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ABSTRACT

Lying on the heart of intelligent decision-making systems, how policy is represented
and optimized is a fundamental problem. The root challenge in this problem is
the large scale and the high complexity of policy space, which exacerbates the
difficulty of policy learning especially in real-world scenarios. Towards a desirable
surrogate policy space, recently policy representation in a low-dimensional latent
space has shown its potential in improving both the evaluation and optimization of
policy. The key question involved in these studies is by what criterion we should
abstract the policy space for desired compression and generalization. However,
both the theory on policy abstraction and the methodology on policy representation
learning are less studied in the literature. In this work, we make very first efforts to
fill up the vacancy. First, we propose a unified policy abstraction theory, containing
three types of policy abstraction associated to policy features at different levels.
Then, we generalize them to three policy metrics that quantify the distance (i.e.,
similarity) of policies, for more convenient use in learning policy representation.
Further, we propose a policy representation learning approach based on deep metric
learning. For the empirical study, we investigate the efficacy of the proposed policy
metrics and representations, in characterizing policy difference and conveying
policy generalization respectively. Our experiments are conducted in both policy
optimization and evaluation problems, containing trust-region policy optimization
(TRPO), diversity-guided evolution strategy (DGES) and off-policy evaluation
(OPE). Somewhat naturally, the experimental results indicate that there is no a
universally optimal abstraction for all downstream learning problems; while the
influence-irrelevance policy abstraction can be a generally preferred choice.

1 INTRODUCTION

How to obtain the optimal policy is the ultimate problem in many decision-making systems, such as
Game Playing (Mnih et al.,|2015)), Robotics Manipulation (Smith et al., 2019), Medicine Discovery
(Schreck et al.l 2019)). Policy, the central notion in the aforementioned problem, defines the agent’s
behavior under specific circumstances. Towards solving the problem, a lot of works carry out studies
on policy with different focal points, e.g., how policy can be well represented (Ma et al.| [2020; [Urain
et al.;,2020), how to optimize policy (Schulman et al.,|2017a;|Ho & Ermon, 2016) and how to analyze
and understand agents’ behaviors (Zheng et al.,2018; Hansen & Ostermeier, 2001).

The root challenge to the studies on policy is the large scale and the high complexity of policy
space, especially in real-world scenarios. As a consequence, the difficulty of policy learning is
escalated severely. Intuitively and naturally, such issues can be significantly alleviated if we have
an ideal surrogate policy space, which are compact in scale while keep the key features of policy
space. Related to this direction, low-dimensional latent representation of policy plays an important
role in Reinforcement Learning (RL) (Tang et al., 2020), Opponent Modeling (Grover et al., [ 2018]),
Fast Adaptation (Raileanu et al., [2020; [Sang et al., 2022), Behavioral Characterization (Kanervisto
et al., 2020) and etc. In these domains, a few preliminary attempts have been made in devising
different policy representations. Most policy representations introduced in prior works resort to
encapsulating the information of policy distribution under interest states (Harb et al.|[2020; Pacchiano
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et al.| 2020), e.g., learning policy embedding by encoding policy’s state-action pairs (or trajectories)
and optimizing a policy recovery objective (Grover et al.| 2018} Raileanu et al.| 2020). Rather
than policy distribution, some other works resort to the information of policy’s influence on the
environment, e.g., state(-action) visitation distribution induced by the policy (Kanervisto et al., | 2020;
Mutti et al., 2021). Recently, Tang et al.|(2020) offers several methods to learn policy representation
through policy contrast or recovery from both policy network parameters and interaction experiences.
Put shortly, the key question of policy representation learning is by what criterion we should abstract
the policy space for desired compression and generalization. Unfortunately, both a unified theory on
policy abstraction and a systematic methodology on policy representation are currently missing.

In this paper, we make first efforts to fill up the plank in both the theory and methodology. In-
spired by the state abstraction theory (Li et al., 2006), first we introduce a unified theory of policy
abstraction. We start from proposing three types of policy abstraction: distribution-irrelevance,
influence-irrelevance, and value-irrelevance. They follow different abstraction criteria, each of which
concerns distinct features of policy. Concretely, we utilize the exact equivalence relations between
policies and derive the corresponding policy abstractions. Further, we generalize the exact equivalence
relations to policy metrics, allowing quantitatively measure the distance (i.e., similarity) between
policies. Such policy metrics are more informative than the binary outcomes of policy equivalence
and thus provide more usefulness in policy representation learning. Moreover, towards applying
practical policy representation in downstream learning problems, we introduce a policy representation
learning approach based on deep metric learning (Kaya & Bilge,2019). We propose an alignment loss
for a unified objective function of learning with different policy metrics. The policy representation is
learned to render the abstraction criterion through minimizing the difference between the distance of
policy embeddings and the quantity measure by the policy metrics. In particular, we use Maximum
Mean Discrepancy (Gretton et al.,[2012; [Nguyen-Tang et al.l 2021) for efficient empirical estimation
of the policy metrics; and we adopt Layer-wise Permutation-invariant Encoder (Tang et al.,[2020) for
structure-aware encoding of the parameters of policy network.

In addition to the theoretical understanding of policy abstraction, we further investigate the empirical
efficacy of different policy metrics and representations in characterizing policy difference and convey-
ing policy generalization respectively. We conduct experiments in both policy optimization and policy
evaluation problems. For policy optimization, we adopt Trust-Region Policy Optimization (TRPO)
and Diversity-Guided Evolution Strategy (DGES) as the problem settings from (Kanervisto et al.,
2020), covering both gradient-based and gradient-free policy optimization. For policy evaluation, we
consider Off-policy Evaluation (OPE). In particular, we establish a series of OPE settings with differ-
ent configurations of training data and generalization tasks. These settings reflect the circumstances
often encountered in RL. Our experimental results indicate that, somewhat naturally, there is no a
universally optimal abstraction for all downstream learning problems. Additionally, it turns out that
the influence-irrelevance abstraction can be a preferred choice in general cases.

Our main contributions are summarized as follows: 1) We focus on the general policy abstraction
problem and to our knowledge, we propose a unified theory of policy abstraction along with several
policy metrics for the first time. 2) We propose a unified policy representation learning approach
based on deep metric learning. 3) We empirically evaluate the efficacy of our proposed policy
representations in multiple fundamental problems (i.e., TRPO, DGES and OPE).

2 BACKGROUND

Reinforcement Learning We consider a Markov Decision Process (MDP) (Putermanl [2014)
typically defined by a five-tuple (S, A, P, R, ), with the state space S, the action space A, the
transition probability P : S x A — A(S), the reward function R : S x A — R and the discount factor
v € [0,1). A(X) denotes the probability distribution over X. A stationary policy 7 : S — A(A)
is a mapping from states to action distributions, which defines how to behave under specific states.
An agent interacts with the MDP at discrete timesteps by its policy 7, generating trajectories with
so ~ po(+), ar ~ w(-|st), se41 ~ P (| s¢,at) and 1, = R (s, ar), where pg is the initial state
distribution. We use P™(s'|s) = Eqr(.|s)P (5|5, a) to denote the distribution of next state s’ when
performing policy 7 at state s. For a policy m, the return G, = Zfi o V'r¢ is the random variable for
the sum of discounted rewards while following 7, whose distribution is denoted by Z™. The value
function of policy 7 defines the expected return for state s, i.e., V™ (s) = E;[G¢ | so = s]. The goal
of an RL agent is to learn an optimal policy 7* that maximizes .J(7) = E, ., [V (s0)].

Metric Learning Here we recall the standard definition of metrics which is central to our work.
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Definition 1 (Metrics (Royden, [1968)). Let X be a non-empty set of data elements and a metric is a
real-valued function d: X x X — [0, 00) such that forall x,y,z € X: I)d(z,y) =0 < x=y;
2) d(z,y) = d(y,x); 3) d(z,y) < d(z,z) + d(z,y). A pseudo-metric d is a metric with the first
condition replaced by x =y = d(x,y) = 0. The combination (X, d) is called a metric space.

A metric d is often used to quantify the distance between two data elements in a general sense. In
this paper, we will also use metric to stand for pseudo-metric for brevity. Typically metric learning
aims to reduce the distance between similar data and increase the distance between dissimilar data.
With nonlinear transformation offered by deep neural networks, Deep Metric Learning allows us to
find such optimal metrics by optimizing a latent representation space of raw data.

3 PoOLICY ABSTRACTION THEORY

Inspired by the state abstraction theory (Li et al.l2006), in this section, we make the first effort in
proposing a unified policy abstraction theory. First, we propose the formal definition of three types
for policy abstraction; then, we generalize the abstractions to three types of policy metrics. Finally,
we analyze the properties of policy abstraction and compare them in several Gridworld MDPs.

3.1 PoLICY ABSTRACTION

First of all, following the classic definition of an abstraction (Giunchiglia & Walsh,[1992)), we propose
a general definition of policy abstraction as follows:

Definition 2 (Policy Abstraction). A policy abstraction f : 11 — X, is a mapping from ground policy
space 11 to an abstract space X. f(n) € X is the abstract policy representation corresponding to
ground policy 7 € 11, and the inverse image f~(x) with x € X, is the set of ground policies that
correspond to x under abstraction function f.

It is apparent that there are many such abstractions since we may have many possible ways to partition
the policy space. However, we are only interested in some useful ones among them that follow
specific abstraction criteria to preserve the important features related to decision making. In this
paper, we present three types of policy abstraction which are defined below:

Definition 3. Given an MDP and a ground policy space 11, for any two policies w;,m; € II, we
define three types of policy abstraction as follows:

1. A distribution-irrelevance abstraction ( f) is such that for all s € S, a € A, f(m;) =
fr(m;) implies that m;(a | s) = mj(a | s).

2. An influence-irrelevance abstraction ( fp= ) is such that for all s, s' € S, fp=(m;) = fp=(7;)
implies that P™i (s'|s) = P™i (s'|s).

3. Avalue-irrelevance abstraction ( fy =) is such that for all s € S, fy=(m;) = fy=(7;) implies
that V™i(s) = V™ (s).

These abstractions aggregate policies based on the corresponding equivalence relations with respective
concerns on different features of policy. Intuitively, the distribution-irrelevance abstraction (f;)
preserves the action distribution of the policy; the influence-irrelevance abstraction (fp~) preserves
the state transition distribution induced by the policy, i.e., the influence caused by the policy on the
environment; and value-irrelevance abstraction (fi/~) preserves the value function of the policy. In
addition to the policy abstractions introduced in Definition[3] we provide some other ones in Appendix
[A.2] Moreover, we revisit the policy abstractions adopted in prior related works and summarize them
from the angle of our policy abstraction theory in Table[d] of Appendix [B]

3.2 PoLICY METRICS

The policy abstractions allow us to aggregate policies according to equivalence relation. However,
exact equivalence is rarely encountered in continuous policy space (e.g., the usual case with neural
policies), thus useful abstraction can be seldom obtained. Moreover, the equivalence relation offers
only qualitative (i.e., binary) outcomes and is incapable of measuring the similarity between policies,
which is significant to policy representation learning. To this end, we generalize the policy abstractions
to policy metrics which quantitatively measures the distance between two policies.

Corresponding to the three types of policy abstraction, we define the following three policy metrics:

Definition 4. Given an MDP, a ground policy space 11, a state distribution p(s) and a distribution
(pseudo-)metric D(-,-), for any two policies m;, m; € II, we define three policy metrics as follows:
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Table 1: Properties of different policy abstraction.

Abstraction Abstraction Criterion (for 71, 72, Vs, s’,a € S? x A) Fineness Task Relevance
fo Policy Parameter Equivalence (/; = 6-) Highest None
I Action Distribution Equivalence (m;(a | s) = m;(a | 5)) High Low
fpr Dynamics Influence Equivalence (P™ (s'|s) = P™ (s'|s))  Middle Middle
fyn Value Function Equivalence (V™ (s) = V™ (s)) Low High
fo Triviality (taking all policies as the same) Lowest None

1. A distribution-irrelevance metric: dy (7;, ;) = Egops) [D (mi(a | s),m;(a | 5))].
2. An influence-irrelevance metric: dp~ (m;,m;) = Eyops) [D (P™(s" | 5), P™(s" | s5))].
3. Avalue-irrelevance metric: dy= (m;, 7;) = Egwp(s) [D (27 (s), 27 (s))].

These metrics follow the same abstraction criteria as in Definition[3] i.e., the irrelevance regarding
action distribution, influence and value, measuring the similarity of policies by the distance at
respective levels. Compared to the binary outcomes offered by the equivalence relations, the metrics
defined here are continuous, thus are more informative in comparing and representing policies
in finer views. Specially, one may see that the equivalence relations used in Definition [3] induce
corresponding discrete pseudo-metrics, e.g., dy (;, mj) = 0if fr(m;) = fr(m;), and 1 otherwise.
Notice the metrics proposed above depends on the distribution metric D and state distribution p(s).
For D, typical choices can be Jeffreys Divergence (Jefireys, |1946) and Maximum Mean Discrepancy
(MMD) (Nguyen-Tang et al.l 2021). For p(s), intuitively, it should be the distribution of states
we are interested in when comparing two policies. We defer the concrete choices for practical
implementation of these metrics in Section 4]

3.3 PROPERTIES OF THE ABSTRACTIONS

Superficially, the three abstractions proposed preserve features that are progressively more relevant
to decision making in the learning task, but essentially, what is the relationship between the three
abstractions? To investigate the problem, we define the fineness of policy abstractions similar to the
one for state abstractions used in (Li et al.,2006), to prove how the three abstractions are related.

Definition 5 (Abstraction Fineness). Let F11 denotes the set of abstractions on ground policy space
II. Suppose f1, fo € Fr. We say fi1 is finer than fs, denoted f1 = fo, iff V m, my € 1],

fi(m1) = fi(me) implies fo(m1) = fa(ma). If, f1 # fa, then fi is strictly finer than fs, denoted
f1 > fa. In contrast, we may also say fs is (strictly) coarser than f1, denoted fo < f1 (f2 < f1).

It is easy to see the relation > satisfies self-reflexivity, antisymmetry and transitivity, thus it is a
partial ordering. Consider the set of possible policy abstractions, while the coarsest abstraction (fy)
is the trivial representation where all policies are treated as the same; while the finest abstraction is
the identity representation, e.g., fo(mg) = 6 for a policy neural network parameterized with 6 € ©.
With the partial ordering >, we further derive the following theory.

Theorem 3.1. Under the Definition[3|and[3] we have (fo =) fr = fp~ = fu=(= fo).

The proof is provided in Appendix [A.T] The theorem declares how the three policy abstractions
are related to each other in the sense of abstraction fineness with the two extreme cases (fo, fo) for
reference. The coarser the abstraction is, the more the original policy space is abstracted.

In Table [T we summarize the properties of different policy abstractions, regarding abstraction criteria,
abstraction fineness and task relevance. The major conclusion is that there is an inverse relation
between abstraction fineness and task relevance. Except for the two extreme cases (fo, fo) that
are totally task-independent, the policy abstraction becomes more task-relevant as the abstraction
criterion concerns more policy features related to the learning task. The distribution-irrelevance
abstraction f, concerns the policy behavior in the learning task, defined by action distribution at
interested states; meanwhile f; is coarser than fg since the same policy behavior can be realized by
non-unique policy parameter. Taking one step closer to the task, the influence-irrelevance abstraction
fp~ cares about the state transition dynamics induced by policy behavior. Obviously, fp~ is coarser
than f, as different behaviors may induce the same transition distribution. The value-irrelevance
abstraction fy - further involves the rewards of long-term dynamics, thus is the most task-relevant
and coarsest among the three types of policy abstraction.

Empirical Comparison of Policy Metrics in Gridworld MDPs To compare these policy ab-
stractions in a quantitative view, we demonstrate how the distances of two policies measured by the
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Figure 1: Policy comparison with different policy metrics in Gridworld. Top Panel: The illustration
of three Gridworld MDPs and two deterministic policies (blue and green). Bottom Panel: The
distance curves of the two policies measured by d, dp~, dy~ (y-axi), against the stochasticity of the
environment (x-axi). dp~ is able to distinguish the two policies across all the settings.

corresponding policy metrics differ in several Gridworld MDPs. We use Distinct Policies, Doorway
from (Kanervisto et al., 2020) and design a new task, Key Action for simple prototypes of tasks with
different features; moreover, we increase the stochasticity of the environment for a better evaluation.
In particular, E,.,)D(, -) is calculated by average the absolute differences over all states. The
illustrations and results are shown in Fig. [T] while more results can be found in Appendix[C]

We observe that the distribution-irrelevance metric d, may fail to show the difference in dynamics
and outcome between the two policies, e.g., in Doorway. This is because d, measures the difference
in the action distribution itself, i.e., independent of the dynamics as well as the increasing stochasticity
of the environment. This issue may be resolved by using a designated distribution that concentrates
over key states. Conversely, the value-irrelevance dy = measures the difference in the outcomes of the
two policies regardless their differences in action distribution and dynamics, e.g., in Distinct Policies.
Another discovery is that dy~ quickly degenerates and turns to be not informative as the increase
of stochasticity, showing its poor robustness. By contrast, the influence-irrelevance metric dp~ is a
sweet intermediate point, consistently keeping the ability of distinguishing the two policies across all
the environments and stochasticity configurations. In a summary, different policy abstractions and
metrics may yield different outcomes for the same two policies and the optimality depends on the
specific downstream learning problem concerned. Later, we evaluate these options in representative
downstream RL problems in Section [5]and [6] for useful insights.

4 POLICY REPRESENTATION LEARNING APPROACH

The next question concerned in practice is: how can we learn the representation of RL policies
(usually modeled by NNs) in a general way? Based on the policy metrics introduced above, we
propose a policy representation learning approach by following the principle of Deep Metric Learning.

4.1 LEARNING POLICY REPRESENTATION BY EMBEDDING ALIGNMENT

The policy metrics proposed in previous section measure the quantitative relationship between policies
from different perspectives of the policy abstraction criteria. For a unified objective function of
learning from different policy metrics, we use the alignment loss, with which the difference between
the distances of two policies in the representation space and in the policy metric space is minimized.
Concretely, consider a policy representation function f, and the alignment loss can be formalized as,

EAL(w) = ]ETr,‘/r’EH |:(||f¢(ﬂ') - f’l/)(ﬂ-/)”Q - nd* (71" 77/))2:| 5 (1)

where we consider d,, € {dr,dp~,dy~} and 7 is the weight for scaling. As we can see, Lar.(¢))
consists of two metrics, i.e., the Ly distance function (||-||,) of two inputs and the policy metric
(d«(+,-)). Intuitively, minimizing the alignment loss is to align the two metrics by optimizing the
policy representation function f,,. By this means, we are able to learn different policy representation
functions, which maps the ground policy 7 € II to the latent embedding x. = fy(7w) € A. The
embedding preserves the policy features corresponding to the abstraction criteria reflected by the
specific policy metric considered. For a practical implementation, the following problems are the
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estimation of policy metrics d, and the realization of the training for policy representation function
f, which are detailed in the next two subsections respectively.

In the literature of learning policy representation, representative methods follow the principle of
behavior recovering (Grover et al.,2018)) and policy contrast (Tang et al.,2020). To our knowledge,
none of prior works take a systematic view of policy abstraction. In Table[d] we show that prior
methods are specific instances of one of our proposed policy abstractions that differ in realization.

4.2 ESTIMATING POLICY METRICS VIA MAXIMUM MEAN DISCREPANCY

Given a tractable metric D and a state distribution p, the policy metrics (i.e., d,, dp~, dy~) can be
calculated exactly if the probability distributions (i.e., w, P™, Z™) are available. However, this is
usually infeasible in practice; instead, in more regular cases, only finite samples of policy interaction
are available. Although the empirical distributions can be estimated in simple MDPs where the
state-action space is finite (as in Appendix [D), unfortunately, approximating the distributions and
computing the metrics are non-trivial, especially with high-dimensional continuous state-action space.

Therefore, we estimate the policy metrics directly from the samples, bypassing estimating the
empirical distributions (i.e., ™, P™, Z™). In particular, we adopt MMD (Nguyen-Tang et al., 2021}
Sejdinovic et al., 2012)) as the distribution metric, i.e., let D be Dyyp. MMD measures the maximum
value of the mean discrepancy of two distributions regarding all possible functions in a predefined
family. Conventionally, let the class of functions & : X — R be a unit ball in a Reproducing Kernel
Hilbert Space (RKHS) H associated with a continuous kernel &(+, -) on X, p, ¢ be two distribution
defined on X, x, 2’ and y, 3 be i.i.d. samples from p and q respectively, the MMD is defined as:

Duvio (p,¢;H) = sup (Bgwp [1 ()] = Eyg [0 (9)]) = [l1tp — gl
heH: bl <1

= (By (@, 2)] + By [6(y, )] — 2By [k(z, 9)] ) %,

where ju, = [ k(z,-)p(dz) is the mean embedding of p into H(Smola et al., 2007). Thus, MMD

can be empirically estimated Wit}i samples {z;}¥., ~ pand {y;} 1, ~ ¢: )
Do ({zi}, {wi}s k) = 2 ZZJ: k(zi, x;) + 2 sz: k(yiyj) — N ;k(xuyj)- 3

According to Eq. |3} we can estimate the policy metrics dﬁ; dpr,dyn empiricaH)’/ from the samples
{a;},{s}}, {G;} of different policies respectively, under the sampled states {s; } for the expectation
E,s). However, it is often impractical to obtain multiple samples under the same state. Thus, we

@

resort to estimating the surrogates, e.g., dp~ (m;, ;) = D (P™(s,s'), P™ (s, s")) for dpr, where
the joint distributions rather than the state-conditioned distributions are measured. We use Gaussian
_ lz—a 113

kernel by default, i.e., k (z,2") = exp ( —

). Consequently, the empirical estimates of the
policy metrics serve as the self-supervision in Eq.

4.3 REALIZING THE TRAINING OF POLICY REPRESENTATION FUNCTION

With the empirical policy metrics provided in previous section, the training of policy representation
is straightforward with a differentiable function fy, by optimizing the alignment loss (Eq.[I). The
realization of policy representation function concerns two aspects: 1) the choice of policy data (or
original representation) and 2) the construction of fy, (i.e., how policy data is encoded).

For the first aspect, we focus on parameterized policy my (typically by a neural network) and use
policy parameter 6 as the policy data. One may recall that 6 itself can be viewed as the finest
representation obtained by policy abstraction fg in Table[I} Such an original representation (i.e., 6)
is high-dimensional and highly nonlinear, offering no help in the compression and generalization of
policy space. In addition, we are aware that in some cases the policy parameters may be not available,
and thus the interaction experiences generated by the policy can be alternative policy data, as used in
(Grover et al., [2018;; [Tang et al., |2020). Our policy representation learning approach is compatible
with such alternatives with the need of possible slight modifications. For the second aspect, we adopt
Layer-wise Permutation-invariant Encoder (LPE) (Tang et al.,|2020) as the implementation choice
of fy, which has demonstrated the effectiveness in encoding conventional policy networks. To be

specific, for the parameter § = {W;, b;}¥_, of policy 7, i.e., the weights and biases of k-layer MLP

IThe activation function is not considered since the structure is fixed for policies in convention RL setting. In
principle, LPE can be generalized to tailor other advanced network structure.
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the weight W; € Rb*!+1 and bias b; € R'*!+1 (I, is the unit number of the i-layer; [y and [, are
for the input and output layers) are concatenated () and transposed, followed by a MLP (f ;) and a
mean-reduce operation (MR), resulting in a layer embedding z;; Thereafter, the policy embedding is
obtained by concatenating the embedding of each layer. Formally,

l;+1

k
= % Z Foi (Wi b 7)) 5 Xrp = fu(0) = @Zi “
¢ j=1 i=0

z; = MR (fw,i([Wi D bl]—r))
Each row of [W; @ b;] ", indexing by the subscript 7, -, describes a transformation of the i-layer
into the next layer. All the rows are fed into fy ; separately and are then averaged into z;. In a
consequence, the policy embedding serves as the compact representation of the policy network by
summarizing the transformations made by the each layer of it. The significant difference between
LPE and a straightforward MLP encoder is that, LPE provides structure-aware representation, i.e.,
both the intra-layer and inter-layer structures are explicitly considered. Intuitively, this alleviates the
difficulty of learning representation from the policy network parameters. Other advanced encoder
structures are beyond the scope of this work and we leave them as future work.

Till now, we can update the parameters of LPE ¢ = {¢;}%_, by optimizing Eq. [1| with the policy
samples from some given dataset of policies and the empirical policy metrics estimated accordingly.
Depending on the specific choice of policy metric, the policy representation is learned to render the
policy abstraction in Table[I] starting from fg and going downwards to the corresponding level.

5 APPLYING POLICY ABSTRACTION TO POLICY OPTIMIZATION

Despite the theoretical understanding of the policy abstraction, we have no idea about how the derived
policy metrics behave in different downstream learning problems. To shed some light on this, we
evaluate the efficacy of the policy metrics proposed in Sec. in policy optimization, including
Trust-Region Policy Optimization (TRPO) and Diversity-Guided Evolutionary Strategy (DGES).

Trust-Region Policy Optimization We adopt TRPO problem as the first test stone for our pol-
icy abstractions. Specifically, the objective of TRPO problem is to maximize the policy return
while constraining the difference between old and new policies: Jrrpo(0) = Erp,, [R(7)],
s.t., di(mg,mg,,,) < o, where o is a threshold. For our experiments, we consider the policy
metrics d. € {d,dp=,dy~}. In another word, the learning agent checks if the difference measured
by the policy metrics are larger than o for each policy update. In this experiment, the original
TRPO (Schulman et al.l [2015) is generalized to incorporate different alternative metrics for the
trust-region constraint. Thus, we can evaluate the efficacy of the different trust regions provided by
our proposed policy metrics, shedding some light on what policy features we care the most in TRPO.
-5

We adopt a Gridworld envi- 8
ronment where the agent can
move to one of IV directions at
each grid and only one direc-
tion yields high reward (Kan{
ervisto et al., [2020). The re-

o
|
o

N

Average return

|
o]

—— Vanilla-ES ~ —— DGES-fpn
DGES-f; —— DGES-fy~

—— Vanilla-PO TRPO-fpr
sults are shown in Fig. [2(a) TRPO-fy  —— TRPO-fw

N

Average Return (1e2)
|
~

|
©

We observe that all our TRPO 0.0 0.2 Offmest()éss 08 10 0.2 Timesteg:‘ 0.6
variants (i.e., TRPO-f, ) out-

perform Vanilla-PO (i.e., no (@) TRPO ) ) (®) D.GES_
trust-region constraint used), Figure 2: Performance of different policy abstractions in: (a) Trust-

demonstrating the effective- Region Policy Optimization (TRPO); and (b) Diversity-Guided Evo-
ness of our policy abstractions. lution Strategy (DGES). Results are the mean and half a std (shaded)
Moreover, TRPO-f, outper- over 10 and 5 trials for TRPO and DGES respectively.

forms the others. This is because f, follows the abstraction criterion regarding action distribution,
thus pertains to the essence of TRPO. By contrast, fp~ and fy« utilize coarser abstraction which
does not hold the features of action distribution. In addition, we demonstrate the superiority of our
policy abstractions when compared with existing related methods in Appendix [E.1]

Diversity-Guided Evolution Strategy Next, we adopt DGES problem as the second test stone for
our policy abstractions. Formally, the objective of DGES problem is to maximize the policy return
of the current policy my and maximize its policy difference to the ancestor policy 7: Jpges(0) =

E;vp,, [R(T)] + B Z;V:l d.(mg,T), where 8 > 0 is the weight. Similarly, we consider the policy
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metrics di € {dr,dp~,dy~}. Here, the choices of policy metrics realize the population diversity
in different ways. We aim at exploring the diversity concerning which policy feature is the most
effective in DGES.

To explore this, we leverage the Point environment with deceptive rewards (Pacchiano et al., 2020).
The results are reported in Fig. In comparison to Vanilla-ES (i.e., 8 = 0), optimizing policy
diversity (i.e., 5 > 0) based on our policy metrics (i.e., DGES-f, ) does help exploration and
thus leads to better performance. In particular, DGES- fp~ performs the best. Since ES optimizes
policy in a gradient-free fashion, the evolution process concerns only policy return. Therefore, the
distribution-irrelevance abstraction f, (i.e., the winner in the TRPO experiment) can be redundant
since multiple action distributions may have the same outcome (i.e., influence and value). For the
value-irrelevance abstraction fy -, it turns to be too fine to contain the features of policy behavior
(i.e., action distribution and influence). Therefore, the influence-irrelevance abstraction fp~ serves as
a sweet point. Furthermore, we provide additional comparative evaluation in Appendix [E.2}

6 APPLYING POLICY ABSTRACTION TO OFF-POLICY EVALUATION

After the investigation in policy optimization, now we move to policy evaluation. Typical OPE (Fu
et al., 2021} |[Harb et al., [2020) focuses on using offline data to evaluate unseen policies. Likewise,
we are interested in studying the value generalization performance on unseen policies of the rep-
resentations learned regarding different policy abstractions. The appealing characteristic of policy
representation in value generalization has been studied in (Tang et al.,|2020), where a Policy-extended
Value Function Approximator (PeVFA,V(x)) takes as input the policy representation ., approx-
imates the values of multiple policies and offers implicit value generalization among the policy
representation space.

For policy data collection, we run PPO (Schulman et al.;[2017b) in OpenAl Gym continuous control
tasks: InvertedDoublePendulum-v2 (IDP-v2) and LunarLanderContinuous-v2 (LLC-v2) (Brockman
et al,2016). By collecting the policies at intervals during the learning process, we build an offline
policy set, based on which we train our policy representations and a PeVFA V(). For concrete
problem settings, we establish both weak and strong generalization OPE scenarios which differs
at the difficulty of evaluating the unseen policies. For the weak generalization scenario (easy), we
sample training data uniformly from the whole band of the policy set. For the strong generalization
scenario (hard), we separate the policy set and use the low-performance policies for the training data,
with the rest taken as the unseen policies to evaluate. For both the settings, the ratio of sampling
and separation is set to be 20%, 40%, or 80%. We report the results of the ratio 20% in Tableand
leave the results of other ratios in Appendix |G| For evaluation protocols, we report the evaluation
(testing) error of unseen policies (T-error) and the generalization gap (G-gap), i.e., the difference
between training and testing error. We denote different policy representations by their underlying
policy abstraction (e.g., f-) correspondingly. Complete details can be found in Appendix [{

Weak Generalization Scenario in OPE First, we study the empirical comparison in the weak gen-
eralization scenario. Table [2]reports the results of value generalization for the policy representations
learned based on corresponding policy abstractions. To be specific, the fg denotes directly using
policy parameters 6 as policy representations (i.e., no representation training). For our proposed pol-
icy abstractions fr, fp=, fy~, we learn the representations for them according to Eq.[T|based on the
LPE and MMD estimation (Sec. [4.3)). To further complete the comparison, we include two additional
representations frp and frr: fre uses a randomly initialized LPE with no further training while
fEL uses the LPE trained by the end-to-end OPE loss (see Appendix respectively. Note that fy,
can be viewed as a variant of fy = since it also learns from values but does not optimize the alignment
loss. Besides, we also include the representation (fr ) learned by unsupervised contrastive learning
based on InfoNCE loss (van den Oord et al.,|2018)), as proposed in (Tang et al.l 2020).

From the Table 2] (Weak Generalization), we can observe that fr, fp~, fy= outperforms fo, fre,
and fgr, in both IDP-v2 and LLC-v2. This demonstrates the effectiveness and superiority of our
proposed representations in value function approximation and generalization. fg, is significantly
better than the fo and frpg, indicating the advantages of LPE structure and training. We can observe
that contrastive policy representation fc, performs poorly. We postulate that with less training data
available at the 20% sampling ratio, the fo; with emphasis on policy instance-level comparison
suffers from higher evaluation error and generalization gap. The superiority of fy = compared to fgy,
from the Table [2] demonstrates the effectiveness of alignment loss. This is because although both
fv=, fer learn policy representation from the information of policy value, naive end-to-end training
is less effective than alignment optimization which establishes the representation space based on the
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Table 2: Performance of different policy abstractions in Off-policy Evaluation (OPE). The minimum
value for each task is highlighted. Results are the mean =+ a std over 10 and 5 trials (for weak and
strong respectively). The fy~ has lower T-error and G-gap on both the generalization tasks.

. Weak Generalization Strong Generalization
Env Abstraction
T-error G-gap T-error G-gap

fo 0.0059 4 0.0008  0.0039 & 0.0006 | 0.1592 +0.0107  0.0778 +£ 0.0437

frE 0.0056 4= 0.0009  0.0038 £ 0.0010 | 0.1676 +0.0086  0.1674 4 0.0087

JEL 0.0048 4 0.0003  0.0027 + 0.0008 | 0.1783 +0.0060  0.1712 £ 0.0145

IDP-v2 fer 0.0067 4 0.0010  0.0046 + 0.0008 | 0.1567 + 0.0081 0.1491 4 0.0107
fr 0.0044 £+ 0.0003  0.0025 + 0.0006 | 0.1812+0.0013  0.1803 £ 0.0011

fp 0.0044 £ 0.0003  0.0024 + 0.0006 | 0.1789 +0.0045  0.1778 + 0.0049

fv= 0.0046 & 0.0003  0.0022 + 0.0005 | 0.1320 + 0.0093  0.1295 + 0.0114

fo 0.0018 £ 0.0005  0.0016 +0.0003 | 0.1898 +0.0237  0.0926 £ 0.1592

frE 0.0028 4 0.0007  0.0025 £ 0.0007 | 0.0729 £0.0197  0.0718 4 0.0196

JEL 0.0017 4 0.0004  0.0016 # 0.0004 | 0.0656 + 0.0088  0.0646 + 0.0092

LLC-v2 fer 0.0035 4 0.0005  0.0032 £ 0.0004 | 0.0589 +0.0176  0.0572 4 0.0188
7, 0.0015 £+ 0.0005  0.0013 +0.0005 | 0.1365 +0.0367  0.1318 + 0.0332

fpr 0.0015 4 0.0004  0.0013 & 0.0004 | 0.0905 + 0.0402  0.0900 + 0.0404

fv= 0.0014 £ 0.0003  0.0011 + 0.0003 | 0.0473 + 0.0043  0.0470 + 0.0042

policy metrics. In general, the value generalization results among our abstractions f, fp~, fy/= do
not differ much. This is mainly because in the weak generalization setting, the unseen policies obey
the same distribution as the training policies, thus posing less difficulty of value generalization.

Strong Generalization Scenario in OPE Now we move to the study in the strong generalization
scenario and similarly the results are reported in Table 2] (Strong Generalization). Compared to the
weak generalization scenario, the overall T-error and G-gap are significantly higher in the strong
generalization scenario. This is reasonable because there is a larger performance difference between
the training and unseen policies. In other words, the unseen policies belong to out-of-distribution
data. The fy ~ obtains the lowest evaluation error on the two environments, which indicates the value-
irrelevance abstraction with higher task relevance may be best suited for the strong generalization
setting. For the explanation, since the objective of OPE lies at the value function approximation and
generalization, we consider that the value-irrelevance principle of fy - is consistent to the objective
and thus fits naturally.

With only low-performance policies for the training data at the 20% sampling ratio (hardest), the
results of other abstractions including our proposed f and fp~ on the task are poor. The main
reason may be that under the strong generalization setting, there is a large data-shift between the
training and unseen policies. f; and fp~ fails to learn a policy abstraction with generalization
ability in the absence of diversity policies. Nevertheless, from the Tablg0] [I0] as the sampling ratio
increase and training policies become more diverse, the advantage of f; and fp~ over other policy
abstractions gradually emerge. Moreover, in the hardest case, fp- is better than f, which shows that
the influence-irrelevance policy abstraction may be a general policy abstraction option.

For the other baselines, fg still shows few competition. For frg, fErL, for, they falls behind
fv~ while slightly outperforms fp~ and f, in Table[2| Such slight advantages no long holds in
the settings of higher sampling ratios (i.e., 40% in Table 9] and 80% in Table [I0). Unlike weak
generalization scenario, foy is not so bad in strong generalization scenario. The main reason is
that encountering hard policy evaluation tasks (Strong Generalization), other methods suffer from
performance degradation and are no longer superior to contrastive learning. In contrast, contrastive
learning based on policy instance-level comparison maintains a relatively good result.

Other Experiments In addition to Table 2] we provide more results under different settings of data
amount in Appendix for both the weak and strong generalization scenarios. Other comprehensive
studies (e.g., extrapolation behaviors, visualization) can be found in Appendix [G.2]G.3]

7 CONCLUSION & LIMITATIONS

In this work, we introduce a unified policy abstraction theory, including three major types of policy
abstraction, and corresponding policy metrics derived from the abstraction, as well as the analysis
of their properties. We further propose a policy representation learning approach based on deep
metric learning. We empirically evaluate the efficacy of different policy abstraction in both policy
optimization (i.e., TRPO, DGES) and off-policy evaluation (OPE). For limitations and future work,
we only provide the theory on the fineness of policy abstraction, while provide no theory on the
optimality, although the optimality ought to depend on the downstream problem considered. For
policy representation learning, the alignment loss and MMD metric are not the only choices; besides,
other representation learning principles (Bardes et al.,|2021) are potential.
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