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Abstract

Tracking financial investments in climate adap-
tation is a complex and expertise-intensive
task, particularly for Early Warning Systems
(EWS), which lack standardized financial re-
porting across multilateral development banks
(MDBs) and funds which are the main fun-
ders of these EWS projects. Analysts regu-
larly encounter diverse PDF files containing
tables and images with inconsistent format-
ting, rows, and columns, making it difficult
and time-consuming to analyze reports and
extract proper financial information. To ad-
dress this challenge, we introduce an agent-
based Retrieval-Augmented Generation (RAG)
system that orchestrates contextual retrieval
with internal chain-of-thought (COT) reason-
ing to extract relevant financial data, clas-
sify investments, and ensure compliance with
funding guidelines. Our study focuses on
a real-world application: tracking EWS in-
vestments funded by the Climate Risk and
Early Warning Systems (CREWS) Fund. We
evaluate our agent-based RAG pipeline on 25
MDB project documents from the CREWS
Fund, comparing it against five model candi-
dates—(1) a Zero-Shot Classifier (Baseline),
(2) a Few-Shot “Zero Rule” Classifier, (3) a
fine-tuned transformer-based classifier, and (4)
a Few-Shot-V2 CoT+ICL classifier—across
both multi-label classification and budget al-
location tasks. Our agent-based RAG achieves
87% accuracy, 89% precision, and 83% re-
call, significantly outperforming these bench-
marks. We also benchmark it against the Gem-
ini 2.0 Flash AI Assistant, setting the stage for a
comparative study of Glass-Box Agents versus
Black-Box Assistants to quantify the benefits
of an agentic pipeline in transparency, explain-
ability, and performance. Finally, we release
a benchmark dataset and expert-annotated cor-
pus to catalyze further research in Al-driven
climate finance tracking.'

'We will open-source all code, LLM generations, and hu-
man annotations. This can foster further innovation and devel-

1 Introduction

Recent advances in Large Language Models
(LLMs) have transformed investment tracking, fi-
nancial reporting, and compliance monitoring in
climate finance. However, tracking financial flows
and categorizing investments in Early Warning Sys-
tems (EWS) remains challenging due to the lack of
standardized structures and terminologies in finan-
cial reports from Multilateral Development Banks
(MDBs) and climate funds.

Motivation. Early Warning Systems (EWS) are
essential for disaster risk reduction and climate re-
silience. The United Nations (UN) has prioritized
universal EWS access by 2027 through its Early
Warnings for All (EW4All) initiative, emphasizing
that timely warnings reduce economic losses and
save lives. Studies show that 24 hours of advance
warning can reduce damages by 30%, while ev-
ery dollar invested in early warning systems saves
up to ten dollars in avoided losses”. Despite their
importance, EWS investments lack financial trans-
parency, as MDB reports often fail to classify and
track funding allocations systematically. The lack
of standardized financial reporting for EWS invest-
ments by MDBs and funds creates inefficiencies
and hinders effective resource allocation.

In this work, we frame investment tracking as
a multi-label classification task—each text or ta-
ble snippet may belong to one or more of the
CREWS Fund’s pillars—and, once labels are as-
signed, we automatically extract budget allocations
with grounding evidence spans directly from the
PDF. The resulting output is a structured JSON
mapping each pillar to its supporting evidence and
allocated funds, vastly reducing the time and exper-
tise required for manual review. To make our task
concrete, we adopt the following pillar definitions:

opment in this important area, leading to even more sophisti-
cated and effective tools for managing climate finance.
2See Appendix A for more on EWS.



* Pillar 1, Disaster risk knowledge: Compre-
hensive information on hazards, exposure, vul-
nerability, and capacity—including the pro-
duction, rescue, sharing, and application of
risk data to inform early action.

« Pillar 2, Hazard detection and forecasting:
Non-structural capacity-building and struc-
tural infrastructure for multi-hazard monitor-
ing, analysis, forecasting, and data manage-
ment (e.g., observing networks, forecasting
models, radars).

« Pillar 3, Warning dissemination and com-
munication: Non-structural systems and
structural platforms (cell-broadcast, sirens,
SMS, social media, TV/radio, public address)
that ensure timely, people-centered delivery
of warnings to all at-risk groups.

¢ Pillar 4, Preparedness to respond: Non-
structural planning and training (contingency,
anticipatory action, public education) along-
side structural shelters and resource centers
that translate warnings into life-saving mea-
sures.

¢ Cross-Pillar, Governance and sustainabil-
ity: Cross-cutting institutional arrangements,
policy frameworks, stakeholder coordination,
and financial planning necessary to sustain
and scale the four core pillars.

Context. EW4All underscores the need for finan-
cial transparency in climate adaptation: clear track-
ing of fund flows can improve project monitoring
and reduce disaster losses. Proper monitoring also
makes it possible to identify where investments
have been made compared to other areas, which pil-
lars have received funding, and which aspects have
been under-invested. This insight enables better re-
source allocation and ensures that all critical com-
ponents of climate adaptation are adequately sup-
ported. However, MDB financial reports present a
highly heterogeneous mix of structured tables, free-
form text, and institution-specific jargon, without
standardized categorization or terminology. Clas-
sical NLP approaches-e.g. fine-tuned transformer
classifiers or rule-based table parsers-are brittle
in this setting, requiring extensive labeled data
to cover every layout variation and often failing
to generalize across documents (Karpukhin et al.,
2020), (Chen et al., 2020). Even layout-aware trans-
formers (LayoutLM (Xu et al., 2020), Longformer

(Beltagy et al., 2020)) assume some consistency
in formatting or demand expensive layout annota-
tions.

To address these challenges, we argue that a
multi-stage Al information system is essential. By
decomposing the task into dedicated components
(c.f. Section 3, Figure 1), the pipeline can robustly
handle diverse reporting formats, minimize annota-
tion needs, and produce fully grounded, compact
JSON outputs. This modular design leverages the
strengths of each subcomponent to deliver the most
reliable and scalable solution for climate finance
transparency.

Contribution. We introduce the EW4All Fi-
nancial Tracking Al-Assistant, an agent-based
RAG pipeline that employs multi-modal extrac-
tion—parsing text, tables, and graphs—and in-
ternal chain-of-thought reasoning with built-in
guardrails to produce robust, explainable decision
chains across multiple sub-tasks. We benchmark
this approach against 4 model candidates—Zero-
Shot Classifier (Baseline), Few-Shot “Zero Rule”
Classifier, Fine-Tuned Transformer Classifier,
and a Few-Shot-V2 CoT+ICL Classifier—on 25
CREWS-Fund documents, where it achieves 87%
accuracy, 89% precision, and 83% recall, a 23%
lift over traditional NLP methods. We extend our
evaluation to include the Gemini 2.0 Flash AT Assis-
tant, setting up the first systematic contrast between
transparent, agentic pipelines (Glass-Box Agents)
and end-to-end black-box systems—quantifying
gains in transparency, expert validation, and clas-
sification performance. Finally, we open-source
our expert-annotated corpus, benchmark dataset,
and all prompt designs to catalyze future Al-driven
climate finance tracking research.

Implications. By improving climate finance
transparency, this Al-driven approach provides
structured, evidence-based insights into MDB in-
vestments. The integration of retrieval-augmented
generation and agentic Al enhances decision-
making, financial accountability, and policy for-
mulation in global climate investment tracking.
With a clearer understanding of investment pat-
terns, gaps, and overlaps, stakeholders can make
more informed decisions regarding resource alloca-
tion, project prioritization, and policy formulation
in global climate investment tracking. The inte-
gration of retrieval-augmented generation (RAG)
and agentic Al also enhances explainability and ex-
pert validation, making the system’s outputs more



reliable for decision-making. The evidence-based
insights provided by the Al system can support the
formulation of more effective climate adaptation
policies. By identifying areas where investments
are lacking or where funding guidelines might need
adjustments, policymakers can use this informa-
tion to optimize resource allocation for climate
resilience. Hence, this work contributes to broader
Al applications in climate finance, supporting inter-
national initiatives that seek to optimize resource
allocation for climate resilience.

2 Related Literature

RAG improves knowledge-intensive tasks by in-
tegrating external retrieval with LLM generation
(Lewis et al., 2020), yet traditional RAG remains
limited by static retrieval pipelines. Agentic RAG
enhances adaptability by incorporating iterative re-
trieval and decision-making, improving factual ac-
curacy and multi-step reasoning (Xi et al., 2023;
Yao et al., 2023; Guo et al., 2024). Multi-agent
frameworks extend this by refining retrieval for
applications such as code generation and verifica-
tion (Guo et al., 2024; Liu et al., 2024), advancing
explainability and human-AlI collaboration.
In-Context Learning (ICL) allows LLMs to gen-
eralize from few-shot demonstrations without fine-
tuning (Brown et al., 2020), but its effectiveness
hinges on example selection. Retrieval-based ICL
improves prompt efficiency, and reward models
further refine in-context retrieval (Wang et al.,
2024). CoT prompting facilitates step-by-step
reasoning, significantly boosting performance in
arithmetic and commonsense tasks (Wei et al.,
2022; Kojima et al., 2022). Self-consistency de-
coding enhances CoT by aggregating multiple rea-
soning paths (Wang et al., 2023), while example-
based prompting strengthens complex question-
answering capabilities (Diao et al., 2024).

3 Methodology

MDB project documents are characterized by
highly heterogeneous layouts—mixed narrative
text, nested tables, multi-column formats, foot-
notes, and embedded figures-such that evidence of
EWS pillars and funding may be dispersed across
pages, tables, and descriptive passages. Conven-
tional retrieval or single-pass parsing pipelines
struggle to (i) locate semantically related spans
when they reside in separate structural regions, (ii)
reconcile duplicate or overlapping budget figures

across distinct table formats and (iii) ensure end-to-
end consistency in the face of OCR errors or layout
ambiguities.

To address these challenges, we adopt an
agent-based retrieval-augmented generation (RAG)
framework that orchestrates:

1. Iterative sub-query generation, where an
LLM-driven agent dynamically decomposes
the overall extraction task into fine-grained
retrieval instructions.

2. Hybrid semantic-lexical search, combining
dense vector retrieval with BM25-style key-
word matching to capture both contextual rel-
evance and exact matches.

3. Self-validation loops or guardrails, in which
the agent examines the sufficiency and coher-
ence of retrieved chunks (re-issuing queries
when coverage thresholds are unmet).

4. Schema-aware consolidation, formatting the
final evidence spans and associated numeric
allocations into a single structured JSON out-
put.

Figure 1 illustrates the overall pipeline with all
its components.

3.1 Embedding Construction and Indexing

Effective downstream reasoning over MDB PDFs
requires a robust embedding index that reconciles
heterogeneous layouts and scattered evidence. To
this end, we employ a unified four-stage pipeline
that breaks the task into four main components:
document parsing, chunking, context augmentation,
embedding generation, and vector storage. First,
we extract both raw text and structural elements
from each document d using the Docling document
converter (Auer et al., 2024):

T,; = DoclingParser(d), (1

where T; denotes the set of all extracted elements
(text, tables, images) from document d. We then
partition 7} into three disjoint chunk sets,

C= Ctable U Ctext ) Cimagm (2)

where Ciaples Ctext, and Cimage denote the sets of
table, text, and image chunks, respectively. Where
Ctable comprises automatically detected table re-
gions, Ciext contains narrative passages split at
markdown-style headers, and Ciyage includes em-
bedded figures. Writing C = Ciaple UCtext UCimages
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Figure 1: Al-driven financial tracking pipeline for EWS investments. The different steps are: (1) PDF conversion,
(2) context retrieval, (3) information storage and collection, (4) iterative sub-query and instruction creation, (5)
dowstream task execution (pillar classification and budget allocation).

this decomposition prevents loss of context and mit-
igates parsing errors arising from complex multi-
column layouts and mixed content.

Next, to situate each chunk within its document
context and reduce semantic ambiguity (Giinther
et al., 2024), we generate a concise, two-sentence
summary for each ¢ € C. We prompt an LLM with
Peix (e, Ty) to obtain

ctx(c) = LLM(Pex(c, Ty)), 3)
and form the augmented chunk
d=c @ ctx(c). 4)

By anchoring each chunk to its global narrative, we
ensure that subsequent retrieval captures both fine-
grained detail and overall document significance.
We encode each augmented chunk ¢’ into two
modality-specific latent spaces: one jointly for text
and tables, and one for images. Formally, we define

ew(d) = fu(d) € R,
&)

where f; is a joint text-table encoder trained to
capture both narrative and structured tabular se-
mantics, and f;,, is an image encoder (Radford
et al., 2021) specialized for visual feature extrac-
tion. We index these two embedding spaces in

eim(c) = fim(c) € Rdim

Weaviate environment by defining separate Named-
Vector configurations—one for text-table proper-
ties and another for image properties—thus pre-
serving modality-specific semantics and enabling
efficient hybrid (semantic + lexical) search across
modalities. At query time, Weaviate dispatches
each multimodal query to the appropriate vector
index and returns the top-k relevant chunks for
downstream RAG orchestration.

This embedding step condenses high-
dimensional text and layout features into a
semantic space where related content remains in
proximity.

Finally, each embedding e(¢’) is stored in
a vector database with metadata meta(c’)
{file_name : f}, where f is the PDF’s filename:

VDB_store(e(c’), meta(c')). (6)

At inference time, for a given file ID f and query
q, we retrieve the top-5 semantically and lexically
relevant chunks via

R(f) = VDB_query(q, f), |R(f)|=5 (1)



4 Hybrid Retrieval via Rank Fusion

In addition to the above procedure, we employ a
hybrid search strategy that combines dense vector
search with BM25F-based keyword search (Robert-
son and Zaragoza, 2009) to leverage both semantic
similarity and exact lexical matching. Let R, (q, f)
denote the set of candidate chunks retrieved via
dense vector search, and let Ry (g, f) denote the
candidate chunks obtained via BM25F keyword
search. To fuse these two retrieval sets, we use Re-
ciprocal Rank Fusion (RRF) (Cormack et al., 2009).
For each candidate chunk ¢ € R,(q, f)URk(q, f),
we compute an RRF score as:
1
RRF(c) = — ®)
(c) z‘e%,:k} rank;(c) + K

where rank;(c) is the rank of ¢ in retrieval system
¢ (with lower ranks corresponding to higher rele-
vance) and K is a smoothing constant (typically
set to 60). The final set of retrieved chunks is then
given by selecting the top five candidates according
to their RRF scores:

R(f) = Top5(Ru(a: ) URi(a, f), RRF(c) ).
(©))
This hybrid method harnesses the semantic sensi-
tivity of dense vector retrieval alongside the precise
lexical matching of BM25F, thereby enhancing the
overall disambiguation and retrieval performance
during downstream processing.

4.1 Classification and Budget Allocation

For each retrieved chunk ¢ € R(f), we apply
the following four methods to classify the chunk
(i.e., assign it a class y from the five pillars) and to
allocate an associated budget B.

4.1.1 Zero-Shot and Few-Shot Classification

In this approach, we construct a prompt
Peiass+Budget (¢') that includes the content of the aug-
mented chunk and, in the few-shot setting, several
annotated examples. The LLM is then queried to
simultaneously produce an outcome classification
y and an associated budget B:

{y; B} = LLM(PClass+Budget(C/))- (10)

This method leverages the pre-trained knowledge
of the LLM, with few-shot prompting guiding its
responses.

4.1.2 Fine-Tuned Transformer-Based
Classifier

In another approach, we fine-tune a transformer-

based classifier My on a labeled dataset

{(c},y:)}X,. The model is used to classify each

augmented chunk:

y = Mg(c). (11)

Subsequently, an LLM is used to determine the

budget allocation for each class. The prompt

Pgudget (', y) is constructed using the chunk and
its classification:

B = LLM(Pgydeet (', y))- (12)

The final result for each chunk is the tuple {y, B}.

4.1.3 Few-Shot-V2: Chain-of-Thought (CoT)

This approach employs a three-step Chain-of-

Thought (CoT) strategy, resulting in a tuple {y, B}:

1. Reformatting: If ¢’ represents a table, it is
reformatted into a clean markdown table:

d' = LLM(Preformat(cl))‘
Otherwise, we set ¢’ = ¢'.

2. Classification: A classification prompt is
used to classify the (reformatted) chunk:

y = LLM(Pcass(¢”)). (14)

3. Budget Allocation: A subsequent prompt al-
locates the budget:

B = LLM(PBudget<cH7 y))

(13)

(15)
4.1.4 Agent-Based Approach

This method uses an agent that follows a sequence
of instructions and performs RAG queries:

1. Instruction Generation: The agent, primed
with examples of annotated PDFs and the de-
sired output format, generates a list of sub-
task instructions I = {iy,ds,. .., i} to com-
plete the classification and budget allocation
task. It also generates a list of queries QQ =
{q1,q2, - .., q} to use if the sub-tasks require
querying the vector database.

2. Sub-Task and Query Mapping: The agent
maps instructions [ to queries ).

3. Sub-Task Execution: For each instruction i,
if the sub-task requires querying the vector
database, a retrieval is performed to extract
relevant chunks:

¢;, = VDB_query(g;;, f).  (16)

4. Sub-Task Validation: The agent performs a
self-healing step to validate that the retrieved
chunks c;j are sufficient. If not, a new query



new

q;'*" is generated and the retrieval is repeated:
J

VDB_query(g;™, f),
! Zﬁ_nal = if c;j is insufficient,
J

Cij s
a7

5. Final Formatting: After finishing all the
sub-tasks, the final step formats the output

as JSON:
{3/7 B} = LLM(PFormat({TeSUItI}))' (18)

5 Results

5.1 Pillar-Level Budget Classification

We frame the CREWS-Fund experiment as a joint
pillar-classification and budget-allocation task. For
every document d we observe a budget vector:

5
b, = (bd,la - ,bd75) € R‘;O, Z bd,p = thiot,
p=1

(19)
where b4, denotes the amount assigned to EWS
pillar p and BY" is the document’s total EWS en-
velope.

We derive binary pillar indicators as

Yap = [bap > 0] € {0, 1}, (20)
where [-] denotes the Iverson bracket, which is 1 if
the condition is true and O otherwise. Eventually,
our model outputs by and g4, = [bap > 0].

A prediction for pillar p in document d is
counted as a true positive (TP) only if both condi-
tions hold:

(a) Correct label. The model assigns the pillar
label that is truly present, i.e., Y4, = 1 and
gd,p =1
(The task is multi-label over the fixed set of
five EWS pillars.)

(b) Budget fidelity. The predicted allocation is
numerically faithful, i.e.,

|bap — bap| < 0.05 B, (21)

a 5% tolerance around the gold amount for
that pillar.

Using 25 CREWS-Fund PDFs, we benchmark
five baselines (Zero-Shot, Few-Shot, Transformer,
Few-Shot-CoT) against our Glass-Box Agentic
pipeline. Table 1 reports the scores: the agent
attains 0.87 accuracy, 0.89 precision, 0.83 recall,
an (8-14) pp lift over the strongest baseline.

otherwise.

Method Accuracy Precision Recall
Zero-Shot 0.41 0.40 0.61
Few-Shot 0.42 0.45 0.64
Transformer 0.41 0.64 0.32
Few-Shot-CoT 0.51 0.63 0.71
Agent 0.87 0.89 0.83

Table 1: Evaluation metrics for budget distribution
across the EWS Pillars.

These figures show that the agent not only identi-
fies the correct set of pillars but also assigns budget
to them with tight numeric fidelity, providing a
solid reference line for the broader Glass-Box vs.
Black-Box study in § 5.2 (see Figure?? for a sam-
ple analytic report)

5.2 Glass-Box vs. Black-Box Study (MDB
Evidence Set)

To test whether transparency still pays off in a truly
end-to-end setting, we build a second benchmark:
an annotated corpus of 500 evidence segments ex-
tracted from multi-layout MDB project documents,
co-curated with World Meteorological Organiza-
tion (WMO). Each segment is labelled with (i) its
EWS pillar, (ii) the budget amount assigned to that
pillar, (iii) the evidence—pillar linkage, and (iv) the
document’s total EWS budget. This allows us to
probe retrieval quality, reasoning traceability and
numerical fidelity in a single pass.

We compare three systems: Glass-Box Agent
(The agentic system explain in section 4.1.4) to
Gemini 2.0 Flash, a Black-Box assistant that pro-
cesses the same PDF via a single prompt, and Ope-
nAl Assistants another Black-Box baseline like-
wise queried end-to-end.

5.3 Prompt Engineering for Gemini 2.0 Flash
EWS Financial Analysis

Our prompt design strategy employs a modular
architecture with clearly delineated components.
We structure the prompt with five key segments:
(1) arole definition establishing the Al as a finan-
cial analyst specialized in Early Warning Systems,
(2) project-specific goals directing the analysis to-
ward EWS funding allocation, (3) a comprehensive
taxonomy reference that standardizes EWS classi-
fication, (4) methodical analysis instructions with
explicit calculation guidance, and (5) a structured
JSON output format ensuring consistency across
analyses. This hierarchical decomposition trans-



forms a complex financial assessment task into a
sequence of manageable analytical steps, promot-
ing both thoroughness and traceability.
Performance is analysed along five facets; the
metrics listed below are computed for each system:

Evidence extraction. We measure how well a sys-
tem retrieves the gold evidence segments.

. . TP .

Key metrics include Recall (7p, ), Preci-
sion (%), their harmonic mean F}, and
Recall@5, the fraction of gold segments found

within the top-5 ranked results.

Amount distribution across pillars. For every
evidence—pillar pair the system predicts an
amount lA)dyp. Accuracy, Precision, Recall and
Fy are computed under a +5% tolerance with
respect to the gold amount by, (cf. Eq. (21)).
where IA)dyp is the predicted allocation, b
is the gold allocation, and B'" is the total
budget for document d. The prediction is
considered correct if it falls within +£5% of
the true value.

Pillar-label assignment. The task is multi-label
over the five EWS pillars. We calculate per-
pillar TP, FP and FN, then aggregate macro-
averages of Accuracy, Precision, Recall and
Fy.

Evidence-to-label mapping. A mapping is cor-
rect if (a) the evidence segment is retrieved
and (b) it is linked to the correct pillar. Met-
rics follow the same TP/FP/FN template as
above.

Total EWS amount prediction. After summing
predicted pillar amounts, we compare the to-
tal BY" against the gold BY" using absolute
accuracy and percentage error.

5.4 Interpretation of the benchmark

Total-amount accuracy (Fig. 2, left). The
Glass-Box Agent attains the highest median accu-
racy (z ~ 0.78) and a narrow inter-quartile range,
demonstrating both precision and stability across
heterogeneous layouts. Gemini and OpenAl trail
behind (median ~ 0.72 and ~ 0.68, respectively)
and exhibit heavier tails, indicating more frequent
large errors.

Amount-per-pillar performance (Fig. 2, right).
When the accuracy metric is tightened to pillar-
level allocation, the Agent still captures almost half

of the aggregate performance mass (48.7 % of the
total macro-F;), while Gemini accounts for 36.1 %
and OpenAl only 15.2 %. The result mirrors our
tabular findings in Table 1: transparent, schema-
aware reasoning yields the most faithful budget
breakdowns.

Evidence-extraction robustness (Fig. 3).
Across the vast majority of MDB projects the
Agent achieves the highest F; (yellow), with Gem-
ini (orange) and OpenAl (red) clustered below. An
exception emerges for the grey-shaded projects,
whose budgets are not presented in explicit tables
but scattered throughout the narrative text. Here
Gemini’s end-to-end comprehension slightly out-
performs the Agent, suggesting that large black-
box models retain an advantage when numerical
clues are deeply embedded in prose.

Taken together, the graphics align with our quali-
tative findings: Glass-Box transparency dominates
performance—especially for structured or semi-
structured financial disclosures. While, black-box
assistants narrow the gap only in the rare cases
where budget figures are diffused across free-form
text. Future work will therefore focus on augment-
ing the Agent’s retrieval module with paragraph-
level numerical parsing to close the remaining gap
on unstructured layouts.

6 Conclusion

Automating financial tracking of EWS investments
is crucial for improving climate finance trans-
parency and accountability. In this study, we
introduced the EWS4AIl Financial Tracking Al-
Assistant (Fig. ??), a novel system that integrates
multi-modal processing, hierarchical reasoning,
and RAG for document classification and budget
allocation. Our experiments on 25 project docu-
ments from the CREWS Fund demonstrated that
an agent-based approach significantly outperforms
traditional NLP methods, achieving 87% accuracy,
89% precision, and 83% recall. The system ef-
fectively addresses challenges related to document
heterogeneity, structured and unstructured data in-
tegration, and cross-organizational inconsistencies.
Beyond improving financial tracking, our work con-
tributes a benchmark dataset for future Al research
in climate finance. By combining Al-driven clas-
sification, retrieval, and reasoning, this approach
enhances decision-making processes in MDBs and
supports evidence-based climate investment poli-
cies. Future work will focus on extending the sys-
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tem to handle a broader range of MDB financial
documents, improving model generalization, and
integrating real-time updates for dynamic financial
tracking.

Limitations

While our approach demonstrates significant im-
provements in automating financial tracking for
EWS investments, several limitations remain. First,
our system relies on existing financial reports from
MDBs, in this case CREWS, which are often het-
erogeneous and may contain incomplete or ambigu-
ous financial allocations. In cases where funding
details are missing or inconsistently reported, even
advanced retrieval-augmented generation (RAG)
and multi-step reasoning approaches may strug-
gle to provide accurate classifications. Second,

the classification system is influenced by the train-
ing data used in fine-tuning and prompt engineer-
ing. Despite expert annotations, the model may
still exhibit biases in investment classification, par-
ticularly when encountering novel financial struc-
tures or terminology not well-represented in the
dataset. Third, while our agent-based RAG system
achieves state-of-the-art performance on structured
and unstructured financial data, its generalizabil-
ity to other climate finance applications outside
EWS has not been fully explored. Future work
should assess model robustness across different
sustainability reporting frameworks and financial
instruments. Finally, our system assumes that finan-
cial tracking can be improved through Al-assisted
reasoning; however, its real-world effectiveness de-
pends on institutional adoption, policy integration,
and alignment with evolving financial disclosure
regulations.

Ethics Statement

Human Annotation: This study relies on annota-
tions provided by domain experts from the WMO,
who possess extensive knowledge of Early Warn-
ing Systems (EWS). These experts played a piv-
otal role in the design and conceptualization of the
study. Their deep understanding of both the con-
textual and practical aspects of the collected data
ensures the accuracy and relevance of the annota-
tions. The use of expert annotations minimizes the
risk of misclassification and enhances the reliability
of the model’s outputs.

Responsible AI Use. This tool is intended as an
assistive system to enhance transparency and effi-
ciency in financial tracking, not as a replacement
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Figure 4: Schematic overview of the final analysis report that results from the agent-based pipeline.The workflow
comprises three main stages: (i) ingestion of the project document as a PDF; (ii) a modular agent-based processing
pipeline that parses text, identifies total funding figures, and classifies expenditures into four predefined EWS
“pillars”; and (iii) compilation of an analysis report summarizing the total allocated budget, per-pillar allocation
amounts and percentages, and a graphical distribution of funds across pillars.

for human analysts. Expert oversight remains cru-
cial in interpreting financial classifications, address-
ing edge cases, and ensuring compliance with pol-
icy frameworks. By open-sourcing our dataset and
model, we encourage responsible use and further
validation to refine the system’s applicability in
real-world climate finance decision-making.

Data Privacy and Bias: This study does not in-
volve any personally identifiable or sensitive finan-
cial data. All data used in this research originates
from publicly available sources under a Creative
Commons license, ensuring compliance with data
privacy regulations. While we find no evidence of
demographic biases in the dataset, we acknowledge
that financial reporting by multilateral development
banks (MDBs) may reflect institutional biases in
investment classification. Our model operates as a
decision-support tool and should not replace human
judgment in financial tracking and policy decisions.

Reproducibility Statement: To ensure full repro-
ducibility, we will release all PDFs, codes, EWS-
taxonomy, and expert-annotated data used in this
study. Our approach aligns with best practices
in Al transparency and responsible research dis-
semination. However, we encourage users of this
dataset and model to consider ethical implications
when applying automated financial tracking sys-
tems in real-world decision-making contexts. For

vector database storage and retrieval, we utilized
Weaviate, an open-source, scalable vector search
engine that efficiently indexes high-dimensional
embeddings. Additionally, for reasoning and large
language model (LLM) interactions, we integrated
OpenAl’s ol API, leveraging its advanced capabil-
ities to process, analyze, and infer patterns from
financial document data.
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A Early Warning Systems (EWS)

A.1 Definition and Purpose

Early Warning Systems (EWS) are integrated
frameworks designed to detect imminent hazards
and alert authorities and communities before disas-
ters strike. In essence, an EWS combines hazard
monitoring, risk analysis, communication, and pre-
paredness planning to enable timely, preventive ac-
tions. Early warnings are a cornerstone of disaster
risk reduction (DRR) — they save lives and reduce
economic losses by giving people time to evacuate,
protect assets, and secure critical infrastructure’.
By empowering those at risk to act ahead of a haz-
ard, EWS help build climate resilience: they are

3See
pdf.

https://www.unisdr.org/files/608_10340.
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proven to safeguard lives, livelihoods, and ecosys-
tems amid increasing climate-related threats*. In
summary, an effective EWS ensures that impend-
ing dangers are rapidly identified, warnings reach
the impacted population, and appropriate protective
measures are taken in advance.

A.2 EWS Taxonomy

A robust EWS involves several fundamental com-
ponents that work together seamlessly. The United
Nations identify four interrelated pillars necessary
for an effective people-centered EWS (Pescaroli
et al., 2025). This taxonomy serves as a struc-
tured framework to categorize EWS components
and activities, facilitating a consistent approach
to analyzing early warning systems across various
domains. Our approach in this paper is based on
these four fundamental pillars of EWS and one
cross-pillar, ensuring a comprehensive understand-
ing of risk knowledge, detection, communication,
and preparedness.

Early Warning System (EWS) Taxonomy

Prompt

An Early Warning System (EWS) is an in-
tegrated system of hazard monitoring, fore-
casting, and prediction, disaster risk assess-
ment, communication, and preparedness ac-
tivities that enables individuals, communi-
ties, governments, businesses, and others to
take timely action to reduce disaster risks
before hazardous events occur.

When analyzing a text, it is essential to de-
termine whether it falls under EWS com-
ponents and activities, which vary across
multiple sectors and require coordination
and financing from various actors.

The taxonomy is based on the Four Pil-
lars of Early Warning Systems and one
cross-pillar:

Pillar 1: Disaster Risk Knowledge and
Management (Led by UNDRR)

This pillar focuses on understanding dis-
aster risks and enhancing the knowledge
of communities by collecting and utilizing
comprehensive information on hazards, ex-
posure, vulnerability, and capacity.

“See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.
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Illustrative examples:

— Inclusive risk knowledge: Incorporat-
ing local, traditional, and scientific risk
knowledge.

— Production of risk knowledge: Establish-
ing a systematic recording of disaster loss
data.

— Risk-informed planning: Ensuring
decision-makers can access and use
updated risk information.

— Data rescue: Digitizing and preserving
historical disaster data.

Keywords: Risk mapping, vulnerability

mapping, disaster risk reduction (DRR), cli-

mate information.

Pillar 2: Detection, Observation,
Monitoring, Analysis, and Forecasting
(Led by WMO)

This pillar enhances the capability to detect
and monitor hazards, providing timely and
accurate forecasting.

Illustrative examples:

— Observing networks enhancement:
Strengthening real-time monitoring
systems.

— Hazard-specific observations: Improving
monitoring of high-impact hazards.

— Impact-based forecasting: Developing
quantitative triggers for anticipatory ac-
tion.

Keywords: Forecasting, seasonal predic-

tions, multi-model projections, climate ser-

vices.

Pillar 3: Warning Dissemination and
Communication (Led by ITU)

Effective communication ensures that early

warnings are received by those at risk, en-

abling them to take timely action.

Illustrative examples:

— Multichannel alert systems: Use of SMS,
satellite, sirens, and social media.

— Standardized warnings: Implementation
of the Common Alerting Protocol (CAP).

— Feedback mechanisms: Enabling commu-
nity input on warning effectiveness.

Keywords: Communication systems, mul-
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tichannel dissemination, emergency broad-
cast systems.

Pillar 4: Preparedness and Response
Capabilities (Led by IFRC)

Timely preparedness and response measures

translate early warnings into life-saving ac-

tions.

Ilustrative examples:

— Emergency preparedness planning: De-
veloping anticipatory action frameworks.

— Public awareness campaigns: Educating
communities on disaster response.

— Emergency shelters: Construction of cy-
clone shelters, evacuation centers.

Keywords: Preparedness planning, emer-

gency drills, public education on disaster

response.

Cross-Pillar: Foundational Elements for
Effective EWS

Cross-cutting elements critical to the sus-

tainability and effectiveness of EWS in-

clude governance, inclusion, institutional
arrangements, and financial planning.

Ilustrative examples:

— Governance and institutional frameworks:
Defining roles of agencies and stakehold-
ers.

— Financial sustainability: Mobilizing and
tracking finance for early warning sys-
tems.

— Regulatory support: Developing and en-
forcing data-sharing legislation.

Keywords: Institutional frameworks, gov-

ernance, financial sustainability, data man-

agement.

Each of these components is vital. Only when
risk knowledge, monitoring, communication, and
preparedness work in unison can an early warn-
ing system effectively protect lives and properties.
Gaps in any one element (for example, if warnings
don’t reach the vulnerable, or if communities don’t
know how to respond) will weaken the whole sys-
tem. Thus, successful EWS are people-centered
and end-to-end, linking high-tech hazard detection
with on-the-ground community action.
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A.3 Importance for climate finance

EWS are widely recognized as a high-impact, cost-
effective investment for climate resilience. By pro-
viding advance notice of floods, storms, heatwaves
and other climate-related hazards, EWS signifi-
cantly reduce disaster losses. Studies indicate that
every $1 spent on early warnings can save up to
$10 by preventing damages and losses.’> For ex-
ample, just 24 hours’ warning of an extreme event
can cut ensuing damage by about 30%, and an esti-
mated USD $800 million investment in early warn-
ing infrastructure in developing countries could
avert $3—16 billion in losses every year®. These
economic benefits underscore why EWS are con-
sidered “no-regret” adaptation measures, i.e., they
pay for themselves many times over by protecting
lives, assets, and development gains.

Given their proven value, EWS have become
a priority in climate change adaptation and disas-
ter risk reduction funding. International climate
finance mechanisms, such as the Green Climate
Fund, Climate Risk and Early Warning Systems
(CREWS) Fund, and Adaptation Fund along with
development banks, are channeling resources into
EWS projects, from modernizing meteorological
services and hazard monitoring networks to com-
munity training and alert communication systems.
Strengthening EWS is also central to global ini-
tiatives like the United Nations’ Early Warnings
for All (EW4All), which calls for expanding early
warning coverage to 100% of the global population
by 2027. Achieving this goal requires substantial
financial support to build new warning systems in
climate-vulnerable countries and to maintain and
upgrade existing ones. Climate finance is therefore
being directed to help develop, implement, and
sustain EWS, ensuring that countries can operate
these systems (e.g. funding for equipment, data
systems, and personnel) over the long term. In
summary, investing in EWS is essential for climate
resilience. It not only reduces humanitarian and
economic impacts from extreme weather, but also
yields high returns on investment. Financial sup-
port for EWS, whether through dedicated climate
funds, loans and grants, or public budgets, under-
pins their development and sustainability, making
it possible to deploy cutting-edge technology and

3See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

°See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.
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foster prepared communities. By mitigating the
worst effects of climate disasters, EWS help safe-
guard development progress, which is why they
feature prominently in climate adaptation financing
and strategies.

Hence, investing in EWS is essential for climate
resilience. It not only reduces humanitarian and
economic impacts from extreme weather, but also
yields high returns on investment. Financial sup-
port for EWS, whether through dedicated climate
funds, loans and grants, or public budgets, under-
pins their development and sustainability, making
it possible to deploy cutting-edge technology and
foster prepared communities. By mitigating the
worst effects of climate disasters, EWS help safe-
guard development progress, which is why they
feature prominently in climate adaptation financing
and strategies.

A.4 Current challenges

Despite their clear benefits, there are several chal-
lenges in financing and implementing EWS effec-
tively. Key issues include:

Data Inconsistencies and Lack of Standard-
ization: EWS rely on data from multiple sources
(weather observations, risk databases, etc.), but
often this data is inconsistent, incomplete, or not
shared effectively across systems. Differences in
how hazards are monitored and reported can lead to
gaps or delays in warnings. Likewise, there is a lack
of standardization in early warning protocols and
data formats between agencies and countries (Ve-
lazquez et al., 2020; Pescaroli et al., 2025). Incom-
patible data systems and inconsistent methodolo-
gies (for example, different trigger criteria for warn-
ings or varying risk assessment methods) make it
difficult to integrate information. This fragmenta-
tion hinders the creation of a “common operating
picture” of risk. Data harmonization and common
standards (for data collection, forecasting models,
and warning communication) are needed to ensure
EWS components work together seamlessly.

Institutional and Cross-Organizational Barri-
ers: An effective EWS cuts across many organi-
zations, national meteorological services, disaster
management agencies, local governments, interna-
tional partners, and communities. Coordinating
these actors remains a challenge. In many cases,
efforts are siloed: meteorological offices may is-
sue technical warnings that don’t fully reach or en-
gage local authorities or the public. There are gaps
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in governance, clarity of roles, and inter-agency
communication that can weaken the warning chain.
Improving EWS often requires overcoming bu-
reaucratic boundaries and fostering cooperation
between different sectors (e.g., linking climate sci-
entists with emergency planners). Interoperability
issues, i.e.,ensuring different organizations’ tech-
nologies and procedures align, are also a hurdle
(Tupper and Fearnley, 2023). As the World Me-
teorological Organization (WMO) states, connect-
ing all relevant actors (from international agencies
down to community groups) and adapting plans to
real-world local conditions is complex’. Sustained
commitment, clear protocols, and partnerships are
required to break down these barriers so that EWS
operate as a cohesive, cross-sector system.

Financing Gaps and Sustainability: While
funding for EWS is rising, it still lags behind
what is needed for global coverage and mainte-
nance. Many high-risk developing countries lack
the resources to install or upgrade EWS infrastruc-
ture (radar, sensors, communication tools) and to
train personnel. Fragmented financing is a prob-
lem. Support comes from various donors and pro-
grams without a unified strategy, leading to poten-
tial overlaps in some areas and stark gaps in oth-
ers. For instance, recent analyses show that a large
share of EWS funding is concentrated in a few
countries, while Small Island Developing States
(SIDS) and Least Developed Countries (LDCs) re-
main underfunded despite being highly vulnerable®.
Even when initial capital is provided to set up an
EWS, securing long-term funding for operations
and maintenance (software updates, staffing, equip-
ment calibration) is difficult. Without sustainable
financing, systems can degrade over time. Ensuring
financial sustainability, co-financing arrangements,
and political commitment is critical so that EWS
are not one-off projects but enduring services.

In addition to the above, there are challenges in
technological adoption and last-mile delivery: for
example, reaching remote or marginalized popula-
tions with warnings (issues of language, literacy,
and reliable communication channels) and building
trust so that people heed warnings. Climate change
is also introducing new complexities — hazards are
becoming more unpredictable or intense, testing

7See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

8See, https://wmo.int/media/news/
tracking-funding-life-saving-early-warning-systems.
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the limits of existing early warning capabilities.
Overall, addressing data and standardization issues,
improving institutional coordination, and closing
funding gaps are priority challenges to fully realize
the life-saving potential of EWS.

A.5 Relevance to this study

Our work is focused on the financial tracking and
classification of investments in climate resilience,
and EWS represent a prime example of such in-
vestments. Early warning projects often cut across
sectors and funding sources — they might include
components of infrastructure, technology, capac-
ity building, and community outreach. Because
of this cross-cutting nature, tracking where and
how money is spent on EWS can be difficult with-
out a clear classification system. Different orga-
nizations may label EWS-related activities in var-
ious ways (e.g. “hydromet modernization”, “dis-
aster preparedness”, “climate services”), leading
to inconsistencies in investment data. By estab-
lishing a standardized framework to define and cat-
egorize EWS investments, the study helps create
a “big-picture view” of early warning financing.
This enables analysts and policymakers to iden-
tify overlaps, gaps, and trends that were previously
obscured by fragmented data.

Moreover, improving the classification of EWS
funding directly supports broader resilience initia-
tives. For instance, the newly launched Global Ob-
servatory for Early Warning System Investments is
already working to tag and track EWS-related ex-
penditures across major financial institutions. Such
efforts mirror the goals of this study by highlighting
the need for consistent tracking, transparency, and
coordination in climate resilience finance. Better
classification of investments means stakeholders
can pinpoint where resources are going and where
additional support is needed to meet global targets
like the “Early Warnings for All by 2027 pledge.
In short, EWS feature in this study as a critical
category of climate resilience investment that must
be clearly identified and monitored.

By including EWS in its financial tracking frame-
work, the study provides valuable insights for
decision-makers. It helps determine how much
funding is allocated to early warnings, from which
sources, and for what components (equipment,
training, maintenance, etc.). This information
is crucial for evidence-based decisions on scal-
ing up EWS: for example, spotting a shortfall in
community-level preparedness funding, or recog-
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nizing successful investment patterns that could be
replicated. Ultimately, linking EWS to the study’s
financial tracking reinforces the message that cli-
mate resilience investments can be better managed
when we know their size, scope, and impact area.
By classifying EWS expenditures systematically,
the study contributes to stronger accountability and
strategic planning in building climate resilience,
ensuring that early warning systems — and the com-
munities they protect — get the support they urgently
need.

B Dataset Construction

In this study, we analyze financial information
extracted from PDFs containing both structured
and unstructured data. Unlike conventional bench-
mark datasets, these documents exhibit high het-
erogeneity in their formats—some tables are well-
structured, while others embed financial figures
within free-text paragraphs or are scattered across
multiple rows and columns. Additionally, many nu-
merical values correspond to multiple rows within
the same column, creating challenges in extraction,
alignment, and interpretation.

The annotated data, provided by experts in CSV
format, along with the corresponding PDFs, can be
found in the supplementary materials of this paper.

The dataset consists of 298 rows of expert an-
notations and contains the following 9 columns:
Fund, Project ID, Component, Outcome/Expected-
Outcome/Objectives, Output/Sub-component, Ac-
tivity/Output Indicator, Page Number, Amount, and
Label.

The total amount of Early Warning Systems
(EWS) is computed as the sum of all Amount values
for a given project.

The annotated dataset (CSV file and PDFs)
consists of financial reports and investment doc-
uments sourced from publicly available institu-
tional records, which are intended for public in-
formation and research and transparency purposes.
The dataset is used strictly within its intended
scope—analyzing financial tracking in climate in-
vestments—and adheres to the original access con-
ditions. Additionally, for the artifacts we create,
including benchmark datasets and classification
models, we specify their intended use for research
and evaluation in automated financial tracking and
ensure they remain compliant with ethical research
guidelines.
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