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Abstract

Tracking financial investments in climate adap-001
tation is a complex and expertise-intensive002
task, particularly for Early Warning Systems003
(EWS), which lack standardized financial re-004
porting across multilateral development banks005
(MDBs) and funds which are the main fun-006
ders of these EWS projects. Analysts regu-007
larly encounter diverse PDF files containing008
tables and images with inconsistent format-009
ting, rows, and columns, making it difficult010
and time-consuming to analyze reports and011
extract proper financial information. To ad-012
dress this challenge, we introduce an agent-013
based Retrieval-Augmented Generation (RAG)014
system that orchestrates contextual retrieval015
with internal chain-of-thought (COT) reason-016
ing to extract relevant financial data, clas-017
sify investments, and ensure compliance with018
funding guidelines. Our study focuses on019
a real-world application: tracking EWS in-020
vestments funded by the Climate Risk and021
Early Warning Systems (CREWS) Fund. We022
evaluate our agent-based RAG pipeline on 25023
MDB project documents from the CREWS024
Fund, comparing it against five model candi-025
dates—(1) a Zero-Shot Classifier (Baseline),026
(2) a Few-Shot “Zero Rule” Classifier, (3) a027
fine-tuned transformer-based classifier, and (4)028
a Few-Shot-V2 CoT+ICL classifier—across029
both multi-label classification and budget al-030
location tasks. Our agent-based RAG achieves031
87% accuracy, 89% precision, and 83% re-032
call, significantly outperforming these bench-033
marks. We also benchmark it against the Gem-034
ini 2.0 Flash AI Assistant, setting the stage for a035
comparative study of Glass-Box Agents versus036
Black-Box Assistants to quantify the benefits037
of an agentic pipeline in transparency, explain-038
ability, and performance. Finally, we release039
a benchmark dataset and expert-annotated cor-040
pus to catalyze further research in AI-driven041
climate finance tracking.1042

1We will open-source all code, LLM generations, and hu-
man annotations. This can foster further innovation and devel-

1 Introduction 043

Recent advances in Large Language Models 044

(LLMs) have transformed investment tracking, fi- 045

nancial reporting, and compliance monitoring in 046

climate finance. However, tracking financial flows 047

and categorizing investments in Early Warning Sys- 048

tems (EWS) remains challenging due to the lack of 049

standardized structures and terminologies in finan- 050

cial reports from Multilateral Development Banks 051

(MDBs) and climate funds. 052

Motivation. Early Warning Systems (EWS) are 053

essential for disaster risk reduction and climate re- 054

silience. The United Nations (UN) has prioritized 055

universal EWS access by 2027 through its Early 056

Warnings for All (EW4All) initiative, emphasizing 057

that timely warnings reduce economic losses and 058

save lives. Studies show that 24 hours of advance 059

warning can reduce damages by 30%, while ev- 060

ery dollar invested in early warning systems saves 061

up to ten dollars in avoided losses2. Despite their 062

importance, EWS investments lack financial trans- 063

parency, as MDB reports often fail to classify and 064

track funding allocations systematically. The lack 065

of standardized financial reporting for EWS invest- 066

ments by MDBs and funds creates inefficiencies 067

and hinders effective resource allocation. 068

In this work, we frame investment tracking as 069

a multi-label classification task—each text or ta- 070

ble snippet may belong to one or more of the 071

CREWS Fund’s pillars—and, once labels are as- 072

signed, we automatically extract budget allocations 073

with grounding evidence spans directly from the 074

PDF. The resulting output is a structured JSON 075

mapping each pillar to its supporting evidence and 076

allocated funds, vastly reducing the time and exper- 077

tise required for manual review. To make our task 078

concrete, we adopt the following pillar definitions: 079

opment in this important area, leading to even more sophisti-
cated and effective tools for managing climate finance.

2See Appendix A for more on EWS.
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• Pillar 1, Disaster risk knowledge: Compre-080

hensive information on hazards, exposure, vul-081

nerability, and capacity—including the pro-082

duction, rescue, sharing, and application of083

risk data to inform early action.084

• Pillar 2, Hazard detection and forecasting:085

Non-structural capacity-building and struc-086

tural infrastructure for multi-hazard monitor-087

ing, analysis, forecasting, and data manage-088

ment (e.g., observing networks, forecasting089

models, radars).090

• Pillar 3, Warning dissemination and com-091

munication: Non-structural systems and092

structural platforms (cell-broadcast, sirens,093

SMS, social media, TV/radio, public address)094

that ensure timely, people-centered delivery095

of warnings to all at-risk groups.096

• Pillar 4, Preparedness to respond: Non-097

structural planning and training (contingency,098

anticipatory action, public education) along-099

side structural shelters and resource centers100

that translate warnings into life-saving mea-101

sures.102

• Cross-Pillar, Governance and sustainabil-103

ity: Cross-cutting institutional arrangements,104

policy frameworks, stakeholder coordination,105

and financial planning necessary to sustain106

and scale the four core pillars.107

Context. EW4All underscores the need for finan-108

cial transparency in climate adaptation: clear track-109

ing of fund flows can improve project monitoring110

and reduce disaster losses. Proper monitoring also111

makes it possible to identify where investments112

have been made compared to other areas, which pil-113

lars have received funding, and which aspects have114

been under-invested. This insight enables better re-115

source allocation and ensures that all critical com-116

ponents of climate adaptation are adequately sup-117

ported. However, MDB financial reports present a118

highly heterogeneous mix of structured tables, free-119

form text, and institution-specific jargon, without120

standardized categorization or terminology. Clas-121

sical NLP approaches-e.g. fine-tuned transformer122

classifiers or rule-based table parsers-are brittle123

in this setting, requiring extensive labeled data124

to cover every layout variation and often failing125

to generalize across documents (Karpukhin et al.,126

2020), (Chen et al., 2020). Even layout-aware trans-127

formers (LayoutLM (Xu et al., 2020), Longformer128

(Beltagy et al., 2020)) assume some consistency 129

in formatting or demand expensive layout annota- 130

tions. 131

To address these challenges, we argue that a 132

multi-stage AI information system is essential. By 133

decomposing the task into dedicated components 134

(c.f. Section 3, Figure 1), the pipeline can robustly 135

handle diverse reporting formats, minimize annota- 136

tion needs, and produce fully grounded, compact 137

JSON outputs. This modular design leverages the 138

strengths of each subcomponent to deliver the most 139

reliable and scalable solution for climate finance 140

transparency. 141

Contribution. We introduce the EW4All Fi- 142

nancial Tracking AI-Assistant, an agent-based 143

RAG pipeline that employs multi-modal extrac- 144

tion—parsing text, tables, and graphs—and in- 145

ternal chain-of-thought reasoning with built-in 146

guardrails to produce robust, explainable decision 147

chains across multiple sub-tasks. We benchmark 148

this approach against 4 model candidates—Zero- 149

Shot Classifier (Baseline), Few-Shot “Zero Rule” 150

Classifier, Fine-Tuned Transformer Classifier, 151

and a Few-Shot-V2 CoT+ICL Classifier—on 25 152

CREWS-Fund documents, where it achieves 87% 153

accuracy, 89% precision, and 83% recall, a 23% 154

lift over traditional NLP methods. We extend our 155

evaluation to include the Gemini 2.0 Flash AI Assis- 156

tant, setting up the first systematic contrast between 157

transparent, agentic pipelines (Glass-Box Agents) 158

and end-to-end black-box systems—quantifying 159

gains in transparency, expert validation, and clas- 160

sification performance. Finally, we open-source 161

our expert-annotated corpus, benchmark dataset, 162

and all prompt designs to catalyze future AI-driven 163

climate finance tracking research. 164

Implications. By improving climate finance 165

transparency, this AI-driven approach provides 166

structured, evidence-based insights into MDB in- 167

vestments. The integration of retrieval-augmented 168

generation and agentic AI enhances decision- 169

making, financial accountability, and policy for- 170

mulation in global climate investment tracking. 171

With a clearer understanding of investment pat- 172

terns, gaps, and overlaps, stakeholders can make 173

more informed decisions regarding resource alloca- 174

tion, project prioritization, and policy formulation 175

in global climate investment tracking. The inte- 176

gration of retrieval-augmented generation (RAG) 177

and agentic AI also enhances explainability and ex- 178

pert validation, making the system’s outputs more 179
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reliable for decision-making. The evidence-based180

insights provided by the AI system can support the181

formulation of more effective climate adaptation182

policies. By identifying areas where investments183

are lacking or where funding guidelines might need184

adjustments, policymakers can use this informa-185

tion to optimize resource allocation for climate186

resilience. Hence, this work contributes to broader187

AI applications in climate finance, supporting inter-188

national initiatives that seek to optimize resource189

allocation for climate resilience.190

2 Related Literature191

RAG improves knowledge-intensive tasks by in-192

tegrating external retrieval with LLM generation193

(Lewis et al., 2020), yet traditional RAG remains194

limited by static retrieval pipelines. Agentic RAG195

enhances adaptability by incorporating iterative re-196

trieval and decision-making, improving factual ac-197

curacy and multi-step reasoning (Xi et al., 2023;198

Yao et al., 2023; Guo et al., 2024). Multi-agent199

frameworks extend this by refining retrieval for200

applications such as code generation and verifica-201

tion (Guo et al., 2024; Liu et al., 2024), advancing202

explainability and human-AI collaboration.203

In-Context Learning (ICL) allows LLMs to gen-204

eralize from few-shot demonstrations without fine-205

tuning (Brown et al., 2020), but its effectiveness206

hinges on example selection. Retrieval-based ICL207

improves prompt efficiency, and reward models208

further refine in-context retrieval (Wang et al.,209

2024). CoT prompting facilitates step-by-step210

reasoning, significantly boosting performance in211

arithmetic and commonsense tasks (Wei et al.,212

2022; Kojima et al., 2022). Self-consistency de-213

coding enhances CoT by aggregating multiple rea-214

soning paths (Wang et al., 2023), while example-215

based prompting strengthens complex question-216

answering capabilities (Diao et al., 2024).217

3 Methodology218

MDB project documents are characterized by219

highly heterogeneous layouts—mixed narrative220

text, nested tables, multi-column formats, foot-221

notes, and embedded figures-such that evidence of222

EWS pillars and funding may be dispersed across223

pages, tables, and descriptive passages. Conven-224

tional retrieval or single-pass parsing pipelines225

struggle to (i) locate semantically related spans226

when they reside in separate structural regions, (ii)227

reconcile duplicate or overlapping budget figures228

across distinct table formats and (iii) ensure end-to- 229

end consistency in the face of OCR errors or layout 230

ambiguities. 231

To address these challenges, we adopt an 232

agent-based retrieval-augmented generation (RAG) 233

framework that orchestrates: 234

1. Iterative sub-query generation, where an 235

LLM-driven agent dynamically decomposes 236

the overall extraction task into fine-grained 237

retrieval instructions. 238

2. Hybrid semantic-lexical search, combining 239

dense vector retrieval with BM25-style key- 240

word matching to capture both contextual rel- 241

evance and exact matches. 242

3. Self-validation loops or guardrails, in which 243

the agent examines the sufficiency and coher- 244

ence of retrieved chunks (re-issuing queries 245

when coverage thresholds are unmet). 246

4. Schema-aware consolidation, formatting the 247

final evidence spans and associated numeric 248

allocations into a single structured JSON out- 249

put. 250

Figure 1 illustrates the overall pipeline with all 251

its components. 252

3.1 Embedding Construction and Indexing 253

Effective downstream reasoning over MDB PDFs 254

requires a robust embedding index that reconciles 255

heterogeneous layouts and scattered evidence. To 256

this end, we employ a unified four-stage pipeline 257

that breaks the task into four main components: 258

document parsing, chunking, context augmentation, 259

embedding generation, and vector storage. First, 260

we extract both raw text and structural elements 261

from each document d using the Docling document 262

converter (Auer et al., 2024): 263

Td = DoclingParser(d), (1) 264

where Td denotes the set of all extracted elements 265

(text, tables, images) from document d. We then 266

partition Td into three disjoint chunk sets, 267

C = Ctable ∪ Ctext ∪ Cimage, (2) 268

where Ctable, Ctext, and Cimage denote the sets of 269

table, text, and image chunks, respectively. Where 270

Ctable comprises automatically detected table re- 271

gions, Ctext contains narrative passages split at 272

markdown-style headers, and Cimage includes em- 273

bedded figures. Writing C = Ctable∪Ctext∪Cimage, 274

3



Figure 1: AI-driven financial tracking pipeline for EWS investments. The different steps are: (1) PDF conversion,
(2) context retrieval, (3) information storage and collection, (4) iterative sub-query and instruction creation, (5)
dowstream task execution (pillar classification and budget allocation).

this decomposition prevents loss of context and mit-275

igates parsing errors arising from complex multi-276

column layouts and mixed content.277

Next, to situate each chunk within its document278

context and reduce semantic ambiguity (Günther279

et al., 2024), we generate a concise, two-sentence280

summary for each c ∈ C. We prompt an LLM with281

Pctx(c, Td) to obtain282

ctx(c) = LLM
(
Pctx(c, Td)

)
, (3)283

and form the augmented chunk284

c′ = c ⊕ ctx(c). (4)285

By anchoring each chunk to its global narrative, we286

ensure that subsequent retrieval captures both fine-287

grained detail and overall document significance.288

We encode each augmented chunk c′ into two289

modality-specific latent spaces: one jointly for text290

and tables, and one for images. Formally, we define291

ett(c
′) = ftt(c

′) ∈ Rdtt , eim(c
′) = fim(c

′) ∈ Rdim

(5)292

where ft is a joint text-table encoder trained to293

capture both narrative and structured tabular se-294

mantics, and fim is an image encoder (Radford295

et al., 2021) specialized for visual feature extrac-296

tion. We index these two embedding spaces in297

Weaviate environment by defining separate Named- 298

Vector configurations—one for text-table proper- 299

ties and another for image properties—thus pre- 300

serving modality-specific semantics and enabling 301

efficient hybrid (semantic + lexical) search across 302

modalities. At query time, Weaviate dispatches 303

each multimodal query to the appropriate vector 304

index and returns the top-k relevant chunks for 305

downstream RAG orchestration. 306

This embedding step condenses high- 307

dimensional text and layout features into a 308

semantic space where related content remains in 309

proximity. 310

Finally, each embedding e(c′) is stored in 311

a vector database with metadata meta(c′) = 312

{file_name : f}, where f is the PDF’s filename: 313

VDB_store
(
e(c′), meta(c′)

)
. (6) 314

At inference time, for a given file ID f and query 315

q, we retrieve the top-5 semantically and lexically 316

relevant chunks via 317

R(f) = VDB_query(q, f), |R(f)| = 5 (7) 318
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4 Hybrid Retrieval via Rank Fusion319

In addition to the above procedure, we employ a320

hybrid search strategy that combines dense vector321

search with BM25F-based keyword search (Robert-322

son and Zaragoza, 2009) to leverage both semantic323

similarity and exact lexical matching. Let Rv(q, f)324

denote the set of candidate chunks retrieved via325

dense vector search, and let Rk(q, f) denote the326

candidate chunks obtained via BM25F keyword327

search. To fuse these two retrieval sets, we use Re-328

ciprocal Rank Fusion (RRF) (Cormack et al., 2009).329

For each candidate chunk c ∈ Rv(q, f)∪Rk(q, f),330

we compute an RRF score as:331

RRF(c) =
∑

i∈{v,k}

1

ranki(c) +K
, (8)332

where ranki(c) is the rank of c in retrieval system333

i (with lower ranks corresponding to higher rele-334

vance) and K is a smoothing constant (typically335

set to 60). The final set of retrieved chunks is then336

given by selecting the top five candidates according337

to their RRF scores:338

R(f) = Top5
(
Rv(q, f) ∪Rk(q, f), RRF(c)

)
.

(9)339

This hybrid method harnesses the semantic sensi-340

tivity of dense vector retrieval alongside the precise341

lexical matching of BM25F, thereby enhancing the342

overall disambiguation and retrieval performance343

during downstream processing.344

4.1 Classification and Budget Allocation345

For each retrieved chunk c′ ∈ R(f), we apply346

the following four methods to classify the chunk347

(i.e., assign it a class y from the five pillars) and to348

allocate an associated budget B.349

4.1.1 Zero-Shot and Few-Shot Classification350

In this approach, we construct a prompt351

PClass+Budget(c
′) that includes the content of the aug-352

mented chunk and, in the few-shot setting, several353

annotated examples. The LLM is then queried to354

simultaneously produce an outcome classification355

y and an associated budget B:356

{y,B} = LLM(PClass+Budget(c
′)). (10)357

This method leverages the pre-trained knowledge358

of the LLM, with few-shot prompting guiding its359

responses.360

4.1.2 Fine-Tuned Transformer-Based 361

Classifier 362

In another approach, we fine-tune a transformer- 363

based classifier Mft on a labeled dataset 364

{(c′i, yi)}Ni=1. The model is used to classify each 365

augmented chunk: 366

y = Mft(c
′). (11) 367

Subsequently, an LLM is used to determine the 368

budget allocation for each class. The prompt 369

PBudget(c
′, y) is constructed using the chunk and 370

its classification: 371

B = LLM(PBudget(c
′, y)). (12) 372

The final result for each chunk is the tuple {y,B}. 373

4.1.3 Few-Shot-V2: Chain-of-Thought (CoT) 374

This approach employs a three-step Chain-of- 375

Thought (CoT) strategy, resulting in a tuple {y,B}: 376

1. Reformatting: If c′ represents a table, it is 377

reformatted into a clean markdown table: 378

c′′ = LLM(Preformat(c
′)). (13) 379

Otherwise, we set c′′ = c′. 380

2. Classification: A classification prompt is 381

used to classify the (reformatted) chunk: 382

y = LLM(PClass(c
′′)). (14) 383

3. Budget Allocation: A subsequent prompt al- 384

locates the budget: 385

B = LLM(PBudget(c
′′, y)). (15) 386

4.1.4 Agent-Based Approach 387

This method uses an agent that follows a sequence 388

of instructions and performs RAG queries: 389

1. Instruction Generation: The agent, primed 390

with examples of annotated PDFs and the de- 391

sired output format, generates a list of sub- 392

task instructions I = {i1, i2, . . . , ik} to com- 393

plete the classification and budget allocation 394

task. It also generates a list of queries Q = 395

{q1, q2, . . . , ql} to use if the sub-tasks require 396

querying the vector database. 397

2. Sub-Task and Query Mapping: The agent 398

maps instructions I to queries Q. 399

3. Sub-Task Execution: For each instruction ij , 400

if the sub-task requires querying the vector 401

database, a retrieval is performed to extract 402

relevant chunks: 403

c′ij = VDB_query(qij , f). (16) 404

4. Sub-Task Validation: The agent performs a 405

self-healing step to validate that the retrieved 406

chunks c′ij are sufficient. If not, a new query 407
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qnewij
is generated and the retrieval is repeated:408

c′
final
ij =


VDB_query(qnewij

, f),

if c′ij is insufficient,

c′ij , otherwise.
(17)409

5. Final Formatting: After finishing all the410

sub-tasks, the final step formats the output411

as JSON:412

{y,B} = LLM(PFormat({resultI})). (18)413

5 Results414

5.1 Pillar-Level Budget Classification415

We frame the CREWS-Fund experiment as a joint416

pillar-classification and budget-allocation task. For417

every document d we observe a budget vector:418

bd =
(
bd,1, . . . , bd,5

)
∈ R5

≥0,

5∑
p=1

bd,p = Btot
d ,

(19)419

where bd,p denotes the amount assigned to EWS420

pillar p and Btot
d is the document’s total EWS en-421

velope.422

We derive binary pillar indicators as423

yd,p = Jbd,p > 0K ∈ {0, 1}, (20)424

where J·K denotes the Iverson bracket, which is 1 if425

the condition is true and 0 otherwise. Eventually,426

our model outputs b̂d and ŷd,p = Jb̂d,p > 0K.427

A prediction for pillar p in document d is428

counted as a true positive (TP) only if both condi-429

tions hold:430

(a) Correct label. The model assigns the pillar431

label that is truly present, i.e., yd,p = 1 and432

ŷd,p = 1.433

(The task is multi-label over the fixed set of434

five EWS pillars.)435

(b) Budget fidelity. The predicted allocation is436

numerically faithful, i.e.,437 ∣∣b̂d,p − bd,p
∣∣ ≤ 0.05Btot

d , (21)438

a ±5% tolerance around the gold amount for439

that pillar.440

Using 25 CREWS-Fund PDFs, we benchmark441

five baselines (Zero-Shot, Few-Shot, Transformer,442

Few-Shot-CoT) against our Glass-Box Agentic443

pipeline. Table 1 reports the scores: the agent444

attains 0.87 accuracy, 0.89 precision, 0.83 recall,445

an (8-14) pp lift over the strongest baseline.446

Method Accuracy Precision Recall

Zero-Shot 0.41 0.40 0.61
Few-Shot 0.42 0.45 0.64
Transformer 0.41 0.64 0.32
Few-Shot-CoT 0.51 0.63 0.71
Agent 0.87 0.89 0.83

Table 1: Evaluation metrics for budget distribution
across the EWS Pillars.

These figures show that the agent not only identi- 447

fies the correct set of pillars but also assigns budget 448

to them with tight numeric fidelity, providing a 449

solid reference line for the broader Glass-Box vs. 450

Black-Box study in § 5.2 (see Figure?? for a sam- 451

ple analytic report) 452

5.2 Glass-Box vs. Black-Box Study (MDB 453

Evidence Set) 454

To test whether transparency still pays off in a truly 455

end-to-end setting, we build a second benchmark: 456

an annotated corpus of 500 evidence segments ex- 457

tracted from multi-layout MDB project documents, 458

co-curated with World Meteorological Organiza- 459

tion (WMO). Each segment is labelled with (i) its 460

EWS pillar, (ii) the budget amount assigned to that 461

pillar, (iii) the evidence–pillar linkage, and (iv) the 462

document’s total EWS budget. This allows us to 463

probe retrieval quality, reasoning traceability and 464

numerical fidelity in a single pass. 465

We compare three systems: Glass-Box Agent 466

(The agentic system explain in section 4.1.4) to 467

Gemini 2.0 Flash, a Black-Box assistant that pro- 468

cesses the same PDF via a single prompt, and Ope- 469

nAI Assistants another Black-Box baseline like- 470

wise queried end-to-end. 471

5.3 Prompt Engineering for Gemini 2.0 Flash 472

EWS Financial Analysis 473

Our prompt design strategy employs a modular 474

architecture with clearly delineated components. 475

We structure the prompt with five key segments: 476

(1) a role definition establishing the AI as a finan- 477

cial analyst specialized in Early Warning Systems, 478

(2) project-specific goals directing the analysis to- 479

ward EWS funding allocation, (3) a comprehensive 480

taxonomy reference that standardizes EWS classi- 481

fication, (4) methodical analysis instructions with 482

explicit calculation guidance, and (5) a structured 483

JSON output format ensuring consistency across 484

analyses. This hierarchical decomposition trans- 485
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forms a complex financial assessment task into a486

sequence of manageable analytical steps, promot-487

ing both thoroughness and traceability.488

Performance is analysed along five facets; the489

metrics listed below are computed for each system:490

Evidence extraction. We measure how well a sys-491

tem retrieves the gold evidence segments.492

Key metrics include Recall ( TP
TP+FN ), Preci-493

sion ( TP
TP+FP ), their harmonic mean F1, and494

Recall@5, the fraction of gold segments found495

within the top-5 ranked results.496

Amount distribution across pillars. For every497

evidence–pillar pair the system predicts an498

amount b̂d,p. Accuracy, Precision, Recall and499

F1 are computed under a ±5% tolerance with500

respect to the gold amount bd,p (cf. Eq. (21)).501

where b̂d,p is the predicted allocation, bd,p502

is the gold allocation, and Btot
d is the total503

budget for document d. The prediction is504

considered correct if it falls within ±5% of505

the true value.506

Pillar-label assignment. The task is multi-label507

over the five EWS pillars. We calculate per-508

pillar TP, FP and FN, then aggregate macro-509

averages of Accuracy, Precision, Recall and510

F1.511

Evidence-to-label mapping. A mapping is cor-512

rect if (a) the evidence segment is retrieved513

and (b) it is linked to the correct pillar. Met-514

rics follow the same TP/FP/FN template as515

above.516

Total EWS amount prediction. After summing517

predicted pillar amounts, we compare the to-518

tal B̂tot
d against the gold Btot

d using absolute519

accuracy and percentage error.520

5.4 Interpretation of the benchmark521

Total-amount accuracy (Fig. 2, left). The522

Glass-Box Agent attains the highest median accu-523

racy (x̃ ≈ 0.78) and a narrow inter-quartile range,524

demonstrating both precision and stability across525

heterogeneous layouts. Gemini and OpenAI trail526

behind (median ≈ 0.72 and ≈ 0.68, respectively)527

and exhibit heavier tails, indicating more frequent528

large errors.529

Amount-per-pillar performance (Fig. 2, right).530

When the accuracy metric is tightened to pillar-531

level allocation, the Agent still captures almost half532

of the aggregate performance mass (48.7% of the 533

total macro-F1), while Gemini accounts for 36.1% 534

and OpenAI only 15.2%. The result mirrors our 535

tabular findings in Table 1: transparent, schema- 536

aware reasoning yields the most faithful budget 537

breakdowns. 538

Evidence-extraction robustness (Fig. 3). 539

Across the vast majority of MDB projects the 540

Agent achieves the highest F1 (yellow), with Gem- 541

ini (orange) and OpenAI (red) clustered below. An 542

exception emerges for the grey-shaded projects, 543

whose budgets are not presented in explicit tables 544

but scattered throughout the narrative text. Here 545

Gemini’s end-to-end comprehension slightly out- 546

performs the Agent, suggesting that large black- 547

box models retain an advantage when numerical 548

clues are deeply embedded in prose. 549

Taken together, the graphics align with our quali- 550

tative findings: Glass-Box transparency dominates 551

performance—especially for structured or semi- 552

structured financial disclosures. While, black-box 553

assistants narrow the gap only in the rare cases 554

where budget figures are diffused across free-form 555

text. Future work will therefore focus on augment- 556

ing the Agent’s retrieval module with paragraph- 557

level numerical parsing to close the remaining gap 558

on unstructured layouts. 559

6 Conclusion 560

Automating financial tracking of EWS investments 561

is crucial for improving climate finance trans- 562

parency and accountability. In this study, we 563

introduced the EWS4All Financial Tracking AI- 564

Assistant (Fig. ??), a novel system that integrates 565

multi-modal processing, hierarchical reasoning, 566

and RAG for document classification and budget 567

allocation. Our experiments on 25 project docu- 568

ments from the CREWS Fund demonstrated that 569

an agent-based approach significantly outperforms 570

traditional NLP methods, achieving 87% accuracy, 571

89% precision, and 83% recall. The system ef- 572

fectively addresses challenges related to document 573

heterogeneity, structured and unstructured data in- 574

tegration, and cross-organizational inconsistencies. 575

Beyond improving financial tracking, our work con- 576

tributes a benchmark dataset for future AI research 577

in climate finance. By combining AI-driven clas- 578

sification, retrieval, and reasoning, this approach 579

enhances decision-making processes in MDBs and 580

supports evidence-based climate investment poli- 581

cies. Future work will focus on extending the sys- 582

7



Figure 2: Left: distribution of total-amount accuracy for the 500-document MDB set. Right: share of the macro-
averaged F1 obtained by each system on the amount-per-pillar task.

Figure 3: Per-document F1 for evidence extraction.
Grey bands highlight projects in which budget figures
are dispersed across narrative sections rather than for-
matted tables.

tem to handle a broader range of MDB financial583

documents, improving model generalization, and584

integrating real-time updates for dynamic financial585

tracking.586

Limitations587

While our approach demonstrates significant im-588

provements in automating financial tracking for589

EWS investments, several limitations remain. First,590

our system relies on existing financial reports from591

MDBs, in this case CREWS, which are often het-592

erogeneous and may contain incomplete or ambigu-593

ous financial allocations. In cases where funding594

details are missing or inconsistently reported, even595

advanced retrieval-augmented generation (RAG)596

and multi-step reasoning approaches may strug-597

gle to provide accurate classifications. Second,598

the classification system is influenced by the train- 599

ing data used in fine-tuning and prompt engineer- 600

ing. Despite expert annotations, the model may 601

still exhibit biases in investment classification, par- 602

ticularly when encountering novel financial struc- 603

tures or terminology not well-represented in the 604

dataset. Third, while our agent-based RAG system 605

achieves state-of-the-art performance on structured 606

and unstructured financial data, its generalizabil- 607

ity to other climate finance applications outside 608

EWS has not been fully explored. Future work 609

should assess model robustness across different 610

sustainability reporting frameworks and financial 611

instruments. Finally, our system assumes that finan- 612

cial tracking can be improved through AI-assisted 613

reasoning; however, its real-world effectiveness de- 614

pends on institutional adoption, policy integration, 615

and alignment with evolving financial disclosure 616

regulations. 617

Ethics Statement 618

Human Annotation: This study relies on annota- 619

tions provided by domain experts from the WMO, 620

who possess extensive knowledge of Early Warn- 621

ing Systems (EWS). These experts played a piv- 622

otal role in the design and conceptualization of the 623

study. Their deep understanding of both the con- 624

textual and practical aspects of the collected data 625

ensures the accuracy and relevance of the annota- 626

tions. The use of expert annotations minimizes the 627

risk of misclassification and enhances the reliability 628

of the model’s outputs. 629

Responsible AI Use. This tool is intended as an 630

assistive system to enhance transparency and effi- 631

ciency in financial tracking, not as a replacement 632

8



Figure 4: Schematic overview of the final analysis report that results from the agent-based pipeline.The workflow
comprises three main stages: (i) ingestion of the project document as a PDF; (ii) a modular agent-based processing
pipeline that parses text, identifies total funding figures, and classifies expenditures into four predefined EWS
“pillars”; and (iii) compilation of an analysis report summarizing the total allocated budget, per-pillar allocation
amounts and percentages, and a graphical distribution of funds across pillars.

for human analysts. Expert oversight remains cru-633

cial in interpreting financial classifications, address-634

ing edge cases, and ensuring compliance with pol-635

icy frameworks. By open-sourcing our dataset and636

model, we encourage responsible use and further637

validation to refine the system’s applicability in638

real-world climate finance decision-making.639

Data Privacy and Bias: This study does not in-640

volve any personally identifiable or sensitive finan-641

cial data. All data used in this research originates642

from publicly available sources under a Creative643

Commons license, ensuring compliance with data644

privacy regulations. While we find no evidence of645

demographic biases in the dataset, we acknowledge646

that financial reporting by multilateral development647

banks (MDBs) may reflect institutional biases in648

investment classification. Our model operates as a649

decision-support tool and should not replace human650

judgment in financial tracking and policy decisions.651

Reproducibility Statement: To ensure full repro-652

ducibility, we will release all PDFs, codes, EWS-653

taxonomy, and expert-annotated data used in this654

study. Our approach aligns with best practices655

in AI transparency and responsible research dis-656

semination. However, we encourage users of this657

dataset and model to consider ethical implications658

when applying automated financial tracking sys-659

tems in real-world decision-making contexts. For660

vector database storage and retrieval, we utilized 661

Weaviate, an open-source, scalable vector search 662

engine that efficiently indexes high-dimensional 663

embeddings. Additionally, for reasoning and large 664

language model (LLM) interactions, we integrated 665

OpenAI’s o1 API, leveraging its advanced capabil- 666

ities to process, analyze, and infer patterns from 667

financial document data. 668
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and alert authorities and communities before disas- 786

ters strike. In essence, an EWS combines hazard 787

monitoring, risk analysis, communication, and pre- 788

paredness planning to enable timely, preventive ac- 789

tions. Early warnings are a cornerstone of disaster 790

risk reduction (DRR) – they save lives and reduce 791

economic losses by giving people time to evacuate, 792
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By empowering those at risk to act ahead of a haz- 794
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proven to safeguard lives, livelihoods, and ecosys-796

tems amid increasing climate-related threats4. In797

summary, an effective EWS ensures that impend-798

ing dangers are rapidly identified, warnings reach799

the impacted population, and appropriate protective800

measures are taken in advance.801

A.2 EWS Taxonomy802

A robust EWS involves several fundamental com-803

ponents that work together seamlessly. The United804

Nations identify four interrelated pillars necessary805

for an effective people-centered EWS (Pescaroli806

et al., 2025). This taxonomy serves as a struc-807

tured framework to categorize EWS components808

and activities, facilitating a consistent approach809

to analyzing early warning systems across various810

domains. Our approach in this paper is based on811

these four fundamental pillars of EWS and one812

cross-pillar, ensuring a comprehensive understand-813

ing of risk knowledge, detection, communication,814

and preparedness.815

Early Warning System (EWS) Taxonomy
Prompt

An Early Warning System (EWS) is an in-
tegrated system of hazard monitoring, fore-
casting, and prediction, disaster risk assess-
ment, communication, and preparedness ac-
tivities that enables individuals, communi-
ties, governments, businesses, and others to
take timely action to reduce disaster risks
before hazardous events occur.
When analyzing a text, it is essential to de-
termine whether it falls under EWS com-
ponents and activities, which vary across
multiple sectors and require coordination
and financing from various actors.
The taxonomy is based on the Four Pil-
lars of Early Warning Systems and one
cross-pillar:

Pillar 1: Disaster Risk Knowledge and
Management (Led by UNDRR)
This pillar focuses on understanding dis-
aster risks and enhancing the knowledge
of communities by collecting and utilizing
comprehensive information on hazards, ex-
posure, vulnerability, and capacity.

816

4See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.

Illustrative examples:
– Inclusive risk knowledge: Incorporat-

ing local, traditional, and scientific risk
knowledge.

– Production of risk knowledge: Establish-
ing a systematic recording of disaster loss
data.

– Risk-informed planning: Ensuring
decision-makers can access and use
updated risk information.

– Data rescue: Digitizing and preserving
historical disaster data.

Keywords: Risk mapping, vulnerability
mapping, disaster risk reduction (DRR), cli-
mate information.

Pillar 2: Detection, Observation,
Monitoring, Analysis, and Forecasting
(Led by WMO)
This pillar enhances the capability to detect
and monitor hazards, providing timely and
accurate forecasting.
Illustrative examples:
– Observing networks enhancement:

Strengthening real-time monitoring
systems.

– Hazard-specific observations: Improving
monitoring of high-impact hazards.

– Impact-based forecasting: Developing
quantitative triggers for anticipatory ac-
tion.

Keywords: Forecasting, seasonal predic-
tions, multi-model projections, climate ser-
vices.

Pillar 3: Warning Dissemination and
Communication (Led by ITU)
Effective communication ensures that early
warnings are received by those at risk, en-
abling them to take timely action.
Illustrative examples:
– Multichannel alert systems: Use of SMS,

satellite, sirens, and social media.
– Standardized warnings: Implementation

of the Common Alerting Protocol (CAP).
– Feedback mechanisms: Enabling commu-

nity input on warning effectiveness.
Keywords: Communication systems, mul-

817
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tichannel dissemination, emergency broad-
cast systems.

Pillar 4: Preparedness and Response
Capabilities (Led by IFRC)
Timely preparedness and response measures
translate early warnings into life-saving ac-
tions.
Illustrative examples:
– Emergency preparedness planning: De-

veloping anticipatory action frameworks.
– Public awareness campaigns: Educating

communities on disaster response.
– Emergency shelters: Construction of cy-

clone shelters, evacuation centers.
Keywords: Preparedness planning, emer-
gency drills, public education on disaster
response.

Cross-Pillar: Foundational Elements for
Effective EWS
Cross-cutting elements critical to the sus-
tainability and effectiveness of EWS in-
clude governance, inclusion, institutional
arrangements, and financial planning.
Illustrative examples:
– Governance and institutional frameworks:

Defining roles of agencies and stakehold-
ers.

– Financial sustainability: Mobilizing and
tracking finance for early warning sys-
tems.

– Regulatory support: Developing and en-
forcing data-sharing legislation.

Keywords: Institutional frameworks, gov-
ernance, financial sustainability, data man-
agement.

818

Each of these components is vital. Only when819

risk knowledge, monitoring, communication, and820

preparedness work in unison can an early warn-821

ing system effectively protect lives and properties.822

Gaps in any one element (for example, if warnings823

don’t reach the vulnerable, or if communities don’t824

know how to respond) will weaken the whole sys-825

tem. Thus, successful EWS are people-centered826

and end-to-end, linking high-tech hazard detection827

with on-the-ground community action.828

A.3 Importance for climate finance 829

EWS are widely recognized as a high-impact, cost- 830

effective investment for climate resilience. By pro- 831

viding advance notice of floods, storms, heatwaves 832

and other climate-related hazards, EWS signifi- 833

cantly reduce disaster losses. Studies indicate that 834

every $1 spent on early warnings can save up to 835

$10 by preventing damages and losses.5 For ex- 836

ample, just 24 hours’ warning of an extreme event 837

can cut ensuing damage by about 30%, and an esti- 838

mated USD $800 million investment in early warn- 839

ing infrastructure in developing countries could 840

avert $3–16 billion in losses every year6. These 841

economic benefits underscore why EWS are con- 842

sidered “no-regret” adaptation measures, i.e., they 843

pay for themselves many times over by protecting 844

lives, assets, and development gains. 845

Given their proven value, EWS have become 846

a priority in climate change adaptation and disas- 847

ter risk reduction funding. International climate 848

finance mechanisms, such as the Green Climate 849

Fund, Climate Risk and Early Warning Systems 850

(CREWS) Fund, and Adaptation Fund along with 851

development banks, are channeling resources into 852

EWS projects, from modernizing meteorological 853

services and hazard monitoring networks to com- 854

munity training and alert communication systems. 855

Strengthening EWS is also central to global ini- 856

tiatives like the United Nations’ Early Warnings 857

for All (EW4All), which calls for expanding early 858

warning coverage to 100% of the global population 859

by 2027. Achieving this goal requires substantial 860

financial support to build new warning systems in 861

climate-vulnerable countries and to maintain and 862

upgrade existing ones. Climate finance is therefore 863

being directed to help develop, implement, and 864

sustain EWS, ensuring that countries can operate 865

these systems (e.g. funding for equipment, data 866

systems, and personnel) over the long term. In 867

summary, investing in EWS is essential for climate 868

resilience. It not only reduces humanitarian and 869

economic impacts from extreme weather, but also 870

yields high returns on investment. Financial sup- 871

port for EWS, whether through dedicated climate 872

funds, loans and grants, or public budgets, under- 873

pins their development and sustainability, making 874

it possible to deploy cutting-edge technology and 875

5See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

6See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.
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foster prepared communities. By mitigating the876

worst effects of climate disasters, EWS help safe-877

guard development progress, which is why they878

feature prominently in climate adaptation financing879

and strategies.880

Hence, investing in EWS is essential for climate881

resilience. It not only reduces humanitarian and882

economic impacts from extreme weather, but also883

yields high returns on investment. Financial sup-884

port for EWS, whether through dedicated climate885

funds, loans and grants, or public budgets, under-886

pins their development and sustainability, making887

it possible to deploy cutting-edge technology and888

foster prepared communities. By mitigating the889

worst effects of climate disasters, EWS help safe-890

guard development progress, which is why they891

feature prominently in climate adaptation financing892

and strategies.893

A.4 Current challenges894

Despite their clear benefits, there are several chal-895

lenges in financing and implementing EWS effec-896

tively. Key issues include:897

Data Inconsistencies and Lack of Standard-898

ization: EWS rely on data from multiple sources899

(weather observations, risk databases, etc.), but900

often this data is inconsistent, incomplete, or not901

shared effectively across systems. Differences in902

how hazards are monitored and reported can lead to903

gaps or delays in warnings. Likewise, there is a lack904

of standardization in early warning protocols and905

data formats between agencies and countries (Ve-906

lazquez et al., 2020; Pescaroli et al., 2025). Incom-907

patible data systems and inconsistent methodolo-908

gies (for example, different trigger criteria for warn-909

ings or varying risk assessment methods) make it910

difficult to integrate information. This fragmenta-911

tion hinders the creation of a “common operating912

picture” of risk. Data harmonization and common913

standards (for data collection, forecasting models,914

and warning communication) are needed to ensure915

EWS components work together seamlessly.916

Institutional and Cross-Organizational Barri-917

ers: An effective EWS cuts across many organi-918

zations, national meteorological services, disaster919

management agencies, local governments, interna-920

tional partners, and communities. Coordinating921

these actors remains a challenge. In many cases,922

efforts are siloed: meteorological offices may is-923

sue technical warnings that don’t fully reach or en-924

gage local authorities or the public. There are gaps925

in governance, clarity of roles, and inter-agency 926

communication that can weaken the warning chain. 927

Improving EWS often requires overcoming bu- 928

reaucratic boundaries and fostering cooperation 929

between different sectors (e.g., linking climate sci- 930

entists with emergency planners). Interoperability 931

issues, i.e.,ensuring different organizations’ tech- 932

nologies and procedures align, are also a hurdle 933

(Tupper and Fearnley, 2023). As the World Me- 934

teorological Organization (WMO) states, connect- 935

ing all relevant actors (from international agencies 936

down to community groups) and adapting plans to 937

real-world local conditions is complex7. Sustained 938

commitment, clear protocols, and partnerships are 939

required to break down these barriers so that EWS 940

operate as a cohesive, cross-sector system. 941

Financing Gaps and Sustainability: While 942

funding for EWS is rising, it still lags behind 943

what is needed for global coverage and mainte- 944

nance. Many high-risk developing countries lack 945

the resources to install or upgrade EWS infrastruc- 946

ture (radar, sensors, communication tools) and to 947

train personnel. Fragmented financing is a prob- 948

lem. Support comes from various donors and pro- 949

grams without a unified strategy, leading to poten- 950

tial overlaps in some areas and stark gaps in oth- 951

ers. For instance, recent analyses show that a large 952

share of EWS funding is concentrated in a few 953

countries, while Small Island Developing States 954

(SIDS) and Least Developed Countries (LDCs) re- 955

main underfunded despite being highly vulnerable8. 956

Even when initial capital is provided to set up an 957

EWS, securing long-term funding for operations 958

and maintenance (software updates, staffing, equip- 959

ment calibration) is difficult. Without sustainable 960

financing, systems can degrade over time. Ensuring 961

financial sustainability, co-financing arrangements, 962

and political commitment is critical so that EWS 963

are not one-off projects but enduring services. 964

In addition to the above, there are challenges in 965

technological adoption and last-mile delivery: for 966

example, reaching remote or marginalized popula- 967

tions with warnings (issues of language, literacy, 968

and reliable communication channels) and building 969

trust so that people heed warnings. Climate change 970

is also introducing new complexities – hazards are 971

becoming more unpredictable or intense, testing 972

7See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

8See, https://wmo.int/media/news/
tracking-funding-life-saving-early-warning-systems.
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the limits of existing early warning capabilities.973

Overall, addressing data and standardization issues,974

improving institutional coordination, and closing975

funding gaps are priority challenges to fully realize976

the life-saving potential of EWS.977

A.5 Relevance to this study978

Our work is focused on the financial tracking and979

classification of investments in climate resilience,980

and EWS represent a prime example of such in-981

vestments. Early warning projects often cut across982

sectors and funding sources – they might include983

components of infrastructure, technology, capac-984

ity building, and community outreach. Because985

of this cross-cutting nature, tracking where and986

how money is spent on EWS can be difficult with-987

out a clear classification system. Different orga-988

nizations may label EWS-related activities in var-989

ious ways (e.g. “hydromet modernization”, “dis-990

aster preparedness”, “climate services”), leading991

to inconsistencies in investment data. By estab-992

lishing a standardized framework to define and cat-993

egorize EWS investments, the study helps create994

a “big-picture view” of early warning financing.995

This enables analysts and policymakers to iden-996

tify overlaps, gaps, and trends that were previously997

obscured by fragmented data.998

Moreover, improving the classification of EWS999

funding directly supports broader resilience initia-1000

tives. For instance, the newly launched Global Ob-1001

servatory for Early Warning System Investments is1002

already working to tag and track EWS-related ex-1003

penditures across major financial institutions. Such1004

efforts mirror the goals of this study by highlighting1005

the need for consistent tracking, transparency, and1006

coordination in climate resilience finance. Better1007

classification of investments means stakeholders1008

can pinpoint where resources are going and where1009

additional support is needed to meet global targets1010

like the “Early Warnings for All by 2027” pledge.1011

In short, EWS feature in this study as a critical1012

category of climate resilience investment that must1013

be clearly identified and monitored.1014

By including EWS in its financial tracking frame-1015

work, the study provides valuable insights for1016

decision-makers. It helps determine how much1017

funding is allocated to early warnings, from which1018

sources, and for what components (equipment,1019

training, maintenance, etc.). This information1020

is crucial for evidence-based decisions on scal-1021

ing up EWS: for example, spotting a shortfall in1022

community-level preparedness funding, or recog-1023

nizing successful investment patterns that could be 1024

replicated. Ultimately, linking EWS to the study’s 1025

financial tracking reinforces the message that cli- 1026

mate resilience investments can be better managed 1027

when we know their size, scope, and impact area. 1028

By classifying EWS expenditures systematically, 1029

the study contributes to stronger accountability and 1030

strategic planning in building climate resilience, 1031

ensuring that early warning systems – and the com- 1032

munities they protect – get the support they urgently 1033

need. 1034

B Dataset Construction 1035

In this study, we analyze financial information 1036

extracted from PDFs containing both structured 1037

and unstructured data. Unlike conventional bench- 1038

mark datasets, these documents exhibit high het- 1039

erogeneity in their formats—some tables are well- 1040

structured, while others embed financial figures 1041

within free-text paragraphs or are scattered across 1042

multiple rows and columns. Additionally, many nu- 1043

merical values correspond to multiple rows within 1044

the same column, creating challenges in extraction, 1045

alignment, and interpretation. 1046

The annotated data, provided by experts in CSV 1047

format, along with the corresponding PDFs, can be 1048

found in the supplementary materials of this paper. 1049

The dataset consists of 298 rows of expert an- 1050

notations and contains the following 9 columns: 1051

Fund, Project ID, Component, Outcome/Expected- 1052

Outcome/Objectives, Output/Sub-component, Ac- 1053

tivity/Output Indicator, Page Number, Amount, and 1054

Label. 1055

The total amount of Early Warning Systems 1056

(EWS) is computed as the sum of all Amount values 1057

for a given project. 1058

The annotated dataset (CSV file and PDFs) 1059

consists of financial reports and investment doc- 1060

uments sourced from publicly available institu- 1061

tional records, which are intended for public in- 1062

formation and research and transparency purposes. 1063

The dataset is used strictly within its intended 1064

scope—analyzing financial tracking in climate in- 1065

vestments—and adheres to the original access con- 1066

ditions. Additionally, for the artifacts we create, 1067

including benchmark datasets and classification 1068

models, we specify their intended use for research 1069

and evaluation in automated financial tracking and 1070

ensure they remain compliant with ethical research 1071

guidelines. 1072
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