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Abstract

As a popular paradigm of distributed learning, personalized federated learning (PFL) allows
personalized models to improve generalization ability and robustness by utilizing knowledge
from all distributed clients. Most existing PFL algorithms tackle personalization in a model-
centric way, such as personalized layer partition, model regularization, and model interpola-
tion, which all fail to take into account the data characteristics of distributed clients. In this
paper, we propose a novel PFL framework for image classification tasks, dubbed pFedPT,
that leverages personalized visual prompts to implicitly represent local data distribution
information of clients and provides that information to the aggregation model to help with
classification tasks. Specifically, in each round of pFedPT training, each client generates
a local personalized prompt related to local data distribution. Then, the local model is
trained on the input composed of raw data and a visual prompt to learn the distribution
information contained in the prompt. During model testing, the aggregated model obtains
prior knowledge of the data distributions based on the prompts, which can be seen as an
adaptive fine-tuning of the aggregation model to improve model performances on different
clients. Furthermore, the visual prompt can be added as an orthogonal method to implement
personalization on the client for existing FL. methods to boost their performance. Exper-
iments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several
state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.

1 Introduction

Personalized federated learning (PFL) |Deng et al.|(2020); [Huang et al.|(2022);|Sattler et al.[(2019) is a novel
paradigm proposed to overcome the impacts of heterogeneity across isolated clients. Instead of training a
single aggregated model like in Federated learning (FL) |Gao et al| (2022); [Li et al.| (2022); McMahan et al.
(2017); |Tan et al.| (2022), PFL generates a personalized local model on each client that is more in line with
the local data distribution by jointly considering the aggregated model and the personalized data. There
are two main challenges lying in PFL. One is how to extract useful global features from models trained on
each local heterogeneous dataset. The other is how to incorporate the extracted global features with the
personalized features, yielding a better client-specific model.

Several works have been proposed to address the above challenges from a model perspective. PFL algorithms
with a decoupling model |Arivazhagan et al.[(2019);|Collins et al.| (2021);|Oh et al.| (2021) split the local model
into a shared part to be aggregated with those from other clients, and a private part of maintaining locality.
The shared part is used to transfer public knowledge among clients, and the private part is used to adapt
to local data distribution. Clustered FL [Dinh et al.| (2021) groups clients according to the similarity of the
local parameters and trains an aggregated model for each group of clients. Clustered FL extracts common
knowledge from similar clients within a group to generate a unified model for the group. These methods,
however, still fall short in two aspects. First, these approaches rely on the effectiveness of aggregating or
clustering the shared parts and may fail with highly heterogeneous data. Second, these methods simply
extract the common knowledge and implement the personalization at the model level, while ignoring the
potential at the data level, which may further strengthen the personalized adaptation between the aggregated
model and local dataset.
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Figure 1: Differences in local update and aggregation phases between FedAvg and pFedPT. In the figure,
the lines represent the decision boundaries defined by the backbone. Assume that each client has two classes
represented by different shapes. (a) In FedAvg, due to the heterogeneity of data in each client, the significant
difference in local updates affects the final model aggregation. The aggregation model doesn’t fit well with
the data on each client. However, (b) the pFedPT adds personalized visual prompts to the client data, which
change the original data characteristics and improve the fit of the backbone on the client. The aggregation
model can perform well on each client’s data with prompt. (c) and (d) are the t-SNE visualization results
of the final hidden layer trained by FedAvg and pFedPT on the client with only classes 1 and 4. pFedPT
increases the inter-class variation (Inter-Var) and decreases the intra-class variation (Intra-Var).

In the community of computer vision (CV), both visual prompts|Liu et al.| (2021)) and adversarial reprogram-
ming [Elsayed et al.| (2018 employ a set of learnable parameters as a continuous task-specific vector, which
can be tuned based on training data from the downstream task. Visual prompts can effectively help a large-
scale pre-trained model achieve fast task transfer by simply training task-related prompts without changing
any pre-trained model parameters. The prompt parameters are like the attention guidance to implicitly hint
at the task-related information for improving model performance on the new task [Liu et al.| (2021). This
motivates us to regard the different clients as different tasks and adopt client-specific prompts to fine-tune
the aggregated model on each local client, which helps to incorporate the extracted global features with the
personalized ones.

Based on this insight, we propose a novel PFL framework named pFedPT. Our approach addresses the
shortcomings mentioned above by using a visual prompt to implicitly provide a hint of the data distribution
on a client for the aggregated model locally. Specifically, each client model integrates a set of learnable
Prompt parameters with a backbone participating in aggregation for classification. The prompt parameters
can generate personalized visual prompts for its affiliated clients based on their local data distribution.
During local training of pFedPT, the generated personalized visual prompts are added to the images. Fig.
(a) and (b) show the difference in the training process between FedAvg and pFedPT. For different classes
of data, Fig. [1| (c) and (d) show that the generated prompts increases the inter-class variation (Inter-Var)
while decreasing the intra-class variation (Intra-Var). Different class data with a visual prompt is easily
distinguished by an aggregated backbone, thereby improving the local performance of the local clients. Then,
the backbone is trained on the input composed of raw data and visual prompts to learn the distribution
information contained in the prompt. Upon achieving convergence of the two models through alternate
training, the backbone implements the extraction of common knowledge from clients and can recognize the
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Figure 2: The pipeline of the pFedPT. § stands for the predicted logits of all classes. The dashed lines in
steps 1 and 2 represent the loss backward for the model update. Each client contains a set of personalized
learnable parameters preserved locally, and a Backbone, which the server will aggregate with those of other
clients. The raw image input will be added to a visual prompt (colored pixels padded around the image)
and then passed into the backbone for prediction.

visual prompts of different clients. The generated visual prompt reflects the client’s characteristics as a
client-conditional vector and implements fine-tuning of the backbone in the local client. As a result, the
backbone can capture implicit knowledge about the client’s data distribution based on the visual prompt and
therefore obtain a better-personalized model. On the other hand, the visual prompt can be of independent
interest and added as a plugin for other FL algorithms. It can fine-tune the model received by clients, which
can implement the personalized improvement of the model trained by FL algorithms in different clients or
further boost the performance of PFL algorithms.

We validate pFedPT on two image classification datasets, including CIFAR10 Krizhevsky et al| (2009) and
CIFAR100 Krizhevsky et al.| (2009). Empirical results show that pFedPT beats other SOTA methods of
PFL with a 1%-3% improvement in test accuracy. In summary, our main contributions are four-fold:

e To the best of our knowledge, this is the first work that proposes to use client-specific prompts
to help the aggregated models achieve better local adaptation and generalization by leveraging the
personalized features of clients.

e We propose a novel PFL framework, dubbed pFedPT, for federated image classification tasks that
use the visual prompts from each client to fine-tune the aggregated model and imbue the aggregated
local model with information about the local data distribution.

o We show that pFedPT can integrate with several existing FL. and decoupled PFL methods to boost
their performance, which may be of independent interest.

o We conduct extensive experiments to evaluate the effectiveness of pFedPT, which significantly out-
performs several SOTA baselines on CIFAR10 and CIFAR100 datasets. Besides, the experimental
results illustrate that the prompt can indeed learn personalized knowledge related to the client.

2 Related Work

Personalized Federated Learning (PFL). PFL has drawn significant research interests |Cho et al.
(2021); Fallah et al. (2020); Hanzely et al|(2021)); Li et al.| (2023)); |T Dinh et al.| (2020); |Tan et al. (2022);
[Wang et al.|(2023). The main difficulty of PFL is to characterize the data distributions of clients and integrate
them into the federated learning training process, followed by providing a personalized local model for each
client. Currently, the core idea of PFL is to decouple the model into shared layers for feature extraction
and personalized layers for classification |[Arivazhagan et al.| (2019); [Collins et al. (2021)); |Oh et al. (2021)).
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Each client’s parameters of the shared layer are generally updated globally using the FedAvg [McMahan
et al.[(2017) algorithm. In contrast, the personalized layers are trained locally and will not be shared with
others. Those works focus on training a general feature extractor and a personalized classifier head for
personalization.

Other work aims to combine other related machine-learning techniques with PFL. Briggs [Briggs et al.
(2020) and Mansour etal. |[Mansour et al. (2020) use the clustering technique to divide similar clients into
groups and learn a separate model for each group without inter-group federation. Smith etal. |Dinh et al.
(2021) use multitasking learning to take advantage of shared representations between clients to improve
the generalization performance of each model. Yang etal. |Yang et al|(2020) and Chen etal. |Chen et al.
(2020) use transfer learning to enhance local models by transferring knowledge between relevant clients. T
Dinh etal. |T Dinh et al| (2020) add regularizers to the aggregated model to prevent customers’ models
from simply overfitting their own data sets. Chen etal. |Chen et al.| (2018) and Fallah etal. Fallah et al.
(2020) attempt to develop a well-initialized shared aggregated model using a model-agnostic meta-learning
(MAML) approach [Finn et al.| (2017). In addition, fine-tuning using the aggregated model learned by the
FedAvg algorithm can also improve the performance of personalized local models Huang et al.| (2023); Jiang
et al.| (2019). The previous works enable the model to recognize the characteristics of clients and implement
personalization for them. There are also some other works |Chen et al.| (2022); |Goetz & Tewari| (2020)); [Hao!
et al.| (2021) that focus on the data level of the client and improve the training effect of FL global model
by improving the data quality on the client. However, adding additional information at the data level to
achieve better performance for PFL has always been ignored. Our pFedPT framework uses visual prompts
to implicitly represent the data distribution of clients, which achieves personalization by incorporating the
characteristics of clients into the training process at the data level.

Prompt Learning. Prompt learning Liu et al. (2021)), as a novel application paradigm for large-scale
pre-trained models, was first proposed in Natural Language Processing (NLP), and refers to prepending a
language instruction to the original text input|Li & Liang| (2021)). In this way, pre-trained models can be given
hints about what tasks are currently being performed, thereby achieving strong generalization to downstream
transfer learning tasks without fine-tuning the whole model [Floridi & Chiriatti (2020). Compared to hard
prompts, soft prompts avoid the trouble of manual design, and are more expressive. Lester etal. Lester et al.
(2021)) use task-specific continuous vectors as soft prompts and can be optimized by training. In the CV area,
Radford etal. Radford et al.| (2021) propose the CLIP model using language prompts to solve the vision-
language tasks, which is similar to following works [Tsimpoukelli et al.| (2021); |Yao et al. (2021)). In [Bahng
et al.| (2022)), the visual prompts are designed as an input-agnostic perturbation, which is padded around the
input images. The perturbation-generating function includes a small number of trainable parameters, which
helps the pre-trained vision models perform downstream tasks without fine-tuning any parameters. Visual
Prompt Tuning (VPT) |[Jia et al.| (2022)) is introduced as a parameter-efficient alternative to full fine-tuning
for pre-trained model |Dosovitskiy et al.| (2021]).

Notably, two concurrent works, PROMPTFL |Guo et al| (2022) and FedPrompt [Zhao et al. (2022)) also
introduce prompt learning into FL. However, several significant differences exist between our work and
these two works. (i) Different training objectives: the goal of PROMPTFL and FedPrompt is to fine-tune
existing pre-trained models in the FL system. However, pFedPT implements model training from scratch for
achieving PFL. (ii) Different ways of training: PROMPTFL and FedPrompt freeze the pre-trained model
during training and share the parameter information of the prompt. In pFedPT, backbone and prompt
parameters are trained alternately during training, and each client has its own unique prompt after training
to achieve the goal of personalization.

3 Methodology

In this section, we introduce the proposed visual prompt based personalized federated learning (pFedPT)
framework. Below, we first provide several preliminaries on PFL.
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3.1 Problem setup

Suppose that there are N clients, denoted as Cj, ..., C, respectively. Client C; has a local dataset D
with |D?| samples. The goal of traditional FL McMahan et al.| (2017) is to collaboratively learn a machine
learning model w over the dataset D £ Uiern D' with the help of a central server, while the raw data are
not exchanged. The objective of FL is defined below:

argmmﬁ Z ||D| (1)

where Li(w) = E(, )~p:[li(w; (,y))] is the empirical loss of C;. However, rather than aiming at a single
aggregated model w in FL, PFL is supposed to train personalized models w; for different clients Tan et al.
(2022), which is defined as the following optimization problem:

. -~ D]
argur/nln LW) = Z Li(w;), (2)

i=1

where W = {wy, ..., wn} is the personalized models set for all clients.

3.2 Workflow of pFedPT

We introduce a novel visual prompt based PFL framework for solving the PFL task, dubbed pFedPT. The
central insight of the pFedPT is to train learnable continuous visual prompts about data distribution for
each client and use them to fine-tune backbones locally on those clients. Prompts on each client can serve
as prior knowledge aiding the backbone to complete the training task. The pFedPT currently focuses on
visual-related tasks, wherein each client maintains a set of prompt parameters and a backbone, as shown
in Fig. 2l When performing image classification tasks, pFedPT first adds prompts to each image, which is
then passed into the backbone for classification prediction. Generally, a complete pFedPT training process
mainly includes four steps, as shown in Fig.

e Step 1. To begin with, the parameters of the prompt on each client are updated with local data
while the whole backbone is frozen.

e Step 2. After training several epochs, the prompt parameters will be frozen, and the backbone will
begin to update for a fixed number of epochs.

e Step 3. When the training process of all clients is finished, they send the trained backbone to the
server, followed by the aggregation operation conducted by the server.

e Step 4. The aggregated backbone will be broadcast to every client to replace the old backbone
stored locally.

Repeat the Step 1-Step 4 until the training process of the prompt parameters and backbone converges.
At this point, the prompt parameters for each client are based on local data distribution and can be seen
as a guide to fine-tuning the prediction results of the backbone for the input images. Since the prompt is
client-specific, the same backbone can generate different fine-tuning effects when used by different clients to
achieve personalization.

Below, we specify the key components of pFedPT, i.e., prompt parameters, which are parameterized with
the parameter § for the prompt. The prompt is added to the input image to form a prompted image X; + §;.
During the local evaluation, the optimized prompt is added to all test images,

There are several ways to design a visual prompt in terms of template and size. Following the settings of
Bahng et al.| (2022)), we explore three visual templates: pixel patch at a random location, pixel patch at a
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Algorithm 1: pFedPT framework

Input: number of communication rounds T, the set of clients {C, ..., Cn}, number of local epochs E; for
backbone, number of local epochs Fy for the prompt parameters, learning rate n; for backbone,
learning rate 7y for the prompt parameters, initialization parameters w® for backbone, initialization
parameters 87 for the prompt parameters in client i.

Output: The final model w?

Server executes: initialize w°

S : choose a random set of devices from C
fort=0,1,...,7—1do
for C; € S in parallel do
send the aggregated model w’ to C;
L w! < LocalTraining(i, w")

o RN W N

sl |D?] t
7 “ it D] Wi

8 return w”

9 LocalTraining(i, w'): w! < w'
10 for epochi=1,2,...,FE,; do
11 for each batch b = {r,y} of D’ do
12 L L Training for prompt parameters: §; < 6¢ — 0y Ve (wk; (z + 6, y)))

13 for epochi=1,2,..., E. do _
14 for each batch b = {z,y} of D' do
15 L local backbone training: wi < wi — npy Vi (wl; (x + 6;,y))

16 return wf to server

fixed location, and padding. We explore various prompt sizes p, where the actual number of parameters is
Cp? for patches and 2Cp(H +W —2p) for padding, where C, H, W are the image channels, height, and width,
respectively. In order to explore the effect of different prompts on the results, we conducted an experiment
on CIFARI10 dataset with a Dirichlet (0.3) partition. Fig. @] shows that padding prompts with p = 4 size
achieve the best performance over other design choices. We use this as the default for all our experiments.

3.3 Modeling for pFedPT

Our goal is to learn a personalized prompt d; for each client and a backbone w. The prompt §; is also trained
by the local data. Our objective is to solve the following;:

argmin £(w, ;) Z ||D| 3i)s (4)

w,d;

where L;(w,d;) = E(y )~pi[li(w; (x + d;,y))] is the empirical loss of C;. To achieve the goal in Eq. ,
existing PFL algorithms usually add a regularizer to the model to perform information exchange between
clients |Arivazhagan et al. (2019); |Li et al.| (2021b)), partition the layers as shared and personalized parts
by exchanging the shared layers |Tan et al. (2022), or interpolate the aggregated model with local models
Li et al.| (2021b)); Mansour et al| (2020). However, pFedPT still uses the aggregated model w to deliver
public knowledge between clients, and personalized knowledge is incorporated by adding §; to the data.
Specifically, the shared backbone is responsible for the extraction of the common knowledge of each client
and identifying the information carried by the visual prompt of the individual clients. The client-specific
prompt is responsible for increasing the guidance of the backbone to achieve finze-tuning to adapt to the
client’s data distribution. We implement personalized prediction of the backbone at the client data level.

3.4 Optimization for pFedPT

To achieve the optimization goal of Eq. (4]), we alternately update the prompt parameters and the backbone
on each client using gradient descent. pFedPT first trains the prompt parameters with the aggregation model



Under review as submission to TMLR

E((Vy M[)’ )([)

(). 05+ P

Back Propagation

Shared

'

1

'

1

' y

| Personalized
1

1

1

'

e

Input X;

Input X;
(a) FedRep (b) pFedPT

Figure 3: Differences between pFedPT and decoupled personalized FL algorithm (FedRep)

fixed, and the model maximizes the likelihood of the correct label y, which is equivalent to solving:

arg6min Li(wi, 6;) = Eg )i [Gi(wi; (T + 04, y))]. (5)

After updating the prompt parameters locally, we freeze the parameters of the prompt parameters, and then
train the backbone for several epochs. The backbone has the following objective function in the client ¢
during the training process:

argmin L;(wy, 0;) = By yy~pi[li(wi; (2 4 5, y))]- (6)

w

A locally trained backbone can learn the client data distribution corresponding to a prompt on the client
and prompt knowledge is passed between clients via model aggregation at the server. The backbone on the
server aggregates according to the following formulas:

N

D'
Wit Z D wt, (7)

i=1

where t represents the number of training rounds. We summarize the detailed procedures of pFedPT in
Algorithm [I]

In the end, we give several comments on the differences between our pFedPT and decoupled FedRep
. Fig describes their training process. Note that pFedPT also has a private part and a public
part, but the private part is the prompt parameters that we added at the client data level additionally.
The personalized visual prompt generated adds the client’s personalized knowledge to the training process
by fine-tuning backbone’s input without changing backbone’s inference process. FedRep is to separate the
private part in the inference model, and different clients have different inference processes. The objective
functions of FedRep and pFedPT are also different. Furthermore, the visual prompt is orthogonal to FedRep
type methods, which can be integrated together to further boost their performance.

4 Experiments

In this section, we evaluate the effectiveness of pFedPT and compare it with several advanced methods in
various datasets and settings. We also conduct a number of exploratory experiments to find out how pFedPT
works and verify the effectiveness of pFedPT in terms of client data distribution. The aim of our experiments
is to address the following research questions:

¢ RQ1 Can the proposed pFedPT achieve better performance than other methods?
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e RQ2 Is pFedPT robust and performs well in different situations?

« RQ3 Whether pFedPT can be combined with other algorithms to improve performance?
e« RQ4 Does pFedPT perform well on new FL joining clients?

e RQ5 Whether the prompt that is added to the image is noticed by the backbone model?
e« RQ6 Is the information contained in the prompt different from client to client?

e RQ7 Does prompt contain information about client data distribution?

e RQ8 Whether the parameters of prompts can converge?

« RQ9 What are the effects of different types of prompt effects?

Table 1: The results of pFedPT and baseline methods on the image datasets with different non-IID settings.

CIFARI10 CIFAR100
#setting IID Dirichlet Pathological IID Dirichlet Pathological
#client ViT CNN viT  CNN ViT CNN ViT CNN ViT CNN VIiT CNN
FedAvg 60.50 67.13  53.01 61.92 54.98 63.62 29.60 2642 2593 26.50 27.71 30.28
FedProx 57.04 66.94 53.14 6195 55.02 63.29 27.71 2629 26.00 2648 27.84 30.52
MOON 60.99 66.88 61.12 62.53 65.98 63.52 29.32 26.43 2495 26.93 27.61 29.00
FedPer 61.57 51.46 73.16 7798 7520 79.97 29.74 10.82 36.78 27.79 3536 31.13
FedRep 48.38  49.70 7411 7765 7448 7839 17.84 9.13  35.06 27.39 36.13 3241
FedMTL 45.65  45.65 6848 73.95 6539 70.94 17.91 734  26.08 2585 2546 26.32
FedBABU 50.41  61.17 7421 80.11 7430 80.69 20.61 2255 36.17 31.66 35.74 3545
Local 45.37  39.04 6840 73.98 6483 70.76 18.01  7.33  26.23 25.15 24.65 25.34

pFedPT (ours) 60.01 66.09 74.92 80.83 75.42 81.16 31.66 26.41 36.80 32.47 36.88 37.98

Table 2: The results of baseline methods with prompts on the image datasets with CNN in Non-IID settings.

CIFAR10 CIFAR100
#setting Dirichlet Pathological Dirichlet Pathological
FedProx 61.95 63.29 26.48 30.52
FedProx+PT  80.47 81.48 31.95 37.88
MOON 62.53 63.52 26.93 29.00
MOON+PT 77.84 76.00 28.67 34.60
FedPer 77.98 79.97 27.79 31.13
FedPer+PT 78.40 80.59 28.83 31.14
FedRep 77.65 78.39 27.39 32.41
FedRep+PT 77.65 79.11 29.19 32.75

4.1 Experimental Setup

Comparison methods. We compare pFedPT with several advanced FL. methods. FedAvg McMahan
et al.|(2017) is proposed as the basic framework in federated learning. FedProx|Li et al.|(2020]) adds a proximal
term to the objective function of the local model and allows for the emergence of incomplete training of the
local model. MOON |Li et al.|[(2021a)) is to utilize the similarity between model representations to correct the
local training of individual parties, conducting contrastive learning at the model level. FedPer |Arivazhagan
et al.| (2019) and FedRep |Collins et al| (2021) are base + personalization layer approaches for federated
training of deep feed-forward neural networks, which can combat the ill-effects of statistical heterogeneity.
FedMTL |Smith et al| (2017) uses a multi-task learning (MTL) framework to learn separate models for
each client. FedBABU |Oh et al.| (2021)) achieves good personalization performance by freezing the last
discriminative layer of the network and fine-tuning it after training. We also compare a baseline named
Local, where each client trains a model with its local data without federated learning.
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Datasets. We conduct experiments on two benchmark datasets: CIFAR10 Krizhevsky et al. (2009) and
CIFAR100 Krizhevsky et al. (2009). The CIFARI10 dataset contains 50,000 training data and 10,000 test
data in 10 classes. Each data sample is a 3 x 32 x 32 color image. CIFAR100 |Krizhevsky et al.| (2009)) includes
50,000 training data and 10,000 test data in 100 classes as 500 training samples per class. CIFAR100 is a
more difficult dataset for classification tasks than CIFAR10. For CIFAR10 and CIFAR100, we normalize
the pixel value within a specific mean and std value in our code, which are [0.5, 0.5, 0.5] for the mean and
[0.5, 0.5, 0.5] for the std.We consider two different scenarios for simulating non-identical data distributions
(Non-IID) across federated clients. Dirichlet Partition follows works [Hsu et al.| (2019), where we partition
the training data according to a Dirichlet distribution Dir(«a/) for each client and generate the corresponding
test data for each client following the same distribution. We specify « equal 0.3 for each dataset. In addition,
we evaluate with the pathological partition setup similar to|Zhang et al.| (2020), in which each client is only
assigned a limited number of classes at random from the total number of classes. We specify that each client
possesses 5 classes for CIFAR10 and 50 classes for CIFAR100.

Evaluation Metrics. We are distributing the test data set to each client in the same way as the training
set and the final accuracy of each method reported in our results is the average accuracy of the local model
for each client on its own test set after training.

Implementation Details. We verify the experimental results based on CNN and ViT architectures.
The CNN model consists of 2 convolutional layers with 64 5x5 filters followed by 2 fully connected layers
with 394 and 192 neurons and a softmax layer. We use tiny ViT architecture consisting of 8 blocks with 8
self-attention layers in each block. The corresponding attention head number is 8, the patch size is 4, and
the embedding dimension is 128. We set the number of clients to 50, and then each client has a 20% chance
of participating in each communication round. We utilize the SGD algorithm (Cherry et al.| (1998)) as the
local optimizer for all methods. We use padding as our prompt method. We set batch size as 16 in the local
training phase, the local training epochs for the prompt parameters and backbone as 5 in each round, the
learning rate for the backbone as 0.005, the learning rate for the prompt parameters as 1, and the padding
prompt size as 4. The number of communication rounds is set to 150 for CIFAR10, 300 for CIFAR100, where
all FL approaches have very limited or no accuracy gain with more communications.

Hyper-parameters Settings. We fix the learning rate for local training as 0.005 and for the prompt
parameters training as 1.0. We fix the training batch size as 16 and fix the epoch for local training as 5.
For the specific parameters in FedProx, the proximal rate is set as 0.0001. For the specific parameters in
MOON, the p is set as 1.0. For the specific parameters in FedRep, the personalized learning rate is set as
0.01. For the specific parameters in FedMTL, the iterations for solving quadratic sub-problems are set as
4000. For the specific parameters in FedBABU, the fine tuning step is set as 1.

4.2 Main Results

We run vast experiments to determine the superiority of pFedPT on the model performance in different
datasets. Our results highlight the benefit of pFedPT compared to the existing PFL optimization approaches.

Comparisons with SOTA methods. Tab. [l| compares the best accuracy of pFedPT with baselines on
evaluation datasets with various settings and answers RQ1. On CIFARI10 and CIFARI100, the pFedPT
consistently achieves the best test accuracy with Non-IID setting. For instance, when training on the data
of Dirichlet distribution CIFAR10 with CNN, the test accuracy of the pFedPT is 80.83%, the accuracy of
FedAvg is 61.92%, and the accuracy of the FedPer is 77.98%. The improvements of pFedPT indicate that
prompts in each client effectively improve the backbone performance in each client. Similarly, in CIFAR100,
pFedPT outperforms most baselines in various settings and achieves comparable results in the Dirichlet
setting.

Robustness of pFedPT. Our pFedPT achieves clear success on both ViT and CNN models and seems
to get better performance as the FL tasks become more difficult (since better performance is observed at
a greater Non-IID extent and in datasets that are intrinsically more difficult), which answers RQ2. Inter-
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estingly, in the IID setting, we show that all the personalized solutions exhibit some extent of performance
degradation, which becomes more significant as the dataset becomes more challenging. Our interpretation
of this phenomenon is that when the data are distributed under the IID setting, the PFL approach does
not effectively take advantage of the personalization characteristics among clients, resulting in performance
degradation. pFedPT will utilize the data distribution information in the client by visual prompts. When
the data is IID, the output will be similar on the various clients and degenerate into the FedAvg.

Improvements of prompt for other algorithms. To answer RQ3, we combine PfedPT with other
methods and find visual prompts can improve the performance of backbones on clients by fine-tuning the
backbone with prompts about the distribution of the client’s data. We explore the usefulness of visual
prompts as prior knowledge for other FL algorithms, and Tab. [2| presents these results. In the Dirichlet
setting of CIFAR10, the final test accuracy of FedProx increases from 61.95% to 80.47% after adding prompts,
and the test accuracy of MOON increases from 62.53% to 77.84%. We find that a visual prompt enables
fine-tuning of the backbone of the client, which helps FL algorithms that pursue high precision fuse client
information for personalization. Similarly, PFL algorithms with model decoupling, like FedRep and FedPer,
can also yield a performance boost by integrating pFedPT. Therefore, prompt can be used as an additional
component to improve the personalization performance of some existing FL algorithms.
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Figure 4: Test accuracy after fine-tuning the head of models trained on a client of CIFAR10 with ViT.

Generalization ability of the pFedPT. To answer RQ4, we evaluate the strength of the backbone
learned by pFedPT in terms of adaptation to new clients. To do so, we first train the pFedPT and the
FedAvg in the usual setting on the partition of the CIFAR10 dataset with 10 clients and the Dir (0.1)
partition. Then, we encounter clients with data from Dir (0.3) partition of the CIFAR10 dataset. We
assume we have access to a dataset of 400 samples for this new client to fine-tune. For the pFedPT, we
fine-tune the prompt parameters over multiple epochs while keeping the backbone fixed. For the FedAvg,
fine-tune the last layer of the backbone while keeping the other layers. Fig. [] shows that the pFedPT has
significantly better performance than the FedAvg.

Compared with other baselines, pFedPT takes full advantage of the data improvement space. Additional
prompts are added to the data entered into the model to improve the performance of each client.

4.3 Exploratory Study

To provide more explanation for pFedPT, we additionally conduct several exploratory studies on pFedPT.

Visualization of attention maps. To illustrate the effectiveness of visual prompts and answer RQ5, we
conducted some validation experiments. We train ten clients using FedAvg and pFedPT with ViT and CNN
backbones under the Dirichlet setting of the CIFAR10 dataset, respectively. As shown in Fig. [5| we make
a visualization of the attention map of the last layer in the ViT and CNN by Grad-CAM [Selvaraju et al.
(2020). The first three rows in the figure show that FedAvg focuses on some salient classification features of

10
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Figure 5: Visualization results generated by FedAvg and pFedPT with different backbones.

the raw image. The fourth row contains the input images with the padding visual prompts, which are added
by the prompt parameters of pFedPT according to Eq. . Both pFedPT+ViT and pFedPT+CNN shift
some attention to the added prompts, which can help obtain the prior knowledge for the model inference
process, thus improving the performance of the model.
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Figure 6: t-SNE visualization of embedding for pure color images with learned prompts in different clients.

The guidance information contained in the prompts. In order to further explore the influence of
visual prompts and answer RQ6, we generated 100 different pure color images with the shape of [3 x 32 x 32].
Using the pure color picture, pFedPT can exclude the disturbance of image contents and pay more attention
to visual prompts. We feed those color pictures into pFedPT models in different clients with different prompts
and visualize the output embeddings of their last MLP layer. We project them into a two-dimensional plane
using the t-SNE algorithm [Van der Maaten & Hinton| (2008). Fig. [6] shows that after the visual prompts
are added, the model outputs of different clients can be easily distinguished, indicating that the prompts
contain prior knowledge of the client model and aid in the classification task.

The connection between Prompt and the client data distribution. To answer answer RQ7 we use
a single, pure-color image as input to investigate the relationship between the local model output and the

11
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data distribution of each client. Ideally, the output distribution over classes of each pFedPT client should
align with the local data distribution. Fig. [7] reveals that after adding the visual prompts, the outputs of
the pFedPT will be similar to the distribution of the client itself. The difference between the visual prompts
generated by clients with similar data distribution is also smaller, which means that the visual prompts
indeed contain the data distribution information of the clients. Therefore, the visual prompts provide the
model with certain prior knowledge when classifying a specific client and assist in the classification task.
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Figure 8: The difference of prompt between two consecutive rounds.

Empirical analysis of the learned prompts. Fig. |8 records the average difference of the prompts
generated between the two rounds before and after ten clients during the pFedPT training process. The
overall experimental results are divided into two stages: first ascending and then descending. In our settings,
the initial prompt parameters of each client are the same, and the rising stage is the mapping process between
each client and the prompts based on its own data distribution. The descending stage is when the aggregated
model tends to converge, and the mapping between the prompt and the client data distribution on each client
is complete. Eventually, the change in prompt embedding approaches 0, and each client establishes stable
prompts that conform to its own data distribution which answere RQ8.

Impact of different types of visual prompts. We analyze different choices on how and where to insert
prompts in the input images and how they would affect the final performance to answer RQ9. We perform
an ablation study on different prompt sizes in p = {2,4,6,...,16} in CIFAR10 with a Dirichlet distribution.
As shown in Fig. 9] padding prompts reach the highest performance with a size of 4. The test accuracy
of fixed location and random location prompts grows gradually with the increase in prompt size, but it is
still slightly lower than the padding prompt. In contrast, the accuracy of padding prompts decreases as
the prompt size increases. A possible explanation is that the padding method covers more pixels of the
original images than the other two methods when using the same length of prompts. As a result, the key
information for classification could be blocked by the prompts and harm the performance of the model.
Overall, the padding prompts with size 4 achieve the best performance. Note that other visual tasks may
require significantly different kinds of prompts.
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Figure 9: Effect of different types of prompts
5 Conclusion

In this work, we propose a novel framework named pFedPT, a personalized federated learning method based
on visual prompts. We make the first attempt to introduce visual prompts to personalized federated learning,
using a set of prompt parameters to distill information from local data into the visual prompts and fine-
tune the backbone. In the process of pFedPT training, the backbone could use the guidance information
from visual prompts to perform the personalized downstream tasks. Since the prompt parameters is trained
locally on the client, it does not reveal data distribution information about the client to others or the server.
pFedPF can also serve a strong plugin to boost the performance of existing FL. methods, which could be of
independent interest. We provide extensive experiments to illustrate how the pFedPT works and demonstrate
its effectiveness in experiments with heterogeneous settings and several types of dataset partition.

References

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts for
adapting large-scale models. arXiv preprint arXiv:2205.17274, 1(3):4, 2022.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering of local
updates to improve training on non-iid data. In 2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1-9. IEEE, 2020.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqgiang He. Federated meta-learning with fast conver-
gence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Haokun Chen, Ahmed Frikha, Denis Krompass, and Volker Tresp. Fraug: Tackling federated learning with
non-iid features via representation augmentation. arXiv preprint arXiv:2205.14900, 2022.

Yigiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer learning
framework for wearable healthcare. IEEFE Intelligent Systems, 35(4):83-93, 2020.

J Michael Cherry, Caroline Adler, Catherine Ball, Stephen A Chervitz, Selina S Dwight, Erich T Hester,
Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder, et al. Sgd: Saccharomyces genome database. Nucleic
actds research, 1998.

Yae Jee Cho, Jianyu Wang, Tarun Chiruvolu, and Gauri Joshi. Personalized federated learning for hetero-
geneous clients with clustered knowledge transfer. arXiv preprint arXiv:2109.08119, 2021.

13



Under review as submission to TMLR

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations
for personalized federated learning. In International Conference on Machine Learning, pp. 2089-2099.
PMLR, 2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated learning.
arXiv preprint arXiw:2003.13461, 2020.

Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu Zhang. Fedu: A unified framework
for federated multi-task learning with laplacian regularization. arXiv preprint arXiw:2102.07148, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learning Rep-
resentations, 2021.

Gamaleldin F Elsayed, Tan Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming of neural
networks. In International Conference on Learning Representations, 2018.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126-1135, 2017.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds and
Machines, 30(4):681-694, 2020.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Federated learning
with non-iid data via local drift decoupling and correction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10112-10121, 2022.

Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint arXiv:2008.04489,
2020.

Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu. Promptfl: Let federated participants coopera-
tively learn prompts instead of models—federated learning in age of foundation model. arXiv preprint
arXiw:2208.11625, 2022.

Filip Hanzely, Boxin Zhao, and Mladen Kolar. Personalized federated learning: A unified framework and
universal optimization techniques. arXiv preprint arXiv:2102.09743, 2021.

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen, and
Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3310-3319, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Tiansheng Huang, Shiwei Liu, Li Shen, Fengxiang He, Weiwei Lin, and Dacheng Tao. Achieving personalized
federated learning with sparse local models. arXiv preprint arXiv:2201.11380, 2022.

Tiansheng Huang, Li Shen, Yan Sun, Weiwei Lin, and Dacheng Tao. Fusion of global and local knowledge
for personalized federated learning. arXiv preprint arXiv:2302.11051, 2023.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam
Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Yihan Jiang, Jakub Konec¢ny, Keith Rush, and Sreeram Kannan. Improving federated learning personaliza-
tion via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

14



Under review as submission to TMLR

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045—
3059, 2021.

Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and Dejing Dou. Fedhisyn: A
hierarchical synchronous federated learning framework for resource and data heterogeneity. In Proceedings
of the 51st International Conference on Parallel Processing, pp. 1-11, 2022.

Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi. Fedtp:
Federated learning by transformer personalization. IEEFE transactions on neural networks and learning
systems, pp. 1-15, 2023.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713-10722, 2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429-450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357-6368. PMLR, 2021b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 45682-4597, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv
preprint arXiv:2107.18586, 2021.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for personaliza-
tion with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, FEider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273-1282, 2017.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation for federated
image classification. arXiv preprint arXiv:2106.06042, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pp. 8748-8763. PMLR,
2021.

Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. Robust and communication-
efficient federated learning from non-iid data. IEEFE transactions on neural networks and learning systems,
31(9):3400-3413, 2019.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. Int. J.
Comput. Vis., 128(2):336-359, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task learning.
Advances in neural information processing systems, 30, 2017.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394-21405, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning. IEFE
Transactions on Neural Networks and Learning Systems, 2022.

15



Under review as submission to TMLR

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multimodal
few-shot learning with frozen language models. Advances in Neural Information Processing Systems, 34:
200-212, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Dui Wang, Li Shen, Yong Luo, Han Hu, Kehua Su, Yonggang Wen, and Dacheng Tao. Fedabc: Targeting
fair competition in personalized federated learning. arXiv preprint arXiv:2302.07450, 2023.

Hongwei Yang, Hui He, Weizhe Zhang, and Xiaochun Cao. Fedsteg: A federated transfer learning framework
for secure image steganalysis. IEEE Transactions on Network Science and Engineering, 8(2):1084—1094,
2020.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Cpt: Colorful
prompt tuning for pre-trained vision-language models. arXiv preprint arXiv:2109.11797, 2021.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
learning with first order model optimization. arXiv preprint arXiw:2012.08565, 2020.

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Reduce communication costs and preserve
privacy: Prompt tuning method in federated learning. arXiv preprint arXiv:2208.12268, 2022.

16



	Introduction
	Related Work
	Methodology
	Problem setup
	Workflow of pFedPT
	Modeling for pFedPT
	Optimization for pFedPT

	Experiments
	Experimental Setup
	Main Results
	Exploratory Study

	Conclusion

