0.0 0.773 ± 0.0

w/o

96 0.417 ± 0.0 0.426 ± 0.0 0.425 ± 0.0 0.425 ± 0.001 0.783 ± 0.0 0.784 ± 0.0 0.792 ± 0.0 0.748 ± 0.0

192 0.415 ± 0.0 0.424 ± 0.0 0.426 ± 0.0 0.428 ± 0.0 0.782 ± 0.0 0.782 ± 0.0 0.791 ± 0.0 0.751 ± 0.001

336 0.415 ± 0.0 0.424 ± 0.0 0.424 ± 0.0 0.43 ± 0.0 0.78 ± 0.0 0.781 ± 0.0 0.789 ± 0.0 0.75 ± 0.0

720 0.416 ± 0.0 0.424 ± 0.0 0.427 ± 0.0 0.434 ± 0.0 0.776 ± 0.0 0.785 ± 0.0 0.786 ± 0.0 0.749 ± 0.0
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Table 7: The effect of Z-normalization on MSE of various models across synthetic datasets.

Metric Model Z-Norm
Pred

length

Synthetic (γ = 0.95) Synthetic (γ = 0.5)

α = 0 α = 0.2 α = 0.4 α = 0.8 α = 0 α = 0.2 α = 0.4 α = 0.8

MSE

Crossformer

w/

96 0.283 ± 0.0 0.293 ± 0.0 0.296 ± 0.0 0.297 ± 0.0 0.972 ± 0.0 0.974 ± 0.0 1.0 ± 0.0 0.912 ± 0.002

192 0.281 ± 0.0 0.29 ± 0.0 0.295 ± 0.0 0.316 ± 0.001 0.97 ± 0.0 0.975 ± 0.0 0.995 ± 0.0 0.907 ± 0.001

336 0.28 ± 0.001 0.291 ± 0.0 0.295 ± 0.0 0.319 ± 0.001 0.964 ± 0.0 0.975 ± 0.0 0.991 ± 0.0 0.928 ± 0.006

720 0.281 ± 0.001 0.295 ± 0.0 0.299 ± 0.0 0.351 ± 0.005 0.957 ± 0.001 0.978 ± 0.0 0.983 ± 0.001 0.941 ± 0.003

w/o

96 0.276 ± 0.0 0.284 ± 0.0 0.288 ± 0.0 0.279 ± 0.0 0.953 ± 0.0 0.965 ± 0.0 0.984 ± 0.0 0.878 ± 0.002

192 0.274 ± 0.0 0.284 ± 0.0 0.288 ± 0.0 0.287 ± 0.0 0.949 ± 0.0 0.96 ± 0.0 0.982 ± 0.0 0.889 ± 0.0

336 0.274 ± 0.001 0.284 ± 0.001 0.287 ± 0.001 0.289 ± 0.001 0.945 ± 0.0 0.957 ± 0.0 0.977 ± 0.0 0.883 ± 0.001

720 0.275 ± 0.0 0.287 ± 0.0 0.29 ± 0.0 0.297 ± 0.0 0.937 ± 0.0 0.963 ± 0.0 0.966 ± 0.001 0.881 ± 0.0

PatchTST

w/

96 0.283 ± 0.0 0.292 ± 0.0 0.293 ± 0.0 0.3 ± 0.0 0.982 ± 0.0 0.981 ± 0.0 0.999 ± 0.0 0.929 ± 0.002

192 0.281 ± 0.0 0.289 ± 0.0 0.294 ± 0.0 0.32 ± 0.001 0.977 ± 0.0 0.983 ± 0.0 0.995 ± 0.0 0.918 ± 0.001

336 0.279 ± 0.0 0.29 ± 0.0 0.293 ± 0.0 0.32 ± 0.0 0.97 ± 0.001 0.98 ± 0.001 0.99 ± 0.001 0.948 ± 0.016

720 0.276 ± 0.0 0.292 ± 0.0 0.297 ± 0.0 0.347 ± 0.001 0.963 ± 0.001 0.981 ± 0.001 0.982 ± 0.001 0.966 ± 0.021

w/o

96 0.275 ± 0.0 0.281 ± 0.0 0.282 ± 0.0 0.28 ± 0.0 0.962 ± 0.0 0.972 ± 0.0 0.984 ± 0.0 0.9 ± 0.001

192 0.273 ± 0.0 0.281 ± 0.0 0.284 ± 0.0 0.287 ± 0.0 0.955 ± 0.0 0.967 ± 0.0 0.983 ± 0.0 0.899 ± 0.001

336 0.273 ± 0.0 0.281 ± 0.0 0.283 ± 0.0 0.29 ± 0.0 0.951 ± 0.002 0.962 ± 0.001 0.977 ± 0.001 0.9 ± 0.001

720 0.271 ± 0.0 0.282 ± 0.0 0.286 ± 0.0 0.297 ± 0.0 0.944 ± 0.001 0.967 ± 0.001 0.967 ± 0.001 0.897 ± 0.002

iTransformer

w/

96 0.277 ± 0.0 0.288 ± 0.0 0.29 ± 0.0 0.317 ± 0.002 0.977 ± 0.0 0.976 ± 0.0 0.999 ± 0.001 0.911 ± 0.001

192 0.275 ± 0.0 0.283 ± 0.001 0.29 ± 0.001 0.325 ± 0.002 0.973 ± 0.0 0.977 ± 0.0 0.996 ± 0.0 0.907 ± 0.0

336 0.273 ± 0.001 0.284 ± 0.001 0.289 ± 0.001 0.328 ± 0.004 0.967 ± 0.0 0.977 ± 0.001 0.993 ± 0.0 0.925 ± 0.004

720 0.272 ± 0.0 0.287 ± 0.0 0.292 ± 0.0 0.348 ± 0.003 0.964 ± 0.001 0.981 ± 0.0 0.985 ± 0.0 0.939 ± 0.002

w/o

96 0.275 ± 0.0 0.281 ± 0.0 0.281 ± 0.0 0.291 ± 0.006 0.958 ± 0.0 0.967 ± 0.0 0.983 ± 0.0 0.89 ± 0.001

192 0.273 ± 0.0 0.278 ± 0.0 0.283 ± 0.001 0.295 ± 0.001 0.952 ± 0.0 0.962 ± 0.0 0.983 ± 0.0 0.889 ± 0.001

336 0.273 ± 0.0 0.279 ± 0.001 0.282 ± 0.001 0.292 ± 0.001 0.949 ± 0.0 0.96 ± 0.001 0.978 ± 0.0 0.886 ± 0.001

720 0.271 ± 0.0 0.279 ± 0.0 0.283 ± 0.0 0.29 ± 0.0 0.942 ± 0.0 0.966 ± 0.0 0.968 ± 0.0 0.886 ± 0.0

TimeXer

w/

96 0.282 ± 0.0 0.293 ± 0.0 0.294 ± 0.0 0.307 ± 0.001 0.973 ± 0.0 0.974 ± 0.0 0.996 ± 0.001 0.908 ± 0.002

192 0.28 ± 0.0 0.289 ± 0.0 0.295 ± 0.0 0.323 ± 0.001 0.972 ± 0.0 0.976 ± 0.0 0.991 ± 0.001 0.907 ± 0.005

336 0.278 ± 0.0 0.29 ± 0.0 0.294 ± 0.0 0.327 ± 0.0 0.966 ± 0.0 0.974 ± 0.0 0.988 ± 0.001 0.926 ± 0.004

720 0.276 ± 0.0 0.292 ± 0.0 0.297 ± 0.001 0.35 ± 0.003 0.961 ± 0.0 0.977 ± 0.0 0.982 ± 0.001 0.941 ± 0.001

w/o

96 0.275 ± 0.0 0.282 ± 0.0 0.284 ± 0.0 0.285 ± 0.002 0.954 ± 0.0 0.965 ± 0.0 0.978 ± 0.0 0.88 ± 0.0

192 0.273 ± 0.0 0.281 ± 0.0 0.285 ± 0.0 0.289 ± 0.0 0.951 ± 0.0 0.96 ± 0.0 0.978 ± 0.0 0.887 ± 0.004

336 0.273 ± 0.0 0.282 ± 0.0 0.284 ± 0.0 0.292 ± 0.0 0.948 ± 0.0 0.956 ± 0.0 0.972 ± 0.0 0.885 ± 0.0

720 0.271 ± 0.0 0.281 ± 0.0 0.286 ± 0.0 0.297 ± 0.0 0.941 ± 0.0 0.963 ± 0.0 0.961 ± 0.0 0.887 ± 0.0

Table 8: Hyperparameters of different models on the Weather dataset. Other hyperparameters are set as default values in
the Github repository of the Time series library (Wang et al., 2024b).

Weather Transformer Autoformer FEDformer Crossformer PatchTST iTransformer TimeXer

Encoder layers 2 2 2 2 2 3 1

Heads 8 8 8 8 4 8 8

Embedding dimension 512 512 512 256 512 512 256

Batch size 32 32 32 16 32 32 4
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Table 9: Hyperparameters of different models on the ETT datasets. Other hyperparameters are set as default values in the
Github repository of the Time series library (Wang et al., 2024b).

ETT Transformer Autoformer FEDformer Crossformer PatchTST iTransformer TimeXer

Encoder layers 2 2 2 2 1 2 1

Heads 8 8 8 8 2 8 8

Embedding dimension 512 512 512 128 512 128 256

Batch size 16 16 32 32 32 32 32

Table 10: Hyperparameters of different models on the Electricity dataset. Other hyperparameters are set as default values
in the Github repository of the Time series library (Wang et al., 2024b).

Electricity Transformer Autoformer FEDformer Crossformer PatchTST iTransformer TimeXer

Encoder layers 2 2 2 2 1 3 3

Heads 8 8 8 8 8 8 8

Embedding dimension 512 512 512 256 512 512 512

Batch size 32 32 32 16 32 32 4

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0001

Table 11: Hyperparameters of different models on the Traffic dataset. Other hyperparameters are set as default values in
the Github repository of the Time series library (Wang et al., 2024b).

Traffic Transformer Autoformer FEDformer Crossformer PatchTST iTransformer TimeXer

Encoder layers 2 2 2 2 2 4 2

Heads 8 8 2 2 8 8 8

Embedding dimension 512 512 512 512 512 512 512

Batch size 16 8 8 4 4 4 4

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.001
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