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Abstract

In this paper, we examine the robustness of Nash equilibria in continuous games,
under both strategic and dynamic uncertainty. Starting with the former, we intro-
duce the notion of a robust equilibrium as those equilibria that remain invariant to
small—but otherwise arbitrary—perturbations to the game’s payoff structure, and
we provide a crisp geometric characterization thereof. Subsequently, we turn to
the question of dynamic robustness, and we examine which equilibria may arise
as stable limit points of the dynamics of “follow the regularized leader” (FTRL)
in the presence of randomness and uncertainty. Despite their very distinct origins,
we establish a structural correspondence between these two notions of robustness:
strategic robustness implies dynamic robustness, and, conversely, the requirement
of strategic robustness cannot be relaxed if dynamic robustness is to be maintained.
Finally, we examine the rate of convergence to robust equilibria as a function
of the underlying regularizer, and we show that entropically regularized learning
converges at a geometric rate in games with affinely constrained action spaces.

1 Introduction

A fundamental requirement in game theory—which predates even the cornerstone notion of a Nash
equilibrium—concerns the robustness that should be inherent in any axiomatization of rational
behavior. To quote a famous passage by von Neumann & Morgenstern [53, p. 32]: “In whatever way
we formulate the guiding principles and the objective justification of rational behavior, provisos will
have to be made for every possible conduct of “the others.” If the superiority of rational behavior
over any other kind is to be established, then its description must include rules of conduct for all
conceivable situations—including those where “the others” behaved irrationally in the sense of the
standards which the theory will set for them.”

As a byproduct of this tenet, there has been a flurry of activity since the 1970s in proposing refinements
of the Nash equilibrium concept, all in an effort to dismiss equilibria that are highly fragile or
otherwise implausible (e.g., because they involve threats that are not credible).1 This pursuit of
robustness has recently gained increased momentum owing to the applications of game theory to
machine learning and data science, two fields where the notion of robustness has been likewise elusive.
Here, even though many game-theoretic solutions perform extremely well on specific tasks—such as
a well-trained generative adversarial network (GAN) at equilibrium—the resulting models tend to

1For a masterful introduction to the topic, see the textbook of van Damme [52].
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have a narrow performance envelope, being brittle, and unable to adapt to situations that deviate from
their initial configuration.

In game-theoretic terms, this highlights the fact that, even though a Nash equilibrium is resilient
to unilateral deviations, it need not be robust to small perturbations in the payoff data of the game
(which, in a machine learning context, could represent distributional shifts, incomplete observations,
and/or other sources of uncertainty). In view of this, it is natural to ask

Which equilibria remain robust in the presence of strategic uncertainty?

This question has been the lodestar of the equilibrium refinement literature, and it has led to a wide
array of proposals aiming to get rid of “unreasonable” equilibria that may disappear even under the
most minute perturbation to the players’ payoffs—from Selten’s notion of trembling hand perfection
[46], to Myerson’s concept of properness [38], and the various criteria of strategic stability introduced
by Kohlberg & Mertens [28] (hyperstability, full stability, sequential stability, etc.).

Dually to the above theory of “strategic refinement”, an important alternative approach has been
based on dynamic considerations: that is, the players of a game start off-equilibrium, and in one sense
or another learn (or fail to learn) to play an equilibrium over time. Here, the focus is on the players’
learning protocol, the information available during play, and the presence (or absence) of players that
may deviate from this protocol. By the so-called “folk theorem of evolutionary game theory” [23],
it is well known that only strict equilibria are stable and attracting under the replicator dynamics, a
result which was extended more recently to a broad class of “regularized learning” schemes, in both
continuous [17] and discrete time [18, 19, 36].

These two viewpoints are not always compatible: for instance, in 2×2 games with two pure equilibria
and one mixed (such as the Chicken / Hawk-Dove game), the mixed equilibrium is ruled out by
almost all game-theoretic learning algorithms and dynamics, even though it survives a broad range of
strategic refinement attacks. A point of hope here is the equivalence between (setwise) strategic and
dynamic stability proved by Ritzberger & Weibull [40], who showed that a span of pure strategies in
the mixed extension of a finite game is strategically stable in the sense of Kohlberg & Mertens [28] if
and only if it is asymptotically stable under the replicator dynamics—see also [10, 13] for an extension
to a wider class of discrete-time models for learning, with different information assumptions.

Notably, these considerations all concern finite games in normal (or extensive) form. By contrast,
most applications of game theory to machine learning and data science involve continuous games,
that is, games with a finite number of players and a continuum of actions per player—for example,
GANs, multi-agent reinforcement learning, Kelly auctions, etc. In view of this, our paper seeks to
answer the following questions in the context of continuous games:

Which equilibria arise as robust predictions of the players’ learning dynamics?

We refer to these two types of robustness as strategic and dynamic robustness, respectively. Our paper
seeks to quantify the interplay between the two, and the implications that connect them.

Our contributions in the context of related work. Aiming for the strongest possible definition of
robustness, we propose the following strategic refinement criterion:

An equilibrium of a continuous game is strategically robust
if it remains an equilibrium in any slightly perturbed, nearby game.

This requirement is similar in spirit to—but considerably stronger than—the classical notion of
essentiality of Wu & Jiang [55], which posits that any nearby game has a nearby, possibly different
equilibrium. Importantly, our results apply to local Nash equilibria, which are especially relevant in
machine learning applications where payoff landscapes are typically nonconcave. This distinction
is crucial, as global Nash equilibria do not always exist in general continuous games, making local
equilibrium guarantees both meaningful and necessary in practice.

An important point here is that, in contrast to finite games—where the notion of “nearby” is fairly
unambiguous—perturbations to a continuous game involve functional variations and, as such, the
metric that quantifies a “small” perturbation plays a crucial role. Importantly, albeit natural, our
proposed robustness requirement becomes vacuous if distances are measured with respect to the
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players’ payoff functions: more precisely, it is always possible to find a payoff perturbation with
arbitrarily small 𝐿∞-norm that ends up upsetting any equilibrium.

The underlying issue here is that a small payoff perturbation may exhibit very high local variability,
which can disrupt the first-order stationarity conditions that characterize equilibria in continuous
games, thereby eliminating them altogether. To circumvent this issue, we argue that deviations
of continuous games should be measured by comparing their respective gradient fields, which
encode all the strategic information in the game. This shift in perspective leads to a crisp geometric
characterization of strategically robust equilibria: they are extreme points of the game’s action space,
and they are sharp in the sense that the game’s individual payoff gradients form a strictly acute angle
with any tangent direction (cf. Fig. 1 later in the paper).

From a dynamic standpoint, we focus throughout on the family of algorithms known as “follow the
regularized leader” (FTRL) [31, 47–49]. This is arguably one of the most—if not the most—popular
class of policies for online learning due to its strong regret minimization and convergence guarantees,
and it contains as special cases gradient descent/ascent methods [3, 58], dual averaging [39, 56],
the exponential / multiplicative weights algorithm [2, 5, 5, 33, 54], implicitly normalized forecasters
[1, 4, 57], exponentiated gradient methods [7, 27, 51], and many stochastic approximation schemes,
adaptive [24, 25] and non-adaptive alike [26, 34–36].

In this general context, we examine which equilibria admit robust convergence guarantees as stable
limit points of the dynamics of FTRL in the presence of randomness and uncertainty. Our first
main result is that strategic robustness implies dynamic robustness, i.e., any strategically robust
equilibrium is stable and attracting with high probability under the dynamics of FTRL, for any choice
of regularizer. Conversely, we also show that the strategic robustness requirement cannot be lifted,
and we provide an example of a game with an extreme, non-robust equilibrium which attracts all
FTRL orbits under a certain choice of regularizer, and none under another.

To the best of our knowledge, this is the first result of its kind for general continuous games. In
the context of finite games, Flokas et al. [17] showed that a point is asymptotically stable under the
continuous-time FTRL dynamics if and only if it is a strict Nash equilibrium, while [10] extended
this equivalence to discrete-time models of regularized learning under uncertainty. Strict equilibria
are prime examples of strategically robust equilibria, so this part of the analysis of [10] is subsumed
in ours. In the context of concave games—that is, continuous games with individually concave
payoff functions—Mertikopoulos & Zhou [34] showed that sharp global equilibria enjoy comparable
convergence guarantees under FTRL with a vanishing step-size. While such step-size schedules are
effective at suppressing noise in the long run, they do so at the cost of significantly slowing down
the algorithm’s convergence. By contrast, we focus on fast, constant step-size schedules, which are
widely used in practice due to their simplicity and often superior empirical performance. In this
regime, we show that entropically regularized learning with a constant step-size converges to robust
equilibria at a geometric rate, compared to distinctly subgeometric rates in the case of vanishing
step-size policies—subsuming in this way a range of previous results for finite [19] and stochastic
games [20].

2 Preliminaries

We start by briefly reviewing some basics of game theory and regularized learning, introducing the
necessary context for our results.

2.1. The game-theoretic framework. Throughout our paper, we focus on a class of continuous
games consisting of a finite set of players 𝑖 ∈ N = {1, . . . , 𝑁}, and defined by the following
primitives:

1. Each player 𝑖 ∈ N has access to a compact convex subset X𝑖 of some finite dimensional vector
space V𝑖 , describing the set of actions available to said player. By X :=∏

𝑖 X𝑖 we denote the space
of all ensembles 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) of actions 𝑥𝑖 ∈ X𝑖 that are independently chosen by each player
𝑖 ∈ N . We will also write 𝑥 = (𝑥𝑖; 𝑥−𝑖) to emphasize the action of player 𝑖 ∈ N against the joint
action profile 𝑥−𝑖 ≡ (𝑥 𝑗 ) 𝑗≠𝑖 of all other players.

2. The players’ rewards are determined by their individual payoff functions 𝑢𝑖 : X → ℝ, assumed to
be continuously differentiable for all 𝑖 ∈ N . Denoting by Y𝑖 ≡ V∗

𝑖
the dual space of V𝑖 , we define
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the individual gradient vector 𝑣𝑖 : X → Y𝑖 of player 𝑖 ∈ N by

𝑣𝑖 (𝑥) = ∇𝑥𝑖𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) (1)

and the ensemble 𝑣(𝑥) = (𝑣1 (𝑥), . . . , 𝑣𝑁 (𝑥)) ∈ Y ≡
∏

𝑖∈N Y𝑖 thereof.

A continuous game is then defined as a tuple G ≡ G (N ,X , 𝑢) with players, actions and payoff
functions as above.

Nash equilibrium. The best known solution concept in game theory is that of a Nash equilibrium
(NE), which characterizes the actions 𝑥∗ ∈ X from which no player has incentive to unilaterally
deviate. Formally, 𝑥∗ ∈ X is a Nash equilibrium if

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥𝑖 ∈ X𝑖 , 𝑖 ∈ N . (NE)

A game G ≡ G (N ,X , 𝑢) always admits a Nash equilibrium if X is compact and each player’s payoff
function 𝑢𝑖 is individually concave in the sense that 𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) is concave in 𝑥𝑖 for all 𝑥−𝑖 ∈ X−𝑖
[14, 44]. In this case, basic arguments from convex analysis [42, 43] show that 𝑥∗ is an equilibrium
of G if and only if it satisfies the (Stampacchia) variational inequality

⟨𝑣(𝑥∗), 𝑥 − 𝑥∗⟩ ≤ 0 for all 𝑥 ∈ X . (VI)

If the players’ functions are not individually concave, a game may not admit a Nash equilibrium. In
that case, it is more meaningful to consider local Nash equilibria, i.e., profiles 𝑥∗ ∈ X such that

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥 in a neighborhood U of 𝑥∗ in X . (LNE)

In stark contrast to games with individually concave payoff functions, (VI) no longer characterizes
local Nash equilibria: specifically, by first-order stationarity, we have (LNE) =⇒ (VI) but the
converse need not hold; in fact, a solution 𝑥∗ of (VI) may be a global payoff maximizer for all 𝑖 ∈ N .
Note. In the sequel, we will work with general continuous games that may not admit a global
equilibrium—but admit local Nash equilibria. To streamline our presentation, we will use the term
“equilibrium” without any further qualification to refer to local equilibria, and we will say explicitly
“global equilibria” for profiles satisfying (NE).

2.2. Regularized learning in games. The most widely used framework for learning in games, is the
so called “follow the regularized leader” (FTRL) template, primarily because it leads to no regret in a
wide variety of settings [48, 49]. The corresponding update rule hinges on the notion of a regularized
best response, and proceeds as

𝑦𝑡+1 = 𝑦𝑡 + 𝛾𝑣̂𝑡 , 𝑥𝑡 = 𝑄(𝑦𝑡 ) for 𝑡 = 1, 2, . . . (FTRL)

where (i) 𝑥𝑡 ∈ X denotes the players’ action profile at step 𝑡; (ii) 𝑦𝑡 =
(
𝑦𝑖,𝑡

)
𝑖∈N ∈ Y is an auxiliary

process that aggregates historical feedback into a compact state representation, i.e., a proxy for the
players’ empirical performance up to time 𝑡; (iii ) 𝑣̂𝑡 =

(
𝑣̂𝑖,𝑡

)
𝑖∈N ∈ Y denotes the current gradient-like

payoff signal; (iv ) 𝛾 > 0 is the learning rate, or step-size parameter of the process; and (v ) 𝑄 : Y → X
is a mapping between the auxiliary process on the dual space Y , and the players’ strategy space X .
In what follows, we analyze the key components of this framework.

The algorithm’s step-size. Throughout this work, we adopt a constant step-size routine. This
stands in contrast to the stochastic approximation literature [8, 11, 29], where (FTRL) is typically
implemented with a vanishing step-size satisfying the Robbins-Monro summability conditions∑

𝑡 𝛾𝑡 = ∞,
∑

𝑡 𝛾
2
𝑡 < ∞ [41], which is known to promote convergence by gradually suppressing the

effect of noise [34].

On the other hand, in practical applications, it is common to employ a constant (or non-diminishing)
step-size for several reasons. First, constant step-sizes are easier to tune and maintain, making
them more suitable for large-scale or production environments. Moreover, methods with vanishing
step-sizes often experience long warm-up phases and converge slowly to a neighborhood of the
equilibrium. In comparison, constant step-size methods in machine learning settings typically reach
the vicinity of a solution much faster—often within 0.1% accuracy [16]. Indeed, many state-of-the-art
architectures, including transformers and large language models, use step-size schedules that remain
effectively constant over billions or even trillions of samples [15].
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The mirror map. A central ingredient of regularized learning is the mirror map 𝑄 ≡ (𝑄𝑖)𝑖∈N ,
with each 𝑄𝑖 : Y𝑖 → X𝑖 induced by a strongly convex regularizer ℎ𝑖 : X𝑖 → ℝ that promotes stability
during the learning process. To streamline our presentation and letting ℎ(𝑥) = ∑

𝑖∈N ℎ𝑖 (𝑥𝑖), the
players’ mirror map is defined as

𝑄(𝑦) := arg max𝑥∈X {⟨𝑦, 𝑥⟩ − ℎ(𝑥)} (2)

In the rest of our paper, we will write Xℎ = im𝑄 for the image of Y under 𝑄—and, likewise,
Xℎ𝑖 = im𝑄𝑖 for each player 𝑖 ∈ N . In particular, if 𝑄 is interior-valued—that is, Xℎ = riX—we will
say that ℎ is steep because, in this case, the (sub)gradients of ℎ explode to infinity as 𝑥 → bdX (i.e.,
ℎ becomes “infinitely steep”); instead, if im𝑄 = X , we will say that ℎ is non-steep. For a detailed
discussion on this distinction and related concepts, see Appendix A.

Different choices of the regularizer ℎ induce different projection-like operations, adapted to the
geometry of the underlying space. We describe two mainstay examples below.

Example 2.1 (Euclidean projection). The quadratic regularizer ℎ(𝑥) = ∥𝑥∥22/2 gives rise to the
Euclidean projection 𝑄(𝑦) = projX (𝑦) = arg min𝑥∈X ∥𝑦 − 𝑥∥2. In this case, ℎ is non-steep. ❦

Example 2.2 (Exponential weights). For A𝑖 a finite set of actions per player 𝑖 ∈ N , and X𝑖 ≡ Δ(A𝑖),
the entropic regularizer ℎ𝑖 (𝑥𝑖) =

∑
𝛼𝑖∈A𝑖

𝑥𝑖𝛼𝑖
log 𝑥𝑖𝛼𝑖

gives rise to the logit map, defined via 𝑄𝑖 (𝑦𝑖) =
exp(𝑦𝑖)/∥exp(𝑦𝑖)∥1, where exp(𝑦𝑖) denotes the element-wise exponential of 𝑦𝑖 . ❦

The feedback process. Throughout this work, we consider two distinct feedback models:
(i ) stochastic gradients; and (ii ) payoff-based feedback. We describe both frameworks below.

Stochastic gradient feedback. At every time step 𝑡, each player 𝑖 ∈ N has access to a stochastic
first-order oracle (SFO)—that is, a noisy version of their individual gradient vector of the form:

𝑣̂𝑡 = 𝑣(𝑥𝑡 ) +𝑈𝑡 with 𝔼[𝑈𝑡 |F𝑡 ] = 0 (SFO)

where 𝑈𝑡 is zero-mean and conditionally sub-Gaussian given the information F𝑡 generated up to time
𝑡 ∈ ℕ. In other words, players observe unbiased estimates of their individual gradient vectors.

Payoff-based feedback. Unlike the (SFO) model where players have access to a black-box
oracle that provides noisy gradient information, it is often more realistic to consider a payoff-based
paradigm where players observe only their realized payoffs—that is, a single scalar value—and have
to reconstruct an estimate of their individual gradient vectors.

The most widely used method in this setting is the single-point stochastic approximation (SPSA)
framework of [12, 50], which is based on finite differences along randomly sampled directions.
Specifically, denoting the set of unit directions E𝑖 :={±𝑒1, . . . ,±𝑒𝑑𝑖 } that span the affine hull of X𝑖

of dimension 𝑑𝑖 , each player 𝑖 ∈ N draws a direction 𝑤𝑖,𝑡 ∈ E𝑖 uniformly at random in every round
𝑡 ∈ ℕ. Since the perturbed action 𝑥𝑖,𝑡 + 𝜀𝑡𝑤𝑖,𝑡 may lie outside X𝑖 for a perturbation radius 𝜀𝑡 > 0,
we introduce a pivot element 𝑝𝑖 ∈ ri(X𝑖) and a radius 𝑟𝑖 > 𝜀𝑡 such that 𝑝𝑖 + 𝑟𝑖𝑤𝑖 ∈ X𝑖 for all
𝑤𝑖 ∈ E𝑖 . Based on these, we define the feasibility-adjusted action 𝑥𝜀

𝑖,𝑡
:= 𝑥𝑖,𝑡 + (𝜀𝑡/𝑟𝑖) (𝑝𝑖 − 𝑥𝑖,𝑡 ) ∈ X𝑖 .

Finally, each player queries the perturbed action 𝑥𝑖,𝑡 ≡ 𝑥𝜀
𝑖,𝑡
+ 𝜀𝑡𝑤𝑖,𝑡 which is an element of X𝑖 , and

observes the realized payoff value 𝑢𝑖 (𝑥𝑡 ).2 The gradient vector is, then, estimated via the single-point
stochastic approximation scheme:

𝑣̂𝑖,𝑡 :=(𝑑𝑖/𝜀𝑡 ) 𝑢𝑖 (𝑥𝑡 ) 𝑤𝑖,𝑡 (SPSA)

Importantly, the feasibility adjustment ensures that the perturbed action 𝑥𝑡 remains within the
players’ action set X , while preserving the direction of the original perturbation 𝑤𝑡 . As we show in
Appendix A, (SPSA) enjoys the bounds

∥𝔼[𝑣̂𝑡 |F𝑡 ] − 𝑣(𝑥𝑡 )∥∗ = O(𝜀𝑡 ) and ∥ 𝑣̂𝑡 ∥∗ = O(1/𝜀𝑡 ) . (3)

These statistical properties of (SPSA) will play a crucial role in establishing its convergence guaran-
tees; we will revisit them in Section 4.

2Since 𝑟𝑖 > 𝜀𝑡 , we write 𝑥𝜀
𝑖,𝑡

= 𝑥𝑖,𝑡 (1 − 𝜀𝑡/𝑟𝑖) + (𝜀𝑡/𝑟𝑖)𝑝𝑖 which is a convex combination of points in X𝑖 .
Regarding 𝑥𝑖,𝑡 , note it can be written as 𝑥𝑖,𝑡 = 𝑥𝑖,𝑡 (1 − 𝜀𝑡/𝑟𝑖) + (𝜀𝑡/𝑟𝑖) (𝑝𝑖 + 𝑟𝑖𝑤𝑖,𝑡 ), which is also a convex
combination of points in X𝑖 . Thus, both belong to X𝑖 .
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3 Strategic robustness: Geometric and variational characterization

We begin in this section by addressing the strategic aspects of the equilibrium robustness question,
namely:

Which equilibria remain invariant under small—but otherwise arbitrary—perturbations of the game?

We take this desideratum as the starting point for our definition of strategic robustness, that is, action
profiles that remain (local) equilibria under small disturbances in the underlying game. This leads to
a delicate interplay between the variational and geometric aspects of the underlying game, which we
detail below.

3.1. A first approach and insights. The first step in our analysis is to quantify the meaning
of “small”. In this regard, a natural way to measure the distance between two concave games,
G ≡ G (N ,X , 𝑢) and G̃ ≡ G (N ,X , 𝑢̃), would be via the uniform distance

𝜌
(
G, G̃

)
:=max𝑖∈N sup𝑥∈X |𝑢𝑖 (𝑥) − 𝑢̃𝑖 (𝑥) | . (4)

Intuitively, if this quantity is small enough, the two games are nearly indistinguishable from a
strategic perspective, since for every strategy profile 𝑥 ∈ X , the payoffs in G and G̃ are almost the
same. Thus, one might expect that at least some equilibria of G should persist under sufficiently
small perturbations, especially given that a Nash equilibrium is defined in terms of the game’s payoff
functions themselves.

Perhaps surprisingly, as we show below, this definition of distance cannot provide a meaningful
concept of equilibrium robustness.
Proposition 1. For any game G and any equilibrium 𝑥∗ ∈ X of G, there exists a perturbed game G̃,
arbitrarily close to G in the uniform metric (4) such that 𝑥∗ ∈ X is not an equilibrium of G̃.

To show this, we provide Examples 3.1 and 3.2 which, taken together, cover all possible types of
equilibria in continuous games in the sense of (VI).
Example 3.1. Let G be a continuous game, and let 𝑥∗ ∈ X be an equilibrium of G such that
⟨𝑣𝑖 (𝑥∗), 𝑝𝑖 − 𝑥∗𝑖 ⟩ < 0 for some player 𝑖 ∈ N and 𝑝𝑖 ∈ X𝑖 . For arbitrary 𝜀 > 0, define 𝑢̃𝑖 : X → ℝ as

𝑢̃𝑖 (𝑥) := 𝑢𝑖 (𝑥) − 𝜀 exp
(
2 𝜀−1⟨𝑣𝑖 (𝑥∗), 𝑥𝑖 − 𝑥∗𝑖 ⟩

)
(5)

which is a continuously differentiable concave function in 𝑥𝑖 , and let 𝑢̃ 𝑗 ≡ 𝑢 𝑗 for all 𝑗 ≠ 𝑖, 𝑗 ∈ N .
Since 𝑥∗ ∈ X is an equilibrium of G, it holds ⟨𝑣𝑖 (𝑥∗), 𝑥𝑖 − 𝑥∗𝑖 ⟩ ≤ 0 for all 𝑥𝑖 ∈ X𝑖 , which implies that

𝜌
(
G, G̃

)
= sup𝑥∈X |𝑢𝑖 (𝑥) − 𝑢̃𝑖 (𝑥) | = 𝜀 sup𝑥𝑖∈X𝑖

exp
(
2 𝜀−1⟨𝑣𝑖 (𝑥∗), 𝑥𝑖 − 𝑥∗𝑖 ⟩

)
= 𝜀. (6)

Computing the individual gradient vector of player 𝑖 ∈ N , we obtain

𝑣̃𝑖 (𝑥) = 𝑣𝑖 (𝑥) − 2 𝑣𝑖 (𝑥∗) exp
(
2 𝜀−1⟨𝑣𝑖 (𝑥∗), 𝑥𝑖 − 𝑥∗𝑖 ⟩

)
(7)

and, evaluating it at 𝑥∗ ∈ X , we get, 𝑣̃𝑖 (𝑥∗) = −𝑣𝑖 (𝑥∗). Therefore, for 𝑥 = (𝑝𝑖; 𝑥∗−𝑖) ∈ X , we have
⟨𝑣̃(𝑥∗), 𝑥 − 𝑥∗⟩ = −⟨𝑣𝑖 (𝑥∗), 𝑝𝑖 − 𝑥∗𝑖 ⟩ > 0 (8)

i.e., 𝑥∗ ∈ X is not an equilibrium point of the perturbed game G̃. ❦

Example 3.2. Let G be a continuous game, and let 𝑥∗ ∈ X be an equilibrium of G such that
⟨𝑣(𝑥∗), 𝑥 − 𝑥∗⟩ = 0 for all 𝑥 ∈ X . Fix a player 𝑖 ∈ N and 𝑝𝑖 ∈ X𝑖 , and let 𝑦𝑖 ∈ V∗

𝑖
with

⟨𝑦𝑖 , 𝑝𝑖 − 𝑥∗𝑖 ⟩ > 0. For arbitrary 𝜀 > 0, let 𝑢̃𝑖 : X → ℝ be defined as

𝑢̃𝑖 (𝑥) := 𝑢𝑖 (𝑥) + 𝜀 diam(X𝑖)−1∥𝑦𝑖 ∥−1
∗ ⟨𝑦𝑖 , 𝑥𝑖 − 𝑥∗𝑖 ⟩ (9)

which is a concave function in 𝑥𝑖 , and 𝑢̃ 𝑗 ≡ 𝑢 𝑗 for all 𝑗 ≠ 𝑖, 𝑗 ∈ N . Then, we readily get that

𝜌
(
G, G̃

)
= sup𝑥∈X |𝑢𝑖 (𝑥) − 𝑢̃𝑖 (𝑥) | = 𝜀 diam(X𝑖)−1∥𝑦𝑖 ∥−1

∗ sup𝑥𝑖∈X𝑖
|⟨𝑦𝑖 , 𝑥𝑖 − 𝑥∗𝑖 ⟩| ≤ 𝜀. (10)

Computing the individual gradient vector of player 𝑖 ∈ N , we obtain

𝑣̃𝑖 (𝑥) = 𝑣𝑖 (𝑥) + 𝜀 diam(X𝑖)−1∥𝑦𝑖 ∥−1
∗ 𝑦𝑖 (11)

Therefore, for 𝑥 = (𝑝𝑖; 𝑥∗−𝑖) ∈ X , it holds by the example’s assumptions that

⟨𝑣̃(𝑥∗), 𝑥 − 𝑥∗⟩ = ⟨𝑣𝑖 (𝑥∗), 𝑝𝑖 − 𝑥∗𝑖 ⟩ + 𝜀 diam(X𝑖)−1∥𝑦𝑖 ∥−1
∗ ⟨𝑦𝑖 , 𝑝𝑖 − 𝑥∗𝑖 ⟩ > 0 (12)

where we used that ⟨𝑣𝑖 (𝑥∗), 𝑝𝑖 − 𝑥∗𝑖 ⟩ = 0 and ⟨𝑦𝑖 , 𝑝𝑖 − 𝑥∗𝑖 ⟩ > 0, as per our original assumptions. Thus,
𝑥∗ ∈ X is not an equilibrium of the perturbed game G̃. ❦
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Figure 1: Different equilibrium configurations: an interior equilibrium (𝑣(𝑥∗) = 0); a boundary, non-extreme
equilibrium (normal cone with empty topological interior); an extreme, non-robust equilibrium (𝑣(𝑥∗) on the
boundary of the normal cone); a robust equilibrium (𝑣(𝑥∗) in the interior of the normal cone). Only the robust
equilibrium remains invariant under strategic perturbations of the underlying game.

Remark 1. In Examples 3.1 and 3.2, if G is concave, so is G̃, indicating that this notion of distance is
not proper even within the class of concave games.

The preceding examples demonstrate that under the distance (4), even an arbitrarily small perturbation
to the payoff function of a single player can destroy any equilibrium.3 This phenomenon arises
because, although an equilibrium is defined in terms of payoff functions, the first-order stationarity
condition in (VI) shows that it fundamentally depends on the individual gradient vectors. Therefore,
any meaningful notion of distance between two games must likewise be aware of the behavior of the
individual gradient vectors.

3.2. Defining strategic robustness. As illustrated in Examples 3.1 and 3.2, small changes in the
payoffs, though negligible in the uniform norm, can alter the equilibrium landscape quite significantly.
To address this, we refine the notion of distance between games G and G̃ as follows:

dist
(
G, G̃

)
:= sup𝑥∈X ∥𝑣(𝑥) − 𝑣̃(𝑥)∥∗ (13)

With this definition in hand, we are now ready to state the concept of strategic robustness in the class
of continuous games.
Definition 1. An equilibrium 𝑥∗ ∈ X of a game G is called strategically robust if there exists 𝜀 > 0
such that for any game G̃ with dist

(
G, G̃

)
< 𝜀, 𝑥∗ is also an equilibrium of G̃.

As we explore next, this definition offers a meaningful notion of “closeness” for equilibrium stability,
one that is grounded not in the payoff values themselves, but in the geometry they induce.

Geometric characterization. To provide a geometric characterization, we zoom in on the varia-
tional structure that governs Nash equilibria. Specifically, we show that strategically robust equilibria
𝑥∗ ∈ X are precisely those solutions of (VI) for which the inequality is strict for all feasible deviations.
Formally, we have the following characterization:
Theorem 1. Let 𝑥∗ ∈ X be a joint action profile in G (N ,X , 𝑢). Then the following are equivalent:

(i) 𝑥∗ is a strategically robust equilibrium.

(ii) ⟨𝑣(𝑥∗), 𝑧⟩ ≤ −𝑚∥𝑧∥ for some 𝑚 > 0 and all 𝑧 ∈ TC(𝑥∗), where TC(𝑥∗) is the closure of all
rays emanating from 𝑥∗ and intersecting X in at least one other point.

(iii) 𝑣(𝑥∗) ∈ int(PC(𝑥∗)), where PC(𝑥∗) :={𝑦 ∈ Y : ⟨𝑦, 𝑧⟩ ≤ 0, for all 𝑧 ∈ TC(𝑥∗)}.

Intuitively, Theorem 1 suggests that strategically robust equilibria are precisely those points 𝑥∗ ∈ X
where the associated gradient vector 𝑣(𝑥∗) lies in the topological interior of the polar cone PC(𝑥∗),
i.e.,

⟨𝑣(𝑥∗), 𝑧⟩ < 0 for all 𝑧 ∈ TC(𝑥∗). (14)
We thus conclude that strategic robustness can only occur at boundary points where the tangent
cone is pointed; if the feasible set is locally flat at 𝑥∗ ∈ X , the corresponding polar cone has empty

3Such variations are not possible in the class of finite games, so, in this much more restrictive class, the
sup-norm of the payoff differences is a valid metric to measure robustness.
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interior, and robustness is not possible. This phenomenon is illustrated in Fig. 1, and the full proof of
Theorem 1 is provided in Appendix B.
Remark 2. Both Examples 3.1 and 3.2 violate the condition in Definition 1, but for different reasons.
In the former case, although the perturbed payoffs can be made arbitrarily close to the original, the
perturbed gradient vector at equilibrium can become arbitrarily large, making the distance dist

(
G, G̃

)
exceed any 𝜀 > 0. In the latter case, the polar cone PC(𝑥∗) at the equilibrium has empty interior, so
strategic robustness cannot hold at 𝑥∗. ❦

Remark 3. Several important classes of games admit robust equilibria for all but a measure-zero set of
instances. Examples include nonatomic, non-splittable routing games with arbitrary increasing cost
functions [45], Markov potential games arising in multi-agent reinforcement learning [32], Cournot
oligopolies in which firms have no or limited price-setting power [37], etc.

In the next section, we examine the dynamic implications of this result by studying the robustness of
such equilibria under (FTRL).

4 From strategic to dynamic robustness: Convergence results

So far, we focused on strategic robustness, a static notion determined solely by the underlying game
and the local geometry around the equilibrium in question. In this section, we shift to the dynamic
perspective of our central question and explore which equilibria admit robust convergence guarantees,
namely, equilibria that can emerge as stable outcomes of regularized learning under feedback and
initialization uncertainty, regardless of the specific choice of regularizer.

To this end, we first establish that non-equilibrium points cannot arise as limits of (FTRL), even with
perfect gradient feedback. Formally, we have the following proposition, whose proof is provided in
Appendix C.
Proposition 2. Suppose that (FTRL) is run with perfect gradient feedback of the form 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) for
all 𝑡 = 1, 2, . . . , and assume that 𝑥𝑡 converges to some 𝑥 ∈ X . Then 𝑥 is an equilibrium of G.

Having excluded non-equilibrium points as positive probability outcomes of a learning process, we
now turn to identifying equilibria that are robust from a dynamic standpoint, and more precisely,
under that of (FTRL). In this regard, strategically robust equilibria serve as natural candidates, as
their stability with respect to game perturbations suggests they may also admit robust convergence
guarantees. This is further supported by the finding that equilibrium points in the interior of the
strategy space X cannot be limit points: in particular, we show below that, even under i.i.d. stochastic
noise, the iterates of (FTRL) diverge from such equilibria almost surely.
Proposition 3. Let 𝑥∗ ∈ ri(X ) be a Nash equilibrium of G (N ,X , 𝑢), and (𝑥𝑡 )𝑡∈ℕ be the sequence of
play induced by (FTRL) with 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) +𝑈𝑡 , where 𝑈𝑡 i.i.d. with 𝔼[𝑈𝑡 ] = 0 and cov(𝑈𝑡 ) ≻ 0 for
all 𝑡 ∈ ℕ. Then:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
= 0 for any 𝑥1 ∈ Xℎ. (15)

Remark 4. The condition cov(𝑈𝑡 ) ≻ 0 is not necessary. In fact, it suffices to have cov(𝑈𝑡 ) non-
degenerate in a direction 𝑝 − 𝑥∗ for 𝑝 ∈ X , but we state our result under stronger assumptions for
simplicity. ❦

The key idea of the proof, which is deferred to Appendix C, is that, since 𝑥∗ ∈ ri(X ), we have
⟨𝑣(𝑥∗), 𝑥 − 𝑥∗⟩ = 0 for all 𝑥 ∈ X . At the same time, as cov(𝑈𝑡 ) ≻ 0, the quantity ⟨𝑈𝑡 , 𝑥 − 𝑥∗⟩
fluctuates and remains bounded away from zero infinitely often, thereby preventing convergence.

4.1. Learning with gradient-based feedback. In view of the impossibility result of Proposition 3,
we shift our focus on the convergence of (FTRL) toward strategically robust equilibria. We first
consider the gradient feedback model, where each player receives an unbiased estimate of their
individual gradient vector via (SFO). Specifically, we analyze the behavior of (FTRL) and we
establish local convergence guarantees toward strategically robust equilibria with high probability.
This is encoded in the following theorem:
Theorem 2. Let 𝑥∗ ∈ X be a strategically robust equilibrium of G (N ,X , 𝑢). Fix a confidence level
𝛿 > 0, and let (𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) with feedback provided by (SFO), and step-size
𝛾 > 0 sufficiently small. Then, there exists a neighborhood U of 𝑥∗ in Xℎ such that:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
≥ 1 − 𝛿 if 𝑥1 ∈ U . (16)
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Before proceeding, a few remarks are in order. Since continuous games may admit multiple Nash
equilibria, global convergence guarantees are in general unattainable. As such, our analysis focuses
on the local convergence landscape of (FTRL). As a sidenote, it is important to emphasize that the
convergence result is robust to the choice of regularizer, relying solely on the general conditions
outlined in Section 2 rather than any particular functional form. We outline below the main steps of
the proof, with full details provided in Appendix C.

Proof Sketch. The key idea is that the auxiliary process 𝑦𝑡 , which aggregates the players’ gradient
updates, diverges to infinity in a direction that steers the induced sequence 𝑥𝑡 = 𝑄(𝑦𝑡 ) toward the
equilibrium in question. More formally, the proof relies on the following intuition. From Theorem 1
and the continuity of the players’ payoffs, strategic robustness implies that, in a neighborhood of
a robust equilibrium 𝑥∗, the players’ individual gradient fields point toward 𝑥∗. Consequently, the
process 𝑦𝑡 accumulates gradient steps that, on average, are aligned with the interior of the normal
cone NC(𝑥∗) to the action space X at 𝑥∗. As a result, 𝑦𝑡 exhibits a consistent drift that carries it deeper
into a “copy” of the normal cone NC(𝑥∗) embedded in the gradient space Y . Moreover, we show
that, with high probability, once 𝑦𝑡 enters this region, it remains there, provided that the algorithm is
not initialized too far from 𝑥∗. Combining the above, Proposition C.1 establishes that the sequence of
actions 𝑥𝑡 = 𝑄(𝑦𝑡 ) generated by (FTRL) converges to 𝑥∗. ❦

While our main focus lies on the qualitative convergence behavior of (FTRL), stronger guarantees
can be obtained under additional structural assumptions on the strategy space and the regularizer.
In particular, suppose that X is a polyhedral domain of the form X :=

{
𝑥 ∈ ℝ𝑑

+ | 𝐴𝑥 = 𝑏
}

for some
𝐴 ∈ ℝ𝑚×𝑑 and 𝑏 ∈ ℝ𝑚, and ℎ is decomposable with kernel function 𝜃, i.e., ℎ can be written as
ℎ(𝑥) = ∑𝑑

𝑗=1 𝜃 (𝑥 𝑗 ) for some continuous function 𝜃 : ℝ+ → ℝ with locally Lipschitz 𝜃′′ and 𝜃′′ > 0.
Under these conditions, we obtain the explicit convergence rates for the (FTRL) dynamics, as follows.
Theorem 3. If, in addition, X is a polyhedral domain and ℎ is decomposable with kernel 𝜃, on the
event 𝐸 :={lim𝑡→∞ 𝑥𝑡 = 𝑥∗} it holds:

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) (17)

where 𝜙 is the rate function defined via

𝜙(𝑧) :=
{
(𝜃′)−1 (𝑧) if 𝑧 > 𝜃′ (0+)
0 if 𝑧 ≤ 𝜃′ (0+) (18)

Remark 5. For the setting of Example 2.2, with X = Δ(A), 𝜃 (𝑧) = 𝑧 log 𝑧 and 𝑥∗ a strict Nash
equilibrium, the convergence rate of (FTRL) as per Theorem 3, becomes ∥𝑥𝑡 − 𝑥∗∥ = exp(−Θ(𝑡)).
Remark 6. For finite games, [19] showed that under a step-size schedule of the form 𝛾𝑡 ∝ 1/𝑡 𝑝,
the Robins-Monro summability conditions require 𝑝 ∈ (1/2, 1], leading to convergence rates from
𝜙
(
−Θ(𝑡1−𝑝)

)
to 𝜙(−Θ(log 𝑡)). Our convergence guarantees remain valid under these step-size

schedules, though they yield the slower aforementioned rates.
Remark 7. It is important to highlight the different behavior of (FTRL), often referred to as a “lazy”
variant of mirror descent [22], with that of the mirror descent algorithm, defined via the update

𝑥𝑡+1 = 𝑄(∇ℎ(𝑥𝑡 ) + 𝛾𝑣̂𝑡 ) for 𝑡 = 1, 2, . . . (MD)

where ∇ℎ(𝑥) denotes a continuous selection of 𝜕ℎ(𝑥) [12]. To illustrate the difference, consider the
single-agent problem of maximizing 𝑢(𝑥) = 𝑥 over X = [0, 1], where 𝑥∗ = 1 is a robust equilibrium.
Using the Euclidean regularizer (see Example 2.1), (MD) reduces to the projected gradient algorithm

𝑥𝑡+1 = Π(𝑥𝑡 + 𝛾𝑣̂𝑡 ) (SGA)

where 𝑣̂𝑡 is a stochastic gradient of 𝑢 at 𝑥𝑡 , i.e., 𝑣̂𝑡 = 1 +𝑈𝑡 where 𝑈𝑛 is a Bernoulli process with
𝑈𝑡 = ±1 with probability 1/2. However, even if 𝑥𝑡 = 𝑥∗ for some 𝑡, we then have that 𝑥𝑡+1 = 1 − 𝛾
with probability 1/2. Thus, by a straightforward application of the Borel-Cantelli lemma, we conclude
that, with probability 1, (SGA) does not converge to 𝑥∗. Through this toy example, note that although
(MD) and (FTRL) use the same mirror map 𝑄 to select actions, they differ fundamentally in how
feedback is processed. The “eager” nature of (MD) makes it more sensitive to noise, whereas (FTRL)
maintains a cumulative dual variable 𝑦𝑡 that aggregates all past feedback, effectively smoothing
out fluctuations over time. Also, note that for steep regularizers, the iterations (MD) and (FTRL)
coincide, as the mirror map 𝑄 is essentially injective (see Appendix A for more details). Therefore,
differences in their behavior arise in the case where steepness does not hold.
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4.2. Learning with payoff-based feedback. We now turn to the payoff-based feedback model,
where players observe only their realized payoffs and use them to estimate gradients indirectly via
(SPSA). This feedback model introduces higher variance and structural bias due to the diminishing
sampling radius and the feasibility corrections. Nevertheless, we show that strategically robust
equilibria retain their dynamic robustness: they still locally attract the (FTRL) dynamics with high
probability, as the following theorem suggests.
Theorem 4. Let 𝑥∗ ∈ X be a strategically robust equilibrium of G. Fix a confidence level 𝛿 > 0,
and let (𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) run with (SPSA) with 𝜀𝑡 ∝ 1/𝑡 𝑝 for some 𝑝 ∈ (0, 1/2) and
step-size 𝛾 > 0 sufficiently small. Then, there exists a neighborhood U of 𝑥∗ such that:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
≥ 1 − 𝛿 if 𝑥1 ∈ U . (19)

If, in addition, X is affinely constrained and ℎ is decomposable with kernel 𝜃, then, whenever 𝑥𝑡
converges to 𝑥∗, we have:

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) . (20)

Despite the scarcity of information inherent in the payoff-based feedback model, strategically robust
equilibria retain not only their convergence properties but also their convergence speed, under the
additional structural assumptions on the regularizer and domain, matching that of the (SFO) feedback
setting. This is further discussed along with the proof of the theorem in Appendix C.

4.3. Convergence landscape beyond strategic robustness. Having established the robust conver-
gence properties of strategically robust equilibria, a natural question arises: Can we expect robust
convergence guarantees toward equilibria that lack this structural property? As we show below, the
answer is not encouraging: strategic robustness is essentially necessary for robust convergence.

To make this limitation precise, we move beyond the interior of the strategy space, where Proposition 3
rules out equilibria as potential limit points, and shift our focus to non-robust equilibria on the
boundary. To illustrate the behavior of (FTRL) in this setting, we construct a game with a unique
equilibrium that exhibits fundamentally different long-run behavior depending on the regularizer.
Proposition 4. Consider the 1-player game G with X = [0, 1], 𝑢(𝑥) = − 3

4𝑥
4/3 and 𝑥∗ = 0. Let

(𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) with 𝛾 < 1, and 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) + 𝑈𝑡 , where 𝑈𝑡 are i.i.d. standard
normal random variables for all 𝑡 ∈ ℕ. Then, for any initial condition 𝑦1 ∈ ℝ, we have:

(i) For ℎ(𝑥) = 𝑥 log 𝑥, it holds ℙ(lim𝑡→∞ 𝑥𝑡 = 𝑥∗) = 0.

(ii) For ℎ(𝑥) = −2
√
𝑥, it holds ℙ(lim𝑡→∞ 𝑥𝑡 = 𝑥∗) = 1.

The core idea of the proof of Proposition 4 (which we present in detail in Appendix C) is to construct
a process 𝑧𝑡 that dominates 𝑦𝑡 . Importantly, the process 𝑧𝑡 can be then viewed as a random walk
with a diminishing drift whose rate of decay depends on the choice of regularizer. Depending on
the magnitude of this drift, the process exhibits two sharply contrasting long-term behaviors: if the
drift decays sufficiently fast, the process behaves like a zero-mean random walk and returns infinitely
often with probability 1 (recurrence); conversely, if the drift diminishes at a slower rate, the process
behaves like a random walk with constant drift and escapes to infinity with probability 1 (transience).

In view of the above, we conclude that strategic robustness cannot be relaxed without compromising
convergence guarantees, even when the equilibrium lies on the boundary of the game’s action space.

5 Concluding remarks

Our aim in this paper was to examine the robustness of Nash equilibria in continuous games,
under both strategic and dynamic uncertainty. From a strategic standpoint, the notion of strategic
robustness characterizes those (local) equilibria which remain invariant under small perturbations
of the underlying game, and we derived a tight geometric characterization thereof in terms of the
variational geometry of the game. From a dynamic standpoint, we focused on the stability of
regularized learning under uncertainty, and we established a deep structural connection between the
two notions. Strategic robustness guarantees dynamic robustness under (FTRL), and this implication
is essentially tight: without strategic robustness, dynamic robustness cannot be ensured. To the best
of our knowledge, this is the first study of its kind for continuous games, and we believe that this
two-way implication elucidates the delicate interplay between static and dynamic considerations.
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A Auxiliary results

As a preamble to our analysis, we provide some basic properties of the regularizers and the mirror
maps, and present some auxiliary results from martingale theory and Markov processes that we will
use throughout the sequel.

A.1. Mirror maps and results from convex analysis. In this section, we provide a more detailed
discussion of key notions from convex analysis, including mirror maps and regularizers.

To begin, let (V , ∥·∥) be a finite-dimensional normed vector space. Its dual space is denoted by
(V∗, ∥·∥∗), where the dual norm is defined as

∥𝑦∥∗ ≡ max{⟨𝑦, 𝑥⟩ : ∥𝑥∥ ≤ 1}, (A.1)

and ⟨𝑦, 𝑥⟩ denotes the canonical pairing between 𝑦 ∈ V∗ and 𝑥 ∈ V . To maintain consistency with the
notation used throughout the paper, we will refer to V∗ as Y from this point onward.
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Given a closed convex set X ⊆ V and a point 𝑝 ∈ X , we define the tangent cone TC(𝑝) and the polar
cone PC(𝑝) as follows:

TC(𝑝) = cl{𝑧 ∈ V : 𝑝 + 𝑡𝑧 ∈ X for some 𝑡 > 0} (A.2)

and

PC(𝑝) = {𝑦 ∈ Y : ⟨𝑦, 𝑧⟩ ≤ 0, for all 𝑧 ∈ TC(𝑝)} (A.3)

For a strongly convex regularizer ℎ : X → ℝ, the subdifferential of ℎ at 𝑥 ∈ X is defined as

𝜕ℎ(𝑥) :={𝑦 ∈ Y : ℎ(𝑥′) ≥ ℎ(𝑥) + ⟨𝑦, 𝑥′ − 𝑥⟩ for all 𝑥′ ∈ X } (A.4)

and we denote the domain of subdifferentiability of ℎ as

Xℎ = {𝑥 ∈ X : 𝜕ℎ(𝑥) ≠ ∅} . (A.5)

In addition, the mirror map 𝑄, defined via

𝑄(𝑦) = arg max
𝑥∈X

{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} (A.6)

is single-valued on Y , since the maximization problem admits a unique solution, as ℎ is strongly
convex. Finally, by the optimality conditions of (A.6), we get that

𝑥 = 𝑄(𝑦) if and only if 𝑦 ∈ 𝜕ℎ(𝑥) . (A.7)

since 0 ∈ 𝑦 − 𝜕ℎ(𝑥). This readily implies that Xℎ = im𝑄. In general, we have

ri(X ) ⊆ Xℎ ⊆ X , (A.8)

where the first inclusion follows from standard results on the subdifferentiability of convex functions
[42, Chap. 26], whereas the second is immediate from the definition of Xℎ. This leads to two
contrasting regimes: (i ) Xℎ = ri(X ), in which case ℎ is called steep; and (ii ) Xℎ = X , in which case
ℎ is called non-steep.

Finally, we include here for future reference an elementary result concerning solid (convex) cones.
Lemma A.1. Let K be a convex cone in ℝ𝑑 with nonempty topological interior, and let 𝑧 ∈ int(K).
Then there exists a finitely generated cone K′ such that 𝑧 ∈ intK′ ⊆ intK.
Remark. We stress here that, by intK we mean the topological interior of K (which is nonempty by
assumption), not the relative interior riK thereof (whis is always nonempty).

Proof. Since K is closed and 𝑧 ∈ intK, there exists a closed ball B centered at 𝑧, which is entirely
contained in intK (an immediate consequence of the fact that 𝑧 is well-separated from the boundary
bdK of K). Since B is not contained in any lower-dimensional subspace of ℝ𝑑 , it is possible to find
inductively 𝑑 linearly independent vectors 𝑧1, . . . , 𝑧𝑑 ∈ B on the boundary bdB of B such that 𝑧 is
contained in the convex hull Δ(𝑧1, . . . , 𝑧𝑑) (and, in particular, in the relative interior thereof). Thus,
letting K′ ≡ K(𝑧1, . . . , 𝑧𝑑) be the polyhedral cone generated by 𝑧1, . . . , 𝑧𝑑 , we have K′ ⊆ K and
𝑧 ∈ intK′ by construction, and our proof is complete. ■

A.2. Statistical bounds and results from probability theory. In this section, we provide some
basic statistical bounds for (SPSA), and we present some results that we will use freely in the sequel.
We start with our bounds for (SPSA), specifically:
Proposition A.1. The estimator (SPSA) enjoys the following bounds:

∥𝔼[𝑣̂𝑡 |F𝑡 ] − 𝑣(𝑥𝑡 )∥∗ = O(𝜀𝑡 ) and ∥ 𝑣̂𝑡 ∥∗ = O(1/𝜀𝑡 ) . (A.9)

Proof. Letting 𝜁𝑡 := 𝜀𝑡 (𝑤𝑡 + (𝑝 − 𝑥𝑡 )/𝑟), we write 𝑥𝑡 = 𝑥𝑡 + 𝜁𝑡 , and we have for player 𝑖 ∈ N :

𝑢𝑖 (𝑥𝑡 )𝑤𝑖,𝑡 = 𝑢𝑖 (𝑥𝑡 )𝑤𝑖,𝑡 + ⟨∇𝑢𝑖 (𝑥𝑡 ), 𝜁𝑡 ⟩𝑤𝑖,𝑡 +
∫ 1

0
⟨∇𝑢𝑖 (𝑥𝑡 + 𝜏𝜁𝑡 ) − ∇𝑢𝑖 (𝑥𝑡 ), 𝜁𝑡 ⟩𝑑𝜏𝑤𝑖,𝑡 (A.10)

Now, the middle term can be unfolded as

⟨∇𝑢𝑖 (𝑥𝑡 ), 𝜁𝑡 ⟩𝑤𝑖,𝑡 = ⟨∇𝑖𝑢𝑖 (𝑥𝑡 ), 𝜁𝑖,𝑡 ⟩𝑤𝑖,𝑡 +
∑︁
𝑗≠𝑖

⟨∇ 𝑗𝑢𝑖 (𝑥𝑡 ), 𝜁 𝑗 ,𝑡 ⟩𝑤𝑖,𝑡 (A.11)
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and, noting that 𝔼[𝑤𝑖,𝑡 |F𝑡 ] = 0, we take conditional expectation, and we get:

𝔼[⟨∇𝑢𝑖 (𝑥𝑡 ), 𝜁𝑡 ⟩𝑤𝑖,𝑡 |F𝑡 ] = 𝜀𝑡 𝔼[⟨∇𝑖𝑢𝑖 (𝑥𝑡 ), 𝑤𝑖𝑡 ⟩𝑤𝑖,𝑡 |F𝑡 ] = (𝜀𝑡/𝑑𝑖)𝑣𝑖 (𝑥𝑡 ) (A.12)

and
𝔼[𝑢𝑖 (𝑥𝑡 )𝑤𝑖,𝑡 |F𝑡 ] = 0 (A.13)

Therefore, we have:

∥𝔼[𝑣̂𝑖,𝑡 |F𝑡 ] − 𝑣𝑖 (𝑥𝑡 )∥ =




𝔼[∫ 1

0
⟨∇𝑢𝑖 (𝑥𝑡 + 𝜏𝜁𝑡 ) − ∇𝑢𝑖 (𝑥𝑡 ), 𝜁𝑡 ⟩𝑑𝜏𝑤𝑖,𝑡

����F𝑡

]



 = O(𝜀𝑡 ) (A.14)

Now, for the second bound, since 𝑢𝑖 is continuous on a compact domain, it is bounded, and we readily
get that:

∥ 𝑣̂𝑖,𝑡 ∥∗ = O(1/𝜀𝑡 ) (A.15)
■

Moving forward, we provide some useful results from probability theory. The first two statements
below are adapted from the classical textbook of Hall & Heyde [21], while the third one is a simplified
version of [30, Theorem 3.2] on the recurrence of a nonnegative Markov process with diminishing
drift. Namely, we have:
Theorem A.1. (Doob’s maximal inequality, [21, Corollary 2.1]) If 𝑆𝑡 is a martingale, we have:

ℙ

(
sup
𝑠≤𝑡
|𝑆𝑠 | > 𝑡

)
≤ 𝔼[|𝑆𝑡 |]

𝑡
for all 𝑡 > 0. (A.16)

Theorem A.2. (Burkholder’s inequality, [21, Theorem 2.10]) Let 𝑆𝑡 :=∑𝑡
𝑠=1 𝐷𝑠 , where (𝐷𝑠)𝑠∈ℕ is

a martingale difference sequence, and let 𝑞 ∈ (1,∞). Then, there exists a constant 𝐶 that depends
only on 𝑞 such that:

𝔼[|𝑆𝑡 |𝑞] ≤ 𝐶 𝔼


����� 𝑡∑︁
𝑠=1

𝐷2
𝑠

�����𝑞/2 (A.17)

Theorem A.3. (Lamperti [30, Theorem 3.2]) Let the non-negative stochastic process (𝑥𝑡 )𝑡∈ℕ be
defined as

𝑥𝑡+1 = (𝑥𝑡 + 𝑓 (𝑥𝑡 ) + 𝜉𝑡 )+ (A.18)
for some 𝑥 ↦→ 𝑓 (𝑥) bounded measurable function, and 𝜉𝑡 i.i.d. with 𝔼[𝜉𝑡 ] = 0, 𝕍(𝜉𝑡 ) = 𝜎2 ≠ 0 and
finite 2 + 𝜀 moment for some 𝜀 > 0. Then:

(i) if 𝑓 (𝑥) ≤ 𝜎2/2𝑥 for all 𝑥 large enough, the process is recurrent in the sense there exists 𝑐 < ∞
such that

ℙ

(
lim inf
𝑡→∞

𝑥𝑡 ≤ 𝑐

)
= 1 (A.19)

(ii) if 𝑓 (𝑥) ≥ 𝜃𝜎2/2𝑥 for some 𝜃 > 1 and all 𝑥 large enough, the process is transient in the sense
that

ℙ

(
lim
𝑡→∞

𝑥𝑡 = ∞
)
= 1 (A.20)

B Analysis and results for strategic robustness

Our aim in this appendix is to provide a detailed proof for Theorem 1, which we restate below for
convenience.
Theorem 1. Let 𝑥∗ ∈ X be a joint action profile in G (N ,X , 𝑢). Then the following are equivalent:

(i) 𝑥∗ is a strategically robust equilibrium.

(ii) ⟨𝑣(𝑥∗), 𝑧⟩ ≤ −𝑚∥𝑧∥ for some 𝑚 > 0 and all 𝑧 ∈ TC(𝑥∗), where TC(𝑥∗) is the closure of all
rays emanating from 𝑥∗ and intersecting X in at least one other point.

(iii) 𝑣(𝑥∗) ∈ int(PC(𝑥∗)), where PC(𝑥∗) :={𝑦 ∈ Y : ⟨𝑦, 𝑧⟩ ≤ 0, for all 𝑧 ∈ TC(𝑥∗)}.

Proof. We will go full-circle by showing (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
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(i) =⇒ (ii). Suppose that 𝑥∗ ∈ X is a strategically robust equilibrium, and let 𝜀 > 0 be such that
𝑥∗ is an equilibrium of any G̃ with dist

(
G, G̃

)
≤ 𝜀.

For the sake of contradiction, suppose that there exists 𝑧 ≠ 0, 𝑧 ∈ TC(𝑥∗) such that

⟨𝑣(𝑥∗), 𝑧⟩ = 0 . (B.1)

which readily implies that there exists player 𝑖 ∈ N and 𝑧𝑖 ≠ 0, 𝑧𝑖 ∈ TC𝑖 (𝑥∗𝑖 ), such that

⟨𝑣𝑖 (𝑥∗), 𝑧𝑖⟩ = 0 . (B.2)

Fix some 𝑦𝑖 ∈ Y𝑖 such that ⟨𝑦𝑖 , 𝑧𝑖⟩ > 0, and let 𝑦 ≡ (𝑦1, . . . , 𝑦𝑁 ) ∈ Y with 𝑦 𝑗 ≡ 0 for 𝑗 ≠ 𝑖, 𝑗 ∈ N .
Using (B.1) and the definition of 𝑦, we get that ⟨𝑣(𝑥∗) + 𝜀∥𝑦∥−1

∗ 𝑦, 𝑧⟩ > 0, and therefore, there exists
𝑝 ∈ X such that:

⟨𝑣(𝑥∗) + 𝜀∥𝑦∥−1
∗ 𝑦, 𝑝 − 𝑥∗⟩ > 0 (B.3)

Now, define the game G̃ with payoff functions

𝑢̃𝑖 (𝑥) := 𝑢𝑖 (𝑥) + 𝜀∥𝑦∥−1
∗ ⟨𝑦𝑖 , 𝑥𝑖 − 𝑥∗𝑖 ⟩ (B.4)

and 𝑢̃ 𝑗 ≡ 𝑢 𝑗 for all 𝑗 ∈ N , 𝑗 ≠ 𝑖. Then, the individual gradient vector of player 𝑖 ∈ N is given by

𝑣̃𝑖 (𝑥) = 𝑣𝑖 (𝑥) + 𝜀∥𝑦∥−1
∗ 𝑦𝑖 (B.5)

and the distance between G and G̃ is equal to

dist
(
G, G̃

)
= sup

𝑥∈X
∥𝑣(𝑥) − 𝑣̃(𝑥)∥∗ = 𝜀∥𝑦∥−1

∗ ∥𝑦∥∗ = 𝜀. (B.6)

Finally, we conclude that 𝑥∗ ∈ X is not an equilibrium of G̃, since for 𝑝 ∈ X as above, we have

⟨𝑣̃(𝑥∗), 𝑝 − 𝑥∗⟩ = ⟨𝑣(𝑥∗) + 𝜀∥𝑦∥−1
∗ 𝑦, 𝑝 − 𝑥∗⟩ > 0 (B.7)

where the last inequality holds by (B.3). Thus, we arrive at a contradiction, i.e., ⟨𝑣(𝑥∗), 𝑧⟩ < 0 for all
𝑧 ≠ 0, 𝑧 ∈ TC(𝑥∗). Finally, since {𝑧 ∈ V : 𝑧 ∈ TC(𝑥∗), ∥𝑧∥ = 1} is compact, we readily obtain

sup{⟨𝑣(𝑥∗), 𝑧⟩ : 𝑧 ∈ TC(𝑥∗), ∥𝑧∥ = 1} ≤ −𝑚 (B.8)

for some 𝑚 > 0. Therefore, for all 𝑧 ∈ TC(𝑥∗), we have:

⟨𝑣(𝑥∗), 𝑧⟩ ≤ −𝑚∥𝑧∥ (B.9)

as was to be shown.

(ii) =⇒ (iii). First, note that the ∥·∥∗− ball of radius 𝜀 > 0 centered at 𝑣(𝑥∗) can be written as:

𝔹𝜀 (𝑣(𝑥∗)) = 𝑣(𝑥∗) + 𝜀𝔹1 (0) (B.10)

where 𝔹𝜀 (𝑦) :={𝑦′ ∈ Y : ∥𝑦′ − 𝑦∥∗ ≤ 𝑟} for 𝑦 ∈ Y . Now, take any 𝑦 ∈ 𝔹1 (0) and 𝑧 ∈ TC(𝑥∗). Then,
for 𝜀 > 0 we have

⟨𝑣(𝑥∗) + 𝜀𝑦, 𝑧⟩ = ⟨𝑣(𝑥∗), 𝑧⟩ + 𝜀⟨𝑦, 𝑧⟩
≤ −𝑚∥𝑧∥ + 𝜀∥𝑦∥∗∥𝑧∥
≤ −(𝑚 − 𝜀)∥𝑧∥ (B.11)

Setting 𝜀 = 𝑚/2, we have for all 𝑧 ∈ TC(𝑥∗)

⟨𝑣(𝑥∗) + (𝑚/2)𝑦, 𝑧⟩ < −(𝑚/2)∥𝑧∥ (B.12)

which implies that 𝑣(𝑥∗) + (𝑚/2)𝑦 ∈ PC(𝑥∗). Thus, we readily get that 𝔹𝑚/2 (𝑣(𝑥∗)) ⊆ PC(𝑥∗), i.e.,
𝑣(𝑥∗) ∈ int(PC(𝑥∗)).

(iii) =⇒ (i). Suppose that 𝑣(𝑥∗) ∈ int(PC(𝑥∗)). First, it directly implies that ⟨𝑣(𝑥∗), 𝑧⟩ ≤ 0,
for all 𝑧 ∈ TC(𝑥∗), i.e., 𝑥∗ is an equilibrium of G. In addition, there exists 𝜀 > 0 such that
𝔹𝜀 (𝑣(𝑥∗)) ⊆ PC(𝑥∗). Therefore, for any game G̃ with dist

(
G, G̃

)
< 𝜀, we immediately get that

𝑣̃(𝑥∗) ∈ PC(𝑥∗), which implies that 𝑥∗ ∈ X is an equilibrium of G̃. Thus, 𝑥∗ is strategically robust,
and our proof is complete. ■
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C Analysis and results for dynamic robustness

In this appendix, we provide detailed proofs of the statements presented in Section 4, along with
several intermediate results that will serve as key building blocks.

C.1. Intermediate results. We begin this section with two results establishing sufficient conditions
for convergence, followed by a high-probability deviation bound for martingales. We conclude with a
variant of Farkas’ Lemma, which will be instrumental in deriving convergence rates.

Proposition C.1. Let 𝑥∗ ∈ X and Z :={𝑧1, . . . , 𝑧𝑚} ⊆ V be a set of unit vectors, such that any
𝑧 ∈ TC(𝑥∗) can be written as 𝑧 =

∑𝑚
𝑗=1 𝜆 𝑗 𝑧 𝑗 for some 𝜆 𝑗 ≥ 0. If lim𝑡→∞⟨𝑦𝑡 , 𝑧 𝑗⟩ = −∞ for all 𝑧 𝑗 ∈ Z ,

then lim𝑡→∞𝑄(𝑦𝑡 ) = 𝑥∗.

Proof. Denote 𝑄(𝑦𝑡 ) by 𝑥𝑡 , and suppose that lim sup𝑡→∞∥𝑥𝑡 − 𝑥∗∥ > 0. Then, there exists a
subsequence (𝑥𝑡𝑠 )𝑠∈ℕ such that ∥𝑥𝑡𝑠 − 𝑥∗∥ stays bounded away from zero, i.e., ∥𝑥𝑡𝑠 − 𝑥∗∥ ≥ 𝑐 for
some 𝑐 > 0 and all 𝑠 ∈ ℕ. Since 𝑦𝑡𝑠 ∈ 𝜕ℎ(𝑥𝑡𝑠 ), we readily get for 𝑧𝑡𝑠 = (𝑥𝑡𝑠 − 𝑥∗)/∥𝑥𝑡𝑠 − 𝑥∗∥:

ℎ(𝑥∗) ≥ ℎ(𝑥𝑡𝑠 ) + ⟨𝑦𝑡𝑠 , 𝑥∗ − 𝑥𝑡𝑠 ⟩
= ℎ(𝑥𝑡𝑠 ) − ⟨𝑦𝑡𝑠 , 𝑧𝑡𝑠 ⟩∥𝑥𝑡𝑠 − 𝑥∗∥
≥ min ℎ − ⟨𝑦𝑡𝑠 , 𝑧𝑡𝑠 ⟩∥𝑥𝑡𝑠 − 𝑥∗∥ . (C.1)

Now, we have 𝑧𝑡𝑘 ∈ TC(𝑥∗), and by assumption, 𝑧𝑡𝑠 =
∑𝑚

𝑗=1 𝜆 𝑗 ,𝑠𝑧 𝑗 for some coefficients 𝜆 𝑗 ,𝑠 ≥ 0.
Therefore, the above inequality can be written as:

ℎ(𝑥∗) ≥ min ℎ − ∥𝑥𝑡𝑠 − 𝑥∗∥
𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠 ⟨𝑦𝑡𝑠 , 𝑧 𝑗⟩ (C.2)

≥ min ℎ −
(
max
𝑗′
⟨𝑦𝑡𝑠 , 𝑧 𝑗′⟩

)
∥𝑥𝑡𝑠 − 𝑥∗∥

𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠 (C.3)

Now, note that by the definition of 𝑧𝑡𝑠 , we have ∥𝑧𝑡𝑠 ∥ = 1, and, thus:

1 = ∥𝑧𝑡𝑠 ∥ =





 𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠𝑧 𝑗






 ≤ 𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠 ∥𝑧 𝑗 ∥ =
𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠 (C.4)

where we used that ∥𝑧 𝑗 ∥ = 1 for all 𝑗 . Now, since lim𝑡→∞⟨𝑦𝑡 , 𝑧 𝑗⟩ = −∞ for all 𝑧 𝑗 ∈ Z , it readily
implies that

lim
𝑡→∞

max
𝑗′
⟨𝑦𝑡 , 𝑧 𝑗′⟩ = −∞ (C.5)

Therefore, for all 𝑠 large enough, we have −max 𝑗′ ⟨𝑦𝑡𝑠 , 𝑧 𝑗′⟩ > 0, and, using that
∑𝑚

𝑗=1 𝜆 𝑗 ,𝑠 ≥ 1 and
∥𝑥𝑡𝑠 − 𝑥∗∥ ≥ 𝑐 for all 𝑠 ∈ ℕ, we obtain:

ℎ(𝑥∗) ≥ min ℎ +
(
−max

𝑗′
⟨𝑦𝑡𝑠 , 𝑧 𝑗′⟩

)
∥𝑥𝑡𝑠 − 𝑥∗∥

𝑚∑︁
𝑗=1

𝜆 𝑗 ,𝑠 (C.6)

≥ min ℎ − 𝑐 max
𝑗′
⟨𝑦𝑡𝑠 , 𝑧 𝑗′⟩ (C.7)

Finally, letting 𝑠→∞, we get that ℎ(𝑥∗) ≥ ∞, which is a contradiction. Thus, the result follows. ■

Finally, using the above proposition, we establish the following corollary.

Corollary C.1. Let W (𝑀) :={𝑦 ∈ Y : max𝑧∈Z ⟨𝑦, 𝑧⟩ < −𝑀} for 𝑀 > 0. Then, for any 𝜀 > 0, there
exists 𝑀𝜀 > 0 such that for all 𝑦 ∈ W (𝑀𝜀) it holds ∥𝑥∗ −𝑄(𝑦)∥ < 𝜀.

Proof. Suppose it does not hold. Then, there exists 𝜀 > 0 such that for any 𝑡 ∈ ℕ, one can find
𝑦𝑡 ∈ Y such that max𝑧∈Z ⟨𝑦𝑡 , 𝑧⟩ < −𝑡 and ∥𝑥∗ −𝑄(𝑦𝑡 )∥ ≥ 𝜀. Taking 𝑡 →∞ leads to a contradiction
with Proposition C.1. ■
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Lemma C.1. Let 𝑆𝑡 := 𝛾
∑𝑡

𝑠=1 𝜉𝑠 be a martingale with respect to a filtration (F𝑡 )𝑡∈ℕ such that
𝔼[|𝜉𝑡 |𝑞] ≤ 𝜎

𝑞
𝑡 for all 𝑡 ∈ ℕ and some 𝑞 ≥ 2. Then, for any 𝜇 ∈ (0, 1) and 𝑐 > 0, it holds:

ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≤ 𝐶𝑞

𝛾𝑞 (1−𝜇)
∑𝑡

𝑠=1 𝜎
𝑞
𝑠

𝑡1+𝑞 (𝜇−1/2) (C.8)

where 𝐶𝑞 is a constant that depends only on 𝑐 and 𝑞.

Proof. To bound the maximum absolute deviation of 𝑆𝑡 , we apply Doob’s maximal inequality (see
Theorem A.1), and obtain:

ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≤ 𝔼[|𝑆𝑡 |𝑞]

𝑐𝑞 (𝛾𝑡)𝑞𝜇 (C.9)

Now, we invoke Burkholder’s inequality (see Theorem A.2), from which we get:

𝔼[|𝑆𝑡 |𝑞] ≤ 𝐶′𝑞 𝔼


(

𝑡∑︁
𝑠=1

𝛾2 |𝜉𝑠 |2
)𝑞/2 ≤ 𝐶′𝑞𝛾

𝑞 𝔼


(

𝑡∑︁
𝑠=1
|𝜉𝑠 |2

)𝑞/2 (C.10)

where 𝐶𝑞 is a constant that depends only on 𝑞. Since 𝑞 ≥ 2, applying Jensen’s inequality, we obtain:(
1
𝑡

𝑡∑︁
𝑠=1
|𝜉𝑠 |2

)𝑞/2
≤ 1

𝑡

(
𝑡∑︁

𝑠=1
|𝜉𝑠 |𝑞

)
(C.11)

and, therefore,

𝔼


(

𝑡∑︁
𝑠=1
|𝜉𝑠 |2

)𝑞/2 ≤ 𝑡𝑞/2−1 𝔼

[
𝑡∑︁

𝑠=1
|𝜉𝑠 |𝑞

]
(C.12)

≤ 𝑡𝑞/2−1
𝑡∑︁

𝑠=1
𝜎
𝑞
𝑠 (C.13)

Thus, combining the above with (C.9) and (C.10), we obtain:

ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≤

𝐶′𝑞𝛾
𝑞𝑡𝑞/2−1 ∑𝑡

𝑠=1 𝜎
𝑞
𝑠

𝑐𝑞 (𝛾𝑡)𝑞𝜇 (C.14)

≤ 𝐶𝑞

𝛾𝑞 (1−𝜇)
∑𝑡

𝑠=1 𝜎
𝑞
𝑠

𝑡1+𝑞 (𝜇−1/2) (C.15)

for 𝐶𝑞 ≡ 𝐶′𝑞/𝑐𝑞 , and the proof is complete. ■

We finally provide a separation result in the spirit of Farkas’ lemma, that we will need for establishing
the convergence rates.

Lemma C.2. Let X = {𝑥 ∈ V : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} for 𝐴 ∈ ℝ𝑚×𝑑 , 𝑏 ∈ ℝ𝑑 . Then, for all 𝑥∗ ∈ X with
act(𝑥∗) :={𝛽 ∈ {1, . . . , 𝑑} : 𝑥∗

𝛽
= 0}, there exists 𝑃 ≡ 𝑃(𝑥∗) ≥ 1 such that for all I ⊆ act(𝑥∗) at least

one of the following is true:

(i) I ≠ ∅ and there exists 𝛽 ∈ act(𝑥∗) \ I such that 𝑥𝛽 ≤ 𝑃 max{𝑥𝛼 : 𝛼 ∈ I} for all 𝑥 ∈ X .

(ii) There exists 𝑧 ∈ ker(𝐴) such that ∥𝑧∥ ≤ 𝑃, 𝑧𝛽 = 0 for 𝛽 ∈ I and 1 ≤ 𝑧𝛽 ≤ 𝑃 for 𝛽 ∈ act(𝑥∗)\I .
Then, there exists

Proof. For the proof, see Azizian et al. [6, Lemma 6]. ■
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C.2. Main results of Section 4. With the necessary tools in place, we proceed to prove the main
results stated in Section 4. We start with the first result, establishing that a non-equilibrium point
cannot arise as a limit point of the sequence of play induced by (FTRL).
Proposition 2. Suppose that (FTRL) is run with perfect gradient feedback of the form 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) for
all 𝑡 = 1, 2, . . . , and assume that 𝑥𝑡 converges to some 𝑥 ∈ X . Then 𝑥 is an equilibrium of G.

Proof. Since 𝑥 is not an equilibrium, there exists 𝑝 ∈ X with ⟨𝑣(𝑥), 𝑝 − 𝑥⟩ > 0. Therefore, by
continuity of the function 𝑥 ↦→ ⟨𝑣(𝑥), 𝑝 − 𝑥⟩, there exists a neighborhood U of 𝑥 and 𝑐 > 0 such that
⟨𝑣(𝑥), 𝑝 − 𝑥⟩ ≥ 𝑐 for all 𝑥 ∈ U .

Moreover, since cl(U) compact, we have sup𝑥∈cl(U ) ∥𝑣(𝑥)∥∗ = 𝐵 < ∞. For the sake of contradiction,
suppose that 𝑥𝑡 → 𝑥. Then, 𝑥𝑡 ∈ U ∩𝔹𝑐/4𝐵 (𝑥) eventually, i.e., there exists 𝑛0 such that 𝑥𝑡 ∈ U and
∥𝑥𝑡 − 𝑥∥ < 𝑐/4𝐵 for all 𝑡 ≥ 𝑛0.

Finally, since 𝑦𝑡 ∈ 𝜕ℎ(𝑥𝑡 ), we have for 𝑡 > 𝑡0:

ℎ(𝑝) ≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡 , 𝑝 − 𝑥𝑡 ⟩

≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡0 , 𝑝 − 𝑥𝑡 ⟩ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

⟨𝑣(𝑥𝑠), 𝑝 − 𝑥𝑡 ⟩

≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡0 , 𝑝 − 𝑥𝑡 ⟩ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

⟨𝑣(𝑥𝑠), 𝑝 − 𝑥𝑠 + 𝑥𝑠 − 𝑥𝑡 ⟩

≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡0 , 𝑝 − 𝑥𝑡 ⟩ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

(⟨𝑣(𝑥𝑠), 𝑝 − 𝑥𝑠⟩ + ⟨𝑣(𝑥𝑠), 𝑥𝑠 − 𝑥𝑡 ⟩)

≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡0 , 𝑝 − 𝑥𝑡 ⟩ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

(⟨𝑣(𝑥𝑠), 𝑝 − 𝑥𝑠⟩ − ∥𝑣(𝑥𝑠)∥∗∥𝑥𝑠 − 𝑥𝑡 ∥)

≥ ℎ(𝑥𝑡 ) + ⟨𝑦𝑡0 , 𝑝 − 𝑥𝑡 ⟩ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

(𝑐 − 𝐵∥𝑥𝑠 − 𝑥𝑡 ∥)

≥ ℎ(𝑥𝑡 ) − ∥𝑦𝑡0 ∥∗∥𝑝 − 𝑥𝑡 ∥ + 𝛾
𝑡−1∑︁
𝑠=𝑡0

(𝑐 − 𝑐/2)

≥ min ℎ − ∥𝑦𝑡0 ∥∗ diam(X ) + 𝛾𝑐(𝑡 − 𝑡0)/2 (C.16)

Taking 𝑡 →∞, we obtain ℎ(𝑝) ≥ ∞, which is a contradiction. Therefore, the result follows. ■

Moving forward, we show that equilibrium points in the relative interior cannot be limit points of
(FTRL), either. Formally, we have:
Proposition 3. Let 𝑥∗ ∈ ri(X ) be a Nash equilibrium of G (N ,X , 𝑢), and (𝑥𝑡 )𝑡∈ℕ be the sequence of
play induced by (FTRL) with 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) +𝑈𝑡 , where 𝑈𝑡 i.i.d. with 𝔼[𝑈𝑡 ] = 0 and cov(𝑈𝑡 ) ≻ 0 for
all 𝑡 ∈ ℕ. Then:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
= 0 for any 𝑥1 ∈ Xℎ. (15)

Proof. Since 𝑥∗ an equilibrium point in ri(X ), we readily get that ⟨𝑣(𝑥∗), 𝑥 − 𝑥∗⟩ = 0 for all 𝑥 ∈ X ,
and 𝑥∗ ∈ Xℎ. In view of this, there exists 𝑦∗ ∈ Y such that 𝑦∗ ∈ 𝜕ℎ(𝑥∗), i.e., 𝑥∗ = 𝑄(𝑦∗). Our goal is
to show that the auxiliary process 𝑦𝑡 does not converge to 𝜕ℎ(𝑥∗). However, there are infinitely many
points in Y that belong to 𝜕ℎ(𝑥∗), so this attempt is insufficient, in the sense that, showing that 𝑦∗ is
not a limit point of the 𝑦𝑡 dynamics, does not preclude that some other 𝑦 ∈ 𝜕ℎ(𝑥∗) is not.

To tackle this issue, we will show that the space Y can be decomposed as Y = Ŷ ⊕ Y where all the
“essential” deviations of the problem is in Y . For this, we define the set

Ŷ = {𝑦 ∈ Y : ⟨𝑦, 𝑝 − 𝑥⟩ = 0, for all 𝑥, 𝑝 ∈ X } . (C.17)

which is a subspace of Y , and as the following lemma suggests, is equal to the polar cone at any point
in the relative interior.

Lemma C.3. Let 𝑥0 ∈ ri(X ) and Ŷ = {𝑦 ∈ Y : ⟨𝑦, 𝑝 − 𝑥⟩ = 0, for all 𝑥, 𝑝 ∈ X }. Then Ŷ = PC(𝑥0).
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To preserve the clarity of the argument, we defer the proof of Lemma C.3 until the end of this
proposition. Letting Y be the orthocomplement of Ŷ , we readily get that Y = Ŷ ⊕ Y , and any point 𝑦
in Y can be uniquely written as 𝑦 = 𝑦̂ + 𝑦̄ with 𝑦̂ ∈ Ŷ and 𝑦̄ ∈ Y . Defining the linear map Π : Y → Y
as Π𝑦 = 𝑦̄, and more importantly, under all points in 𝜕ℎ(𝑥∗) under Π are essentially unique.

This is formalized in the following lemma, whose proof is relegated after this proposition.

Lemma C.4. Let 𝑥0 ∈ ri(X ) and 𝑦, 𝑦′ ∈ 𝜕ℎ(𝑥0). Then Π𝑦 ∈ 𝜕ℎ(𝑥0), and Π𝑦 = Π𝑦′.

In view of the above, we are now ready to prove the result. Namely, fix some 𝑝 ∈ X , 𝑝 ≠ 𝑥∗ and let
𝜉𝑡 :=⟨Π𝑈𝑡 , 𝑝 − 𝑥∗⟩.
Then, setting 𝜎2 ≡ (𝑝 − 𝑥∗)⊤Σ(𝑝 − 𝑥∗) > 0, we have 𝜉𝑡 ∼ (0, 𝜎2) i.i.d., and, so, there exists 𝜀, 𝛿 > 0
such that ℙ(𝜉𝑡 > 𝜀) = 𝛿 for all 𝑡 ∈ ℕ. Therefore, by the second Borel-Cantelli lemma [9], we get
ℙ(𝐴) = 1 for 𝐴 ≡ {𝜉𝑡 > 𝜀 infinitely often}. For the sake of contradiction, suppose that ℙ(𝐵) > 0
for 𝐵 ≡ {lim𝑡→∞ 𝑥𝑡 = 𝑥∗}. Fix some 𝜔 ∈ 𝐵. Then, for all 𝑡 large enough, we readily get that
𝑥𝑡 (𝜔) ∈ ri(X ), and, denoting 𝑧𝑡 :=Π𝑦𝑡 and 𝑧∗ :=Π𝑦∗, we readily get that

lim
𝑡→∞

𝑧𝑡 (𝜔) = 𝑧∗ (C.18)

Thus, setting 𝛼𝑡 ≡ ⟨𝑧𝑡 − 𝑧∗, 𝑝 − 𝑥∗⟩ we conclude by the above equality that lim𝑡→∞ 𝛼𝑡 = 0, and
therefore it holds

0 = lim
𝑡→∞
(𝛼𝑡 − 𝛼𝑡−1)

= lim
𝑡→∞
⟨Π𝑣̂𝑡 , 𝑝 − 𝑥∗⟩

= lim
𝑡→∞
⟨Π𝑣(𝑥𝑡 ), 𝑝 − 𝑥∗⟩ + ⟨Π𝑈𝑡 , 𝑝 − 𝑥∗⟩

= ⟨Π𝑣(𝑥∗), 𝑝 − 𝑥∗⟩ + lim
𝑡→∞

𝜉𝑡

= lim
𝑡→∞

𝜉𝑡 (C.19)

Therefore, 𝜔 ∉ 𝐴, which implies that 𝐵 ⊆ 𝐴𝑐, with ℙ(𝐴𝑐) = 0. Thus, ℙ(𝐵) = 0, which is a
contradiction, and the result follows.

■

We now prove the two auxiliary lemmas presented in the proof of Proposition 3.

Lemma C.3. Let 𝑥0 ∈ ri(X ) and Ŷ = {𝑦 ∈ Y : ⟨𝑦, 𝑝 − 𝑥⟩ = 0, for all 𝑥, 𝑝 ∈ X }. Then Ŷ = PC(𝑥0).

Proof. First, we will show that

PC(𝑥0) = {𝑦 ∈ Y : ⟨𝑦, 𝑝 − 𝑥0⟩ = 0 for all 𝑝 ∈ X } (C.20)

For this, suppose that there exist 𝑦 ∈ PC(𝑥0) and 𝑝′ ∈ X such ⟨𝑦, 𝑝′ − 𝑥0⟩ < 0. Then, since
𝑥0 ∈ ri(X ), there exists 𝛼 > 0 such that 𝑥0 − 𝛼(𝑝′ − 𝑥0) ∈ X . By the definition of the polar cone,
⟨𝑦, 𝑥0 − 𝛼(𝑝′ − 𝑥0) − 𝑥0⟩ ≤ 0, or equivalently, ⟨𝑦, 𝑝′ − 𝑥0⟩ ≥ 0, which is a contradiction. Therefore,
(C.20) holds, which implies that Ŷ ⊆ PC(𝑥).
Now, for the inverse inclusion, let 𝑦 ∈ PC(𝑥0) and 𝑝, 𝑥 ∈ X . Then, we have:

⟨𝑦, 𝑝 − 𝑥⟩ = ⟨𝑦, 𝑝 − 𝑥0 + 𝑥0 − 𝑥⟩
= ⟨𝑦, 𝑝 − 𝑥0⟩ + ⟨𝑦, 𝑥0 − 𝑥⟩
= 0 (C.21)

where the last equality follows by (C.20). Thus, 𝑦 ∈ Ŷ , and we conclude the result. ■

Lemma C.4. Let 𝑥0 ∈ ri(X ) and 𝑦, 𝑦′ ∈ 𝜕ℎ(𝑥0). Then Π𝑦 ∈ 𝜕ℎ(𝑥0), and Π𝑦 = Π𝑦′.

Proof. For the first part, note that

⟨𝑦, 𝑝 − 𝑥0⟩ = ⟨𝑦̂ + 𝑦̄, 𝑝 − 𝑥0⟩ = ⟨𝑦̂, 𝑝 − 𝑥0⟩ + ⟨𝑦̄, 𝑝 − 𝑥0⟩
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= ⟨𝑦̄, 𝑝 − 𝑥0⟩
= ⟨Π𝑦, 𝑝 − 𝑥0⟩ (C.22)

which directly implies that Π𝑦 ∈ 𝜕ℎ(𝑥0). For the second part, since 𝑥0 ∈ ri(X ), and 𝑦, 𝑦′ ∈ 𝜕ℎ(𝑥0),
we have that

⟨𝑦 − 𝑦′, 𝑝 − 𝑥0⟩ = 0 for all 𝑝 ∈ X (C.23)

Thus 𝑦 − 𝑦′ ∈ PC(𝑥0), and invoking Lemma C.3 we obtain that 𝑦 − 𝑦′ ∈ Ŷ . Therefore, applying
the linear projection operator Π, we readily get that Π(𝑦 − 𝑦′) = 0, and, using linearity, the result
follows. ■

We now turn to our main convergence theorems, showing that the iterates of (FTRL) converge with
high probability under both gradient-based and payoff-based feedback
Theorem 2. Let 𝑥∗ ∈ X be a strategically robust equilibrium of G (N ,X , 𝑢). Fix a confidence level
𝛿 > 0, and let (𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) with feedback provided by (SFO), and step-size
𝛾 > 0 sufficiently small. Then, there exists a neighborhood U of 𝑥∗ in Xℎ such that:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
≥ 1 − 𝛿 if 𝑥1 ∈ U . (16)

Proof. Since 𝑥∗ strategically robust, 𝑣(𝑥∗) lies in the interior of the PC(𝑥∗). By Lemma A.1, this
implies in turn that there exists a polyhedral cone K generated by Z ≡ {𝑧1, . . . , 𝑧𝑟 } for 𝑟 ∈ ℕ, such
that TC(𝑥∗) ⊆ K and ⟨𝑣(𝑥∗), 𝑧⟩ < 0 for all 𝑧 ∈ Z .4 Therefore, for all 𝑧 ∈ Z , we have ⟨𝑣(𝑥∗), 𝑧⟩ ≤ −𝑚,
and by continuity of the vector field 𝑣, there exists a neighborhood U of 𝑥∗ and 𝑐 > 0 such that
⟨𝑣(𝑥), 𝑧⟩ ≤ −𝑐 for all 𝑧 ∈ Z and 𝑥 ∈ U .

Fixing some 𝑧 ∈ Z , we obtain:

⟨𝑦𝑡+1, 𝑧⟩ = ⟨𝑦𝑡 , 𝑧⟩ + 𝛾⟨𝑣̂𝑡 , 𝑧⟩
= ⟨𝑦𝑡 , 𝑧⟩ + 𝛾⟨𝑣(𝑥𝑡 ), 𝑧⟩ + 𝛾⟨𝑈𝑡 , 𝑧⟩

= ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑈𝑠 , 𝑧⟩ (C.24)

Now, we define the stochastic process (𝑆𝑡 )𝑡∈ℕ via 𝑆𝑡 := 𝛾
∑𝑡

𝑠=1⟨𝑈𝑠 , 𝑧⟩, which is a martingale, since
𝔼[⟨𝑈𝑠 , 𝑧⟩ |F𝑠] = 0.

Therefore, by Lemma C.1 for 𝜎𝑡 ≡ 𝜎, 𝑞 > 2 and 𝜇 ∈ (0, 1), whose value is determined later, we get:

𝛿𝑡 :=ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≤ 𝐶𝑞

𝛾𝑞 (1−𝜇)𝜎𝑞

𝑡𝑞 (𝜇−1/2) (C.25)

where 𝐶𝑞 is a constant that depends only on 𝑐 and 𝑞. Thus, we readily have that:

ℙ

(⋂
𝑡≥1

{
sup
𝜏≤𝑡
|𝑆𝜏 | ≤ 𝑐(𝛾𝑡)𝜇

})
= 1 − ℙ

(⋃
𝑡≥1

{
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

})
≥ 1 −

∞∑︁
𝑡=1

ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≥ 1 −

∞∑︁
𝑡=1

𝛿𝑡 (C.26)

where the second inequality comes from the union bound. Now, we need to ensure that
∑∞

𝑡=1 𝛿𝑡 ≤ 𝛿/𝑟 .
For this, we need the sequence to be summable, which, using (C.25), is guaranteed for 𝑞(𝜇−1/2) > 1,
or equivalently, 𝜇 ∈ (1/2 + 1/𝑞, 1). Therefore, for 𝛾 > 0 small enough, we obtain that

∑∞
𝑡=1 𝛿𝑡 ≤ 𝛿/𝑟 .

Therefore, with probability at least 1 − 𝛿/𝑟 , the template inequality becomes:

⟨𝑦𝑡+1, 𝑧⟩ ≤ ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝑐(𝛾𝑡)𝜇 (C.27)

4To resolve any ambiguities, the cone in question here is the polar of the cone provided by Lemma A.1.
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If we initialize 𝑦1 such that ⟨𝑦1, 𝑧
′⟩ < −𝑀 − 𝑐 for all 𝑧′ ∈ Z , we get that ⟨𝑦𝑡 , 𝑧⟩ < −𝑀 for all 𝑡 ∈ ℕ

with probability at least 1 − 𝛿/𝑟 . To see this, suppose that ⟨𝑦𝑠 , 𝑧⟩ < −𝑀 for all 𝑠 = 1, . . . , 𝑡. Then

⟨𝑦𝑡+1, 𝑧⟩ = ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑈𝑠 , 𝑧⟩

≤ −𝑀 − 𝑐 − 𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 (C.28)

For 𝑡 ∈ ℕ with 𝛾𝑡 < 1, we have −𝑐 + 𝑐(𝛾𝑡)𝜇 < 0, while for 𝛾𝑡 ≥ 1, it holds −𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 < 0. In
both cases, we conclude that ⟨𝑦𝑡+1, 𝑧⟩ < −𝑀 , and by induction, we get the inequality.

Therefore, with probability at least 1 − 𝛿/𝑟 , we have:

⟨𝑦𝑡+1, 𝑧⟩ ≤ −𝑀 − 𝑐 − 𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 (C.29)

and sending 𝑡 →∞, we get ⟨𝑦𝑡 , 𝑧⟩ → −∞.

Finally, repeating the same argument for all 𝑧 ∈ Z and applying a union bound, we readily get that
⟨𝑦𝑡 , 𝑧⟩ → −∞ with probability at least 1 − 𝛿, and invoking Proposition C.1, the result follows. ■

Having established the local convergence to 𝑥∗ with high probability, we proceed to the convergence
rate in the case of affinely constrained X and decomposable regularizer ℎ.

Theorem 3. If, in addition, X is a polyhedral domain and ℎ is decomposable with kernel 𝜃, on the
event 𝐸 :={lim𝑡→∞ 𝑥𝑡 = 𝑥∗} it holds:

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) (17)

where 𝜙 is the rate function defined via

𝜙(𝑧) :=
{
(𝜃′)−1 (𝑧) if 𝑧 > 𝜃′ (0+)
0 if 𝑧 ≤ 𝜃′ (0+) (18)

Proof. By the definition of the iterates of (FTRL), we have:

𝑄(𝑦𝑡 ) = arg min
𝑥∈X

{ℎ(𝑥) − ⟨𝑦𝑡 , 𝑥⟩ : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} (C.30)

Introducing the Lagrangian

L(𝑥, 𝜆, 𝜇) = ℎ(𝑥) − ⟨𝑦𝑡 , 𝑥⟩ +
𝑚∑︁
𝑖=1

𝜆𝑖 (𝑎⊤𝑖 𝑥 − 𝑏𝑖) −
𝑑∑︁
𝑗=1

𝜇 𝑗𝑥 𝑗 (C.31)

with 𝜆𝑖 ∈ ℝ and 𝜇 𝑗 ≥ 0, by the KKT conditions, we readily obtain:

𝑦𝑡 = ∇ℎ(𝑥𝑡 ) +
𝑚∑︁
𝜏=1

𝜆𝑖𝑎𝑖 − 𝜇 (C.32)

where ∇ℎ(𝑥) = ∑𝑑
𝛽=1 𝜃

′ (𝑥𝛽,𝑡 )𝑒𝛽 , since 𝜃 is continuously differentiable.

For the sequel, we define the set of active constraints at 𝑥∗ as act(𝑥∗) :={𝛽 ∈ {1, . . . , 𝑑} : 𝑥∗
𝛽
= 0}.

Note that on the event of {lim𝑡→∞ 𝑥𝑡 = 𝑥∗}, the iterates 𝑥𝑡 lie in a neighborhood of 𝑥∗, as shown in
Theorem 2. Thus, all non-active indices 𝛼 ∉ act(𝑥∗) stay bounded away from zero, and so |𝜃 (𝑥𝛼,𝑡 ) |
remains bounded for all 𝑡.

We treat the two cases separately: (i) the steep case, where ℎ is steep – equivalently 𝜃 (0+) = −∞, and
(ii) the non-steep case, where is ℎ not steep, i.e., 𝜃′ (0+) > −∞.

The steep case. We define the set of “good” indices I at step 𝑡 as: 𝛽 ∈ I if 𝜃′ (𝑥𝛽,𝑡 ) ≤ −Θ(𝑡). Our
goal is to show that all indices act(𝑥∗) of 𝑥𝑡 are “good”. Fix some 𝑡 ∈ ℕ.

Suppose that act(𝑥∗) \ I ≠ ∅, and let 𝑃 ≥ 1, as per Lemma C.2. Then,

• If condition (i) of 𝐿𝑒𝑚𝑚𝑎 𝐶.2 holds, there exists 𝛽′ such that 𝑥𝛽′ ,𝑡 ≤ 𝑃 max{𝑥𝛼,𝑡 : 𝛼 ∈ I}, and
thus, I ← I ∪ {𝛽′}.
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• If condition (ii) of 𝐿𝑒𝑚𝑚𝑎 𝐶.2 holds, there exists 𝑧′ ∈ ker(𝐴) such that ∥𝑧′∥ ≤ 𝑃, 𝑧′
𝛽
= 0 if 𝛽 ∈ I

and 1 ≤ 𝑧′
𝛽
≤ 𝑃 if 𝛽 ∈ act(𝑥∗) \ I. By (C.32), and noting that 𝑧′ ∈ ker(𝐴) and 𝜇 = 0, since all

constraints are non-active due to steepness of ℎ, we have:

⟨∇ℎ(𝑥𝑡 ), 𝑧′⟩ = ⟨𝑦𝑡 , 𝑧′⟩ (C.33)

Moreover, it holds:

⟨∇ℎ(𝑥𝑡 ), 𝑧′⟩ =
𝑑∑︁

𝛽=1
𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 =

∑︁
𝛽∈I

𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 +
∑︁

𝛽∈act(𝑥∗ )\I
𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 +

∑︁
𝛽∉act(𝑥∗ )

𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽

=
∑︁

𝛽∈act(𝑥∗ )\I
𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 + 𝐶 (C.34)

for a constant 𝐶, since all non-active indices remain bounded away from zero, as explained in the
beginning. Now, note that 𝑧′ ∈ TC(𝑥∗), and thus, by Lemma A.1, we can write 𝑧′ as 𝑧′ =

∑𝑟
𝑖=1 ℓ𝑖𝑧𝑖

with ℓ𝑖 ≥ 0, such that ⟨𝑦𝑡 , 𝑧𝑖⟩ ≤ −Θ(𝑡) for all 𝑖 = 1, . . . , 𝑟 as in the proof of Theorem 2. So,
combining it with (C.39), (C.34), we obtain:∑︁

𝛽∈act(𝑥∗ )\I
𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 ≤ −Θ(𝑡) (C.35)

and therefore, there exists at least one 𝛽′ ∈ act(𝑥∗) \ I such that

𝜃′ (𝑥𝛽′ ,𝑡 )𝑧′𝛽′ ≤ −Θ(𝑡) (C.36)

Thus, I ← I ∪ {𝛽′}.

Therefore, as act(𝑥∗) is finite, we conclude inductively that 𝜃′ (𝑥𝛽,𝑡 ) ≤ −Θ(𝑡) for all 𝛽 ∈ act(𝑥∗).
Finally, we have that ℝ𝑑 = row(𝐴) + span{𝑒𝛽 : 𝛽 ∈ act(𝑥∗)}, and thus, for all 𝑖, we can write the
standard basis vector 𝑒𝑖 as 𝑒𝑖 =

∑
𝛽∈act(𝑥∗ ) 𝜆𝑖,𝛽𝑒𝛽 + 𝑎𝑖 for some 𝑎𝑖 ∈ row(𝐴)

𝑥𝑖,𝑡 − 𝑥∗𝑖 = ⟨𝑥𝑡 − 𝑥∗, 𝑒𝑖⟩ =
〈
𝑥𝑡 − 𝑥∗,

∑︁
𝛽∈act(𝑥∗ )

𝜆𝑖,𝛽𝑒𝛽 + 𝑎𝑖

〉
=

〈
𝑥𝑡 − 𝑥∗,

∑︁
𝛽∈act(𝑥∗ )

𝜆𝑖,𝛽𝑒𝛽

〉
=

∑︁
𝛽∈act(𝑥∗ )

𝜆𝑖,𝛽𝑥𝛽,𝑡 (C.37)

where we used that ⟨𝑥𝑡 − 𝑥∗, 𝑎𝑖⟩ = 0. Thus, since 𝜃′ (𝑥𝛽,𝑡 ) ≤ −Θ(𝑡) for all 𝛽 ∈ act(𝑥∗), by the
equivalence of norms and the above, we conclude that

∥𝑥𝑡 − 𝑥∗∥ = (𝜃′)−1 (−Θ(𝑡)) (C.38)

The non-steep case. For the non-steep case, we follow a similar approach, but with some modifi-
cations since the iterates of (FTRL) are not always in the interior of X .

Specifically, let the set of “good” indices I be defined as: 𝛽 ∈ I if 𝑥𝛽,𝑡 = 0 or 𝜃′ (𝑥𝛽,𝑡 ) ≤ −Θ(𝑡). Our
goal is to show that all indices act(𝑥∗) of 𝑥𝑡 are “good”. We construct I sequentially, as before.

Suppose that act(𝑥∗) \ I ≠ ∅, and let 𝑃 ≥ 1, as per Lemma C.2. Then,

• If condition (i) of 𝐿𝑒𝑚𝑚𝑎 𝐶.2 holds, there exists 𝛽′ such that 𝑥𝛽′ ,𝑡 ≤ 𝑃 max{𝑥𝛼,𝑡 : 𝛼 ∈ I}, and
thus, I ← I ∪ {𝛽′}.

• If condition (ii) of 𝐿𝑒𝑚𝑚𝑎 𝐶.2 holds, there exists 𝑧′ ∈ ker(𝐴) such that ∥𝑧′∥ ≤ 𝑃, 𝑧′
𝛽
= 0 if 𝛽 ∈ I

and 1 ≤ 𝑧′
𝛽
≤ 𝑃 if 𝛽 ∈ act(𝑥∗) \ I. Therefore, we have

⟨∇ℎ(𝑥𝑡 ), 𝑧′⟩ = ⟨𝑦𝑡 , 𝑧′⟩ + ⟨𝜇, 𝑧′⟩ = ⟨𝑦𝑡 , 𝑧′⟩ +
∑︁
𝛽∈I

𝜇𝛽𝑧
′
𝛽 +

∑︁
𝛽∈act(𝑥∗ )\I

𝜇𝛽𝑧
′
𝛽 +

∑︁
𝛽∉act(𝑥∗ )

𝜇𝛽𝑧
′
𝛽

= ⟨𝑦𝑡 , 𝑧′⟩ (C.39)
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where, in this case, we used that (i) 𝑧′
𝛽
= 0 for 𝛽 ∈ I, (ii) 𝜇𝛽 = 0 by complementary slackness for

𝛽 ∉ act(𝑥∗) since these constraints remain non-active for the whole process, and (iii) 𝜇𝛽 = 0, again
by complementary slackness for 𝛽 ∈ act(𝑥∗) \ I since if they were active, we would have 𝛽 ∈ I.
This, with the same argument as before, we conclude that∑︁

𝛽∈act(𝑥∗ )\I
𝜃′ (𝑥𝛽,𝑡 )𝑧′𝛽 ≤ −Θ(𝑡) (C.40)

and therefore, there exists at least one 𝛽′ ∈ act(𝑥∗) \ I such that

𝜃′ (𝑥𝛽′ ,𝑡 )𝑧′𝛽′ ≤ −Θ(𝑡) (C.41)

This holds until 𝛽′ vanishes, which can lead to 𝜇𝛽′ > 0. In either case, we have I ← I ∪ {𝛽′}.

Finally, since act(𝑥∗) is finite, we conclude inductively that all for all 𝛽 ∈ act(𝑥∗), we have either
𝜃′ (𝑥𝛽,𝑡 ) ≤ −Θ(𝑡) or 𝑥𝛽,𝑡 = 0. As in the steep case, we conclude

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) (C.42)

■

We now shift to the payoff-based setting. The relevant result is restated below.
Theorem 4. Let 𝑥∗ ∈ X be a strategically robust equilibrium of G. Fix a confidence level 𝛿 > 0,
and let (𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) run with (SPSA) with 𝜀𝑡 ∝ 1/𝑡 𝑝 for some 𝑝 ∈ (0, 1/2) and
step-size 𝛾 > 0 sufficiently small. Then, there exists a neighborhood U of 𝑥∗ such that:

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
≥ 1 − 𝛿 if 𝑥1 ∈ U . (19)

If, in addition, X is affinely constrained and ℎ is decomposable with kernel 𝜃, then, whenever 𝑥𝑡
converges to 𝑥∗, we have:

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) . (20)

Proof. First of all, we write 𝑣̂𝑡 in the following convenient form:

𝑣̂𝑡 = 𝑣(𝑥𝑡 ) +𝑈𝑡 + 𝑏𝑡 (C.43)

with
𝑈𝑡 = 𝑣̂𝑡 − 𝔼[𝑣̂𝑡 |F𝑡 ] and 𝑏𝑡 = 𝔼[𝑣̂𝑡 |F𝑡 ] − 𝑣(𝑥𝑡 ) (C.44)

which, by Proposition A.1, satisfy the bounds ∥𝑈𝑡 ∥∗ = O(1/𝜀𝑡 ) and ∥𝑏𝑡 ∥∗ = O(𝜀𝑡 ). Now, as in the
proof of Theorem 2, 𝑣(𝑥∗) lies in the interior of the PC(𝑥∗). By Lemma A.1 this in turn implies that
there exists a polyhedral cone K generated by Z ≡ {𝑧1, . . . , 𝑧𝑟 } for 𝑟 ∈ ℕ, such that TC(𝑥∗) ⊆ K and
⟨𝑣(𝑥∗), 𝑧⟩ < 0 for all 𝑧 ∈ Z . 5 Therefore, for all 𝑧 ∈ Z , we have ⟨𝑣(𝑥∗), 𝑧⟩ ≤ −𝑚, and by continuity
of the vector field 𝑣, there exists a neighborhood U of 𝑥∗ and 𝑐 > 0 such that ⟨𝑣(𝑥), 𝑧⟩ ≤ −𝑐 for all
𝑧 ∈ Z and 𝑥 ∈ U . Fix some 𝑧 ∈ Z . Then, unfolding the evolution of 𝑦𝑡 , we have:

⟨𝑦𝑡+1, 𝑧⟩ = ⟨𝑦𝑡 , 𝑧⟩ + 𝛾⟨𝑣̂𝑡 , 𝑧⟩
= ⟨𝑦𝑡 , 𝑧⟩ + 𝛾⟨𝑣(𝑥𝑡 ), 𝑧⟩ + 𝛾⟨𝑈𝑡 , 𝑧⟩ + 𝛾⟨𝑏𝑡 , 𝑧⟩

= ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑈𝑠 , 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑏𝑠 , 𝑧⟩ (C.45)

Now, we define the stochastic process (𝑆𝑡 )𝑡∈ℕ via 𝑆𝑡 := 𝛾
∑𝑡

𝑠=1⟨𝑈𝑠 , 𝑧⟩, which is a martingale, since
𝔼[⟨𝑈𝑠 , 𝑧⟩ |F𝑠] = 0, and 𝔼[|⟨𝑈𝑠 , 𝑧⟩|𝑞 |F𝑠] ≤ 𝔼[∥𝑈𝑠 ∥𝑞∗ |F𝑠] = O((1/𝜀𝑡 )𝑞).
Therefore, by Lemma C.1 for 𝜎𝑡 = Θ(1/𝜀𝑡 ), 𝑞 > 2 and 𝜇 ∈ (0, 1), whose value is determined later,
we get:

𝛿𝑡 :=ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > (𝑐/2) (𝛾𝑡)𝜇

)
≤ 𝐶𝑞

𝛾𝑞 (1−𝜇)
∑𝑡

𝑠=1 𝜎
𝑞
𝑠

𝑡1+𝑞 (𝜇−1/2) (C.46)

5As before, to resolve any ambiguities, the cone in question here is the polar of the cone provided by
Lemma A.1.
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where 𝐶𝑞 is a constant that depends only on 𝑐 and 𝑞. Thus, for 𝜀𝑡 = 𝜀/𝑡 𝑝 , there exist 𝐵 > 0 such that:

𝑡∑︁
𝑠=1

𝜎
𝑞
𝑠 ≤ 𝐵𝜀−𝑞

𝑡∑︁
𝑠=1

𝑠𝑝𝑞 ≤ 𝐵′𝜀−𝑞𝑡1+𝑝𝑞 (C.47)

where we used that
∑𝑡

𝑠=1 𝑠
𝑝𝑞 = Θ(𝑡1+𝑝𝑞). So, using the above bound, (C.48) becomes:

𝛿𝑡 ≤ 𝐶′𝑞
𝛾𝑞 (1−𝜇)𝜀−𝑞𝑡1+𝑝𝑞

𝑡1+𝑞 (𝜇−1/2) ≤ 𝐶′𝑞
𝛾𝑞 (1−𝜇)𝜀−𝑞

𝑡𝑞 (𝜇−1/2−𝑝) (C.48)

Thus, we readily have that:

ℙ

(⋂
𝑡≥1

{
sup
𝜏≤𝑡
|𝑆𝜏 | ≤ 𝑐(𝛾𝑡)𝜇

})
= 1 − ℙ

(⋃
𝑡≥1

{
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

})
≥ 1 −

∞∑︁
𝑡=1

ℙ

(
sup
𝜏≤𝑡
|𝑆𝜏 | > 𝑐(𝛾𝑡)𝜇

)
≥ 1 −

∞∑︁
𝑡=1

𝛿𝑡 (C.49)

Now, we need to show that there exists 𝜇 ∈ (0, 1) and 𝑞 > 2 such that
∑∞

𝑡=1 𝛿𝑡 ≤ 𝛿/𝑟 . In order for the
sum to be finite, we need 𝑞(𝜇 − 1/2 − 𝑝) > 1 which readily implies that 𝑝 < 𝜇 − 1/2 − 1/𝑞.

For the bias term, since ∥𝑏𝑠 ∥∗ = Θ(𝜀𝑠), we have:
𝑡∑︁

𝑠=1
⟨𝑏𝑠 , 𝑧⟩ ≤

𝑡∑︁
𝑠=1
∥𝑏𝑠 ∥∗∥𝑧∥ ≤

𝑡∑︁
𝑠=1
∥𝑏𝑠 ∥∗ ≤ 𝐷

𝑡∑︁
𝑠=1

𝜀𝑠 ≤ 𝐷
𝑡∑︁

𝑠=1
𝜀/𝑠𝑝 ≤ 𝐷′𝜀𝑡1−𝑝 (C.50)

for some 𝐷′ > 0, where in the last inequality we used that
∑𝑡

𝑠=1 1/𝑠𝑝 = Θ(𝑡1−𝑝).
Therefore, for 1 − 𝜇 < 𝑝, and 𝛾 < 1, we readily get that

𝛾
𝑡∑︁

𝑠=1
⟨𝑏𝑠 , 𝑧⟩ ≤ 𝐷′𝛾𝜀𝑡𝜇 ≤ 𝐷′𝜀(𝛾𝑡)𝜇 (C.51)

Therefore, we need to satisfy
1 − 𝜇 < 𝑝 < 𝜇 − 1/2 − 1/𝑞 (C.52)

from which we obtain 𝜇 ∈ (3/4, 1). Thus, for 𝑝 ∈ (0, 1/2), there exist 𝜇 ∈ (3/4, 1) and 𝑞 > 2 that
satisfy (C.51). So, for 𝜀, 𝛾 sufficiently small we can guarantee that

𝛾
𝑡∑︁

𝑠=1
⟨𝑏𝑠 , 𝑧⟩ ≤ (𝑐/2) (𝛾𝑡)𝜇 and

∞∑︁
𝑡=1

𝛿𝑡 ≤ 𝛿/𝑟 (C.53)

Therefore, with probability at least 1 − 𝛿/𝑟 , the template inequality becomes:

⟨𝑦𝑡+1, 𝑧⟩ ≤ ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + (𝑐/2) (𝛾𝑡)𝜇 + (𝑐/2) (𝛾𝑡)𝜇

≤ ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝑐(𝛾𝑡)𝜇 (C.54)

Initializing 𝑦1 such that ⟨𝑦1, 𝑧
′⟩ < −𝑀 − 𝑐 for all 𝑧′ ∈ Z , we have ⟨𝑦𝑡 , 𝑧⟩ < −𝑀 for all 𝑡 ∈ ℕ with

probability at least 1 − 𝛿/𝑟 . To see this, we proceed by induction, and suppose that ⟨𝑦𝑠 , 𝑧⟩ < −𝑀 for
all 𝑠 = 1, . . . , 𝑡. Then

⟨𝑦𝑡+1, 𝑧⟩ = ⟨𝑦1, 𝑧⟩ + 𝛾
𝑡∑︁

𝑠=1
⟨𝑣(𝑥𝑠), 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑈𝑠 , 𝑧⟩ + 𝛾

𝑡∑︁
𝑠=1
⟨𝑏𝑠 , 𝑧⟩

≤ −𝑀 − 𝑐 − 𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 (C.55)

For 𝑡 ∈ ℕ with 𝛾𝑡 < 1, we have −𝑐 + 𝑐(𝛾𝑡)𝜇 < 0, while for 𝛾𝑡 ≥ 1, it holds −𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 < 0. In
both cases, we conclude that ⟨𝑦𝑡+1, 𝑧⟩ < −𝑀 , and by induction, we get the inequality.
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Therefore, with probability at least 1 − 𝛿/𝑟 , we have:

⟨𝑦𝑡+1, 𝑧⟩ ≤ −𝑀 − 𝑐 − 𝑐𝛾𝑡 + 𝑐(𝛾𝑡)𝜇 (C.56)

and sending 𝑡 →∞, we get ⟨𝑦𝑡 , 𝑧⟩ → −∞.

As a final step, using the same argument for all 𝑧 ∈ Z and applying a union bound, we have that
⟨𝑦𝑡 , 𝑧⟩ → −∞ with probability at least 1 − 𝛿, and by Proposition C.1, we get that

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
≥ 1 − 𝛿 . (C.57)

If, in addition, X is affinely constrained and ℎ is decomposable with kernel 𝜃, then the argument in
the proof of Theorem 3 applies verbatim, yielding:

∥𝑥𝑡 − 𝑥∗∥ = 𝜙(−Θ(𝑡)) . (C.58)

whenever 𝑥𝑡 converges to 𝑥∗. ■

We conclude this appendix with Proposition 4, which illustrates that an extreme, non-strategically
robust equilibrium may exhibit fundamentally different behavior depending on the choice of regular-
izer.
Proposition 4. Consider the 1-player game G with X = [0, 1], 𝑢(𝑥) = − 3

4𝑥
4/3 and 𝑥∗ = 0. Let

(𝑥𝑡 )𝑡∈ℕ be the iterates of (FTRL) with 𝛾 < 1, and 𝑣̂𝑡 = 𝑣(𝑥𝑡 ) + 𝑈𝑡 , where 𝑈𝑡 are i.i.d. standard
normal random variables for all 𝑡 ∈ ℕ. Then, for any initial condition 𝑦1 ∈ ℝ, we have:

(i) For ℎ(𝑥) = 𝑥 log 𝑥, it holds ℙ(lim𝑡→∞ 𝑥𝑡 = 𝑥∗) = 0.

(ii) For ℎ(𝑥) = −2
√
𝑥, it holds ℙ(lim𝑡→∞ 𝑥𝑡 = 𝑥∗) = 1.

Proof. We show each case separately.

(i) Writing down the (FTRL) dynamics, we have

𝑦𝑡+1 = 𝑦𝑡 + 𝛾(−𝑥1/3
𝑡 +𝑈𝑡 )

𝑥𝑡 = sup
𝑥∈[0,1]

(𝑦𝑡 𝑥 − 𝑥 log 𝑥) (C.59)

Solving the maximization problem in the definition of 𝑥𝑡 , we obtain:

𝑥𝑡 =

{
exp(𝑦𝑡 − 1), if 𝑦𝑡 ≤ 1
1, if 𝑦𝑡 > 1

or, equivalently, 𝑥𝑡 = 1(𝑦𝑡 > 1) + 1(𝑦𝑡 ≤ 1) exp(𝑦𝑡 − 1) and the dual process can be written as:

𝑦𝑡+1 = 𝑦𝑡 − 𝛾 1(𝑦𝑡 > 1) − 𝛾 1(𝑦𝑡 ≤ 1) exp
(
(𝑦𝑡 − 1)/3

)
+ 𝛾𝑈𝑡 (C.60)

It is clear that 𝑥𝑡 → 0 if and only if 𝑦𝑡 → −∞ as 𝑡 goes to infinity. For notational convenience, set
𝑧𝑛 ≡ −𝑦𝑡 . Then, the evolution of the dual process becomes:

𝑧𝑡+1 = 𝑧𝑡 + 𝛾 1(𝑧𝑡 < −1) + 𝛾 1(𝑧𝑡 ≥ −1) exp
(
(−𝑧𝑡 − 1)/3

)
− 𝛾𝑈𝑡 (C.61)

Now, define the process

𝑧′𝑡+1 ≡
(
𝑧′𝑡 + 𝛾 1(𝑧′𝑡 < −1) + 𝛾 1(𝑧′𝑡 ≥ −1) exp

(
(−𝑧′𝑡 − 1)/3

)
− 𝛾𝑈𝑡

)+
, 𝑧′1 = 𝑧1 (C.62)

where 𝑈𝑡 is the same random variable as in (C.61).

The rest of our proof relies on a series of claims, which we state and prove one-by-one.

Claim 1. The process (𝑧′𝑡 )𝑡∈ℕ dominates (𝑧𝑡 )𝑡∈ℕ, i.e., 𝑧′𝑡 ≥ 𝑧𝑡 for all 𝑡 ∈ ℕ.

The proof of Claim 1 lies at the end. Now, invoking Theorem A.3 with

𝑓 (𝑧) ≡ 𝛾 1(𝑧 < −1) + 𝛾 1(𝑧 ≥ −1) exp
(
(−𝑧 − 1)/3

)
(C.63)

bounded and 𝜎2 = 𝛾2, it holds that

𝑓 (𝑧) ≤ 𝜎2

2𝑧
for all 𝑧 large enough (C.64)
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Thus,
(
𝑧′𝑡

)
𝑡∈ℕ is recurrent, which implies that

ℙ

(
lim
𝑡→∞

𝑧′𝑡 = ∞
)
= 0 (C.65)

Finally, since
(
𝑧′𝑡

)
𝑡∈ℕ dominates (𝑧𝑡 )𝑡∈ℕ by Claim 1, we obtain{

lim
𝑡→∞

𝑧𝑡 = ∞
}
⊆

{
lim
𝑡→∞

𝑧′𝑡 = ∞
}

(C.66)

which implies that

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
= ℙ

(
lim
𝑡→∞

𝑧𝑡 = ∞
)
≤ ℙ

(
lim
𝑡→∞

𝑧′𝑡 = ∞
)
= 0 (C.67)

and the result follows.

Proof of Claim 1. Consider the function

𝑔(𝑧) := 𝑧 + 𝛾 1(𝑧 < −1) + 𝛾 1(𝑧 ≥ −1) exp
(
(−𝑧 − 1)/3

)
(C.68)

Then:

• For 𝑧 < −1: 𝑔′ (𝑧) = 1

• For 𝑧 > −1: 𝑔′ (𝑧) = 1 − 𝛾/3 exp
(
(−𝑧 − 1)/3

)
> 1 − 𝛾/3 > 0

Thus, 𝑔 is strictly increasing for all 𝑧 ∈ ℝ. Now, for the sake of contradiction, suppose that there
exists 𝜔 ∈ Ω and a first time 𝑘 + 1 ∈ ℕ where the dominance does not hold, i.e.,

𝑧𝑘 (𝜔) ≤ 𝑧′𝑘 (𝜔) and 𝑧′𝑘+1 (𝜔) < 𝑧𝑘+1 (𝜔) (C.69)

By the monotonicity property of 𝑔, we get that

𝑔(𝑧𝑘 (𝜔)) ≤ 𝑔(𝑧′𝑘 (𝜔)) (C.70)

and, therefore, adding −𝛾𝑈𝑠 (𝜔) in both sides

𝑧𝑠+1 (𝜔) ≤ 𝑧′𝑠 + 𝛾 1(𝑧′𝑡 < −1) + 𝛾 1(𝑧′𝑡 ≥ −1) exp
(
(−𝑧′𝑡 − 1)/3

)
− 𝛾𝑈𝑠

≤
(
𝑧′𝑠 + 𝛾 1(𝑧′𝑡 < −1) + 𝛾 1(𝑧′𝑡 ≥ −1) exp

(
(−𝑧′𝑡 − 1)/3

)
− 𝛾𝑈𝑠

)+
≤ 𝑧′𝑠+1 (𝜔) (C.71)

which is a contradiction. Thus, the proof of Claim 1 is complete.

(ii) In this setup, the (FTRL) dynamics are described by the system

𝑦𝑡+1 = 𝑦𝑡 + 𝛾(−𝑥1/3
𝑡 +𝑈𝑡 )

𝑥𝑡 = sup𝑥∈[0,1]
(
𝑦𝑡 𝑥 + 2

√
𝑥
) (C.72)

Solving the maximization problem in the definition of 𝑥𝑡 , we obtain:

𝑥𝑡 =

{
(−𝑦𝑡 )−2, if 𝑦𝑡 ≤ −1
1, if 𝑦𝑡 > −1 (C.73)

or, equivalently, 𝑥𝑡 = 1(𝑦𝑡 > −1) + 1(𝑦𝑡 ≤ −1) (−𝑦𝑡 )−2 and the dual process can be written as:

𝑦𝑡+1 = 𝑦𝑡 − 𝛾 1(𝑦𝑡 > −1) − 𝛾 1(𝑦𝑡 ≤ −1) (−𝑦𝑡 )−2/3 + 𝛾𝑈𝑡 (C.74)

For notational convenience, set 𝑧𝑛 ≡ −𝑦𝑡 . Then, the evolution of the dual process becomes:

𝑧𝑡+1 = 𝑧𝑡 + 𝛾 1(𝑧𝑡 < 1) + 𝛾 1(𝑧𝑡 ≥ 1)𝑧−2/3
𝑡 − 𝛾𝑈𝑡 (C.75)

It is clear that 𝑥𝑡 → 0 if and only if 𝑧𝑡 →∞ as 𝑡 goes to infinity. Now, define the process

𝑧′𝑡+1 =

(
𝑧′𝑡 + 𝛾 1(𝑧′𝑡 < 1) + 𝛾 1(𝑧′𝑡 ≥ 1)𝑧′𝑡

−2/3 − 𝛾𝑈𝑡

)+
, 𝑧′1 = 𝑧1 (C.76)

where 𝑈𝑡 is the same randomness as in (C.75).
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Claim 2. The process (𝑧′𝑡 )𝑡∈ℕ dominates (𝑧𝑡 )𝑡∈ℕ, i.e., 𝑧′𝑡 ≥ 𝑧𝑡 for all 𝑡 ∈ ℕ.

The proof of Claim 2 lies at the end. Now, invoking Theorem A.3 with

𝑓 (𝑧) ≡ 𝛾 1(𝑧 < 1) + 𝛾 1(𝑧 ≥ 1)𝑧−2/3 (C.77)
bounded, 𝜎2 = 𝛾2, and 𝜃 > 1, we have

𝑓 (𝑧) ≥ 𝜎2𝜃

2𝑧
for all 𝑧 large enough (C.78)

Thus,
(
𝑧′𝑡

)
𝑡∈ℕ is transient, which implies that ℙ(𝐴) = 1 for 𝐴 = {𝜔 ∈ Ω : lim𝑡→∞ 𝑧′𝑡 (𝜔) = ∞}.

Now, fix some 𝜔 ∈ 𝐴. Since lim𝑡→∞ 𝑧′𝑡 (𝜔) = ∞, there exists 𝑛𝜔 ∈ ℕ such that 𝑧′𝑡 > 1 for all 𝑛 ≥ 𝑛𝜔 ,
and therefore

𝑧′𝑡+1 = 𝑧′𝑡 + 𝛾𝑧′𝑡
−2/3 − 𝛾𝑈𝑡

= 𝑧′𝑛𝜔
+ 𝛾

𝑡∑︁
𝑠=𝑛𝜔+1

(
𝑧′𝑠
−2/3 −𝑈𝑠

)
(C.79)

from which we conclude that
𝑡∑︁

𝑠=𝑛𝜔+1

(
𝑧′𝑠
−2/3 −𝑈𝑠

)
→∞ as 𝑡 →∞ (C.80)

Finally, we have that

𝑧𝑡+1 = 𝑧𝑛𝜔
+ 𝛾

𝑡∑︁
𝑠=𝑛𝜔+1

(
1(𝑧𝑠 < 1) + 1(𝑧𝑠 ≥ 1)𝑧−2/3

𝑠 −𝑈𝑠

)
(C.81)

and, since (𝑧′𝑡 )𝑡∈ℕ dominates (𝑧𝑡 )𝑡∈ℕ, and 𝑧′𝑡 > 1 for all 𝑡 ≥ 𝑡𝜔 , we readily get that
𝑡∑︁

𝑠=𝑛𝜔+1

(
1(𝑧𝑠 < 1) + 1(𝑧𝑠 ≥ 1)𝑧−2/3

𝑠 −𝑈𝑠

)
≥

𝑡∑︁
𝑠=𝑛𝜔+1

(
𝑧′𝑠
−2/3 −𝑈𝑠

)
(C.82)

Thus, by (C.80), we conclude that
𝑡∑︁

𝑠=𝑛𝜔+1

(
1(𝑧𝑠 < 1) + 1(𝑧𝑠 ≥ 1)𝑧−2/3

𝑠 −𝑈𝑠

)
→∞ as 𝑡 →∞ (C.83)

which implies that lim𝑡→∞ 𝑧𝑡 (𝜔) = ∞. Therefore, we obtain that lim𝑡→∞ 𝑧𝑡 (𝜔) = ∞ for all 𝜔 ∈ 𝐴,
and since ℙ(𝐴) = 1, it follows that

ℙ

(
lim
𝑡→∞

𝑥𝑡 = 𝑥∗
)
= ℙ

(
lim
𝑡→∞

𝑧𝑡 = ∞
)
= 1 (C.84)

and the proof is complete.

Proof of Claim 2. Consider the function
𝑔(𝑧) := 𝑧 + 𝛾 1(𝑧 < 1) + 𝛾 1(𝑧 ≥ 1)𝑧−2/3 (C.85)

Then:

• For 𝑧 < 1: 𝑔′ (𝑧) = 1 + 𝛾 > 0

• For 𝑧 > 1: 𝑔′ (𝑧) = 1 − 2𝛾𝑧−5/3/3 > 1 − 2𝛾/3 > 0

Thus, 𝑔 is strictly increasing for all 𝑧 ∈ ℝ. Now, for the sake of contradiction, suppose that there
exists 𝜔 ∈ Ω and a first time 𝑘 + 1 ∈ ℕ where the dominance does not hold, i.e.,

𝑧𝑘 (𝜔) ≤ 𝑧′𝑘 (𝜔) and 𝑧′𝑘+1 (𝜔) < 𝑧𝑘+1 (𝜔) (C.86)
By the monotonicity property of 𝑔, we get that

𝑔(𝑧𝑘 (𝜔)) ≤ 𝑔(𝑧′𝑘 (𝜔)) (C.87)
and therefore, adding −𝛾𝑈𝑠 (𝜔) in both sides

𝑧𝑠+1 (𝜔) ≤ 𝑧′𝑠 + 𝛾 1(𝑧′𝑠 < 1) + 𝛾 1(𝑧′𝑠 ≥ 1)𝑧′𝑠
−2/3 − 𝛾𝑈𝑠

≤
(
𝑧′𝑠 + 𝛾 1(𝑧′𝑠 < 1) + 𝛾 1(𝑧′𝑠 ≥ 1)𝑧′𝑠

−2/3 − 𝛾𝑈𝑠

)+
≤ 𝑧′𝑠+1 (𝜔) (C.88)

which is a contradiction. Thus, the proof of Claim 2 is complete. ■
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• The paper should discuss whether and how consent was obtained from people whose asset is
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